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Abstract Small fly eyes should not see fine image details. Because flies exhibit saccadic visual

behaviors and their compound eyes have relatively few ommatidia (sampling points), their

photoreceptors would be expected to generate blurry and coarse retinal images of the world. Here

we demonstrate that Drosophila see the world far better than predicted from the classic theories.

By using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’

encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light input

during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic speeds

beyond the predicted motion-blur-limit. Our results show how refractory phototransduction and

rapid photomechanical photoreceptor contractions jointly sharpen retinal images of moving objects

in space-time, enabling hyperacute vision, and explain how such microsaccadic information

sampling exceeds the compound eyes’ optical limits. These discoveries elucidate how acuity

depends upon photoreceptor function and eye movements.

DOI: https://doi.org/10.7554/eLife.26117.001

Introduction
The acuity of an eye is limited by its photoreceptor spacing, which provides the grain of the retinal

image. To resolve two stationary objects, at least three photoreceptors are needed for detecting the

intensity difference in between. To resolve two moving objects is harder, as vision becomes further

limited by each photoreceptor’s finite integration time and receptive field size (Srinivasan and Ber-

nard, 1975; Juusola and French, 1997; Land, 1997).

Nevertheless, animals - from insects to man - view the world by using saccades, fast movements,

which direct their eyes to the surroundings, and fixation intervals between the saccades, during

which gaze is held near stationary (Land, 1999). Because of photoreceptors’ slow integration-time,

saccades should blur image details and these are thought to be sampled when gaze is stabilized.

Thus, information would be captured during fixations whilst during saccades animals would be effec-

tively blind. This viewpoint, however, ignores fast photoreceptor adaptation, which causes percep-

tual fading during fixation (Ditchburn and Ginsborg, 1952; Riggs and Ratliff, 1952), reducing

visual information and possibly rendering perception to mean light only. Therefore, to maximize

information and acuity, it is plausible that evolution has optimized photoreceptor function in respect

to visual behaviors and needs.
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We have now devised a suite of new experimental and theoretical methods to study this question

both in time and over space in Drosophila R1-R6 photoreceptors. The Drosophila compound eyes

are composed of ~750 seemingly regular lens-capped modules called ommatidia, which should pro-

vide the fly a panoramic visual field of low optical resolution (Barlow, 1952; Land, 1997). Each

ommatidium contains eight photoreceptor cells (R1-R8), pointing to seven different directions. The

ultraviolet and blue-green-sensitive outer photoreceptors, R1-R6, initiate the motion vision pathway,

whilst the central R7 and R8, which lie on top of each other, detect different colors from one direc-

tion (Wardill et al., 2012). Owing to the eye’s neural superposition principle, R1, R2, R3, R4, R5 and

R6, each from a separate neighboring ommatidium, also point to the same direction. By pooling

their output for synaptic transmission, the photoreceptor spacing (spatial resolution) effectively

matches the ommatidium spacing (average interommatidial angle, Dj = 4.5o (Götz, 1964;

Land, 1997; Gonzalez-Bellido et al., 2011) but the signal-to-noise ratio of the transmitted image

could improve by H6 (de Ruyter van Steveninck and Laughlin, 1996; Zheng et al., 2006).

Here we show how evolution has improved Drosophila vision beyond these classic ideas, suggest-

ing that light information sampling in R1-R6 photoreceptors is tuned to saccadic behavior.

Our intracellular recordings reveal that R1-R6s capture 2-to-4-times more information in time than

previous maximum estimates (Juusola and Hardie, 2001a; Song et al., 2012; Song and Juusola,

2014) when responding to high-contrast bursts (periods of rapid light changes followed by quies-

cent periods) that resemble light input from natural scenes generated by saccadic viewing. Biophysi-

cally-realistic model simulations suggest that this improvement largely results from interspersed

‘fixation’ intervals, which allow photoreceptors to sample more information from phasic light

changes by relieving them from refractoriness (Song et al., 2012; Song and Juusola, 2014;

Juusola et al., 2015).

