
POINT OF VIEW

Towards a mechanistic
foundation of evolutionary
theory
AbstractMost evolutionary thinking is based on the notion of fitness and related ideas such as fitness

landscapes and evolutionary optima. Nevertheless, it is often unclear what fitness actually is, and its

meaning often depends on the context. Here we argue that fitness should not be a basal ingredient in

verbal or mathematical descriptions of evolution. Instead, we propose that evolutionary birth-death

processes, in which individuals give birth and die at ever-changing rates, should be the basis of

evolutionary theory, because such processes capture the fundamental events that generate

evolutionary dynamics. In evolutionary birth-death processes, fitness is at best a derived quantity, and

owing to the potential complexity of such processes, there is no guarantee that there is a simple

scalar, such as fitness, that would describe long-term evolutionary outcomes. We discuss how

evolutionary birth-death processes can provide useful perspectives on a number of central issues in

evolution.
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Introduction
What is evolution? The common definition is

that evolution is the temporal dynamics of gene

frequencies or phenotype distributions, or gen-

erally the change over time of important char-

acteristics of populations of organisms. Such

dynamics are thought to occur if there is herita-

ble variation in these characteristics, and if indi-

viduals with different characteristics survive and

reproduce at different rates, i.e., have different

”fitness" (Lewontin, 1970). This view of evolu-

tion is largely descriptive, and the conditions

for evolution to occur have some tautological

aspects (evolution occurs when fitter types have

more offspring; see, for example, Ariew and

Lewontin, 2004 and Dawkins, 1982). This is as

if in statistical physics, one would define heat

transfer to occur when some objects get

warmer and others colder under the condition

that there is a difference in temperature

between different objects. In statistical physics,

a more mechanistic theory instead allows tem-

perature and heat transfer to be seen as emer-

gent properties of the interactions between the

components of matter (such as molecules), and

of the complex dynamics that these interactions

generate.

In this essay, we advocate a mechanistic

approach to evolutionary dynamics that is

based on individual organisms undergoing the

fundamental events of birth and death. In this

approach, the long-term dynamics of genotype

or phenotype distributions become an emer-

gent property of the underlying birth-death

process. While this line of thought might

appear to be straightforward, it leads us to

question a number of evolutionary concepts

that are held dearly by many. After presenting

a general description of evolution as a birth-

death process, we discuss some implications of

this approach for the concepts of fitness and

optimality, for the relationship between ecology

and evolution, for social evolution and multi-

level selection, and for cultural evolution. Even

though in full generality, evolutionary birth-

death processes are mathematically intractable,

in all these areas a mechanistic model of evolu-

tion generates unified perspectives that will be
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useful for clarifying empirical questions, as well

as for future developments in evolutionary

theory.

Evolution as a stochastic birth-
death process
Every model, whether verbal or mathematical,

starts with simplifications. From a simplified, yet

general perspective, the fundamental processes

that give rise to evolution in the biosphere are

that individual organisms give birth and die at

certain rates (or, equivalently, with certain prob-

abilities per unit time). Individuals have proper-

ties, such as genotypes or phenotypes, or age

and physiological state, and their birth and

death rates depend on these properties. How-

ever, in general an individual’s birth and death

rates also depend on many other things, such as

the number and properties of other individuals

in the evolving population, properties of individ-

uals in other populations, and the external envi-

ronment. As a consequence, birth and death

rates typically vary in time as populations and

the environment change. To obtain a general

model of evolution, consider a population of

individuals x1; . . . ; xNðtÞ, where NðtÞ is the popula-

tion size at the current time t, and xi is the type

of the i-th individual. Here ”type" is meant to be

very general: it could be a simple scalar like

body size, or a very complicated quantity like

the whole genome of the individual, or a collec-

tion of various quantitative phenotypes such as

metabolic reaction rates, enzyme efficiencies,

and nutrient absorption rates.

We denote by biðtÞ and diðtÞ the birth and

death rates of individual i at time t. These rates

are in general complicated functions of the type

of the individual and of the current state of the

environment:

biðtÞ ¼ bi xi;ebioðtÞ;eabioðtÞð Þ (1)

diðtÞ ¼ di xi;ebioðtÞ;eabioðtÞð Þ: (2)

Here ebioðtÞ stands for the state of the biotic

environment of individual i at time t, e.g., for all

the types of the individuals with which the focal

individual i has ecological interactions (including

individuals from different species). Similarly,

eabioðtÞ stands for the state of the abiotic environ-

ment at time t, such as the availability of

nutrients, the temperature, pH, etc. Thus, in

general birth and death rates are functions of

the type of an individual, as well as of the cur-

rent state of the biotic and abiotic environment.

The stochastic process leading to evolution

unfolds through birth and death events that

occur with probabilities that are proportional to

the birth and death rates. Such processes are

examples of Markov processes, which are of cen-

tral importance in the mathematical theory of

stochastic processes (Dawson, 1993; Karlin and

Taylor, 1975; Van Kampen, 1992). One can

envisage such an evolutionary Markov process

as a set of clocks that tick, on average, with rates

given by the birth and death rates of each indi-

vidual, with each actual tick drawn from an expo-

nential distribution whose mean is the inverse of

the average tick rate (so that clocks with higher

rates tick faster). Because birth and death rates

depend on the current state of the system, they

have to be updated after every event (i.e., after

every "tick"), and the resulting stochastic pro-

cess can be very complicated. Nevertheless,

once the birth and death rate functions (Equa-

tions 1 and 2) are known, evolutionary birth-

death processes can usually be simulated effi-

ciently, e.g. using Gillespie algorithms (Gilles-

pie, 1976), or other, equivalent stochastic

implementations (Champagnat et al., 2006,

2008).

The result is a stochastic process in which the

type composition of the evolving population

changes as individuals die, in which case their

type is removed from the population, or give

birth, in which case an individual is added to the

population. In the latter case, the type of the

newborn individuals is determined by the various

processes involved in the production of off-

spring, such as mate choice, recombination, and

mutation. Formally, these processes can be sub-

sumed in an ”offspring function"

cðxi; ebioðtÞ, eabioðtÞ; which depends on the type of

the individual giving birth, on the biotic environ-

ment influencing mate choice, and possibly on

the abiotic environment. The function c would

also incorporate all the genetic details. Unlike

the rate functions bi and di, whose values are

positive real numbers, the function c takes values

in type space. For example, the simplest

assumption is that cðxi; ebioðtÞ ¼ xi, in which case

offspring have the same type as the parent.

