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Learning multiple variable-speed
sequences in striatum via cortical tutoring
James M Murray*, G Sean Escola

Center for Theoretical Neuroscience, Columbia University, New York, United States

Abstract Sparse, sequential patterns of neural activity have been observed in numerous brain

areas during timekeeping and motor sequence tasks. Inspired by such observations, we construct a

model of the striatum, an all-inhibitory circuit where sequential activity patterns are prominent,

addressing the following key challenges: (i) obtaining control over temporal rescaling of the

sequence speed, with the ability to generalize to new speeds; (ii) facilitating flexible expression of

distinct sequences via selective activation, concatenation, and recycling of specific subsequences;

and (iii) enabling the biologically plausible learning of sequences, consistent with the decoupling of

learning and execution suggested by lesion studies showing that cortical circuits are necessary for

learning, but that subcortical circuits are sufficient to drive learned behaviors. The same

mechanisms that we describe can also be applied to circuits with both excitatory and inhibitory

populations, and hence may underlie general features of sequential neural activity pattern

generation in the brain.

DOI: 10.7554/eLife.26084.001

Introduction
Understanding the mechanisms by which neural circuits learn and generate the complex, dynamic

patterns of activity that underlie behavior and cognition remains a fundamental goal of neurosci-

ence. Of particular interest are sparse sequential activity patterns that are time-locked to behavior

and have been observed experimentally in multiple brain areas including cortex (Luczak et al.,

2007; Jin et al., 2009; Harvey et al., 2012), basal ganglia (Jin et al., 2009; Rueda-Orozco and

Robbe, 2015; Mello et al., 2015; Dhawale et al., 2015; Gouvêa et al., 2015; Bakhurin et al.,

2017), hippocampus (Nádasdy et al., 1999; Pastalkova et al., 2008; MacDonald et al., 2013;

Eichenbaum, 2014), and songbird area HVC (Hahnloser et al., 2002; Kozhevnikov and Fee, 2007).

These experiments reveal key features of the relationship to behavior that must be recapitulated in

any circuit-level model of sequential neural activity. First, these sequences have been shown to tem-

porally rescale (i.e., contract and dilate) as behavior speeds up and slows down (Mello et al., 2015;

Gouvêa et al., 2015), while human psychophysics experiments have shown that after learning a

behavior (e.g., an arm reach trajectory) at one speed of execution, it can be reliably expressed at

other speeds without additional learning (Goodbody and Wolpert, 1998; Joiner et al., 2011;

Shmuelof et al., 2012). Thus the neural circuits underlying such behaviors must be able to extrapo-

late from the sequential activity generated at a particular speed during learning to temporally

rescaled patterns. Second, the same neural circuits exhibit the capacity to flexibly generate different

sequential activity patterns for different behaviors (Pastalkova et al., 2008; Harvey et al., 2012;

MacDonald et al., 2013). Third, the process of learning imposes additional constraints on models of

sequence generating circuits beyond the need for biologically plausible learning rules. As discussed

in greater detail below, lesion and inactivation experiments have been shown to prevent learning

without impairing the expression of learned behaviors (Miyachi et al., 1997; Kawai et al., 2015)

suggesting that the neural circuitry of learning and execution can be decoupled.
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These results indicate a need for a comprehensive model to study the generation of sparse,

sequential neural activity. Such a model should facilitate temporal rescaling and extrapolation to

new speeds, flexibly change in order to meet changing contexts or behavioral goals, and decouple

learning from performance. Several mechanisms have been proposed for generating sparse sequen-

ces, for example continuous attractor models (Rokni and Sompolinsky, 2012), reservoir computing

networks (Rajan et al., 2016), and feedforward excitatory architectures including synfire chains

(Abeles, 1991; Goldman, 2009; Fiete et al., 2010; Veliz-Cuba et al., 2015). Each of these models

suffers limitations, however. For example: attractor models require finely tuned synaptic connectivity

and single-neuron tuning properties; trained recurrent neural networks lack biologically plausible

learning rules and connectivity constraints; and synfire chains have limited ability to temporally

rescale their dynamics. In this work we propose a model which allows for (i) arbitrary speeding up

and slowing down of the activity pattern without relearning of the synaptic weights, (ii) the flexible

expression of multiple sequential patterns, and (iii) an arbitrary sequence to be learned from a time-

dependent external input and reproduced once that external input is removed.

Although the basic mechanisms that we propose may be realized in any brain area where sequen-

ces have been observed, for a specific example and to compare to experimental results, we focus on

neural activity in striatum, where sparse activity sequences have been observed in recurrently con-

nected populations of inhibitory medium spiny neurons (MSNs) in rodents during locomotion

(Rueda-Orozco and Robbe, 2015) and lever-press delay tasks (Mello et al., 2015; Dhawale et al.,

2015; Gouvêa et al., 2015). The striatum collects inputs from many areas of cortex and thalamus,

plays an important part in controlling learned movements using its projections via the output struc-

tures of basal ganglia to motor thalamus and brainstem (Parent, 1990; Grillner and Robertson,

2015), and has a central role in reinforcement learning (Graybiel, 2005). MSNs, which constitute

over 90% of the neurons in striatum (Gerfen and Surmeier, 2011), exhibit stereotyped sequential

firing patterns during learned motor sequences and learned behaviors in which timing plays an

important role, with sparse firing sequences providing a seemingly ideal representation for encoding

time and providing a rich temporal basis that can be read out by downstream circuits to determine

behavior (Jin et al., 2009; Mello et al., 2015; Rueda-Orozco and Robbe, 2015; Dhawale et al.,

2015; Gouvêa et al., 2015; Bakhurin et al., 2017). Such neural activity has been shown in rodents

to strongly correlate with time judgement in a fixed-interval lever-press task (Gouvêa et al., 2015),

and with kinematic parameters such as the animal’s position and speed in a task in which the animal

was trained to remain on a treadmill for a particular length of time (Rueda-Orozco and Robbe,

2015). In addition, pharmacological attenuation of neural activity in sensorimotor striatum has been

shown to impair such behavior (Miyachi et al., 1997; Mello et al., 2015; Rueda-Orozco and Robbe,

2015), suggesting that sequential firing patterns in striatum are likely to play a causal role in an ani-

mal’s ability to perform timekeeping and learned motor sequences. While motor cortex is also

known to play a major role in both the learning and directing of motor behaviors such as limb move-

ments in both primates (Fritsch and Hitzig, 1870; Georgopoulos et al., 1982, 1986; Moran and

Schwartz, 1999; Kakei et al., 1999) and rodents (Wise and Donoghue, 1986; Kleim et al., 1998;

Whishaw, 2000; Harrison et al., 2012), cortical lesion studies have long pointed to the ability of

subcortical structures to direct a large repertoire of movements, particularly ‘innate’ movements and

learned movements that don’t require dexterous hand motion (Lawrence and Kuypers, 1968;

Sorenson and Ellison, 1970; Bjursten et al., 1976; Passingham et al., 1983).

Importantly, sequences of neural activity in the striatum exhibit the ability to temporally rescale

their dynamics, dilating or contracting the sequence duration by up to a factor of five in proportion

to the time-delay interval for obtaining a reward (Mello et al., 2015). A successful model should

therefore have the ability to dynamically rescale its activity, ideally with the ability to generalize to

new speeds after training at a particular speed, and without requiring relearning of the synaptic

weights each time there is switching to a slower or faster trial.

