Roundabout receptor 2 maintains inhibitory control of the adult midbrain

  1. Bryan B Gore
  2. Samara M Miller
  3. Yong Sang Jo
  4. Madison Baird
  5. Mrinalini Hoon
  6. Christina A Sanford
  7. Avery Hunker
  8. Weining Lu
  9. Rachel O Wong
  10. Larry S Zweifel  Is a corresponding author
  1. University of Washington, United Kingdom
  2. University of Washington, United States
  3. Boston University Medical Center, United States

Abstract

The maintenance of excitatory and inhibitory balance in the brain is essential for its function. Here we find that the developmental axon guidance receptor Roundabout 2 (Robo2) is critical for the maintenance of inhibitory synapses in the adult ventral tegmental area (VTA), a brain region important for the production of the neurotransmitter dopamine. Following selective genetic inactivation of Robo2 in the adult VTA of mice, reduced inhibitory control results in altered neural activity patterns, enhanced phasic dopamine release, behavioral hyperactivity, associative learning deficits, and a paradoxical inversion of psychostimulant responses. These behavioral phenotypes could be phenocopied by selective inactivation of synaptic transmission from local GABAergic neurons of the VTA, demonstrating an important function for Robo2 in regulating the excitatory and inhibitory balance of the adult brain.

Article and author information

Author details

  1. Bryan B Gore

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Samara M Miller

    Department of Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yong Sang Jo

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Madison Baird

    Department of Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Mrinalini Hoon

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Christina A Sanford

    Department of Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Avery Hunker

    Department of Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Weining Lu

    Department of Medicine, Boston University Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Rachel O Wong

    Department of Biological Structure, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Larry S Zweifel

    Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, United States
    For correspondence
    larryz@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3465-5331

Funding

National Institutes of Health (R01-MH094536)

  • Larry S Zweifel

National Institute for Health Research (EY10699)

  • Rachel O Wong

National Institute for Health Research (R01-DK078226)

  • Weining Lu

National Institutes of Health (R01-MH104450)

  • Larry S Zweifel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were done in accordance with a protocol (4249-01) approved by the University of Washington Animal Care and Use Committee.

Copyright

© 2017, Gore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,264
    views
  • 250
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bryan B Gore
  2. Samara M Miller
  3. Yong Sang Jo
  4. Madison Baird
  5. Mrinalini Hoon
  6. Christina A Sanford
  7. Avery Hunker
  8. Weining Lu
  9. Rachel O Wong
  10. Larry S Zweifel
(2017)
Roundabout receptor 2 maintains inhibitory control of the adult midbrain
eLife 6:e23858.
https://doi.org/10.7554/eLife.23858

Share this article

https://doi.org/10.7554/eLife.23858

Further reading

    1. Evolutionary Biology
    2. Neuroscience
    Jenny Chen, Phoebe R Richardson ... Hopi E Hoekstra
    Research Article

    Genetic variation is known to contribute to the variation of animal social behavior, but the molecular mechanisms that lead to behavioral differences are still not fully understood. Here, we investigate the cellular evolution of the hypothalamic preoptic area (POA), a brain region that plays a critical role in social behavior, across two sister species of deer mice (Peromyscus maniculatus and P. polionotus) with divergent social systems. These two species exhibit large differences in mating and parental care behavior across species and sex. Using single-nucleus RNA-sequencing, we build a cellular atlas of the POA for males and females of both Peromyscus species. We identify four cell types that are differentially abundant across species, two of which may account for species differences in parental care behavior based on known functions of these cell types. Our data further implicate two sex-biased cell types to be important for the evolution of sex-specific behavior. Finally, we show a remarkable reduction of sex-biased gene expression in P. polionotus, a monogamous species that also exhibits reduced sexual dimorphism in parental care behavior. Our POA atlas is a powerful resource to investigate how molecular neuronal traits may be evolving to give rise to innate differences in social behavior across animal species.

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.