More generally, for asexual reproduction one

can for example assume that cðxi; ebioðtÞ is chosen

randomly from some distribution with mean xi

and a variance determined by genetic assump-

tions. With sexual reproduction, the function c

becomes more complicated and will incorporate

mechanisms such as mate choice and the

genetic architecture of traits. In general, the off-

spring function c contains the ”raw material" for
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evolution, that is, the genetic processes, such as

mutation and recombination, by which novel

types are generated.

In this way, the functions biðtÞ, diðtÞ and cðtÞ

define a stochastic birth-death process that

reflects the fundamental individual-level events

that give rise to evolution in the biosphere. One

can envisage the resulting dynamics as a cloud

of points that moves around in type space. The

points in this cloud represent individuals, and

the cloud moves because some points disappear

(corresponding to death of individuals), while

new points appear at new locations in type

space (corresponding to birth of individuals that

are different from their parents). The collective

movement of the cloud represents the evolution-

ary dynamics, and we think that this description

captures the basic structure of evolutionary

processes.

In reality, the rate functions biðtÞ and diðtÞ are

likely to be exceedingly complex, and even if

these functions are not specified, this descrip-

tion reveals a fundamental potential for com-

plexity of evolutionary processes: because the

rate functions depend on the biotic environ-

ment, individual birth and death rates change as

the population composition changes. In stochas-

tic implementations, birth and death rates need

to be updated after every single birth and death

event, because these events lead to changes in

population composition. This generates a basic

feedback loop that has the potential to generate

complexity in the evolutionary process (this

feedback loop is traditionally referred to as fre-

quency dependence, (Heino et al., 1998;

Metz and Geritz, 2016). In addition, the abiotic

environment may of course also depend on

time, both through biotic effects such as nutrient

depletion, and through fluctuations in the physi-

cal and chemical environment. Thus, complexity

in the rate functions and in the offspring function

c can in principle generate complicated evolu-

tionary dynamics (we will give examples of this

in the next section).

Even though the description of evolution as a

birth-death process is conceptually very simple,

the potential for complexity should not really

come as a surprise. After all, it seems intuitively

obvious that, generally speaking, the biosphere

is a complex system (much more complicated

than the weather, for example, which is part of

the biosphere), and that its composition under-

goes complicated temporal changes. It is impor-

tant to keep in mind that in principle, this

complexity of evolutionary dynamics not only

comes from novelties generated by mutational

processes (which would be described by the

function c), but also from non-linear feedbacks in

birth and death rates.

Some remarks

Because the above description is based on rate

functions, the resulting evolutionary process

unfolds in continuous time. It is straightforward

to obtain an analogous description in discrete

time (e.g. for organisms with non-overlapping

generations) by assuming that the functions biðtÞ

and diðtÞ are not rates, but probabilities of giving

birth and dying over one time step (e.g., one

generation). In either case, the basic description

of evolution as a stochastic birth-death process

can be augmented in many different ways by

adding events that impact an organism’s life,

such as dispersal, or a change in physiological

state. These events would again occur at certain

rates (or with certain probabilities), with rate

functions generally depending on the state of

the evolving system. Which events one wants to

include in a particular model would depend on

the biological questions asked.

Even though births and deaths of reproduc-

ing units are a natural starting point for describ-

ing evolution as the dynamics of the abundance

of different kinds of individuals, the definition of

reproductive unit may not always be straightfor-

ward. In some fungi or plants, for example, bio-

mass growth may be a reasonable substitute for

reproduction, in which case the birth and death

rate functions would take on a slightly different

meaning and include growth and decline of bio-

mass. The meaning of the offspring function c

would have to be adjusted accordingly.

It is also worth pointing out that in the evolu-

tionary birth-death process described, any form

of genetic heritability is incorporated in the off-

spring function c. However, formally the birth-

death process also represents an evolutionary

process with other forms of heritability. For

example, the absence of heritability – e.g. if the

function c prescribes a random choice in type

space independent of the type of the parent –

would also result in a form of evolutionary

dynamics. More generally, the function c can

describe different forms of non-genetic heritabil-

ity, as can occur for example in cultural transmis-

sion and evolution (see below).

Fitness and optimality
An important, though admittedly self-evident

aspect of the perspective of evolution as a birth-

death process is that evolution explicitly
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becomes a forward-propagating process. What

happens next in an evolving system is entirely

determined by the current state of the system,

and not by any sort of ”teleological" quantity. In

particular, a priori there is no fitness function

that ”drives" evolution. Of course, an immediate

counterargument to this statement would be

that one could define fitness as the difference

between birth and death rates. Then the quan-

tity fiðtÞ ¼ biðtÞ � diðtÞ could be called the fitness

of type xi at time t, and one could argue that

types with higher fitness "do better". However,

by taking the difference between birth and

death rates one obviously loses information, and

so a priori it would be better to simply work with

separate birth and death rates.

For example, the variance across replicates of

an evolving system depends on the sum of bi

and di. Also, an explicit distinction between birth

and death events allows for separate descrip-

tions of the effects of genotypes or phenotypes

on fecundity and viability, which gives more flex-

ibility compared to describing these effects

based on compound properties such as growth

rates. More importantly, as a function of the

type xi, the fitness fiðtÞ would only be an instan-

taneous quantity. While fiðtÞ would indeed be a

measure of ”success’ of type xi compared to

other types, it would in principle only be so at

time t, after which the fitness would need to be

recalculated, because birth and death rates gen-

erally change after each birth and death event.

In particular, there is in general no global, time-

independent fitness function FðxiÞ such that

fiðtÞ ¼ FðxiÞ at all times t, simply because in gen-

eral, the rate functions biðtÞ and diðtÞ are too

complicated to allow for the existence of such a

function F.

This seems obvious, but is worth being

emphasized. To this day, mainstream evolution-

ary thinking is dominated by imagining evolution

as a process that maximizes ”fitness". This is

true both for the theoretical (e.g. population

genetic) and the empirical literature, as well as in

popular accounts of evolution (”survival of the

fittest"). A common metaphor in evolutionary

biology is the fitness landscape (Wright, 1932).