As in other brain areas, neural representations within striatum are specific to the behavior being

performed and to the context in which it is executed (Jin and Costa, 2010; Tecuapetla et al.,

2014). In constructing a model of sequential activity patterns, it is therefore important that neurons

be able to participate in multiple sequences in a flexible, context-dependent manner. This might

involve the selective activation, concatenation, and recycling of particular subsequences, as well as

the capability of a circuit to switch between different operational modes, e.g. input-driven versus

autonomously driven. All of these will be important features of the model that we construct below.
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Addressing the roles of cortical and striatal circuits in the learning and performance of motor

skills, one set of recent studies has shown that rats are unable to learn precisely timed lever-press

sequences when motor cortex is lesioned, but are able to successfully perform the sequence if the

lesion occurs after the learning has already taken place (Kawai et al., 2015; Otchy et al., 2015). It

was therefore suggested that motor cortex may act as a ‘tutor’ to subcortical brain circuits during

learning, and that these lower brain circuits eventually internalize the activity pattern, allowing them

to drive behavior without receiving further instruction from the tutor once the behavior has been

learned (Kawai et al., 2015). We therefore develop a model of such a tutor-to-student circuit, in

which a cortical tutor teaches a particular activity sequence to striatum, which eventually becomes

able to perform the sequence autonomously.

In this paper, we propose a model for how striatum could be structured in order to produce

sequential activity patterns that can rescale to faster and slower speeds, flexibly select and combine

particular subsequences specific to particular behaviors, and decouple learning from performance in

a way consistent with the lesion experiments discussed above. A key element is the presence of syn-

aptic depression at the inhibitory synapses between MSNs, which has been shown to exist experi-

mentally (Tecuapetla et al., 2007) and which competes with the effect of feedforward excitatory

input to determine the rate of switching of activity from one neuron cluster to the next. By adjusting

the relative levels of these parameters, it is possible to dilate or contract the time dependence of

neural activity sequences by an order of magnitude or more. Furthermore, we show that our striatal

model can encode multiple sequences that can be expressed individually or pieced together into

longer sequences as selected by the external input. Next, learning is addressed by introducing an

anti-Hebbian plasticity rule at the synapses between MSNs, and we show how this enables the circuit

to obtain the desired structure and internalize the dynamical activity pattern, so that temporally pat-

terned input from cortex eventually becomes unnecessary as the behavior is learned. Finally, we

show that the same mechanisms can be applied to circuits with both excitatory and inhibitory units,

and hence may provide an explanation for the sequential firing patterns that have been observed in

other brain areas including hippocampus (Nádasdy et al., 1999; Pastalkova et al., 2008;

MacDonald et al., 2013; Eichenbaum, 2014) and cortex (Luczak et al., 2007; Jin et al., 2009;

Harvey et al., 2012).

Results

Synaptic depression enables temporally controllable sparse activity
sequences in striatum
Experimentally observed population activity patterns in striatum during learned behaviors are sparse

and sequential, and these are the main features that we want our model network to exhibit in a

robust manner. In order to achieve sparse activity, we make use of the well-known fact that recurrent

inhibition can lead to a winner-take-all steady state in which a single unit or group of units (where a

unit consists of a cluster of MSNs) becomes active and inhibits the other units in the network from

becoming active. Indeed, recurrent inhibition is a hallmark feature of MSNs in striatum, and such a

picture has previously been suggested to apply to striatum (Wickens et al., 1991; Beiser and Houk,

1998; Fukai, 1999). Although individual inhibitory synapses between MSNs are relatively sparse and

weak on the scale of the currents needed to drive spiking in these neurons (Jaeger et al., 1994;

Tepper et al., 2004), active populations of many MSNs firing together may more effectively mediate

suppression between populations, in particular if these populations are also receiving sufficient back-

ground excitation from cortex and/or thalamus to keep them near the firing threshold (Ponzi and

Wickens, 2010, 2013; Angulo-Garcia et al., 2016), possibly in a metastable depolarized ‘up state’

(Wilson, 1993).

In addition to sparse activity, our model also requires a mechanism by which the activity can be

made to switch from one unit to another, otherwise the network would lock into a single winner-

take-all state. While other mathematically similar approaches are possible (see Appendix 1 for fur-

ther discussion), in this paper we propose that this mechanism is short-term plasticity in the form of

depressive adaptation at synapses between MSNs. Such synaptic depression has in fact been

observed experimentally (Tecuapetla et al., 2007). The effect of synaptic depression is to weaken

the amount of inhibition from an active unit onto inactive units over time. If all units also receive
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constant external excitatory input, then eventually the inhibition may weaken sufficiently that the net

input to one of the inactive units becomes positive, at which point the activity switches to this unit,

and it begins to inhibit the other units. This competition between synaptic depression and the level

of external input is the basic mechanism that determines the dynamics of activity switching. In partic-

ular, adjusting the level of external input can change the duration of time that it takes for activity to

switch from one unit to the next, thus providing a mechanism for controlling the speed of an activity

sequence in a robust manner without requiring any change in intrinsic properties of the neurons or

temporally precise input to the network.

The dynamics of xiðtÞ, which we think of as describing the activity level of a cluster of MSNs, and

the associated synaptic depression factors yjðtÞ in our network model are described by the following

equations:

t
dxi

dt
¼�xi þf

X

N

j¼1

Wijxjyjþ xini

 !

ty
dyj

dt
¼�ðyj � 1Þð1� xjÞ� ðyj �bÞxj: (1)

The first equation describes the activity of unit i as being determined by a nonlinear function act-

ing on recurrent and external inputs. The recurrent synapses are inhibitory, with weights Wij � 0, and

the external input is excitatory, with xini � 0. For concreteness, we take the nonlinear function to be

the sigmoidal function fðxÞ ¼ 1=ð1þ e�lxÞ, where l is a gain parameter. The second equation in (1)

describes the dynamics of synaptic depression, where the dynamic variable yjðtÞ represents the

depression of all outgoing synapses from unit j with characteristic timescale ty, which we take to be

much greater than the membrane time constant t (Tecuapetla et al., 2007). The first term on the

right-hand side of the equation drives yj to attain a resting state value of 1 if the presynaptic unit j is

inactive, so that the synapse is fully potentiated. If the presynaptic unit becomes active, with xj »1,

then the second term drives yj toward b, where 0� b < 1, so that the synaptic weight depotentiates

to a finite minimum value when the presynaptic unit is active (Tecuapetla et al., 2007).

As described above and discussed in detail in Appendix 1, the model defined by (1) exhibits

activity switching between units due to competition between the two terms in the argument of the

nonlinear function fðxÞ. The second term is a positive external input, which tends to make xi active.

The first term is a negative input from other units in the network, and becomes weaker over time as

other units remain active due to decreasing synaptic weight WijyjðtÞ. When the first term eventually

becomes smaller than the second, the net input becomes positive, causing xi to become active and

begin to inhibit other units.

