A synthetic planar cell polarity system reveals localized feedback on Fat4-Ds1 complexes

  1. Olga Loza
  2. Idse Heemskerk
  3. Nadav Gordon-Bar
  4. Liat Amir-Zilberstein
  5. Yunmin Jung
  6. David Sprinzak  Is a corresponding author
  1. Tel Aviv University, Israel
  2. Rice University, United States

Abstract

The atypical cadherins Fat and Dachsous (Ds) have been found to underlie planar cell polarity (PCP) in many tissues. Theoretical models suggest that polarity can arise from localized feedbacks on Fat-Ds complexes at the cell boundary. However, there is currently no direct evidence for the existence or mechanism of such feedbacks. To directly test the localized feedback model, we developed a synthetic biology platform based on mammalian cells expressing the human Fat4 and Ds1. We show that Fat4-Ds1 complexes accumulate on cell boundaries in a threshold-like manner and exhibit dramatically slower dynamics than unbound Fat4 and Ds1. This suggests a localized feedback mechanism based on enhanced stability of Fat4-Ds1 complexes. We also show that co-expression of Fat4 and Ds1 in the same cells is sufficient to induce polarization of Fat4-Ds1 complexes. Together, these results provide direct evidence that localized feedbacks on Fat4-Ds1 complexes can give rise to PCP.

Article and author information

Author details

  1. Olga Loza

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Idse Heemskerk

    Department of Biosciences, Rice University, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nadav Gordon-Bar

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Liat Amir-Zilberstein

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Yunmin Jung

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. David Sprinzak

    Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    davidsp@post.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6776-6957

Funding

Israel Science Foundation (545/14)

  • Olga Loza
  • Nadav Gordon-Bar
  • Liat Amir-Zilberstein
  • Yunmin Jung
  • David Sprinzak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: January 2, 2017
  2. Accepted: August 9, 2017
  3. Accepted Manuscript published: August 18, 2017 (version 1)
  4. Version of Record published: August 30, 2017 (version 2)

Copyright

© 2017, Loza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,171
    views
  • 393
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Olga Loza
  2. Idse Heemskerk
  3. Nadav Gordon-Bar
  4. Liat Amir-Zilberstein
  5. Yunmin Jung
  6. David Sprinzak
(2017)
A synthetic planar cell polarity system reveals localized feedback on Fat4-Ds1 complexes
eLife 6:e24820.
https://doi.org/10.7554/eLife.24820

Share this article

https://doi.org/10.7554/eLife.24820

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.