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Abstract Ageing is a progressive decline of intrinsic physiological functions. We examined the

impact of ageing on the ultrastructure and function of mitochondria in mouse and fruit flies

(Drosophila melanogaster) by electron cryo-tomography and respirometry. We discovered distinct

age-related changes in both model organisms. Mitochondrial function and ultrastructure are

maintained in mouse heart, whereas subpopulations of mitochondria from mouse liver show age-

related changes in membrane morphology. Subpopulations of mitochondria from young and old

mouse kidney resemble those described for apoptosis. In aged flies, respiratory activity is

compromised and the production of peroxide radicals is increased. In about 50% of mitochondria

from old flies, the inner membrane organization breaks down. This establishes a clear link between

inner membrane architecture and functional decline. Mitochondria were affected by ageing to very

different extents, depending on the organism and possibly on the degree to which tissues within

the same organism are protected against mitochondrial damage.

DOI: 10.7554/eLife.24662.001

Introduction
Mitochondria produce most of the ATP in non-photosynthetic eukaryotes, providing the energy to

drive a multitude of cellular processes. Mitochondria have an inner membrane, which surrounds the

matrix, and an outer membrane, which surrounds the inner membrane and separates the mitochon-

drial compartments from the cytoplasm. In addition to a multitude of soluble enzymes and ribo-

somes, the matrix houses the mitochondrial genome (mtDNA), which in humans and flies encodes

13 hydrophobic subunits of the oxidative phosphorylation system. Thus nearly all mitochondrial pro-

teins are nuclear-encoded and imported into the different mitochondrial compartments by a set of

protein translocases (Pfanner et al., 2014). The oxidative phosphorylation (OXPHOS) system con-

sists of the respiratory chain complexes I to IV and the mitochondrial F1Fo-ATP synthase, sometimes

referred to as complex V. Complexes I to IV transfer electrons from soluble electron donors to

molecular oxygen. In this process, complexes I, III and IV generate an electrochemical proton
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potential across the mitochondrial inner membrane that is used by the ATP synthase to produce

ATP by rotary catalysis (Leslie et al., 1999). Oxidative phosphorylation occurs mostly, if not entirely,

in the deeply invaginated cristae of the inner mitochondrial membrane (Gilkerson et al., 2003;

Vogel et al., 2006). The ATP synthase forms long rows of dimers at the tightly curved cristae ridges,

while the respiratory chain complexes are confined to the remaining membrane regions

(Davies et al., 2012, 2011; Paumard et al., 2002).

Ageing has long been linked to mitochondrial dysfunction. In mammals, the age-related weaken-

ing of physiological functions frequently goes along with a decline in health. While there has been

considerable progress in the study of age-associated diseases, the biological mechanisms of ageing

remain elusive. Ageing is attributed to either ‘programmed’ or ‘damage-based’ processes

(de Magalhaes, 2011). More than 50 years ago, Harman postulated that ageing results from the

accumulation of molecular damage caused by oxygen radicals, often called reactive oxygen species

(ROS) (Harman, 1956). Oxygen radicals are side products of electron transfer reactions in respiratory

chain complexes I and III (Dröse and Brandt, 2012). Later refinements of Harman’s free radical the-

ory of ageing postulated that an impairment of respiratory chain function increases ROS production,

resulting in greater mtDNA damage, which in turn would compromise the turnover of damaged

respiratory chain complexes, resulting in a vicious circle of damage and decline (Harman, 1972). The

mitochondrial DNA mutator mouse model has provided experimental evidence of a causative link

between mtDNA mutations and an ageing phenotype in mammals (Trifunovic et al., 2004),

although mitochondrial defects in this model were found not to be associated with an increase in

ROS production (Trifunovic et al., 2005). Several other key predictions of the free-radical theory

(Stuart et al., 2014) have also not been substantiated. For example, in some model organisms, such

as the nematode Caenorhabditis elegans, moderately elevated levels of ROS, induced either chemi-

cally or through genetically engineered defects in the respiratory chain, actually increase lifespan

(Heidler et al., 2010; Lee et al., 2010; Yang and Hekimi, 2010). In the same organism, removal of

the ROS-scavenging superoxide dismutase (SOD) does not increase oxidative damage to mtDNA

and has no apparent effect on lifespan (Doonan et al., 2008; Gruber et al., 2011; Van Raamsdonk

and Hekimi, 2009). In the fly, SOD knockouts do have a decreased lifespan, but they do not accu-

mulate mtDNA mutations more quickly than wildtype (Itsara et al., 2014).

In addition to energy conversion and ATP production, the oxidative phosphorylation system also

has a key role in shaping the inner membrane cristae (Davies et al., 2012, 2011; Paumard et al.,

2002). Accumulating oxidative damage and OXPHOS dysfunction might, therefore, be expected to

affect mitochondrial ultrastructure, which should be visible by electron microscopy. Recent analyses

of yeast and mouse mitochondria show that a defect in the supra-molecular organisation of the ATP

synthase results in aberrant cristae morphology (Davies et al., 2012; Mourier et al., 2014). In aged

cultures of the short-lived filamentous fungus Podospora anserina, the inner membrane strikingly

vesiculates and ATP synthase dimers break down (Brust et al., 2010; Daum et al., 2013). However,

little is known about the impact of ageing on mitochondrial morphology and membrane structure in

metazoans. Previous studies of the ultrastructure of mitochondria in mouse liver by electron micros-

copy of thin plastic sections revealed anomalous cristae in a subpopulation of the organelles

(Wilson and Franks, 1975). A study of mouse skeletal muscle mitochondria found that mitochondria

from animals that had exercised in an electrically-driven treadmill occasionally lost their cristae,

whereas no differences were observed in non-trained animals (Ludatscher et al., 1983). Mitochon-

dria from aged D. melanogaster flight muscle were found to have cristae ‘swirls’ that were attributed

to oxidative damage (Walker and Benzer, 2004), and mitochondria in aged Drosophila repleta

heart muscle were enlarged (Sohal, 1970).