Formally, a fitness landscape is a scalar function

on type space whose maxima correspond to

”evolutionary optima", i.e., locations in type

space that have the highest fitness and are

therefore expected outcomes of evolution. Units

of such fitness functions are almost never given.

When invoking fitness landscapes, most often

the implicit assumption is that the fitness land-

scape is constant in time, or at least constant

over time scales relevant for the problem consid-

ered. Evolution is then envisioned as an optimi-

zation process, with the evolutionary trajectory

converging to the (nearest) maximum of the fit-

ness landscape (possibly hindered by factors

such as genetic architecture). In particular, in this

view evolution is a process that converges to an

equilibrium.

In terms of the stochastic birth-death process

described above, assuming that evolution is

determined by a constant fitness landscape cor-

responds exactly to assuming that there is a

global fitness function F such that fiðtÞ ¼ FðxiÞ at

all times t. This would imply that the difference

between birth and death rates is constant in

time for all types. Clearly, in that case types with

the largest difference would prevail over others,

and a cloud of points representing an evolving

population would, roughly speaking, move to

the vicinity of fitness peaks and stay there. How-

ever, it is easy to construct examples of evolu-

tionary birth-death processes in which the

evolving population does not settle at an equi-

librium, but instead continues to move around in

type space perpetually. This is true even for sin-

gle evolving populations (i.e., in the absence of

co-evolution between two different species, as

e.g. occurs in predator-prey arms races), as illus-

trated in Videos 1 and 2. These videos show

movies of clouds of points (i.e., populations)

whose evolutionary dynamics unfold in 2- and 3-

dimensional phenotype spaces and are driven

by competitive interactions. In the examples

shown, the evolutionary dynamics are cyclic

(Video 1) and chaotic (Video 2), respectively

(see also Figure 1).

We have recently argued that in some sense,

most evolutionary dynamics should be expected

to be complicated if they unfold in a type space

that is itself sufficiently complicated (i.e., high-

dimensional, [Doebeli and Ispolatov, 2010a,

2014; Ispolatov et al., 2016]). This is in stark

contrast to the equilibrium perspective resulting

from the assumption of a constant fitness land-

scape. Thus, while scenarios with constant fitness

landscapes are a special case of the general

birth-death process that describes evolution,

such scenarios are not generic, and instead

should be the exception rather than the norm.

Generally speaking, an evolutionary birth-death

process is a complex dynamical system, and

there is no reason to expect that there exists a

function that can describe the dynamics of such

a complex system so that the function increases

along trajectories in the state space of the sys-

tem. In dynamical systems theory, such a
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function is sometimes called a Lyapunov function

(Devaney, 1986), and it is well known that most

dynamical systems do not have a Lyapunov func-

tion, essentially because their dynamics are too

complicated. But a Lyapunov function is exactly

what a global, time-independent fitness function

would amount to: a function in type space that

predicts evolutionary trajectories in the sense

that the function increases along evolutionary

trajectories, so that the eventual outcome of

evolution is a maximum of that function. It fol-

lows that for general evolutionary birth-death

processes, there is no fitness function that would

predict their outcome.

In some, and perhaps even in many situations

it may be possible to derive such a function from

the given birth-death process. In fact, as we

argue in the next section, considering certain

precisely defined variants of the growth rate fiðtÞ

can be very helpful in obtaining simplified

descriptions of evolutionary birth-death pro-

cesses. But even in that case it is important to

realize that the fitness function would be a

derived property of the system, and not a basic

ingredient. The basic ingredients of an evolving

system are birth and death rates (and the off-

spring function), and not ”fitness". Starting an

evolutionary theory based on the notion of fit-

ness thus represents an argumentative leap that

is unjustified a priori.

Incidentally, this also applies to evolutionary

game theory (Hofbauer and Sigmund, 1998;

Maynard Smith, 1982) and its extensions

(Brown, 2016), which are generally also based

on fitness functions, e.g. in the form of payoff

matrices. Evolutionary game theory is a powerful

Video 1. Evolving populations as clouds of points

moving in phenotype space. The points in the cloud

represent the individual organisms, which can give

birth (spawn a new point in the cloud) and die (the

corresponding dot disappears from the cloud). The

video shows a single species undergoing cyclic

evolutionary dynamics in a 2-dimensional phenotype

space. The x- and y-axis are the two phenotypes, and

the cloud of points represents the evolving population.

In this example, all individuals had the same constant

birth rate, whereas individual death rates were

determined by competition from other individuals in

the population. Specifically, the death rate of an

individual with phenotype ðx; yÞ was equal to
P

aðx; y; u; vÞð Þ=Kðx; yÞ, where aðx; y; u; vÞ is the

competition kernel, which measures the competitive

impact of ðu; vÞ on ðx; yÞ, Kðx; yÞ is the carrying capacity

of phenotype ðx; yÞ, and the sum runs over all other

individuals ðu; vÞ in the current population. The video

shows the same scenario as Figure 1 in Ispolatov et al.

(2016), to which we refer for details of the simulations,

as well as of the particular functions chosen for a and

K.

DOI: 10.7554/eLife.23804.002

Video 2. A single species undergoing chaotic

evolutionary dynamics in a 3-dimensional phenotype

space. The cloud of points represents the evolving

population. In this example, all individuals had the

same constant birth rate, whereas individual death

rates were determined by competition from other

individuals in the population in a way that is analogous

to the example shown in Video 1, i.e., based on a

particular competition kernel a and a carrying capacity

function K (now having 3-dimensional vectors as

arguments). The video shows the same scenario as

Figure 2 in Ispolatov et al. (2016), to which we refer

for details of the simulations, as well as of the particular

functions chosen for a and K.

DOI: 10.7554/eLife.23804.003
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tool that has generated many important and fun-

damental insights into processes of frequency-

dependent selection, e.g. in the context of social

evolution (Sigmund, 2010). In particular, evolu-

tionary game theory has greatly expanded the

‘fitness horizon’ from the notion of constant fit-

ness landscapes. Nevertheless, most game theo-

retic models have the limitation that they are

based on ad hoc fitness functions, which are usu-

ally not derived from underlying birth-death pro-

cesses (for an exception see e.g. Traulsen et al.

