1. Plant Biology
Download icon

A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana

  1. Chenggang Wang
  2. Mingqi Zhou
  3. Xudong Zhang
  4. Jin Yao
  5. Yanping Zhang
  6. Zhonglin Mou  Is a corresponding author
  1. University of Florida, United States
  2. GlaxoSmithKline, United States
Research Article
  • Cited 44
  • Views 3,070
  • Annotations
Cite this article as: eLife 2017;6:e25474 doi: 10.7554/eLife.25474

Abstract

Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chenggang Wang

    Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mingqi Zhou

    Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4605-5467
  3. Xudong Zhang

    Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jin Yao

    Target Sciences, GlaxoSmithKline, King of Prussia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yanping Zhang

    Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhonglin Mou

    Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
    For correspondence
    zhlmou@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0243-4905

Funding

National Science Foundation (IOS-0842716)

  • Zhonglin Mou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Nürnberger, University of Tubingen, Germany

Publication history

  1. Received: January 25, 2017
  2. Accepted: July 18, 2017
  3. Accepted Manuscript published: July 19, 2017 (version 1)
  4. Version of Record published: August 17, 2017 (version 2)

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,070
    Page views
  • 597
    Downloads
  • 44
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Jaemyung Choi et al.
    Research Article

    Flowering plants utilize small RNA molecules to guide DNA methyltransferases to genomic sequences. This RNA-directed DNA methylation (RdDM) pathway preferentially targets euchromatic transposable elements. However, RdDM is thought to be recruited by methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin. How RdDM is targeted to euchromatin despite an affinity for H3K9me is unclear. Here we show that loss of histone H1 enhances heterochromatic RdDM, preferentially at nucleosome linker DNA. Surprisingly, this does not require SHH1, the RdDM component that binds H3K9me. Furthermore, H3K9me is dispensable for RdDM, as is CG DNA methylation. Instead, we find that non-CG methylation is specifically associated with small RNA biogenesis, and without H1 small RNA production quantitatively expands to non-CG methylated loci. Our results demonstrate that H1 enforces the separation of euchromatic and heterochromatic DNA methylation pathways by excluding the small RNA-generating branch of RdDM from non-CG methylated heterochromatin.

    1. Plant Biology
    Juan Carlos De la Concepcion et al.
    Research Article Updated

    Cooperation between receptors from the nucleotide-binding, leucine-rich repeats (NLR) superfamily is important for intracellular activation of immune responses. NLRs can function in pairs that, upon pathogen recognition, trigger hypersensitive cell death and stop pathogen invasion. Natural selection drives specialization of host immune receptors towards an optimal response, whilst keeping a tight regulation of immunity in the absence of pathogens. However, the molecular basis of co-adaptation and specialization between paired NLRs remains largely unknown. Here, we describe functional specialization in alleles of the rice NLR pair Pik that confers resistance to strains of the blast fungus Magnaporthe oryzae harbouring AVR-Pik effectors. We revealed that matching pairs of allelic Pik NLRs mount effective immune responses, whereas mismatched pairs lead to autoimmune phenotypes, a hallmark of hybrid necrosis in both natural and domesticated plant populations. We further showed that allelic specialization is largely underpinned by a single amino acid polymorphism that determines preferential association between matching pairs of Pik NLRs. These results provide a framework for how functionally linked immune receptors undergo co-adaptation to provide an effective and regulated immune response against pathogens. Understanding the molecular constraints that shape paired NLR evolution has implications beyond plant immunity given that hybrid necrosis can drive reproductive isolation.