We chose D. melanogaster (average lifespan >50 days depending on environmental conditions

[Linford et al., 2013]) and mouse (average life span 107 weeks for females and 114 weeks for males

[Turturro et al., 2002]) as two well-established metazoan ageing models (Cho et al., 2011) for a sys-

tematic study of mitochondrial ultrastructure, respiration and ROS production in young and old ani-

mals. Our results reveal clear tissue- and organism-related age-specific differences, establishing an

apparent link between mitochondrial ultrastructure and function.
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Results

Effects of ageing on the function and ultrastructure of mouse
mitochondria
Mitochondrial OXPHOS activity and ROS homeostasis
To find out how ageing impacts mitochondrial function and ultrastructure, mitochondria from heart,

liver and kidney of young (20 weeks) and old (80–96 weeks) mice were isolated for electron cryo-

tomography (cryoET) and high-resolution respirometry. Isolated mitochondria were incubated with

respiratory substrates that deliver electrons at the level of complex I (pyruvate, glutamate and

malate) or complex II (succinate and rotenone). The mitochondrial oxygen consumption was

recorded under phosphorylating (addition of ADP and Pi; state 3), non-phosphorylating (addition of

oligomycin to inhibit ATP synthase; state 4) and uncoupled conditions (addition of CCCP). Mitochon-

drial respiratory rates normalised to protein content were found to be highest in heart

mitochondria, ~2–3 fold lower in kidney and ~5 fold lower in liver (Figure 1A). In line with previous

reports (Mulligan et al., 2014; Weindruch et al., 1980; Wilson et al., 1975), our investigation

showed no significant differences in respiratory rates between mitochondria isolated from 20-week-

old and 80-week-old heart tissue (Figure 1A), and no age-related change in the rate of ATP produc-

tion was observed (Figure 1C). Moreover, maximal activities of key mitochondrial enzymes remained

unchanged (Figure 1E). These results prompted us to investigate how ageing impacts mitochondrial

ROS homeostasis. We first assessed the peroxide yield, defined as the hydrogen production rate

normalized to the mitochondrial respiration assessed under the same conditions (Votyakova and

Reynolds, 2001). Surprisingly, no age-dependent increase in hydrogen peroxide release relative to

the amount of oxygen consumed was observed in mitoch ondria isolated from heart, liver or kidney

(Figure 1B). To investigate ROS homeostasis further, we analysed the steady-state levels and activity

of the antioxidant enzymes superoxide dismutase (SOD1, SOD2) and catalase in

mitochondria from young and old heart, liver or kidney by quantitative western blot electrophoresis

and gel densitometry (Figure 1D). This revealed a tendency towards lower levels of antioxidant

enzymes in aged mice. Catalase activity was reduced by 30% in old mouse liver (Figure 1F) and

SOD activity was almost halved in old mouse kidney (Figure 1—figure supplement 1).

Tomography of mouse heart mitochondria
Vitrified samples of the mitochondrial preparations used for high-resolution respirometry were ana-

lysed by electron cryo-tomography (cryo-ET). Mitochondria isolated from young mouse heart

showed morphologies typical of tissues with a high energy demand. Stacks of parallel, thin and flat

lamellar cristae were embedded in a dense matrix (Figure 2, left, Video 1). Cristae frequently

appeared discontinuous in 2D slices, but 3D volumes indicated that this was due to fenestration of

the lamellar disks rather than to disconnected cristae vesicles (Figure 2—figure supplement 1A).

Crista junctions were circular (70%, average diameter 15 ± 2 nm) or slightly elongated (30%, 16 ± 1

� 29 ± 2 nm, dimensions ± standard deviations measured in the typical tomogram of Figure 2, top

row, second from left). Most cristae were branched and connected to the inter-membrane space by

more than one junction. They were also highly interconnected through narrow apertures (Figure 2—

figure supplement 1B). In 20% of the mitochondria examined, membranes of two or more neigh-

bouring cristae were so closely appressed that there was almost no matrix between them. These

regions often showed membrane ‘swirls’ of high and variable membrane curvature, involving several

neighbouring crista lamellae (Figure 2—figure supplement 1C). There was no apparent difference

between the structures of isolated sub-sarcolemmal and interfibrillar mitochondria. Comparing mito-

chondria from young and old mouse hearts indicated similar morphologies (Figure 2, right), except

that about 24% of mitochondria from aged heart tissue had some exceptionally wide cristae (Table 1;

Figure 2—figure supplement 1D).

Tomography of mouse liver mitochondria
The morphology of mitochondria isolated from mouse liver was conspicuously different from that of

mouse heart (Figure 3, left; Video 2). The cristae were more heterogeneous, less regular and not

arranged in parallel stacks. They were generally wider and did not span the entire mitochondrion.

Also, the cristae were less interconnected to one another and to the inner boundary membrane. As
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Figure 1. Bioenergetic and functional analysis of mitochondria from heart, liver and kidney from young (20 weeks old; white bars) and old (80–96 weeks

old; black bars) mice. (A) Oxygen consumption rate of mitochondria isolated from young (n = 7–8) or old (n = 8) animals. Isolated mitochondria were

incubated with electron donors to complex I (pyruvate, glutamate, malate) or complex II (succinate, complex I inhibited with rotenone). Each set of

substrates was successively combined with ADP (to assess the phosphorylating respiration, state 3), oligomycin (to measure non-phosphorylating

respiration, state 4) and finally uncoupled by adding increasing concentrations of CCCP. (B) Mitochondrial peroxide yield assessed in mitochondria

from young (n = 3–4) and old (n = 3–4) animals. (C) Mitochondrial ATP synthesis rate in heart mitochondria from young (n = 4) and old (n = 3) animals.