(2005) and Huang et al. (2015), who derive

deterministic game dynamics from underlying

stochastic processes in finite populations). In

principle, to justify the use of fitness in a particu-

lar scenario, one needs to first determine the

evolutionary birth-death process describing that

scenario, and then argue that this evolutionary

process admits a fitness function that determines

the dynamics of the process. As the field of evo-

lutionary biology stands now, such a justification

for the use of fitness is rarely given.

Towards an analytical theory of
evolutionary birth-death processes

Given the rate functions bi and di and the off-

spring function c for a particular evolutionary

scenario, it is straightforward to simulate the

birth-death process and to obtain sample trajec-

tories of the resulting evolutionary dynamics.

This yields ”experimental", i.e., numerical

insights, and much can be learned from observ-

ing sample trajectories, or from statistics calcu-

lated from multiple trajectories. It would of

course also be desirable to have analytical

descriptions of evolutionary processes, much like

in statistical mechanics, whose goal it is to pro-

vide an analytical theory of the collective dynam-

ics of a large number of particles. The

mathematical theory of stochastic processes is

well developed (see e.g. Karlin and Taylor

(1975) for an introduction), but complete mathe-

matical tractability is only possible for relatively

simple birth-death processes. In principle, any

evolutionary birth-death process can be

described by a differential Master equation for

the probability of an evolving system to have a

given number of individuals of each type at a

given moment in time (Van Kampen, 1992). A

form of this equation is given in the Appendix.

However, such equations can only be solved

analytically for simple model scenarios, e.g.

when birth and death rates are constant and the

offspring function is very simple. In more realistic

situations, certain limits and approximations

need to be taken, which can lead to

deterministic approximations of the stochastic

process in question. For example, Nicholas

Champagnat and colleagues

(Champagnat et al., 2006, 2008) have shown

that under certain conditions, in the limit of large

populations evolutionary birth-death processes

can be described by partial differential equa-

tions. These equations describe the determin-

istic dynamics of type distributions and are

themselves rather complicated objects. Never-

theless, in principle they lend themselves to ana-

lytical investigations.

One interesting result is that the type of ana-

lytical approximation one obtains depends very

much on the type of limits one takes

(Champagnat et al., 2006; Dieckmann and

Law, 1996). Thus, different approximations can

describe the same evolutionary birth-death pro-

cess, and the question then becomes which one

of these approximations is biologically most rel-

evant. An interesting approximation is obtained

by assuming not only that population sizes are

large, but also that beneficial mutations are

exceedingly rare and small (this is only a rough

description, as the details of what ”rare“

and ”small“ means are important, see

Champagnat et al. (2006), Dieckmann and Law

(1996)). In that case, the dynamics of the mean

type �x of an evolving population is given by a

differential equation

d�x

dt
/
qf ð�x;yÞ

qy
jy¼�x: (3)

Here f ð�x;yÞ is the invasion fitness, which is

defined as the per capita growth rate, i.e., the

difference between the birth rate and death

rates, of an individual with type y in a biotic envi-

ronment determined by the resident type �x (in

fluctuating resident environments, the mutant

per capita growth rate has to be averaged over

the relevant time scale of these fluctuations).

Equation 3 is an example of the so-called

canonical equation of adaptive dynamics

(Dieckmann and Law, 1996), which is the theo-

retical framework for the analysis of evolutionary

dynamics derived from invasion fitness functions

(Diekmann, 2004; Geritz et al., 1998;

Metz et al., 1992, 1996). Figure 1 illustrates

the approximation obtained from the adaptive

dynamics (Equation 3) for the evolutionary birth-

death processes shown in Video 1 and Video 2.

Invasion fitness can be derived from evolu-

tionary birth-death processes not only for partic-

ular cases, but as a general principle

(Dieckmann and Law, 1996), and adaptive
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dynamics can therefore be used to gain general

insights into such processes. At any given point

in time, invasion fitness describes a fitness land-

scape for all possible mutants appearing in the

current biotic and abiotic environment. How-

ever, there is a fundamental difference between

invasion fitness and the traditional concept of

constant fitness landscapes (apart from the fact

that the latter are generally not derived from

evolutionary birth-death processes). The differ-

ence is that the landscape defined by invasion

fitness is generally not constant: because the

landscape is a function of the current biotic envi-

ronment, i.e., of the current resident types, it

changes as the population evolves. In essence,

invasion fitness defines a dynamical system on

fitness landscapes. A paradigmatic example of

the dynamics of fitness landscapes occurs when

populations, even though always evolving

‘uphill’ on a changing fitness landscape, eventu-

ally come to occupy a fitness minimum. This

sounds like an oxymoron, but is in fact a generic

and robust outcome of the dynamics of fitness

landscapes (Geritz et al., 1998) (and one that

Cyclic adaptive dynamics
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Figure 1. Deterministic approximations of evolutionary birth-death processes. Adaptive dynamics, given by

Equation 3, derived for the two examples of evolutionary birth-death processes shown in Video 1 and Video 2.

Adaptive dynamics yields a deterministic approximation of the evolutionary dynamics, which is shown in the left

panels (cyclic dynamics in 2-dimensional phenotypes space in the top left panel, chaotic attractor in 3-dimensional

phenotype space in the bottom left panel). The panels on the right show the corresponding trajectories of the

centres of mass of the clouds of points representing the two evolutionary birth-death processes in Video 1 and

Video 2. For details see (Ispolatov et al., 2016).

DOI: 10.7554/eLife.23804.004
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could of course never occur with constant fitness

landscapes). The related phenomenon of evolu-

tionary branching, which is often the conse-

quence of convergence to such fitness minima,

has been studied extensively in the context of

the important problem of adaptive diversifica-

tion and speciation (Dieckmann et al., 2004;

Doebeli, 2011).

Applications

Relationship between ecology and
evolution

Birth-death processes are fundamentally eco-

logical, because they result in temporal fluctua-

tions in the number of individuals in the

population. What makes birth-death processes

evolutionary is the offspring function c, which

allows for type innovation in newborns. Clearly,

if innovation is prevented by assuming that the

function c is the identity, cðxÞ ¼ x for all types x,

one obtains a purely ecological birth-death pro-

cess. From this perspective, the only difference

between ecological and evolutionary processes

lies in the offspring function c, and ecological

processes simply become special cases of evolu-

tionary birth-death processes. Formally, there is

thus no fundamental difference between eco-

logical and evolutionary birth-death processes,

and hence between ecological and evolutionary

dynamics.