In Figure 1a–b, we show a striatal model that is fully connected by inhibitory synapses, where all

off-diagonal elements have the same inhibitory weight (�1) except for those connecting unit j to unit

jþ 1, which are depotentiated by an amount h. This means that if unit j is currently active, then unit

jþ 1 will become active next since it experiences the least amount of inhibition. Figure 1c–d show

that the expected sequence of activity (which is repeating due to the fact that we also depotentiate

the weight between the last and first units) is indeed obtained in such a network, and that the mag-

nitude of the constant external input can be used to control the rate of switching. The period of the

activity sequence slows down tremendously as xin approaches the synaptic depression parameter b.

This slowing down allows for the temporal dynamics to be smoothly and reliably controlled, provid-

ing a potential mechanism consistent with recent experiments showing dramatic dilation of the time-

dependence in population recordings of striatal neurons (Mello et al., 2015), without requiring new

learning of the synaptic weights from one trial to the next. While an infinite range of dynamical scal-

ing can be obtained in the idealized limit of t=ty ! 0 and l ! ¥, Figure 1d shows that attaining

both very long and short switch times T is possible even away from this idealized limit. Finally,

Figure 1e shows that a substantial dynamical range of sequence speeds can be obtained even if

control over the precise value of the input xin is limited, as may be the case due to noise in the sys-

tem, preventing extremely slow and extremely fast sequence speeds.
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Figure 1. Rescalable sparse sequential activity in the striatum. (a) Schematic diagram of a 10-unit striatal network. Units receive constant external

excitatory input and mutually inhibit each other. The burgundy synapses correspond to a depotentiated path through the network that enables

sequential activity. (b) The synaptic weight matrix for the network shown in ‘a’, with subdiagonal weights depotentiated by h ¼ 0:2. (c) The magnitude

of the constant input xin to the network can be used to control the rate at which the activity switches from one population to the next. The units in the

Figure 1 continued on next page

Murray and Escola. eLife 2017;6:e26084. DOI: 10.7554/eLife.26084 5 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.26084


Targeted external input selects which of several sequences striatum
expresses
We can extend the model described so far to multiple—and even overlapping—behaviors by posit-

ing that the external input from cortex and/or thalamus targets the particular subset of MSNs

needed to express a particular behavior. If multiple sequences are encoded in the weights between

different populations of MSNs, then the external input can be thought of as a ‘spotlight’ that acti-

vates the behavior that is most appropriate in a particular context, with the details of that behavior

encoded within the striatum itself, as shown in Figure 2. These subpopulations may even be partially

overlapping, with the overlapping portions encoding redundant parts of the corresponding behav-

iors. In this way, a wide variety of motor behaviors could be encoded without requiring a completely

distinct sequence for every possible behavior. This model dissociates the computations of the

Figure 1 continued

network are active in sequential order, with the speed of the sequence increasing as the excitatory input to the network is increased. Parameters for the

synaptic depression are b ¼ 0:2 and ty ¼ 20t, the gain parameter is l ¼ 20, synapses connecting sequentially active units are depotentiated by h ¼ 0:1,

and the effective input is x̂in � xin=ð1� hÞ. (d) The switch time as a function of the level input to the network. Points are determined by numerically

solving Equation 1; curve is the theoretical result (equation shown in figure; see Appendix 1 for details). If the input is limited to the range bþ D �

x̂in � 1� D (e.g. because reliable functioning in the presence of noise would require the input to stay away from the boundaries within which switching

occurs), then Tmax and Tmin are the maximum and minimum possible switching periods that can be obtained. (e) The temporal scaling factor is shown as

a function of D for different values of the synaptic depression parameter b. The red dot corresponds to the ratio of the red dots in ‘d’.

DOI: 10.7554/eLife.26084.002
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Figure 2. Targeted external input expresses one of several sequences. (a) Schematic illustration of partially overlapping striatal activity sequences

selectively activated by external input. The arrows do not represent synaptic connections, but rather the sequence of activity within an assembly.

Overlapping parts of the striatal activity sequences encode redundancies in portions of the corresponding behaviors (in this case, the middle portion of

a paw movement trajectory). (b) Left panels show network activities in which only the shaded units receive external input. Right panels show the

weights, with only the outlined weights being relevant for the network dynamics for each behavior.

DOI: 10.7554/eLife.26084.003
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selection and expression of motor sequence behaviors. The inputs to striatum select a sequence

(possibly composed of several subsequences) by targeting a certain subpopulation of MSNs, and

then the striatum converts this selection into a dynamical pattern of neural activity that expresses

the behavior in time.

In addition to having multiple activity patterns being driven by different sets of tonically active

inputs, the network is capable of operating in two distinct modes, as shown in Figure 3. In the first

mode, the dynamics of neural activity is determined by the recurrent connectivity, as in the preced-

ing examples, with external excitatory input providing a tonic ‘go’ signal to drive the network. In the

second mode, on the other hand, the external input is strongly time-dependent and unique for each

unit. Such input effectively overrides the pattern stored in the recurrent connectivity and enslaves

the network dynamics to top-down input. In addition to providing an alternative route to controlling

the network dynamics, such time-dependent external input can also play a role in facilitating learn-

ing, as we discuss below.

Anti-Hebbian plasticity enables sequence learning
A striatal network with initially random connectivity can learn to produce sparse sequential activity

patterns when driven by time-dependent cortical input. We again consider a network described by

(1), but now with distinct time-dependent external inputs xini ðtÞ to each unit i, and dynamic synaptic

weights described by

dWij

dt
¼�a1Wijxi�xj �a2ðWijþ 1Þð1� xiÞ�xj; (2)

where �xj is the activity of unit j, low-pass filtered over a time scale tw, and a1 and a2 control the rates

of learning. Roughly, �xjðtÞ will be nonzero if unit j has been recently active over the time window

from t� tw to t. The first term in (2) thus causes Wij ! 0 if postsynaptic unit i is active together with

or immediately following presynaptic unit j. Otherwise, if j is active but i is not active, the second

term causes Wij !�1. (It is important that tw should not exceed the typical time for which a unit

u
n
it
#

time

τy τy τy τy

x
in

τy

Figure 3. Driving the network from Figure 1 with two different types of input leads to distinct operational modes. If input to the network (top) is tonic,

the recurrent weights cause the network to produce a particular activity sequence (bottom), as in Figure 1, with the magnitude of the input controlling

the speed of the sequence. Alternatively, if the input is strongly time-dependent, then the network dynamics are enslaved to the input pattern. In this

case each unit receives a unique pulsed input, with the input to unit four highlighted for illustration.

DOI: 10.7554/eLife.26084.004
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remains active, or else there will be synaptic depotentiation not only between sequentially active

units, but also between units separated by two or more steps in the sequence.) Equation (2) thus

describes an anti-Hebbian learning rule, according to which synapses connecting units that fire

together or in sequence are depotentiated, while others are potentiated.