Error bars indicate mean ± standard error of the mean (SEM). (D) Steady-state levels of different antioxidant enzymes in heart, liver and kidney

mitochondria isolated from young (y) and old (o) mice were quantified by western blot analyses. Long (LE) and short exposure (SE) times are presented

for catalase and SOD1 detection. (E) Citrate synthase (CS) and respiratory chain enzyme activity (complex I, II and IV) measurements in heart, liver and

kidney tissue extracts from young (n = 4) and old (n = 4) animals. Error bars indicate mean ± SEM. (F) Catalase enzyme activity measured in heart, liver

and kidney tissue extracts from young (n = 4) and old (n = 4) animals.

DOI: 10.7554/eLife.24662.002

The following figure supplement is available for figure 1:

Figure supplement 1. Steady-state levels of different antioxidant enzymes in heart, liver and kidney extracts, as assessed by quantitative densitometry

of western blots in Figure 1D.

DOI: 10.7554/eLife.24662.003
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in cardiac mitochondria, fenestration was

observed, although it was less frequent. The

matrix was very dense, making it difficult to seg-

ment larger mitochondria. In one sample, the

matrix contained dense granules up to 50 nm in

diameter (Video 2). No such granules were found

in heart mitochondria. In two instances, mito-

chondria had central low-density compartments

that we refer to as voids (see below).

Tomograms of mouse liver mitochondria from

aged animals revealed two different phenotypes.

While the majority of mitochondria looked similar

to those isolated from young mouse liver, 32%

(n = 31) had conspicuous low-density compart-

ments, or voids, in the centre of the organelle

(Figure 3, right, Video 3; Table 1). Segmentation

of 3D volumes revealed that the membrane

Young Old

Figure 2. Cryo-ET of heart mitochondria from young (left, 20 weeks old) and old (right, 80–96 weeks old) mice. Upper panel: slices through

tomographic volumes (scale bars, 250 nm). Lower panels: segmented 3D volumes of two typical mitochondria with closely stacked, roughly parallel

cristae (blue). The outer membrane (omitted for clarity in the right panel) is yellowish grey. Cristae are connected to the intermembrane space by well-

defined, multiple crista junctions.

DOI: 10.7554/eLife.24662.005

The following figure supplement is available for figure 2:

Figure supplement 1. Detailed views of cristae in young and old mouse heart mitochondria.

DOI: 10.7554/eLife.24662.006

Video 1. Tomographic volume and 3D segmentation

of the mitochondrion from young mouse heart shown

in Figure 2, upper left, right hand panel.

DOI: 10.7554/eLife.24662.004
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Table 1. Overview of organisms and tissues analyzed. #number of animals dissected (mouse) or number of mitochondrial preparations

(fly) vs number of individual mitochondria examined tomographically.

Organism Age Tissue Samples / mitochondria# Mitochondria with abnormal morphology (%)

mouse young heart 4/27 wide cristae 4%; cristae membrane swirls 19%

old heart 3/17 wide cristae 24%; cristae membrane swirls 6%

young liver 5/18 voids 11%; granules 6%

old liver 4/31 voids 32%; granules 6%; apoptotic 3%

young kidney 3/33 apoptotic 12%; granules 3%

old kidney 2/22 apoptotic 18%; granules 18%

mutator heart 2/10 membrane swirls 30%; membrane enclosures 40%; granules 20%

mutator liver 2/10 voids 40%; granules 20%

fly young whole organism 3/29 elongated (axial ratio > 3) 10%; wide cristae 10%

old whole organism 3/39 elongated (axial ratio > 3) 18%; wide cristae 15%; branched 5%; various other 23%

DOI: 10.7554/eLife.24662.007

connection to IMS

Matrix 

granules

Young Old

Figure 3. Cryo-ET of liver mitochondria from young (left, 20 weeks old) and old (right, 80 weeks old) mice. Upper panel: slices through tomographic

volumes (scale bars, 250 nm). Lower panels: segmented 3D volumes. About 25% of the mitochondria from old animals have large central voids (red).

The voids were connected to the inter-membrane space (IMS) by openings of variable size.

DOI: 10.7554/eLife.24662.009
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delineating these central voids was continuous with the inner membrane. In three segmented mito-

chondria, the voids accounted on average for 22% of the total cristae surface. To estimate their vol-

umes, voids and mitochondria were approximated as simple geometrical shapes (spheres or

cylinders for voids, cylinders for mitochondria). In the three segmented organelles, the voids occu-

pied on average 6% of the total mitochondrial volume. The voids were not internal vesicles, but

were connected to the inter-membrane space via apertures of varying size. In some cases two such

connections were observed on opposite ends of the voids, resulting in a toroid or doughnut-shaped

matrix. In other cases, the outer membrane appeared to protrude into the inner membrane voids.

The cristae extending from the boundary membrane into the matrix looked normal, but none pro-

truded into the matrix from the membrane defining the voids. In two tomograms, dense granules

measuring up to 100 nm in diameter were observed in the matrix.

Tomography of mouse kidney mitochondria
Kidney mitochondria resembled heart mitochondria more closely than those from liver (Figure 4A).

Mitochondria from young and old mouse kidney were similar, except that dense matrix granules

were found in 18% of samples from old animals compared to only one (3%) found in the samples

from young animals. Cristae were lamellar but generally wider than those in cardiac tissue and less

stringently arranged in parallel stacks. Occasionally cristae formed membrane swirls. 18% of kidney

mitochondria from old mice and 12% from young mice had the characteristic morphology described

for apoptotic cells (Scorrano et al., 2002; Sun et al., 2007). In these mitochondria, the cristae were

irregular, not arranged in any discernible pattern, and the membrane curvature was locally inverted.