In practice, the offspring function c may often

be close to the identity, reflecting ”almost faith-

ful reproduction" (Metz et al., 1996), e.g. of

quantitative traits such as body size. The differ-

ence between ecology and evolution then

becomes one of time scales. On shorter time

scales, evolutionary innovation is negligible, and

hence the birth-death process is mainly ecologi-

cal, while on longer time scales exploration of

larger areas of type space is possible, and evolu-

tionary change becomes important. For exam-

ple, the concept of invasion fitness discussed in

the previous section is based on the distinction

between ecological and evolutionary time scales.

Invasion fitness is an intrinsically ecological quan-

tity, because it is defined as the (ecological)

growth rate of a mutant type occurring in a resi-

dent population undergoing purely ecological

dynamics. Separation of ecological and evolu-

tionary time scales essentially reflects an approx-

imation of the underlying evolutionary birth-

death process, and invasion fitness provides the

hinge for connecting ecological to evolutionary

dynamics. It must be kept in mind, however, that

separation of ecological and evolutionary time

scales may not always be a good approximation

of evolutionary birth-death processes, because

evolutionary innovations may be large and fre-

quent rather than gradual and rare (e.g. in

microbes). In such scenarios, a clear distinction

between ecological and evolutionary processes

becomes impossible.

Social evolution and inclusive fitness

Social evolution, and in particular the evolution

of cooperation, is one of the fundamental prob-

lems in evolutionary biology. There has been

much discussion in recent years about how to

model social evolution, and about what the cor-

rect ”fitness measures" are that should be

employed in such models (e.g. the paper

Nowak et al. (2010) elicited a response with

137 signatories). Some researchers have sug-

gested that considering ”inclusive fitness", a fit-

ness measure that takes into account an

individual’s own fitness as well as that of its rela-

tives (Hamilton, 1964), is necessary for under-

standing social evolution, and that inclusive

fitness is the quantity that is maximized in Dar-

winian evolution in general (Grafen, 2007,

2014). The implication would be that there is a

global fitness landscape, given by inclusive fit-

ness, that always determines the outcome of

social evolution.

However, like any other evolutionary phe-

nomenon, social evolution must be the conse-

quence of some evolutionary birth-death

process, and because of their potential complex-

ity (particularly in the context of social interac-

tions), such processes do not in general admit a

global fitness function from which their dynamics

can be derived. In existing models of social evo-

lution, inclusive fitness is almost never derived

from an underlying birth-death process, and

deriving an inclusive fitness function capturing

the dynamics of the underlying process would

only be possible under special assumptions.

In a birth-death process for social evolution,

individuals obviously do not ”know" anything

about maximizing inclusive fitness. Instead, indi-

viduals characterized by certain social traits sim-

ply give birth and die at certain rates, which are

determined independently for each individual.

Birth rates (and death rates) of different individu-

als may of course be correlated, e.g. due to a

shared environment, but birth and death rates of

each individual are calculated independently,

and, in particular, independently of the degree

of relatedness of other individuals. Social evolu-

tion is then an emergent property of this
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process. For example, for the classical problem

of the evolution of cooperation it is typically

assumed that individuals differ in their contribu-

tions to some ”public good" that benefits others

but whose production is costly. One could e.g.

assume that individuals making larger contribu-

tions to the public good have a lower birth rate,

a higher death rate, or both, and that the pres-

ence of the public good in the vicinity of an indi-

vidual increases that individual’s birth rate (or

decreases its death rate, or both).

The question then is whether the frequency

or abundance of individuals making larger con-

tributions will increase or decrease over evolu-

tionary time. The answer emerges as the birth-

death process unfolds, and of course the expec-

tation is that the frequency of cooperative indi-

viduals can only increase if on average, their loss

(in birth/death rates) due to production of the

public good is compensated by gain (in birth/

death rates) from the presence of the public

good in their vicinity. In some scenarios it may

be possible to subsume and describe the emer-

gent dynamics using an inclusive fitness mea-

sure, but such a fitness measure would not be a

basic ingredient of the underlying birth-death

process, and instead could at best be a quantity

that is derived from that process. Moreover, if it

is possible to derive this quantity, then it is also

possible to derive other fitness measures that

would describe the dynamics of the process,

such as the direct fitness measures used in evo-

lutionary game theory. Direct fitness measures

simply calculate the average number of offspring

per unit time of the different cooperative types,

taking into account the expected cooperative

environment of each type, i.e., the degree of

positive assortment between cooperating indi-

viduals (Fletcher and Doebeli, 2009;

Nathanson et al., 2009).

In reality, many processes of social evolution,

e.g. in the microbial world, may be too compli-

cated to readily admit any sort of fitness mea-

sure from which their dynamics could be

derived. Instead, one would have to resort to

determine birth and death rates of individuals as

a function of their social traits and their environ-

ment, and then simulate the stochastic process

(corresponding to what is actually happening in

the real world, rather than in the contrived world

of fitness models). Thus, the perspective of evo-

lutionary birth-death processes reveals that

there is no fitness concept that would be funda-

mentally necessary for understanding social

evolution.

Multi-level selection

It has been argued that it is often useful to inves-

tigate social evolution in the context of group

selection, i.e., of multi-level selection scenarios

in which fitness accrues to both individuals and

groups of individuals (Wilson and Wilson,

2008). Somewhat curiously, the main theoretical

tool for such investigations is the Price equation

(Price, 1970). On the one hand, the Price equa-

tion is not really a model, but a useful data visu-

alization tool: it takes stock of what happened

over one parent-offspring generation

(Price, 1970; van Veelen et al., 2012). On the

other hand, this accounting takes place at the

level of individual organisms, and hence, again

by construction, the Price equation does not

describe multi-level processes. Despite this, the

Price equation is used to partition what hap-

pened over one generation into certain alge-

braic terms, which are then interpreted in a

biological context as terms corresponding to

”selection at the individual level" and ”selection

at the group level". This typically shows that the

group selection terms need to have a certain

sign for cooperative traits to increase over one

generation, hence the necessity of group selec-

tion for social evolution. This is questionable ter-

minology, which started a debate about the

”equivalence” of group selection and inclusive

fitness models, because proponents of inclusive

fitness argue that the group selection terms in

the Price equation are equivalent to the inclusive

fitness terms in the inclusive fitness interpreta-

tion of the Price equation.