Figure 4 shows that sequences can develop in the network when it is subjected to several cycles

of time-varying external input. Figure 4a shows that a network initially having no special features in

its connectivity matrix can acquire such structure through anti-Hebbian plasticity by subjecting it to a

repeated sequence of pulse-like inputs, which induce a regular pattern of sequential activity. It also

shows that tonic input to the network leads to sparse activity sequences both before and after train-

ing, with short, random sequences occurring before training and long, specific sequences occurring

after training. We have found that successful sequence learning can occur for a range of input

sequence speeds when the pulse width is >~ ty, but that some units in the sequence will be skipped if

the input varies on time scales � ty (data not shown). In Figure 4b, the regular input to each unit is

replaced by a superposition of sinusoids with random amplitudes and phase shifts. (We presume

that in the brain cortical input to the striatum is structured in a meaningful way rather than random,

determined by a reinforcement learning process that we are not modeling explicitly. Our use of ran-

dom input here, however, illustrates that robust sequences emerge naturally in striatum even in the

case where the input is not highly structured.) This input leads to a particular activity sequence in the

network, with only one unit being active at a given time due to the inhibitory competition between

units. Meanwhile, synaptic weights between sequentially active units are depotentiated by anti-Heb-

bian learning, eventually leading to a weight matrix (labeled ’t ¼ 500ty’ in Figure 4b) in which each

unit that is active at some time during the sequence is described by a column with a single depoten-

tiated entry, which corresponds to the next unit to become active in the sequence. Figure 4c illus-

trates that it is also possible to train a network that has previously learned one sequence to produce

a new unrelated sequence. The evolution of the synaptic weights during the learning and relearning

phases is illustrated in Figure 4d, where the number of training cycles required for learning the

sequence is determined by the learning rates a1 and a2 in (2).

After the network has been trained in this way, it is able to reproduce the same pattern of activity

even after the time-dependent input is replaced by a constant excitatory input to all units. This is

similar to the network model studied in above, although now with the active units appearing in ran-

dom order. Figure 4e shows that, as in the earlier network model, the level of external input can be

used to control the speed of the activity sequence, with the dynamical range spanning more than an

order of magnitude. Finally, Figure 4f shows that, again replacing the time-varying input with con-

stant external input to all units, the activity pattern and sequence speed in this trained network are

robust with respect to random perturbations of the weights Wij. For comparison, we show in Appen-

dix 2—figure 1 that performance is severely degraded by comparable perturbations in a reservoir

computing system.

Previous models have shown that neural activity sequences can emerge from initially unstructured

networks of excitatory neurons via spike-timing-dependent plasticity (STDP) (Fiete et al., 2010;

Veliz-Cuba et al., 2015; Ravid Tannenbaum and Burak, 2016). Compared with these earlier works,

our model has the advantage of being able to dynamically adjust the speed of the activity sequence,

as shown in Figure 4e (cf. however Refs. [Veliz-Cuba et al., 2015; Pehlevan et al., 2015;

Tristan et al., 2014], where some temporal rescaling in activity patterns has been obtained using

distinct mechanisms). In addition, our model does not require the assumption of heterosynaptic

competition limiting the summed synaptic weights into and out of each unit, as in Ref. (Fiete et al.,

2010).

Taken together, the above results show, within the context of a highly simplified network model,

that time-varying input can lead to robust activity sequences, but that this input is no longer neces-

sary once the circuit has internalized the sequence. Further, the speed of the dynamics can be

adjusted using the overall level of external input to the network. Taken as a model of striatum, it

therefore provides a possible explanation of the motor cortex lesion studies of Ref. (Kawai et al.,

2015), as well as the variable-delay lever press experiments of Ref. (Mello et al., 2015).
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Figure 4. Repeated external input can tutor striatum to produce sparse activity sequences. (a) A regular sequence of pulse-like inputs (only 10 inputs

are shown for clarity; 25ty = 1 cycle) (left) leads to a sequential activity pattern (center) and, via anti-Hebbian plasticity, converts a random connectivity

matrix (at t ¼ 0) to a structured matrix after 20 cycles (at t ¼ 500ty) (right). The input during the first half of the first cycle and the last half of the last cycle

has been replaced by constant input to all units, which leads to a short random sequence before training and to a long specific sequence following

training, with the sequence speed determined by the level of tonic input. (b) Starting with random connectivity between units (at t ¼ 0), each unit is

driven with a distinct time-varying input consisting of a random superposition of sine waves (two cycles of which are shown for 10 inputs) which

produces a repeating activity sequence. Anti-Hebbian learning results in a structured matrix after 20 cycles (at t ¼ 500ty). (c) 20 cycles with a new input

elicits a different activity pattern and overwrites the prior connectivity to a new structured matrix (at t ¼ 1000ty). (d) The evolution of the synaptic

weights during the learning in ‘b’ and ‘c’. The blue, green, and red lines show the average weights of synapses involved in the first pattern, the second

pattern, and neither pattern, respectively. (The weights shown in blue are not all repotentiated in the second training period due to the fact that some

of these synapses are from units that are not active in the second sequence. For these weights �xj » 0 in Equation 2, and thus they do not learn.) (e) The

average time for switching from one unit to the next as a function of the constant external input after learning. (f) The switch times are robust to

random perturbations of the weights. Starting with the final weights in ‘c’, each weight is perturbed by DWij ¼ p�ijhWiji, where �ij ~Nð0; 1Þ is a normal

random variable, and p ¼ 0:02, 0.05, or 0.10. The perturbed switch times (slightly offset for visibility) are averaged over active units and realizations of

the perturbation. Learning-related parameters are tw ¼ 3t, a1 ¼ 0:05=t, and a2 ¼ 0:02=t.
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A sparsely connected spiking model supports learning and execution of
time-flexible sequences
Figure 5 shows that, as in the continuous version of the model, temporally patterned input and

recurrent plasticity can be used to train a recurrent inhibitory network having no initial structure in

the recurrent weights to perform a particular firing sequence, with only one cluster of neurons active

at any one time. Recent experimental work has indeed identified clusters of neurons in striatum that

appear to function as transiently active cell assemblies (Barbera et al., 2016). Because we interpret

the units studied in the continuous case above as clusters of neurons rather than individual neurons,

full connectivity between units can be easily obtained even if connectivity between neurons is sparse,

since some neurons in one cluster will always have synapses to some neurons in any other cluster if

the clusters are sufficiently large. In Figure 5, the connection probability between all pairs of neu-

rons is p ¼ 0:2, showing that sparse connectivity between neurons is sufficient to enable one popula-

tion to effectively inhibit another, as in the continuous model. Although we have adopted a

simplified scheme in which each spiking neuron participates in only one cell assembly of concurrently

active neurons, making the mapping from the neurons in the spiking model onto the units in the con-

tinuous model straightforward, the approach could be extended using the standard theory of

attractor networks to allow for each spiking neuron to participate in multiple assemblies (see Ref.

[Curti et al., 2004], as well as Ch. 17 of Ref. [Gerstner et al., 2014]). In addition, while the highly

structured input used to train the network may at first appear highly artificial, we point out that simi-

lar sparse sequential activity patterns have been observed in motor cortex, which is a main input to
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Figure 5. Spiking model of striatum. (a) Input currents to each of 8 distinct clusters of 100 neurons each (offset for clarity). This input pattern causes

sequential activation of the clusters and is repeated noisily several times while the recurrent weights are learned. (b) Schematic anti-Hebbian spike-

timing-dependent plasticity (STDP) rule for recurrent inhibitory synapses, showing that synapses are depotentiated when pre- and post-synaptic spikes

are coincident or sequential, and potentiated if they are not. (This STDP curve applies whenever there is a presynaptic spike; there is no weight change

in the absence of a presynaptic spike; see Materials and methods for specific mathematical details.) (c) Average recurrent inhibitory weights between

clusters in a spiking network after learning with STDP. (d) After the weights have been learned, driving the network with tonic inputs of varying

amplitudes leads to a rescaling of the period of the activity pattern. (e) Two examples of the time-rescaled activity patterns in the trained network with

different values of tonic input current.
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striatum, in rodents performing a learned lever-press task (Peters et al., 2014; Dhawale et al.,

2015).