Crista junctions were very wide or not discernible, resembling those of prohibitin-deficient mouse

mitochondria, in which OPA1 (which is essential for cristae junction formation) is incorrectly proc-

essed (Merkwirth et al., 2008). The inner membrane enclosed a convoluted but apparently continu-

ous volume. The width of the inter-membrane space between the inner boundary and outer

membrane was largely the same as in normal heart, liver or kidney (Figure 4B), indicating that the

mitochondria were intact and had not suffered from osmotic shock during isolation

(Wrogemann et al., 1985). Results are summarized in Table 1.

Mutator mouse mitochondria
Next, we compared the function and ultrastructure of wild-type mouse mitochondria to those from

the heart and liver of mtDNA mutator mice, a strain with a premature ageing phenotype

(Trifunovic et al., 2004). A minor respiratory defect was found under phosphorylating and uncou-

pling conditions in heart from mtDNA mutator mice (Figure 5A), consistent with previous observa-

tions (Trifunovic et al., 2004, 2005). The morphology of heart mitochondria from the mtDNA

mutator mice resembled wildtype heart mitochondria, except for a high incidence (40%) of

Video 2. Tomographic volume and 3D segmentation

of the mitochondrion from young mouse liver shown in

Figure 3, upper left.

DOI: 10.7554/eLife.24662.008

Video 3. Tomographic volume and 3D segmentation

of the mitochondrion from old mouse liver shown in

Figure 3, upper right, central panel.

DOI: 10.7554/eLife.24662.010
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ellipsoidal peripheral voids connected to the cristae or the inter-membrane space that were delin-

eated by a double membrane (Figure 5B). The matrix space between the two membranes was mini-

mal. In one mtDNA mutator mouse heart mitochondrion, the outer membrane was punctured by

small openings (Figure 5B, left).

Mitochondria isolated from mtDNA mutator mouse liver showed the same central low-density

voids (Figure 5C) as liver mitochondria from old wild-type mice (Figure 3), but at greater prevalence

(40%; Table 1). In one case, cristae with apparently normal junctions extended from the central void

into the matrix, which was not observed in wild-type mice (Figure 5C). About 20% of mtDNA muta-

tor mouse liver mitochondria contained dense matrix granules (Table 1).

D. melanogaster mitochondria show profound age-associated changes
We also examined the ultrastructure and function of mitochondria from young and old D.

melanogaster, a non-mammalian metazoan. The flies showed standard sigmoidal survival curves,

with a mean lifespan of 69.5 days and a maximum lifespan of 78.5 days (Figure 6A). Life span corre-

lated with climbing ability, as reported previously (Rhodenizer et al., 2008). Climbing ability

remained constant for 25 days and then dropped rapidly (Figure 6A). We investigated the respira-

tory activity of mitochondria from young and old flies (15 and 70 days, respectively; Figure 6A). The

respiration rate in old flies decreased by up to 60% (Figure 6B), and the peroxide yield increased by

Young Old

8
0
%

2
0
%

A

B

Figure 4. Cryo-ET of kidney mitochondria from young (20 weeks old) and old (80 weeks old) mice. (A) About 80% of the kidney mitochondria from

young (left) or old (right) animals had lamellar and locally parallel cristae, not unlike heart mitochondria, except that the cristae were less tightly packed.

(B) About 20% of the mitochondria from young and old kidney showed an inner membrane morphology resembling that in apoptotic cells

(Scorrano et al., 2002), without any discernible pattern and wide or irregular junctions. Scale bars, 250 nm.

DOI: 10.7554/eLife.24662.011
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Figure 5. Activity and ultrastructure of mtDNA mutator mouse mitochondria. (A) Oxygen consumption rate assessed in heart mitochondria from control

(white bars, n = 8, 30 weeks old) and mutator (black bars, n = 8, 30 weeks old) mice. Mitochondria were isolated and analysed as in Figure 1. (B–C)

Cryo-ET. (B) Mutator mouse heart mitochondria had lamellar, parallel cristae that were similar to those of wild-type heart mitochondria (see Figure 2),

Figure 5 continued on next page
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40–100% (Figure 6C), indicating that mitochondrial function is severely compromised, confirming an

earlier report (Ferguson et al., 2005).

We performed cryo-ET on three sample preparations per age group to find out whether and how

this functional decline is reflected in mitochondrial morphology. Results are summarized in Table 1.

Mitochondria from young flies (n = 29; Figure 6D, Video 4) looked similar to those from mouse

heart, with a dense matrix and thin, lamellar, mostly parallel cristae. All cristae had ridges indicative

of ATP synthase dimer rows (Davies et al., 2011; Strauss et al., 2008) and several junctions to the

intermembrane space. Wide cristae were observed in 10% of the mitochondria, similar to mouse

heart. A small subpopulation of mitochondria (10%) was unusually elongated (axial ratio above 3:1)

but looked otherwise normal. By contrast, the structure of mitochondria from old D. melanogaster (n

= 39) was heterogeneous (Figure 6E). Approximately 75% of mitochondria had normal, well-devel-

oped cristae, although in 15% the cristae were wider (not shown). Some of these mitochondria were

unusually long and thin (18%), or branched (5%) (Figure 6E, top left). In the remaining 25% of old fly

mitochondria, the inner membrane assumed a variety of non-standard shapes. Several organelles

that were identified as mitochondria by their characteristic double membrane and dense matrix

appeared to lack cristae entirely (Figure 6E, top right) or the cristae were minimally developed

(10%). Many cristae were not connected to the intermembrane space and were, therefore, small

vesicles completely surrounded by matrix (Figure 6E, lower right, Video 5). In one mitochondrion,

the cristae were spherical (Figure 6E, centre left). In two others, they were concentric (Figure 6E,

lower left, Video 6), lacking the membrane ridges associated with ATP synthase dimer rows

(Davies et al., 2011; Strauss et al., 2008). These observations establish a strong link between mito-

chondrial inner membrane organisation and respiratory function in D. melanogaster.

