Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae

  1. Xinbo Wang
  2. Shanshan Li
  3. Haicheng Wang
  4. Wenqing Shui  Is a corresponding author
  5. Junjie Hu  Is a corresponding author
  1. Nankai University, China
  2. Shanghai Tech University, China
  3. Huazhong University of Science and Technology, China
  4. Chinese Academy of Sciences, China

Abstract

The tubular network is a critical part of the endoplasmic reticulum (ER). It is shaped by the reticulons and REEPs/Yop1p that generate tubules by inducing high membrane curvature, and the dynamin-like GTPases atlastin and Sey1p/RHD3 that connect tubules via membrane fusion. However, the specific functions of this ER domain are not clear. Here, we isolated tubule-based microsomes from Saccharomyces cerevisiae via classical cell fractionation and detergent-free immunoprecipitation of Flag-tagged Yop1p, which specifically localizes to ER tubules. In quantitative comparisons of tubule-derived and total microsomes, we identified a total of 79 proteins that were enriched in the ER tubules, including known proteins that organize the tubular ER network. Functional categorization of the list of proteins revealed that the tubular ER network may be involved in membrane trafficking, lipid metabolism, organelle contact, and stress sensing. We propose that affinity isolation coupled with quantitative proteomics is a useful tool for investigating ER functions.

Article and author information

Author details

  1. Xinbo Wang

    Department of Genetics and Cell Biology, Nankai University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Shanshan Li

    iHuman Institute, Shanghai Tech University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Haicheng Wang

    College of Life Sciences, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Wenqing Shui

    iHuman Institute, Shanghai Tech University, Shanghai, China
    For correspondence
    shuiwq_tib@163.com
    Competing interests
    The authors declare that no competing interests exist.
  5. Junjie Hu

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    For correspondence
    huj@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4712-2243

Funding

Howard Hughes Medical Institute (International Early Career Scientist grant)

  • Junjie Hu

National Natural Science Foundation of China (31630020)

  • Junjie Hu

Ministry of Science and Technology of the People's Republic of China (2016YFA0500201)

  • Junjie Hu

National Natural Science Foundation of China (31401150)

  • Wenqing Shui

Chinese Academy of Sciences (Bairenjihua Program)

  • Wenqing Shui

National Natural Science Foundation of China (3142100024)

  • Junjie Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,705
    views
  • 1,029
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinbo Wang
  2. Shanshan Li
  3. Haicheng Wang
  4. Wenqing Shui
  5. Junjie Hu
(2017)
Quantitative proteomics reveal proteins enriched in tubular endoplasmic reticulum of Saccharomyces cerevisiae
eLife 6:e23816.
https://doi.org/10.7554/eLife.23816

Share this article

https://doi.org/10.7554/eLife.23816

Further reading

    1. Biochemistry and Chemical Biology
    Shu-Ting Zhang, Shi-Kai Deng ... Ning-Yi Zhou
    Research Article

    1-Naphthylamine (1NA), which is harmful to human and aquatic animals, has been used widely in the manufacturing of dyes, pesticides, and rubber antioxidants. Nevertheless, little is known about its environmental behavior and no bacteria have been reported to use it as the growth substrate. Herein, we describe a pathway for 1NA degradation in the isolate Pseudomonas sp. strain JS3066, determine the structure and mechanism of the enzyme NpaA1 that catalyzes the initial reaction, and reveal how the pathway evolved. From genetic and enzymatic analysis, a five gene-cluster encoding a dioxygenase system was determined to be responsible for the initial steps in 1NA degradation through glutamylation of 1NA. The γ-glutamylated 1NA was subsequently oxidized to 1,2-dihydroxynaphthalene which was further degraded by the well-established pathway of naphthalene degradation via catechol. A glutamine synthetase-like (GS-like) enzyme (NpaA1) initiates 1NA glutamylation, and this enzyme exhibits a broad substrate selectivity toward a variety of anilines and naphthylamine derivatives. Structural analysis revealed that the aromatic residues in the 1NA entry tunnel and the V201 site in the large substrate-binding pocket significantly influence NpaA1’s substrate preferences. The findings enhance understanding of degrading polycyclic aromatic amines, and will also enable the application of bioremediation at naphthylamine contaminated sites.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qiong He, Miao-Miao Zhao ... Jin-Kui Yang
    Research Article

    Diabetes, a prevalent chronic condition, significantly increases the risk of mortality from COVID-19, yet the underlying mechanisms remain elusive. Emerging evidence implicates Cathepsin L (CTSL) in diabetic complications, including nephropathy and retinopathy. Our previous research identified CTSL as a pivotal protease promoting SARS-CoV-2 infection. Here, we demonstrate elevated blood CTSL levels in individuals with diabetes, facilitating SARS-CoV-2 infection. Chronic hyperglycemia correlates positively with CTSL concentration and activity in diabetic patients, while acute hyperglycemia augments CTSL activity in healthy individuals. In vitro studies reveal high glucose, but not insulin, promotes SARS-CoV-2 infection in wild-type cells, with CTSL knockout cells displaying reduced susceptibility. Utilizing lung tissue samples from diabetic and non-diabetic patients, alongside Leprdb/dbmice and Leprdb/+mice, we illustrate increased CTSL activity in both humans and mice under diabetic conditions. Mechanistically, high glucose levels promote CTSL maturation and translocation from the endoplasmic reticulum (ER) to the lysosome via the ER-Golgi-lysosome axis. Our findings underscore the pivotal role of hyperglycemia-induced CTSL maturation in diabetic comorbidities and complications.