We think that the perspective of evolutionary

birth-death processes can shed light on the issue

of group selection, and of multi-level selection in

general. If a population of individuals is under-

going an evolutionary birth-death process, and if

in this process type A prevails over type B, one

could describe this as selection having favoured

type A. Further, because individual organisms

are the units giving birth and dying in this sce-

nario, one would describe this as selection

occurring at the individual level. In other words,

in the perspective of evolutionary birth-death

processes, individual-level selection requires

individual-level events, i.e., individuals undergo-

ing a birth-death process. Generalizing from

this, processes of group selection require group

level events. For example, groups could fission

into smaller groups at certain rates, and groups

could go extinct, which would define a birth-

death process at the the level of groups. More

generally, multi-level selection requires a birth-
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death process at multiple levels of biological

organization.

In Simon et al. (2013) we have introduced

evolutionary birth-death processes that unfold at

both the individual and the group levels, and we

have given examples of social evolution where

the social traits are only maintained in the popu-

lation because of group level events (i.e., if the

birth-death process at the group level is turned

off, the remaining birth-death process at the

individual level leads to the loss of the social

traits). We would argue that only in such situa-

tions is it appropriate to say that a social trait

evolves by group selection (Simon et al., 2013).

In general, to talk about selection at a certain

level of biological organization, one needs to

formulate an evolutionary birth-death process at

that level. This implies that to define multi-level

models of social evolution, one needs to be able

to identify units undergoing a birth-death pro-

cess at the group level (including an appropriate

"offspring function" that describes the outcome

of group fissioning). This is of course not always

possible, e.g. when cooperation evolves in spa-

tially structured populations due to clustering of

cooperators, in which case it is often not feasible

to identify the clusters as reproductive units due

to their ephemeral nature. In that sense, evolu-

tion of cooperation due to spatial clustering is

not due to group selection, but rather to individ-

ual selection in structured environments (leading

to assortment of cooperators). In other scenar-

ios, such as the social evolution of insects, it may

be more straightforward to define groups as

reproductive units, e.g. as colonies of insects. In

particular, group selection may be an important

driver for the evolution of eusociality

(Nowak et al., 2010; Shaffer et al., 2016;

Wilson and Wilson, 2008). Group level birth

and death events, and hence group selection,

may also be very important for the evolution of

multicellularity from aggregations of single-

celled organisms (Hammerschmidt et al., 2014;

Ratcliff et al., 2012).

Cultural evolution

Cultural evolution refers to the waxing and wan-

ing of ideas and cultural practices throughout

the history of human societies. Cultural evolution

is a powerful alternative to genetic evolution

that shapes a myriad of aspects of human life,

from tool making to music and religion

(Boyd and Richerson, 1985; Richerson and

Boyd, 2005). Cultural evolution is non-genetic,

but is often thought to interact with human

genetics, leading to gene-culture coevolution

(Laland et al., 2010), in which cultural practices

may generate selection pressures for certain

genetic changes (such as the ability to adhere to

norms (Chudek and Henrich, 2011), and genetic

predispositions (e.g. in terms of brain function)

determine constraints on cultural evolution. That

much of cultural evolution must be non-genetic

is evident from the enormous cultural and socie-

tal changes in the last 100 or 1000 years. Even

though cultural evolution is non-genetic, models

of cultural evolution nevertheless most often

closely resemble population genetic models of

human evolution (Mesoudi et al., 2006). This is

because cultural traits are often identified with

the human individuals exhibiting them, and then

the dynamics of the abundance of humans with

different kinds of cultural traits is described. This

would correspond to an evolutionary birth-death

process in which the reproductive units are

humans, but their type is cultural. The offspring

function c would then describe how human off-

spring inherit culture from their parents, and

there may be additional events in the process

corresponding to transmission of culture

between humans.

An alternative way to model cultural evolution

consists of considering cultural ideas as repro-

ductive units themselves, so that the evolution-

ary birth-death process is defined at the level of

cultural content. The initial problem with this

approach is to define what exactly a cultural

reproductive unit is, but a similar problem of

course also exists in traditional models with

humans as reproductive units carrying cultural

content. Possible examples of cultural units are

blueprints for tool making, levels of cooperation,

forms of religion, etc. For a representation in the

material world, one could identify cultural units

with the patterns of neuron firing or memory

storage to which they correspond. Once the

units are defined, one can envisage them as col-

onizing human brains, much like microbes colo-

nize and inhabit the human gut. Thus, cultural

units live in human habitats (brains), in which

they may accumulate or vanish, corresponding

to birth and death. For example, an individual

brain might acquire a strong belief and later

become agnostic again, corresponding to the

waxing and waning of a population of cultural

units within that brain. Also, cultural units may

be transmitted between habitats (brains)

through various mechanisms such as conversa-

tions, reading, or social media. These transmis-

sion events can also be interpreted as birth

events, with the offspring function c describing

the difference between the original cultural unit
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and the unit after transmission (e.g. the differ-

ence between a theoretical concept in the

teacher and the student). The various events can

then be incorporated into an evolutionary birth-

death process with cultural units as individuals.

The process unfolds in collections of human

brains, and would be analogous to evolutionary

birth-death processes for microbiota inhabiting

human bodies. One advantage of such a perspec-

tive is that cultural evolution would unfold based

on what properties of cultural content are good

or bad for the propagation of culture itself, rather

than based on what is good or bad for humans

exhibiting cultural traits. For example, this might

give insights into the mechanisms for the spread

of cultural practices that are detrimental to

humans, such as certain forms of religion, which

may spread not because of their effect on

humans, but because of their properties as cul-

tural content. For example, a religion may spread

because it prescribes its followers to convince at

least n other humans, which may be very labori-

ous for the followers, but may accelerate the

spread of the religion. Of course, the effects of

culture on its habitat, i.e., on humans, would still

be of central importance, but cultural evolution-

ary birth-death processes squarely put the cul-

tural content itself, and not just the humans

carrying it, into the centre of attention, thereby

allowing for an assessment of adaptive properties

of culture from a different perspective.