The STDP rule according to which recurrent inhibitory synapses are modified is shown in

Figure 5b. The rule is anti-Hebbian, with postsynaptic spikes occurring at approximately the same

time as or slightly after a presynaptic spike leading to weakening of the synapse, while presynaptic

spikes occurring in isolation lead to a slight potentiation of the synapse. Figure 5c shows that this

rule leads, after several repetitions of the input sequence, to a connectivity structure similar to that

obtained in the continuous model, with decreased inhibition of a population onto itself and onto the

next population in the sequence. Finally, as shown in Figure 5d,e, once the weights have been

learned, constant input is sufficient to induce the desired firing pattern in the network, with the mag-

nitude of this input controlling the rate at which the pattern progresses. Thus, as for the continuous

network studied in above, the spiking network is able to learn a firing pattern from an external

source, and later autonomously generate the same pattern over a wide range of speeds. Further

details of the spiking model are presented in Materials and methods.

Sparse sequential firing in an excitatory network with shared inhibition
Although, motivated by experimental results involving the basal ganglia, we have developed a

model of recurrently connected inhibitory units, the same basic mechanisms for sequence learning

can be applied to obtain sparse sequential firing patterns with flexible time encoding in a network of

excitatory units with shared inhibition, a common motif used to obtain sparse coding of both static

and dynamic neural activity patterns in models of cortical circuits. Such a network can be made to

produce variable-speed sequential patterns just as in the circuit with direct lateral inhibition studied

above. In this model, illustrated in Figure 6a, switching from from one excitatory unit to the next is

again controlled by competition between the level of background input and synaptic depression at

excitatory synapses, with the relative values of these quantities determining the rate at which activity

jumps from one unit to the next. It is described by the following equations:
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Figure 6. A network of excitatory units with shared inhibition exhibits variable-speed sequences. (a) A network of N excitatory units are connected by

self-excitation, feedforward excitation, and shared inhibition. (b) Just as in the recurrent inhibitory network, this network exhibits sparse sequential firing

when the excitatory synapses are made depressing, with the speed of the sequence controlled by the level of external input. Parameters are

b ¼ 0:2; ty ¼ 20t; tI ¼ t; JEI ¼ JIE ¼ 1; Jij ¼ 0:6dij þ 0:2djþ1;j.
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t
dxi

dt
¼�xi þf

X

j

Jijxj� JEIxI þ xini

 !

tI
dxI

dt
¼�xI þfI JIE

X

j

xj

 !

; (3)

where xiðtÞ is the activity of an excitatory unit, xIðtÞ is the activity of a shared inhibitory unit, and we

assume Jij;J
EI;JIE � 0. In the case where the timescale characterizing inhibition is much faster than

that characterizing excitation (tI=t! 0) and the nonlinearity of the transfer function for the inhibitory

units can be ignored (fIðxÞ»x), (3) becomes the following:

dxi

dt
¼�xi þf �

X

j

ðJI � JijÞxjþ xini

 !

; (4)

where we have defined JI � JEIJIE. In the case where JI � Jij, and if excitatory synapses are made to

be depressing by letting xjðtÞ! xjðtÞyjðtÞ on the right hand sides of the above equations, then this is

precisely the model that was introduced in (1).

Figure 6b shows that the behavior of such a circuit with shared inhibition exhibits sparse sequen-

tial firing patterns virtually identical to those in the recurrent inhibitory network, even in the case

where the above assumptions requiring inhibition to be fast and linear are relaxed by letting tI ¼ t

and fIðxÞ ¼ QðxÞ tanhðxÞ, where QðxÞ is the Heaviside step function. However, the dynamic range of

temporal scaling factors that can be obtained in this case is somewhat more limited than in the

model with direct lateral inhibition, with an approximately four-fold speed increase obtained in

Figure 6b, compared with over an order of magnitude obtained in Figure 1. This is due at least in

part to the finite timescale tI of the shared inhibitory population, which limits the speed at which

activity switching can occur. This suggests that a purely inhibitory network, such as the the one real-

ized in striatum, may provide an advantage over an excitatory network with shared inhibition if

involved in variable-speed tasks requiring a large dynamical range.

Although we shall not explore the effects of synaptic plasticity for this model in detail, the map-

ping of the network with shared inhibition onto the model previously studied, as shown in Equa-

tion (4), means that sequence learning can also take place within this model. This requires that

recurrent connections between excitatory synapses should follow a Hebbian plasticity rule, according

to which synapse Jij is potentiated if unit i fires immediately after unit j.

While models of sequence generation in networks containing both excitatory and inhibitory recur-

rent connections have been constructed previously, they generally have had limited or no control

over sequence speed (Fiete et al., 2010; Litwin-Kumar and Doiron, 2014; Pehlevan et al., 2015;

Tully et al., 2016). The ability to generate variable-speed sequential activity patterns may be rele-

vant for various frontal and motor cortical areas, which can be described by the circuit architecture

shown in Figure 6a, and which can exhibit sparse sequences similar to those in striatum during time-

dependent decision making and motor-control tasks (Harvey et al., 2012; Peters et al., 2014;

Dhawale et al., 2015). Given that these same cortical areas act as inputs to striatum, this mechanism

for producing sparse sequences in circuits with shared inhibition may enable cortical networks to

provide a pulse-like ‘tutoring’ input to striatum, as in Figure 5.

Discussion
We have presented a model in which a network of recurrently connected inhibitory units internalize

stereotyped sequential activity patterns based on temporally patterned input. Moreover, the same

activity pattern can be reproduced after learning even after removing the temporally patterned

input, and the speed of the activity pattern can be adjusted simply by varying the overall level of

excitatory input, without requiring additional learning. As a model of striatum, we suggest that it

may provide an explanation for recent experiments showing that (i) sparse sequences of neural activ-

ity in striatum dilate and contract in proportion to the delay interval in timekeeping tasks

(Mello et al., 2015), and (ii) motor cortex is necessary to learn new behaviors but not to perform
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already-learned behaviors (which are presumably directed at least in part by subcortical brain circuits

such as the striatum) (Kawai et al., 2015).

