1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae

  1. Xinbo Wang
  2. Shanshan Li
  3. Haicheng Wang
  4. Wenqing Shui  Is a corresponding author
  5. Junjie Hu  Is a corresponding author
  1. Nankai University, China
  2. Shanghai Tech University, China
  3. Huazhong University of Science and Technology, China
  4. Chinese Academy of Sciences, China
Tools and Resources
  • Cited 16
  • Views 4,135
  • Annotations
Cite this article as: eLife 2017;6:e23816 doi: 10.7554/eLife.23816

Abstract

The tubular network is a critical part of the endoplasmic reticulum (ER). It is shaped by the reticulons and REEPs/Yop1p that generate tubules by inducing high membrane curvature, and the dynamin-like GTPases atlastin and Sey1p/RHD3 that connect tubules via membrane fusion. However, the specific functions of this ER domain are not clear. Here, we isolated tubule-based microsomes from Saccharomyces cerevisiae via classical cell fractionation and detergent-free immunoprecipitation of Flag-tagged Yop1p, which specifically localizes to ER tubules. In quantitative comparisons of tubule-derived and total microsomes, we identified a total of 79 proteins that were enriched in the ER tubules, including known proteins that organize the tubular ER network. Functional categorization of the list of proteins revealed that the tubular ER network may be involved in membrane trafficking, lipid metabolism, organelle contact, and stress sensing. We propose that affinity isolation coupled with quantitative proteomics is a useful tool for investigating ER functions.

Article and author information

Author details

  1. Xinbo Wang

    Department of Genetics and Cell Biology, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shanshan Li

    iHuman Institute, Shanghai Tech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Haicheng Wang

    College of Life Sciences, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenqing Shui

    iHuman Institute, Shanghai Tech University, Shanghai, China
    For correspondence
    shuiwq_tib@163.com
    Competing interests
    The authors declare that no competing interests exist.
  5. Junjie Hu

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    For correspondence
    huj@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4712-2243

Funding

Howard Hughes Medical Institute (International Early Career Scientist grant)

  • Junjie Hu

National Natural Science Foundation of China (31630020)

  • Junjie Hu

Ministry of Science and Technology of the People's Republic of China (2016YFA0500201)

  • Junjie Hu

National Natural Science Foundation of China (31401150)

  • Wenqing Shui

Chinese Academy of Sciences (Bairenjihua Program)

  • Wenqing Shui

National Natural Science Foundation of China (3142100024)

  • Junjie Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy Schekman, Howard Hughes Medical Institute, University of California, Berkeley, United States

Publication history

  1. Received: December 1, 2016
  2. Accepted: March 6, 2017
  3. Accepted Manuscript published: March 13, 2017 (version 1)
  4. Version of Record published: March 20, 2017 (version 2)

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,135
    Page views
  • 864
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Donghyuk Shin et al.
    Research Article Updated

    Legionella pneumophila causes a severe pneumonia known as Legionnaires’ disease. During the infection, Legionella injects more than 300 effector proteins into host cells. Among them are enzymes involved in altering the host-ubiquitination system. Here, we identified two LegionellaOTU (ovarian tumor)-like deubiquitinases (LOT-DUBs; LotB [Lpg1621/Ceg23] and LotC [Lpg2529]). The crystal structure of the LotC catalytic core (LotC14-310) was determined at 2.4 Å. Unlike the classical OTU-family, the LOT-family shows an extended helical lobe between the Cys-loop and the variable loop, which defines them as a unique class of OTU-DUBs. LotB has an additional ubiquitin-binding site (S1’), which enables the specific cleavage of Lys63-linked polyubiquitin chains. By contrast, LotC only contains the S1 site and cleaves different species of ubiquitin chains. MS analysis of LotB and LotC identified different categories of host-interacting proteins and substrates. Together, our results provide new structural insights into bacterial OTU-DUBs and indicate distinct roles in host–pathogen interactions.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qi Yang et al.
    Research Article Updated

    The Spike protein of SARS-CoV-2, its receptor-binding domain (RBD), and its primary receptor ACE2 are extensively glycosylated. The impact of this post-translational modification on viral entry is yet unestablished. We expressed different glycoforms of the Spike-protein and ACE2 in CRISPR-Cas9 glycoengineered cells, and developed corresponding SARS-CoV-2 pseudovirus. We observed that N- and O-glycans had only minor contribution to Spike-ACE2 binding. However, these carbohydrates played a major role in regulating viral entry. Blocking N-glycan biosynthesis at the oligomannose stage using both genetic approaches and the small molecule kifunensine dramatically reduced viral entry into ACE2 expressing HEK293T cells. Blocking O-glycan elaboration also partially blocked viral entry. Mechanistic studies suggest multiple roles for glycans during viral entry. Among them, inhibition of N-glycan biosynthesis enhanced Spike-protein proteolysis. This could reduce RBD presentation on virus, lowering binding to host ACE2 and decreasing viral entry. Overall, chemical inhibitors of glycosylation may be evaluated for COVID-19.