Synaptic plasticity through activation of GluA3-containing AMPA-receptors

  1. Maria C Renner
  2. Eva HH Albers
  3. Nicolas Gutierrez-Castellanos
  4. Niels R Reinders
  5. Aile N van Huijstee
  6. Hui Xiong
  7. Tessa R Lodder
  8. Helmut W Kessels  Is a corresponding author
  1. The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Netherlands

Abstract

Excitatory synaptic transmission is mediated by AMPA-type glutamate receptors (AMPARs). In CA1 pyramidal neurons of the hippocampus two types of AMPARs predominate: those that contain subunits GluA1 and GluA2 (GluA1/2), and those that contain GluA2 and GluA3 (GluA2/3). Whereas subunits GluA1 and GluA2 have been extensively studied, the contribution of GluA3 to synapse physiology has remained unclear. Here we show in mice that GluA2/3s are in a low-conductance state under basal conditions, and although present at synapses they contribute little to synaptic currents. When intracellular cyclic AMP (cAMP) levels rise, GluA2/3 channels shift to a high-conductance state, leading to synaptic potentiation. This cAMP-driven synaptic potentiation requires the activation of both protein kinase A (PKA) and the GTPase Ras, and is induced upon the activation of β-adrenergic receptors. Together, these experiments reveal a novel type of plasticity at CA1 hippocampal synapses that is expressed by the activation of GluA3-containing AMPARs.

Article and author information

Author details

  1. Maria C Renner

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Eva HH Albers

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicolas Gutierrez-Castellanos

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Niels R Reinders

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Aile N van Huijstee

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Hui Xiong

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Tessa R Lodder

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Helmut W Kessels

    Synaptic Plasticity and Behavior Group, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
    For correspondence
    h.kessels@nin.knaw.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1122-745X

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (821.02.016)

  • Helmut W Kessels

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (864.11.014)

  • Helmut W Kessels

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in line with the European guidelines for the care and use of laboratory animals (Council Directive 86/6009/EEC). The experimental protocol was approved by the Animal Experiment Committee of the Royal Netherlands Academy of Arts and Sciences (KNAW).

Copyright

© 2017, Renner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,664
    views
  • 719
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria C Renner
  2. Eva HH Albers
  3. Nicolas Gutierrez-Castellanos
  4. Niels R Reinders
  5. Aile N van Huijstee
  6. Hui Xiong
  7. Tessa R Lodder
  8. Helmut W Kessels
(2017)
Synaptic plasticity through activation of GluA3-containing AMPA-receptors
eLife 6:e25462.
https://doi.org/10.7554/eLife.25462

Share this article

https://doi.org/10.7554/eLife.25462

Further reading

    1. Neuroscience
    Xinlin Hou, Peng Zhang ... Dandan Zhang
    Research Article

    Emotional responsiveness in neonates, particularly their ability to discern vocal emotions, plays an evolutionarily adaptive role in human communication and adaptive behaviors. The developmental trajectory of emotional sensitivity in neonates is crucial for understanding the foundations of early social-emotional functioning. However, the precise onset of this sensitivity and its relationship with gestational age (GA) remain subjects of investigation. In a study involving 120 healthy neonates categorized into six groups based on their GA (ranging from 35 and 40 weeks), we explored their emotional responses to vocal stimuli. These stimuli encompassed disyllables with happy and neutral prosodies, alongside acoustically matched nonvocal control sounds. The assessments occurred during natural sleep states using the odd-ball paradigm and event-related potentials. The results reveal a distinct developmental change at 37 weeks GA, marking the point at which neonates exhibit heightened perceptual acuity for emotional vocal expressions. This newfound ability is substantiated by the presence of the mismatch response, akin to an initial form of adult mismatch negativity, elicited in response to positive emotional vocal prosody. Notably, this perceptual shift’s specificity becomes evident when no such discrimination is observed in acoustically matched control sounds. Neonates born before 37 weeks GA do not display this level of discrimination ability. This developmental change has important implications for our understanding of early social-emotional development, highlighting the role of gestational age in shaping early perceptual abilities. Moreover, while these findings introduce the potential for a valuable screening tool for conditions like autism, characterized by atypical social-emotional functions, it is important to note that the current data are not yet robust enough to fully support this application. This study makes a substantial contribution to the broader field of developmental neuroscience and holds promise for future research on early intervention in neurodevelopmental disorders.

    1. Neuroscience
    Luis Alberto Bezares Calderón, Réza Shahidi, Gáspár Jékely
    Research Article

    Hydrostatic pressure is a dominant environmental cue for vertically migrating marine organisms but the physiological mechanisms of responding to pressure changes remain unclear. Here, we uncovered the cellular and circuit bases of a barokinetic response in the planktonic larva of the marine annelid Platynereis dumerilii. Increased pressure induced a rapid, graded, and adapting upward swimming response due to the faster beating of cilia in the head multiciliary band. By calcium imaging, we found that brain ciliary photoreceptors showed a graded response to pressure changes. The photoreceptors in animals mutant for ciliary opsin-1 had a smaller sensory compartment and mutant larvae showed diminished pressure responses. The ciliary photoreceptors synaptically connect to the head multiciliary band via serotonergic motoneurons. Genetic inhibition of the serotonergic cells blocked pressure-dependent increases in ciliary beating. We conclude that ciliary photoreceptors function as pressure sensors and activate ciliary beating through serotonergic signalling during barokinesis.