Discussion
Our study provides a systematic assessment of changes in mitochondrial function and inner mem-

brane structure upon ageing in two common metazoan ageing model organisms, mouse and D. mel-

anogaster. 3D volumes of entire mitochondria at an estimated resolution of 3 to 5 nm were

generated by cryo-ET. As far as possible, mitochondria from different organisms and tissues were

treated in the same way. The fact that there are clear differences between mitochondria from young

and old mouse liver, for example, and that these mitichondria look different from heart and kidney

mitochondria allows us to conclude that the isolation process itself does not affect mitochondrial

membrane structure significantly. We conclude further that the different appearance of the young

mouse liver mitochondria is not an artefact of isolation, but a genuine feature.

We found a clear correlation between OXPHOS capacity and the number of inner membrane cris-

tae per unit volume. Mitochondrial respiration was highest in mouse heart and young fly mitochon-

dria, which were entirely filled with closely stacked, parallel cristae. This arrangement, which is

characteristic for tissues with high respiratory activity, maximises the membrane area available for

oxidative phosphorylation (Davies et al., 2011). In mouse heart and young fly mitochondria, we fre-

quently observed cristae fenestration, which is a morphological characteristic of tissues with high

energy demand (Slautterback, 1965; Smith, 1963). Fenestration increases the total length of cristae

ridges that harbour the ATP synthase, and hence the potential for ATP production. By comparison,

mouse liver mitochondria had fewer cristae and the matrix was both denser and more voluminous, in

line with the lower respiratory rate and higher metabolic activity of liver cells. Mouse kidney mito-

chondria were structurally more diverse. Remarkably, a significant proportion of kidney mitochondria

from both young and old mice had a morphology typical of apoptotic cells (Scorrano et al., 2002;

Sun et al., 2007). This correlates well with the recently reported continuous turnover and short life-

span of kidney cells of about 30–60 days (Rinkevich et al., 2014), compared to the 200–400 day life-

span of rat hepatic cells (Macdonald, 1961) and the very low turnover rates for cardiomyocytes of

1.3–4% per year (Malliaras et al., 2013). The peroxide yield correlated inversely with respiratory

Figure 5 continued

but with occasional peripheral voids at the inner boundary membrane. (C) About 40% of liver mitochondria from mutator mice had low-density central

voids, as in old liver (see Figure 3).

DOI: 10.7554/eLife.24662.012
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Figure 6. Activity and ultrastructure of D. melanogaster mitochondria. (A) Survival rates (n = 150; solid line) and climbing ability (n � 25; dashed line) of

wDah wild-type flies. Error bars represent SEM and arrows indicate sampling points for young (15 days old) and old (70 days old) flies. (B) Oxygen

consumption rate assessed in mitochondria from young (white bars, n = 3) and old (black bars, n = 3) flies. Mitochondria were isolated and analysed as

in Figure 1. Succinate and glycerol-3-phosphate (AS), and finally rotenone were added (GS) for comparison to complex I-driven respiration (CPI). (C)

Figure 6 continued on next page
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activity and was highest in mouse liver and lowest in mouse heart, suggesting that liver mitochondria

may be affected by oxidative damage more severely than mitochondria from cardiac tissue.

Unexpectedly, levels of mitochondrial respiration, respiratory chain activity, hydrogen peroxide

production or steady-state levels of antioxidant enzymes did not vary greatly with age, indicating

moderate changes at most in respiratory rates and hydrogen peroxide yield in ageing mice. This

contravenes the free-radical theory of ageing, which postulates a major age-related increase in

ROS production and respiratory defects. In line with our results on mitochondrial function, the mor-

phology of mouse heart mitochondria did not change much with age. By contrast, one out of four

mitochondria from old mouse livers had a striking, age-specific phenotype characterized by a cen-

tral matrix void. We found the same feature in mitochondria of mtDNA mutator mouse livers,

where it was considerably more prevalent. Although we do not yet know what causes the voids

and how they affect mitochondrial function, they evidently reflect a specific reorganisation rather

than a random breakdown of the inner membrane. The lack of sharp cristae ridges and crista junc-

tions in the void membranes suggests that these mebranes do not contain ATP synthase dimers

and hence do not contribute to oxidative phosphorylation. The fact that mitochondria with these

central voids have otherwise normal cristae may explain why no age-related reduction in overall

respiratory activity was evident. If the majority of mitochondria are normal, they can

apparently compensate for a loss of inner membrane area available for oxidative phosphorylation

in 25% of the total population. Similar ring- or cup-shaped mitochondria with central cavities have

been reported (Ghadially, 1988) and ascribed to the effects of drugs, toxins (David and Kettler,

1961; Stephens and Bils, 1965) or oxidative damage (Ding et al., 2012). Although the cavities

found in these earlier studies were lined by both the outer and inner mitochondrial membranes,

the central voids described here may likewise result from such damage, as damage to mtDNA is

known to accumulate in liver tissues (Barazzoni et al., 2000; Yen et al., 1991). If denatured respi-

ratory chain complexes are cleared from the membrane, the lipids left behind would be expected

to form such featureless membrane regions expanding into the matrix interior. The matrix granules

that we found in old liver and kidney mitochondria may consist at least in part of denatured respira-

tory chain complexes, consistent with their absence from old heart mitochondria, in which we did

not observe matrix granules. Indeed, it has been shown that these granules contain complex IV

subunits (Hertsens et al., 1986) in addition to

lipids, glycoproteins and calcium (Gha-

dially, 2001; Jacob et al., 1994).