The approach of considering culture as the

reproductive units in an evolutionary process has

for example been used in Mesoudi (2011) to

investigate constraints on cumulative cultural

evolution, and in (Doebeli, 2011; Doebeli and

Ispolatov, 2010b) in a model for diversification

of religions. Formulating evolutionary birth-

death processes in which culture itself consti-

tutes the reproductive units would also allow for

multi-level extensions, in which groups of

humans hosting a particular cultural content

compete with other groups hosting different cul-

tures. Such an extension would consist of incor-

porating group-level events, as discussed in the

previous section and possibly including phenom-

ena such as cultural absorption of one group by

another. This could serve to investigate the phe-

nomenon of cultural group selection (Hen-

rich, 2004; Purzycki et al., 2016).

Concluding remarks
Organismic evolution in the biosphere is ulti-

mately the consequence of some organisms

dying and others giving birth to new organisms.

Therefore, evolutionary birth-death processes

are a natural starting point for both verbal and

mathematical descriptions of evolution. For

understanding the evolution of a type or a set of

types, one should start by asking how those

types affect birth and death rates, and how

those effects depend on the state of the evolv-

ing population and its biotic and abiotic environ-

ment. The state space of an evolving system is

generally complicated and includes not only the

space of all possible types (e.g. genotypes or

phenotypes), but also all possible states of

evolving populations (i.e., type distributions), as

well as environmental states. Because birth and

death rates in an evolutionary birth-death pro-

cess are functions of the state of the evolving

system, which in turn changes due to to birth

and death events, the dynamics of such pro-

cesses can be very complicated (as illustrated in

Videos 1 and 2).

This implies that deriving a general analytical

theory of evolutionary birth-death processes is

difficult, although substantial progress has been

made (e.g. Champagnat et al., 2006;

2008, Dieckmann and Law, 1996;

Puhalskii and Simon, 2012; Simon, 2008). It

also implies that simplified descriptions can only

be obtained by making significant assumptions.

In particular, finding a "fitness" function that

would predict the outcome of the evolutionary

process as equilibria located at maxima of the

fitness function is in general impossible. In fact,

situations in which constant fitness landscapes

are a useful metaphor may be exceedingly rare.

Once the birth and death rate functions for a

given problem are specified, one can of course

try to derive a fitness function that describes the

process. For example, at any given point in time

the current birth and death rates define a fitness

landscape, and one could simply make the

assumption that this landscape does not change

over time scales that are relevant for the evolu-

tionary question at hand. This may be feasible

but would require careful argumentation. In any

case, it is important to realize that fitness is not

a basic ingredient for evolutionary birth-death

processes. At best, it is a derived property of

the process.

It is interesting to compare evolutionary the-

ory with other theories in the natural sciences.

Many empirical theories were introduced in the

physical sciences in the 19th century based on a

wealth of experimental data and the develop-

ment of appropriate mathematical tools. Exam-

ples include Ohm’s law linking electrical current

and resistivity, the Navier-Stokes equations
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describing flow of liquids and gases, the Mass

Action law for chemical kinetics, or the heat con-

duction equation for the diffusive transport of

heat and matter. With advances in understanding

the molecular nature of matter in the 20th cen-

tury, such theories were later "re-derived" from

newly discovered microscopic descriptions in a

mathematically strict way as a "coarse-grained"

limit for the time evolution of average fluxes and

rates in macroscopic systems. Such microscopic

re-derivations of initially empirical and phenome-

nological equations allowed to delineate the

validity of the coarse-grained theories by reveal-

ing the conditions for their applicability, which is

usually restricted to systems where the number of

particles is sufficiently large, and when systems

are not too far from equilibrium.

The history of quantitative descriptions of evo-

lution appears to be different. Notions such as

"survival of the fittest", "fitness landscapes" and

“ evolutionary optima" are used both in narrative

descriptions of evolution and in more quantitative

models, which in some sense play the same role

as coarse-grained equations in physics and chem-

istry. But due to the formidable experimental dif-

ficulties, quantitative laws of evolution based on

such notions are difficult to verify empirically. On

the other hand, unlike in the case of the molecular

nature of the macroscopic laws in physics and

chemistry, it has been understood from the very

beginning, at least implicitly, that evolution is

based on the "microscopic" events of birth and

death of individual organisms. Indeed, corre-

sponding microscopic theories have been devel-

oped early on, such as Fisher’s "fundamental

theorem of natural selection" (Fisher, 1930),

which is essentially a bookkeeping equation

based on given birth and death events. Neverthe-

less, "macroscopic" notions of fitness have con-

tinued to dominate both the narrative and the

quantitative description of evolution, probably

due to their apparent intuitive appeal and obvi-

ous mathematical simplicity. The concept of fit-

ness has of course played a major role in the the

development of evolutionary theory, and as such

has been very useful, and very widely used, albeit

often without empirical or "microscopic" justifica-

tion. As we have argued, such a justification in

fact may often be impossible, especially when

constant fitness landscapes are invoked.

General conditions under which a fitness mea-

sure can be found that is optimized by an under-

lying evolutionary process have been studied by

(Metz and Geritz, 2016; Metz et al., 2008),

whose results confirm that the existence of a con-

stant fitness function that would capture the

evolutionary dynamics requires very special

assumptions. Importantly, it is possible to derive

a more general, non-constant fitness concept

from evolutionary birth-death processes: invasion

fitness (Metz et al., 1992), obtained from under-

lying birth-death processes in the limit of large

populations sizes and rare mutations, captures

not only the fitness landscape at a given point in

time, but also the dynamics of the fitness land-

scape, i.e., how the fitness landscape changes as

a result of evolutionary dynamics. Invasion fitness

changes as evolution unfolds because it depends

on the state of the evolving system, and hence

incorporates frequency-dependent evolution.

Because it is derived from underlying birth-death

processes, invasion fitness is an intrinsically eco-

logical quantity, and it appears to be the only

general, i.e., model-independent fitness defini-

tion that can provide an explicit link between eco-

logical and evolutionary dynamics.