Remarkably, over space, our intracellular recordings, high-speed microscopy and modeling fur-

ther reveal how photomechanical photoreceptor contractions (Hardie and Franze, 2012) work

together with refractory sampling to improve spatial acuity. We discover that by actively modulating

light input and photoreceptor output, these processes reduce motion blur during saccades and

eLife digest Fruit flies have five eyes: two large compound eyes which support vision, plus three

smaller single lens eyes which are used for navigation. Each compound eye monitors 180˚ of space
and consists of roughly 750 units, each containing eight light-sensitive cells called photoreceptors.

This relatively wide spacing of photoreceptors is thought to limit the sharpness, or acuity, of vision in

fruit flies. The area of the human retina (the light-sensitive surface at back of our eyes) that

generates our sharpest vision contains photoreceptors that are 500 times more densely packed.

Despite their differing designs, human and fruit fly eyes work via the same general principles. If

we, or a fruit fly, were to hold our gaze completely steady, the world would gradually fade from

view as the eye adapted to the unchanging visual stimulus. To ensure this does not happen, animals

continuously make rapid, automatic eye movements called microsaccades. These refresh the image

on the retina and prevent it from fading. Yet it is not known why do they not also cause blurred

vision.

Standard accounts of vision assume that the retina and the brain perform most of the information

processing required, with photoreceptors simply detecting how much light enters the eye. However,

Juusola, Dau, Song et al. now challenge this idea by showing that photoreceptors are specially

adapted to detect the fluctuating patterns of light that enter the eye as a result of microsaccades.

Moreover, fruit fly eyes resolve small moving objects far better than would be predicted based on

the spacing of their photoreceptors.

The discovery that photoreceptors are well adapted to deal with eye movements changes our

understanding of insect vision. The findings also disprove the 100-year-old dogma that the spacing

of photoreceptors limits the sharpness of vision in compound eyes. Further studies are required to

determine whether photoreceptors in the retinas of other animals, including humans, have similar

properties.

DOI: https://doi.org/10.7554/eLife.26117.002
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adaptation during gaze fixation, which otherwise could fade vision (Ditchburn and Ginsborg, 1952;

Riggs and Ratliff, 1952; Land, 1997). The resulting phasic responses sharpen retinal images by

highlighting the times when visual objects cross a photoreceptor’s receptive field, thereby encoding

space in time (see also: Ahissar and Arieli, 2001; Donner and Hemilä, 2007; Rucci et al., 2007;

Kuang et al., 2012a; Kuang et al., 2012; Franceschini et al., 2014; Viollet, 2014). Thus, neither

saccades nor fixations blind the flies, but together improve vision.

Incorporation of this novel opto-mechano-electric mechanism into our ‘microsaccadic sampling’-

model predicts that Drosophila can see >4 fold finer details than their eyes’ spatial sampling limit –

a prediction directly confirmed by optomotor behavior experiments. By demonstrating how fly pho-

toreceptors’ fast microsaccadic information sampling provides hyperacute vision of moving images,

these results change our understanding of insect vision, whilst showing an important relationship

between eye movements and visual acuity.

Results
These results establish that Drosophila exploit image motion (through eye movements) to see spatial

details, down to hyperacute resolution. A fly’s visual acuity is limited by how well its photoreceptors

resolve different photon rate changes, and their receptive field sizes. However, because each photo-

receptor’s signal-to-noise ratio and receptive field size adapt dynamically to light changes, acuity

also depends upon the eye movements that cause them. To make these relationships clear, the

results are presented in the following order:

1. We show that photoreceptors capture most visual information from high-contrast bursts, and
reveal how this is achieved by refractory photon sampling and connectivity (Figures 1–5).

2. We show that saccades and gaze fixations in natural environment result in such high-contrast
bursts, implying that eye movements work with refractory sampling to improve vision (Figure
6).

3. We demonstrate that photoreceptors contract to light in vivo and explain how these microsac-
cades move and narrow their receptive fields (Figures 7–8) to sharpen light input and photore-
ceptor output in time.

4. Collectively, these dynamics predict that Drosophila see finer spatial details than their com-
pound eyes’ optical resolution over a broad range of image velocities (Figure 9), and we verify
this by optomotor behavior (Figure 10).

Videos 1-4 and Appendixes 1–10 explain in detail the new ideas, methods, experiments and the-

ory behind these results.