In unlesioned animals, the ability to progress between two modes of control—one in which the

dynamical neural activity in the basal ganglia is enslaved to top-down input from cortex, and another

in which subcortical brain circuits generate dynamics autonomously—may form the basis of a cogni-

tive strategy enabling performance of behaviors more reliably and with less cognitive effort as per-

formance at a particular task becomes increasingly expert. As illustrated in Figure 3, the network

can rapidly switch between these modes even after learning of a particular pattern has taken place,

perhaps somewhat similar to the switching between the ‘practice’ and ‘performance’ modes of male

songbirds in the absence or presence of a female, respectively (Kao et al., 2005). It is also well

known that important differences exist in rodents, monkeys, and humans between goal-directed and

habitual behaviors (for reviews, see Refs. [Yin and Knowlton, 2006; Graybiel, 2008; Dolan and

Dayan, 2013; Jahanshahi et al., 2015]), and exploring the relation between these behavioral modes

and the cortically and non-cortically driven modes described above is an important direction for

future study. The question of where learned motor sequence memories are ultimately stored in the

brain has been a subject of debate, with some studies favoring cortex—perhaps aided by ‘tutoring’

input from basal ganglia—as the ultimate storage site (Desmurget and Turner, 2010; Hélie et al.,

2015), and others favoring subcortical structures such as sensorimotor striatum (Miyachi et al.,

1997; Kawai et al., 2015). While our theory proposes a prominent role for striatum in storing motor

sequence memories, it is also consistent with the possibility that motor sequence memories are

effectively stored in both cortex and basal ganglia, so that inactivating either area in isolation will

not necessarily abolish the learned behavior.

Assuming that the function of cortical input is to select from a set of possible learned behaviors

as illustrated in Figure 2, we can ask what might be the potential role of corticostriatal plasticity,

which many studies have shown is important for reward-based learning of motor behaviors in

rodents, making these synapses a likely site for reinforcement learning (Reynolds et al., 2001;

Barnes et al., 2005; Yin et al., 2009). If a behavior leads to a greater-than-expected reward, then a

(possibly dopamine-mediated) feedback signal can cause the recently active corticostriatal synapses

to be strengthened, making that behavior more likely to be performed in that particular context in

the future, lowering the threshold for activation and possibly speeding up the activity sequence

underlying a desired behavior, making the basal ganglia circuit important for controlling the ‘vigor’

associated with movements (Yttri and Dudman, 2016; Dudman and Krakauer, 2016). Although the

model that we have developed focuses on plasticity within striatum rather than corticostriatal plastic-

ity, it is worth emphasizing that it is consistent with both types of plasticity being present, with corti-

costriatal plasticity likely involved with action selection and degree of vigor, whereas MSN-to-MSN

plasticity may be more important for encoding kinematic details of a given behavior. The scenario

just outlined can be viewed as a generalization of recent models of reinforcement learning in mam-

mals (Fee, 2012) to behaviors with temporally rich structure. Again using the spotlight analogy, it is

also easy to see how multiple behaviors can be concatenated if the cortical and/or thalamic inputs

activating the appropriate neuron assemblies are active together or in sequence. This provides a nat-

ural mechanism by which ‘chunking’ of simple behaviors into more complex behaviors might take

place in the striatum (Jin and Costa, 2010, 2015).

Regarding the dynamical rescaling of neural firing patterns, several previous theoretical frame-

works have been proposed for interval timing, including pacemaker-accumulators (Gibbon, 1977), in

which a constant pacemaker signal is integrated until a threshold is reached; superposed neural

oscillators (Meck et al., 2008), in which oscillations at different frequencies lead to constructive

interference at regular intervals; and sequence-based models (Killeen and Fetterman, 1988;

Miller and Wang, 2006; Escola et al., 2009), in which a network passes through a sequence of

states over time. The last of these is most similar to the model that we present, though with the

important difference that it involves stochastic rather than deterministic switching of activity from

one unit to the next and hence has much greater trial-to-trial variability. In addition to these models,

some previous theoretical works have attempted to use external input to control the speed of a

‘moving bump’ of neural activity within the framework of continuous attractors (Burak and Fiete,

2009; Rokni and Sompolinsky, 2012). However, in both of these previous studies, obtaining a mov-

ing activity bump requires external input that couples to different types of neurons in different ways.

Murray and Escola. eLife 2017;6:e26084. DOI: 10.7554/eLife.26084 13 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.26084


This is not required by the model presented here, for which the activity bump still propagates even

if the input to all units is identical.

It is also useful to contrast our model with other possible approaches within the framework of res-

ervoir computing, starting with a random recurrent neural network (RNN) and training it to produce

a sparse sequential pattern of activity either in the recurrent units themselves (Rajan et al., 2016) or

in a group of readout units. Such training can be accomplished for example using recursive least

squares learning (Sussillo and Abbott, 2009; Laje and Buonomano, 2013; DePasquale et al.,

2016; Goudar and Buonomano, 2017) or various backpropagation-based algorithms (Martens and

Sutskever, 2011). However, as we show in Appendix 2—figure 1, such a trained RNN generically

tends to be much more sensitive to perturbations in the recurrent weights. In addition, the successful

training of such an RNN requires many examples spanning the entire range of time scaling that one

wishes to produce, whereas the network that we present can learn a sequence at one particular

speed and then generalize to faster or slower speeds simply by changing one global parameter,

making this network more flexible as well as more robust. This is reminiscent of the ability of human

subjects learning a motor skill to successfully generalize to faster and slower speeds after training at

a single fixed speed (Shmuelof et al., 2012).

We conclude by summarizing the experimental predictions suggested by our model. Central to

the model is the anti-Hebbian plasticity rule that enables the inhibitory network to learn sequential

patterns. Experimental results on medium spiny neurons in vitro have shown that recurrent synapses

do in fact potentiate when presynaptic spiking is induced without postsynaptic spiking (Rueda-

Orozco et al., 2009), as one would expect from the second term in (2). To our knowledge, however,

the question of whether paired pre- and postsynaptic spiking would lead to depotentiation, as

described by the first term in the equation, has not yet been addressed experimentally. Both Heb-

bian and anti-Hebbian forms of STDP at inhibitory synapses have been found in other brain areas, as

reviewed in Ref. (Vogels et al., 2013). Because recurrently driven sequential activity of the sort that

we describe requires depotentiation of inhibitory synapses between neurons both within the same

cluster and from one cluster to the next sequentially active cluster, any activity-dependent learning

rule must be qualitatively similar to the anti-Hebbian STDP curve shown in Figure 5b. The absence

of such a learning rule would render it unlikely that learned recurrent connections within striatum

play a major role in shaping learned sequences of neural activity, hence making this an important

test of the theory.

Our model also predicts that the overall level of external excitatory input to the network should

affect the speed of the animal’s time judgement and/or behavior. By providing differing levels of

input to a population of striatal MSNs optogenetically, it could be tested whether the speed of the

neural activity sequence among these cells is affected. An alternative, and perhaps less technically

challenging, approach would be to measure the overall activity level in the network, which should

increase as the speed of the sequence increases. This effect should persist as long as saturation

effects in activity levels do not become prominent (which does occur in the continuous model we

present, but not in our spiking model). Changing the strength of recurrent inhibition should have a

similar effect to changing the input level, although this would have to be done selectively to synap-

ses between MSNs without disrupting feedforward inhibition from interneurons within striatum.

Alternatively, dopamine may be able to cause a change of the sequence speed by modifying the

synaptic depression parameter (b in our model), and there is evidence from in vitro experiments that

this indeed occurs (Tecuapetla et al., 2007). Thus changes in tonic dopamine levels should be able

to effect temporal rescaling by modulating the input gain and/or recurrent synaptic depression, and

indeed there has already been some evidence that such dopamine modulation occurs (Soares et al.,

2016). However, it is as yet unknown whether direct- and indirect-pathway MSNs, which project to

different targets within the basal ganglia (Gerfen and Surmeier, 2011), play distinct roles with

regard to interval timing. Including both types of MSN in the model will be a natural extension for

future work and will allow for more direct comparison with existing models of basal ganglia function

(Maia and Frank, 2011; Schroll and Hamker, 2013).