The perspective of evolution as a birth-death

process is straightforward and is applicable to

any problem in evolutionary biology. As we have

argued, this perspective can shed new light on a

number of contentious conceptual issues. For

example, it reveals that there is no fundamental

distinction between ecological and evolutionary

processes, as both are birth-death processes, the

only difference lying in the offspring function c.

Also, this perspective shows that no fitness mea-

sure is a basal ingredient of evolution, instead fit-

ness is at best a derived quantity whose

applicability is generally restricted and has to be

carefully argued in any given situation. In the con-

text of social evolution, the perspective also

reveals the nature of multi-level evolution: for

selection to occur at multiple levels, birth and

death events have to occur at multiple levels, so

that evolutionary birth-death processes simulta-

neously and interdependently unfold at different

levels.

As long as reproductive units undergoing

birth and death events can be identified, the

perspective of evolutionary birth-death pro-

cesses also applies to non-genetic evolution. In

particular, we think that this perspective can

yield important insights for cultural evolution, or

perhaps even to study evolutionary dynamics in

the age of the machines once artificial intelli-

gence has taken over. But traditional genetic

and phenotypic evolution remains the core area

in which we think this perspective has the most

impact. It is based on the first principles of birth

and death and views evolution as an emergent

phenomenon of the mechanistic dynamics of the

elementary particles constituting populations,

Doebeli et al. eLife 2017;6:e23804. DOI: 10.7554/eLife.23804 12 of 17

Feature Article Point of view Towards a mechanistic foundation of evolutionary theory

http://dx.doi.org/10.7554/eLife.23804


i.e., individual organisms. In particular, long-

term evolutionary dynamics must ultimately be

the consequence of evolutionary birth-death

processes, and models linking short-term eco-

logical events to long-term macroevolutionary

patterns have recently emerged (Doebeli and

Ispolatov, 2017; Gascuel et al., 2015). The

functions determining birth and death rates in

evolutionary birth-death processes are generally

non-linear and complicated. As a consequence,

long-term evolutionary dynamics are often likely

to be complicated as well. This is particularly

true if evolutionary processes unfold in type

spaces that are themselves complicated (e.g.,

high-dimensional, (Doebeli and Ispolatov,

2010a, 2014, 2017), which in turn highlights the

central problem of understanding the evolution

of genotypic and phenotypic complexity. To

obtain satisfactory explanations for this and

other core problems in evolutionary biology, it

will be useful to adopt the perspective of evolu-

tionary birth-death processes.
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Appendix 1

The simplest description of evolution is a stochastic one-step process driven by the

intrinsically random and discrete nature of the birth and death events that change the

population by one individual at a time. Assuming that the type space is discrete (as is for

example the case when types are given by genome sequences), a comprehensive

description of such processes is given by a differential Master equation for the probability

Pðn1; n2; . . . ; tÞ of the evolving system to have certain numbers of individuals ni of each type i

at a given moment in time t:

qPðn1;n2; . . . ; tÞ

qt
¼

P

i

ðniþ 1Þdiðn1;n2; . . . ;niþ 1; . . .ÞPðn1;n2; . . . ;niþ 1; . . . ; tÞf

þ
P

j

sijnjbjðn1;n2; . . . ;ni� 1; . . .ÞPðn1;n2; . . . ;ni� 1; . . . ; tÞ

�ni diðn1;n2; . . . ;ni; . . . ; tÞþ biðn1;n2; . . . ;ni; . . . ; tÞ½ �Pðn1;n2; . . . ;ni; . . . ; tÞg

(4)

The first two terms account for the gain in the probability of the population state

ðn1; n2; . . . ; ni; . . .Þ due to death of an individual with type i, representing the transition from

the state ðn1; n2; . . . ; ni þ 1; . . .Þ state to the state ðn1; n2; . . . ; ni; . . .Þ. Similarly, a birth of an

individual with phenotype i in the ðn1; n2; . . . ; ni � 1; . . .Þ state results in the transition from

that state to the current state. The reproduction function c is reflected in the coefficients sij,

which are the probabilities that an offspring of an individuals with type j has type i (the

coefficients are normalized so that
P

i sij ¼ 1. The third term accounts for the loss in the

probability of the current state ðn1; n2; . . . ; ni; . . .Þ state due to both birth and death

processes. In the context of the master equation, the per capita birth and death rates

biðn1; n2; . . . ; ni; . . . ; tÞ and diðn1; n2; . . . ; ni; . . . ; tÞ are the birth and death rates, at time t, of

individuals of type i in a population consisting of n1 individuals of type 1, n2 individuals of

type 2, etc.In general the birth and death rates depend on the whole population state of the

system, often in a complex way. The sum over i indicates that the change in the probability

of the state ðn1; n2; . . .Þ can occur via the change in the number of individuals of any type.

The number of different possible types may be very large, in which case Equation 4 typically

becomes intractable due to the interactions between the types through the birth and death

rate functions. It is therefore often more convenient and realistic to consider continuous

types in potentially high-dimensional continuous spaces, as well as to consider large

population limits. In that case, the discrete index i is replaced by a multidimensional vector

x, and the population is described by a density distribution nðxÞ, which is a scalar function of

the multidimensional argument x (e.g (Van Kampen, 1992). The probability distribution

Pðn1; n2; . . . ; tÞ then becomes a functional P½nð:Þ; t� of the population density nðxÞ and the

master Equation 4 becomes a functional master equation. For an example of how this

equation can be put to use see (O’Dwyer et al., 2009), where this procedure as well as the

steady-state solutions of the resulting equation are outlined.

While again intractable except for the simplest cases of constant birth and death rates and

trivial offspring functions, this equation could be used to compute first and second moments

of the population density nðxÞ and the population autocorrelation functions under certain

assumptions about the birth and death rate functions. For appropriate choices of these

functions the master Equation 4 can be Taylor-expanded to second order, producing

Fokker-Planck equations which are generally easier to analyze (Van Kampen, 1992).

Without going into details, we note that an alternative approach to gaining analytical

insights into evolutionary birth-death processes is to view them as examples of a

mathematical structure called measure-valued Markov process (Dawson, 1993). Such

processes can in principle be studied by determining their so-called infinitesimal generator.
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As with Master equations, infinitesimal generators are complicated objects and difficult to

derive explicitly unless the birth and death rate functions are relatively simple.
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