Interestingly, changes in the membrane struc-

ture of mouse mitochondria were organ-depen-

dent, in a way that suggests different degrees of

resilience against ageing. Mouse cardiac mito-

chondria showed the highest respiratory rates

but appeared to be protected most effectively

from oxidative damage, as indicated by their

low and unchanged peroxide yield. Again, these

findings contradict the classical free-radical the-

ory, which would predict that cardiomyocytes

with their high density of highly active mitochon-

dria produce more ROS and thus age faster

(Stuart et al., 2014). An analysis of DNA methyl-

ation has shown that heart tissue ages more

slowly than would be predicted chronologically

Figure 6 continued

Mitochondrial peroxide yield in mitochondria from young (white bars, n = 3) and old (black bars, n = 3) flies. (D–E) Cryo-ET of typical mitochondria from

young (D) or old (E) flies. Mitochondria from young flies had lamellar, mostly parallel cristae, similar to those from mouse heart. Mitochondria from old

flies had highly variable shapes and cristae organisation, with the following main types (clockwise from top left): elongated and branched morphology;

round, lacking cristae; small disconnected cristae; concentric narrow cristae (note that the innermost vesicle, shown in a darker shade of blue, appears

to be unconnected to other membranes); irregular, wide cristae.

DOI: 10.7554/eLife.24662.013

Video 4. Tomographic volume and 3D segmentation

of the mitochondrion from young fly shown in

Figure 6D, upper panel.

DOI: 10.7554/eLife.24662.014
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(Horvath, 2013). This observation is in line with our findings, which thus imply that mitochondria in

vital organs with slow regeneration, such as the heart, are protected from damage more effectively

than mitochondria in other organs. The effect may be genetically controlled through the expression

levels of superoxide dismutase or catalase. Overexpression of catalase targeted to mitochondria has

been shown to attenuate ageing effects in the murine heart (Dai et al., 2009). However, ROS signal-

ling (Lenaz, 2012) requires a fine equilibrium of ROS production and sequestration that is probably

tissue-dependent.

The most striking differences in our study, both with respect to morphology and activity, were

found between mitochondria from young and old D. melanogaster. About half of the mitochondria

from old flies had lost the standard organization of the inner membrane into boundary membranes

with well-developed cristae and crista junctions. Many had round or concentric cristae that lacked

sharp ridges. In extreme cases, cristae or crista junctions were completely absent. Measurements of

respiratory activity in old fly mitochondria indicated that oxygen uptake was decreased by a factor

of almost two and peroxide yield was increased by more than 50%, in line with increased mitochon-

drial H2O2 production in live ageing Drosophila (Cochemé et al., 2011). These results suggest

strongly that about 50% of the old fly mitochondria are inactive, consistent with the observation that

about 25% of the mitochondria in old flies lack normal cristae or crista junctions and that an addi-

tional 18% deviate from the standard morphology. Such a drastic breakdown of mitochondrial struc-

ture and function would result in the death of the organism within a short period.

It is interesting to compare our results on mouse and fruit fly mitochondria to similar studies on

the filamentous fungus P. anserina (Brust et al., 2010; Daum et al., 2013), another well-character-

ized ageing model (Scheckhuber and Osiewacz, 2008). P. anserina has an average lifespan of only

18 days, three times shorter than D. melanogaster, and almost 50 times shorter than mouse. Mor-

phological changes in P. anserina mitochondria were both more homogenous and more extreme

than those in fruit flies, affecting about 80% of organelles from senescent populations (Brust et al.,

2010). Cryo-ET of aged P. anserina mitochondria or inner membrane vesicles indicated that the cris-

tae had receded into the inner boundary membrane and that ATP synthase dimers dissociated into

monomers (Daum et al., 2013). In terms of inner membrane morphology, old P. anserina mitochon-

dria resembled the quasi-apoptotic subpopulation in mouse kidney, the tissue with the highest turn-

over rate in our study, suggesting similar mechanisms of programmed ageing. On the one hand, the

higher proportion of functional mitochondria in old flies indicates that the decline is less complete

and slower than that in P. anserina. On the other hand, it is much more rapid in D. melanogaster

than in mouse, suggesting a link between the complexity of an organism and the rate of ageing.

Conclusions
The increasing complexity of organisms goes along with an increasingly complex ageing process.

For the primitive multicellular eukaryote P. anserina, a straightforward correspondence between

Video 5. Tomographic volume and 3D segmentation

of the mitochondrion from old fly shown in Figure 6E,

lower right.

DOI: 10.7554/eLife.24662.015

Video 6. Tomographic volume and 3D segmentation

of the mitochondrion from old fly shown in Figure 6E,

lower left.

DOI: 10.7554/eLife.24662.016
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age, mitochondrial ultrastructure and organization of the mitochondrial ATP synthase has been

shown (Brust et al., 2010; Daum et al., 2013). In Drosophila, we now establish a link between inner

membrane morphology and functionality, which correlates closely with age and agility. In mouse, the

relationship between inner membrane ultrastructure, function and age is less clear-cut and evidently

tissue-dependent. While mouse heart mitochondria show little if any change with age, a quarter of

liver mitochondria display a severe, age-related phenotype that does not seem to result in an overall

reduction of oxidative phosphorylation. A relatively high proportion of kidney mitochondria in young

and old mice resemble those observed during apoptosis, consistent with the high turnover of kidney

cells. Our data thus indicate major differences in how ageing relates to mitochondrial morphology

and function in metazoans. In mouse, we find no evidence of age-related progressive impairment of

the oxidative phosphorylation system or increase of mitochondrial H2O2 production, whereas both

effects are evident in Drosophila.