Our theory also predicts that the neural activity pattern in striatum should be the same in trained

animals before and after cortical lesions and that this neural activity should play a role in driving the

animal’s behavior. Investigating the neural activity in striatum and its role in generating behavior in

lesioned animals would thus provide an important test of the theory. Observing the activity in cortex

itself may also be useful. The theory suggests that time-dependent variability in cortical input is likely
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to decrease as an animal becomes more expert at performing a task, or as it switches between

behavioral modes. This could be studied via population recordings from striatum-projecting neurons

in motor cortex.

Finally, while the lesion experiments of Ref. (Kawai et al., 2015) suggest that the instructive

tutoring input to striatum likely originates in motor cortex, the source of the non-instructive input

driving behavior and controlling speed after learning is unknown. It would be interesting for future

experiments to explore whether the non-instructive input originates primarily from other cortical

areas, or alternatively from thalamus, thereby endowing this structure with a functionally distinct role

from cortex in driving behavior.

Materials and methods
The following model describes a network of exponential integrate-and-fire neurons with synaptic

depression used in Figure 5:

C
dVi

dt
¼ gLðEL �ViÞþ gLDT exp½ðVi �VTÞ=DT � þ IiðtÞ

dxij

dt
¼
1� xij

tx
� uxijðt� 0

þÞ
X

tj

dðt� tjÞ

IiðtÞ ¼ Iexti ðtÞþ uQ
X

N

j¼1

xijðtÞWij

X

tj

dðt� tjÞ; (5)

where the membrane potential ViðtÞ is defined for each neuron i, and the dynamical synaptic depres-

sion variable xijðtÞ, which can be interpreted as the fraction of available neurotransmitter at a syn-

apse, is defined for each synapse, with xijðt� 0
þÞ meaning that the value of xij just before the

presynaptic spike should be used. When the membrane potential of neuron i diverges, that is,

ViðtÞ!¥, a spike is emitted from neuron i, and the potential is reset to the resting potential EL.

Each time a presynaptic neuron j fires a spike at time tj, the depression variable is updated as

xij !ð1� uÞxij, where u is the fraction of neurotransmitter that is used up during each spike

(0� u� 1). The amount of electric charge that enters the postsynaptic cell during a presynaptic spike

from neuron j is uxijðtÞQWij, where Q has units of charge, and u, xij, and Wij are dimensionless. In

terms of the original model described in the main text, each cluster of neurons corresponds to one

of the units from the continuous model. As before, the competition between external input current

and synaptic depression is used to obtain control over the temporal dynamics. The external inputs

used in Figure 5 are given by

Iexti ðtÞ ¼ x0þ x1 sin
8
pt

T
þ �i

� �

(6)

where x0 ¼ 0:2 nA, x1 ¼ 0:5 nA, T ¼ 800 ms, and �i ¼pni=8 gives the phase shift of the input to each

population ni ¼ 1; . . . ;8. Noise, which was normally distributed and drawn independently for each

cycle of the input, was added to x0, x1, and �i, as well as by adding to (6) higher-frequency terms

~ sinð8pt=TÞ and sinð12pt=TÞ with random amplitudes and phase shifts. The other parameters used

in Figure 5 are C¼ 300 pF, gL ¼ 30 nS, EL ¼�70 mV, VT ¼�50 mV, DT ¼ 2 mV, tx ¼ 200 ms, u¼ 0:5,

tpre ¼ 20 ms, tpost ¼ 5 ms, Q¼ 1:5 pC, A¼ 0:05, a¼ 0:002.
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Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G. 1999. Replay and time compression of recurring spike
sequences in the Hippocampus. Journal of Neuroscience 19:9497–9507. PMID: 10531452

Otchy TM, Wolff SB, Rhee JY, Pehlevan C, Kawai R, Kempf A, Gobes SM, Ölveczky BP, Kempf SMG, P B. Ö.
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Appendix 1

Dynamics of model with synaptic depression
Intuition for the behavior of the model defined by (1) can be obtained by studying the case in

which there are only two units, with activities x1ðtÞ and x2ðtÞ, identical constant inputs

xin
1
¼ xin

2
¼ xin, and symmetric inhibitory connectivity Wij ¼ dij � 1. The behavior of this model

is illustrated in Appendix 1—figure 1. This model can be understood by considering the

fixed-point solutions for given fixed values of the synaptic depression variables yj. In this

case one can plot curves along which the time derivatives _x1 and _x2 vanish, as shown in

Appendix 1—figure 1. The intersection of these curves describes a stable fixed point, which

may occur at either ðx1; x2Þ » ð1; 0Þ or ðx1; x2Þ» ð0; 1Þ, depending on which of y2 or y1 is larger.

With this picture in mind we can now consider the effects of dynamical yjðtÞ. Suppose that at

a given moment y2<y1 and hence ðx1; x2Þ » ð1; 0Þ. According to the second equation in (1), y2
will begin increasing toward one due to the inactivation of x2, while y1 will begin decreasing

toward b due to the activation of x1. As this happens, the net input to the second unit

becomes positive, and the stable fixed point switches to ðx1; x2Þ » ð0; 1Þ when y1 ¼ xin

(assuming b < xin < 1), and the synaptic depression variables begin adjusting to this new

activity. The result will thus be repetitive switching between the two units being active, with

the period of this switching determined by ty, b, and (importantly) xin. Versions of this two-

unit model for switching, often termed a ‘half-center oscillator,’ have been previously

studied in the context of binocular rivalry (Seely and Chow, 2011) and have long been used

as a ‘central pattern generator’ in models of rhythmic behaviors (Brown, 1914; Wang and

Rinzel, 1992; Skinner et al., 1994; Marder and Bucher, 2001).

The above analysis holds exactly in the limit t=ty ! 0 and l ! ¥, and in this limit it is

straightforward to solve for the time that it takes for the activity to switch from one unit to

the next:

T ¼ ty ln
y0 �b

xin �b

� �

; (7)

where y0 ¼ 1

2
½1þ bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ bÞ2 � 4xinð1þ b� xinÞ
q

� is the largest value that yiðtÞ attains in

each cycle and satisfies xin<y0 � 1. In a network with a large number of units, y0 ! 1 since

each unit has sufficient time to recover fully while other units in the network are active, and

in this case (7) leads to the equation appearing in Figure 1d in the main text. Equation (7)

shows that the switching period T diverges logarithmically as xin ! b from above, and can

be made arbitrarily small as xin ! y0 from below. Thus, in addition to allowing for neural

activity to switch between populations, the competition between external input and synaptic

depression also provides a mechanism for complete control of the speed of the network

dynamics.
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Appendix 1—figure 1. A simple circuit with two units exhibits activity switching. (a) A simple

two-unit network with activities x1ðtÞ and x2ðtÞ, symmetric inhibitory connectivity, and

constant input xin. (b) Curves along which, for given fixed values of yj, the time derivatives

_x1;2 ¼ 0, with the intersection of these curves describing a stable fixed point. Depending on

the relative values of y1 and y2, the fixed point occurs at either ðx1; x2Þ» ð1; 0Þ (top) or

ðx1; x2Þ» ð0; 1Þ (bottom). (c) When yjðtÞ are included as dynamical variables, the synaptic

depression leads to periodic switching between the two stable solutions.