Materials and methods

Mouse breeding
All mice mutations in this study were on an inbred C57Bl/6N nuclear background. Mutator mice

were generated as previously described (Ross et al., 2013). Briefly, PolgAWT/mut mice were gener-

ated by crossing a PolgAWT/WT female with a PolgAWT/mut male, and subsequently inter-

crossing the progeny to generate PolgAmut/mut (mutator mice). Mice were maintained on a standard

mouse chow diet and sacrificed at different time points by cervical dislocation in strict accordance

with the recommendations and guidelines of the Federation of the European Laboratory Animal Sci-

ence Association (FELASA). Protocols were approved by the Landesamt für Natur, Umwelt und Ver-

braucherschutz, Nordrhein-Westfalen, Germany (Permit ref: 84–02.05.20.12.086).

Fly breeding
wDah wild-type flies were maintained at 25˚C and fed a standard sugar/yeast/agar diet (SYA). Once

mated, females, raised at controlled larval densities, were used. Adult flies were kept in SYA food

vials containing 10 or 25 flies per vial for survival and climbing analysis, respectively. Climbing ability

was assessed as previously described (Greene et al., 2003).

Isolation of mouse mitochondria
Mice were sacrificed by cervical dislocation, and heart, liver and kidneys were quickly collected in

ice-cold DPBS (Gibco), minced and homogenized with a few strokes of a Potter S homogenizer (Sar-

torius) in 5 ml (for heart and kidney) or 20 ml (for liver) of ice-cold mitochondria isolation buffer (MIB;

310 mM sucrose, 20 mM Tris-HCl, 1 mM EGTA, pH 7.2). Mitochondria were purified by differential

centrifugation (1200 g for 10 min) and the supernatants were then centrifuged at 12,000 g for 10

min. The crude mitochondrial pellet was resuspended in an appropriate volume of MIB. Mitochon-

drial concentration was determined using the Protein DC Lawry based assay (Bio-Rad).

Isolation of mitochondria from fruit flies
Fruit flies were homogenized with a few strokes of a loose Potter S homogenizer (Sartorius) in 5 ml

of ice-cold mitochondria isolation buffer (MIB; 310 mM sucrose, 20 mM Tris-HCl, 1 mM EGTA, pH

7.2). After filtration through a 100 mm nylon mesh filter, mitochondria were further homogenized in a

tight Potter S homogenizer (Sartorius) and purified by differential centrifugation (800 g for 10 min)

and the supernatant was then centrifuged at 4500 g for 15 min. The crude mitochondrial pellet was

resuspended in an appropriate volume of MIB. Mitochondrial concentration was determined using

the Protein DC Lowry based assay (Bio-Rad).

Mitochondrial respiratory assay
The rate of mitochondrial oxygen consumption was measured as previously described (Freyer et al.,

2012) at 37˚C using 65–125 mg of crude mitochondria in 2.1 ml of mitochondrial respiration buffer

(120 mM sucrose, 50 mM KCl, 20 mM Tris-HCl, 4 mM KH2PO4, 2 mM MgCl2, 1 mM EGTA, pH 7.2) in

an Oxygraph-2k (Oroboros Instruments). Oxygen uptake was measured using either pyruvate/gluta-

mate/malate (10 mM pyruvate, 5 mM glutamate and 5 mM malate) or 10 mM succinate and 10 nM

Brandt et al. eLife 2017;6:e24662. DOI: 10.7554/eLife.24662 14 of 19

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.24662


rotenone. Oxygen consumption was assessed under phosphorylating conditions with 1 mM ADP

(state 3) or non-phosphorylating conditions by adding 2.5 mg/ml oligomycin (pseudo state 4). Respi-

ratory control ratios (Brand and Nicholls, 2011) were above 10 with pyruvate/glutamate/malate and

above 5 with succinate-rotenone. Respiration was uncoupled by successive addition of carbonyl cya-

nide m-chlorophenyl hydrazone (CCCP) up to 3 mM to reach maximal respiration. The same proce-

dure was used for D. melanogaster, except that isolated mitochondria were first incubated with

pyruvate/glutamate/malate/proline (10 mM pyruvate, 5 mM glutamate, 5 mM malate, 10 mM pro-

line) for state 3, state 4 and the uncoupled state. Succinate (10 mM), glycerol-3-phosphate (10 mM)

and finally rotenone (10 nM) were then added to determine the maximal respiration driven by succi-

nate and glycerol-3-phospate versus complex I driven-respiration.

Measurement of ATP synthesis flux (JATP)
Isolated mitochondria (65 mg/ml) were suspended in respiration buffer (see above). After addition of

2 mM succinate, 10 nM rotenone and 1 mM ADP, oxygen consumption and ATP synthesis rates

were measured as previously described (Mourier et al., 2010). Aliquots were collected every 20 s

and precipitated in 7% HClO4/25 mM EDTA, centrifuged at 16,000 g for 10 min and then neutralized

with 2 M KOH, 0.3 M MOPS. The ATP content in these samples was determined with the ATPlite

1step (PerkinElmer). In a parallel experiment, oligomycin (2.5 mg/ml protein) was added to the mito-

chondrial suspension to determine the rate of non-oxidative ATP synthesis.

Measurement of reactive oxygen species
The rate of H2O2 production was determined by monitoring the fluorescence emission at 590 nm

upon oxidation of the indicator dye Amplex Red (5 U/ml) in the presence of horseradish peroxidase

(1 mM) with excitation at 560 nm. A standard curve was obtained by adding known amounts of H2O2

to the assay medium in the presence of the reactants. Mitochondria (65 mg protein ml�1) were incu-

bated in respiratory medium (see above) at 37˚C. H2O2 production was initiated by substrate addi-

tion, and the rate was determined by monitoring the fluorescence change with time

(Votyakova and Reynolds, 2001).

Enzyme activities
Tissue proteins (15–50 mg) were diluted in phosphate buffer (50 mM KH2PO4, pH 7.4) followed by

spectrophotometric analysis of isolated respiratory chain complex activities at 37˚C using a Hitachi

UV-3600 spectrophotometer. Citrate synthase activity was measured at 412 nm (e = 13,600

M�1cm�1) after addition of 0.1 mM acetyl-CoA, 0.5 mM oxaloacetate and 0.1 mM 5,5-dithiobis-2-

nitrobenzoic acid (DTNB). NADH dehydrogenase activity was determined at 340 nm (e = 6220

M�1cm�1) after addition of 0.25 mM NADH, 0.25 mM decylubiquinone and 1 mM KCN and monitor-

ing rotenone sensitivity. Succinate dehydrogenase (SDH) activity was measured at 600 nm

(e = 21000 M�1cm�1) after addition of 40 mM succinate, 35 mM dichlorphenol indophenol (DCPIP)

and 1 mM KCN. COX activity was assessed using a classical TMPD/ascorbate assay. Briefly, homoge-

nized tissue (65 mg/ml) was suspended in mitochondrial respiration buffer (see above). Oxygen con-

sumption was assessed in the presence of TMPD (0.2 mM), ascorbate (1 mM) and antimycin A (0.5

mM). After a few minutes of stationary respiration, KCN (2 mM) was injected into the chamber. COX

activity corresponds to the KCN-sensitive respiration. Catalase activity was assessed using an Oro-

boros oxygraph. Catalase activity of homogenized tissues (65 mg/ml) was followed by recording the

oxygen production in the presence of 0.01% H2O2. All chemicals were obtained from Sigma Aldrich.

Western blot analysis
Proteins from tissue lysates were separated by SDS-PAGE and blotted onto PVDF membranes (GE

Healthcare). The following primary antibodies were used: rabbit anti-superoxide dismutase 1

(1:1000, Abcam-ab16831) and rabbit monoclonal anti-superoxide dismutase 2 (1:1000, Millipore-06–

984). The following HRP-conjugated secondary antibodies were used: donkey anti-rabbit IgG (Amer-

sham, NA9340V) and sheep anti-mouse (Amersham, NXA931). For chemiluminescence detection,

samples were incubated with ECL (GE Healthcare). Densitometry analyses were performed using the

FIJI software.
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Electron cryo-tomography
Mitochondria were washed twice with 320 mM trehalose, 20 mM Tris pH 7.3, and 1 mM EGTA. Sam-

ples were mixed 1:1 with fiducial gold markers (10 nm gold particles conjugated to protein A,

Aurion, The Netherlands) and immediately plunge-frozen in liquid ethane on Quantifoil holey carbon

grids (Quantifoil Micro Tools, Germany). Single tilt series (typically ±60˚, step size 1–1.5˚) were col-

lected at 300 kV with an FEI Polara electron microscope equipped with a post-column Quantum

energy filter and an Ultrascan 4 � 4 k CCD camera (Gatan, USA), or with a post-column Tridiem

energy filter and a 2 � 2 k CCD camera (Gatan). Alternatively, tilt series were recorded with an FEI

Titan Krios electron microscope equipped with a Quantum energy filter and a K2 summit direct elec-

tron detector (Gatan). Underfocus was 8–9 mm and the magnification was chosen to give an object

pixel size between 4.3 Å and 7.3 Å. The total electron dose per tilt series was 120–150 e-/Å2. Tilt

series were aligned to gold fiducial markers and tomograms were reconstructed by back-projection

with the IMOD software package (Kremer et al., 1996). A final filtering step applying non-linear ani-

sotropic diffusion (Frangakis and Hegerl, 2001) was performed to increase contrast. Tomograms

were manually segmented with the program AMIRA (FEI).
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AM, Porteous CM, Smith RA, Saeed S, Carré JE, Singer M, Gems D, Hartley RC, Partridge L, Murphy MP. 2011.
Measurement of H2O2 within living Drosophila during aging using a ratiometric mass spectrometry probe
targeted to the mitochondrial matrix. Cell Metabolism 13:340–350. doi: 10.1016/j.cmet.2011.02.003,
PMID: 21356523

Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, Gollahon K, Martin GM, Loeb LA,
Ladiges WC, Rabinovitch PS. 2009. Overexpression of catalase targeted to mitochondria attenuates murine
cardiac aging. Circulation 119:2789–2797. doi: 10.1161/CIRCULATIONAHA.108.822403, PMID: 19451351
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Mourier A, Ruzzenente B, Brandt T, Kühlbrandt W, Larsson NG. 2014. Loss of LRPPRC causes ATP synthase
deficiency. Human Molecular Genetics 23:2580–2592. doi: 10.1093/hmg/ddt652, PMID: 24399447

Mulligan CM, Le CH, deMooy AB, Nelson CB, Chicco AJ. 2014. Inhibition of delta-6 desaturase reverses
cardiolipin remodeling and prevents contractile dysfunction in the aged mouse heart without altering
mitochondrial respiratory function. The Journals of Gerontology: Series A 69:799–809. doi: 10.1093/gerona/
glt209, PMID: 24418793

Paumard P, Vaillier J, Coulary B, Schaeffer J, Soubannier V, Mueller DM, Brèthes D, di Rago JP, Velours J. 2002.
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