DOI: 10.7554/eLife.26084.008

Although we control temporal scaling throughout this paper by adjusting the external input

level xin, we note that essentially equivalent effects can be obtained within our model by

instead adjusting the synaptic depression parameter b rather than the external input xin.

While this might seem like an intrinsic neuron property that would be difficult to control

externally, there is evidence from in vitro experiments that the degree of synaptic

depression in MSNs in striatum is dependent upon the level of dopamine input to the

neuron (Tecuapetla et al., 2007). What’s more, changing dopamine levels in this circuit has

been shown to reliably speed up or slow down an animal’s time judgement (Soares et al.,

2016), as one would expect from our model if the level of dopamine does in fact affect

synaptic depression.

A possible objection to the above analysis is that xin cannot be tuned arbitrarily close to b in

the presence of noise, thus limiting the dynamical range of scaling parameters that can be

obtained. In order to take this into account, we suppose that ~xin � xin=ð1� hÞ can only be

tuned reliably to within precision D. In this case, the maximum possible switching period that

can be reliably obtained will no longer grow to infinity as ~xin ! b, but rather will attain only a

finite value as ~xin ! bþ D. Similarly, the minimum attainable switching period cannot be

arbitrarily small, but instead will reach a minimum value when ~xin ! 1� D. Using (7), and

taking y0 ! 1, the dynamical range of temporal scaling is therefore given by
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Tmax

Tmin

¼
ln 1�b

D

� �

ln 1�b
1�b�D

� � : (8)

Figure 1c shows that a large dynamical range can be obtained as a function of the noise

parameter D even for biologically plausible noise values of D >~ 0:1. Thus, an inhibitory

network with synaptic depression and appropriately chosen synaptic weights is capable of

performing an activity sequence over a wide dynamical range, even without requiring a

biologically unrealistic degree of precision in the input to the network. Finally, we note that

similar results to those shown in this section and in the main text can be obtained instead in

a model which features depressive adaptation current rather than depressive synapses.

t _xi ¼�xiþf
X

j

Wijxj�gaiþ xini

 !

ta _ai ¼�aiþ xi; (9)

where the depressive adaptation current aiðtÞ, a low-pass filtered version of the activity xiðtÞ,

increases monotonically after unit i becomes active, and g � 0 is a constant describing the

magnitude of the adaptation current. In this model, an active unit will tend to lower its own

activity level over time due to the dynamical adaptation current aiðtÞ. If this depression is

sufficiently strong, then the unit may become inactive after some time, at which point

another unit in the network will become active. As in the synaptic depression model studied

in the main text, the switch time for successively active units can be dynamically adjusted by

varying the level of external input xin. Although this adaptation current model exhibits

dynamics extremely similar to those of the synaptic depression model, we focus on the latter

due to the fact that depressing synapses have been shown to be realized by neurons in the

striatum (Tecuapetla et al., 2007).
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Appendix 2

Time-interval scaling task in a trained random recurrent
network
Traditionally, the motor cortex is viewed as the primary driver of voluntary motor output

(Fritsch and Hitzig, 1870; Evarts, 1968; Georgopoulos et al., 1986; Moran and Schwartz,

1999; Kakei et al., 1999; Churchland et al., 2006; Harrison et al., 2012). Thus, as a point

of comparison, we built a firing rate model of motor cortex with linear readout units

representing striatal MSNs as schematized in Appendix 2—figure 1a. The cortical units in

the model receive two inputs: one cueing the start of each trial and another cueing the

target timing for the striatal pulse sequence on that trial. Of note, in contrast to the model

presented in the main text, in this model striatum does not have any recurrent structure. The

equations governing the model are as follows:

T
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∗ (s)

T
∗
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Appendix 2—figure 1. A trained recurrent network exhibits sequences that are less robust and

less able to generalize. (a) Schematic of the model. The cortical units receive trial-specific inputs

and project to striatum. Striatal units are not recurrently connected. The corticocortical and

corticostriatal weights Wcc and W sc are set as per the text. (b) Model simulation. Upper:

Inputs to model. Red trace marks initiation of trials; blue trace indicates the target time for

the trial. Middle: Sample cortical units. Lower: Striatal units. (c) Means and standard

deviations of best-match times as a function of target times with random weight

perturbations of 2 or 5%. Open symbols denote target times for which the nRMSE exceeded

0.3 on greater than 25% of trials. (d) Best-match times for a model trained on time intervals

ranging from 0.4 s to 1.2 s, and then tested from 0.1 s to 1.5 s. The colors indicate the

means of the nRMSEs of the trials at each target time.

DOI: 10.7554/eLife.26084.009

Murray and Escola. eLife 2017;6:e26084. DOI: 10.7554/eLife.26084 23 of 24

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.26084.009
http://dx.doi.org/10.7554/eLife.26084


t _x¼�xþWcc
rc þWcu

uðtÞ

rc ¼ tanhx

rs ¼W sc
rc;

where t is the neuronal time constant, uðtÞ is the input at time t, rc and rs are the firing rates

of the cortical and striatal units respectively, and Wcu, Wcc, and W sc are the input weights,

recurrent corticocortical weights, and output corticostriatal weights respectively. We use a

modified version of the FORCE algorithm (Sussillo and Abbott, 2009; DePasquale et al.,

2016) to train Wcc and W sc such that the duration of the pulse sequence of the striatal units

matches the target time on each trial. Appendix 2—figure 1b shows the activity of the

model after training, on two trials with different target durations.

Compared with the model presented in the main text, we find that our cortically driven

model is (i) less robust to perturbations in the weights, and (ii) unable to extrapolate to

perform the same sequence more quickly or slowly than it has learned in training. We

measure the performance of the model in two ways. First, for each trial, we consider as

templates all time-scalings of the pulse sequence in the range used to train the model (i.e.,

activity patterns such as those in the bottom panel of Appendix 2—figure 1b) and find the

template with the best match to the produced striatal activity for that trial. The quality of the

match is measured by the normalized root mean squared error: nRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jjrsðtÞ � r̂sðtÞjj
2
2

D E

= jjr̂sðtÞjj
2
2

D E

r

where rsðtÞ and r̂sðtÞ are the produced striatal activity and

the template pulse sequence respectively. The best-match time is considered to be the

response time of the model. Second, the value of the nRMSE indicates whether the

response on that trial looked anything like a ‘correct’ striatal pulse sequence. By visual

inspection, we set an nRMSE of 0.3 as the threshold above which a trial is not considered to

be a meaningful pulse sequence.

In Appendix 2—figure 1c we show the mean and standard deviation of the best-match

times for several target times after the addition of corticocortical synaptic weight noise.

Notably, at 5% noise, the mean best-match times deviate far from the target times (compare

to Figure 4f) and greater than 25% of the trials at every target time have nRMSEs exceeding

0.3.

We show the extrapolation performance of the model in Appendix 2—figure 1d. For target

times shorter than the minimum target time used during training, the striatal responses

deviate to longer times and the quality of the responses (as measured by the nRMSE)

degrade. For target times longer than the maximum used during training, the responses

quickly become meaningless with values of the nRMSE of about 1.
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