Breaking the code by coupling experiments with theory
To work out how well a Drosophila R1-R6 photoreceptor can see the world, we compared intracellu-

lar recordings with realistic theoretical predictions from extensive quantal light information sampling

simulations (Appendixes 1–3), having the following physical limits and properties (Song et al., 2012;

Song and Juusola, 2014; Juusola et al., 2015; Song et al., 2016):

. A photoreceptor counts photons and integrates these samples to an estimate, a macroscopic
voltage response, of light changes within its receptive field.

. This estimate is counted by 30,000 microvilli, which form its light-sensor, the rhabdomere.
Each microvillus is a photon sampling unit, capable of transducing a photon’s energy to a uni-
tary response (quantum bump or sample) (Henderson et al., 2000; Juusola and Hardie,
2001a; Song et al., 2012; Song and Juusola, 2014).

. Following each bump, the light-activated microvillus becomes refractory (Song et al., 2012;
Song and Juusola, 2014; Juusola et al., 2015) for 50–300 ms. Therefore, with brightening
light, a photoreceptor’s sample rate gradually saturates, as fewer microvilli are available to
generate bumps.

. Although refractory sampling makes photoreceptors imperfect photon counters, it benefits
vision by representing a fast automatic adaptation mechanism, reducing sensitivity in propor-
tion to background intensity (Song et al., 2012; Song and Juusola, 2014), whilst accentuating
responses to contrast changes (Song and Juusola, 2014).

As previously described for a variety of other stimuli (Song et al., 2012; Song and Juusola,

2014; Juusola et al., 2015), we found a close correspondence between the recordings and
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simulations (waveforms, noise, adaptation dynamics and information transfer) for all the tested stim-

uli, establishing how refractory quantal sampling is tuned by light changes. Conversely, control mod-

els without refractoriness or based on the Volterra black-box method (Juusola and French, 1997)

failed to predict R1-R6s’ information sampling and adaptation dynamics. Nevertheless, these limita-

tions and differences gave us vital clues into the hidden/combined mechanisms that underpin photo-

receptor function (Appendixes 2–9). We now analyze and explain the key results step-by-step.

High-contrast ‘saccadic’ bursts maximize encoding
A well-known trade-off of fast adaptation is that it causes perceptual fading during fixation

(Ditchburn and Ginsborg, 1952; Riggs and Ratliff, 1952), and to see the world requires motion or

self-motion: body, head and eye movements (Hengstenberg, 1971; Land, 1973; Franceschini and

Chagneux, 1997; Schilstra and van Hateren, 1998; Blaj and van Hateren, 2004; Martinez-

Conde et al., 2013), which remove adaptation. However, it remains unclear whether or how the fly

photoreceptors’ information sampling dynamics is tuned to visual behaviors to see the world better.

To start unravelling these questions, we first surveyed what kind of stimuli drove their information

transfer maximally (Figure 1), ranging from high-contrast bursts, in which transient intensity fluctua-

tions were briefer than Drosophila’s normal head/body-saccades (Fry et al., 2003; Geurten et al.,

2014), to Gaussian white-noise (GWN). These stimuli tested systematically different contrast and

bandwidth patterns over R1-R6s’ diurnal encoding gamut.

Intracellular recordings (Figure 1A) revealed that photoreceptors responded most vigorously to

high-contrast bursts, which contained fast transient events with darker intervals. Figure 1B shows

the averages (signals; thick) and individual responses (thin) of a typical R1-R6, grouped by the stimu-

lus bandwidth and mean contrast. For all the bandwidths (columns), the responses increased with

contrast, while for all the contrasts (rows), the responses decreased with the increasing bandwidth

(left). Therefore, the slowest high-contrast bursts (red; top-left) with the longest darker intervals,

which theoretically (Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015) should relieve

most refractory microvilli (Appendixes 1–3), evoked the largest peak-to-peak responses (43.4 ± 5.6

mV; mean ± SD, n = 16 cells; Figure 1—figure supplement 1). Whereas the fastest low-contrast

GWN (blue; bottom-right), which would keep more microvilli refractory, evoked the smallest

responses (3.7 ± 1.1 mV; n = 4).

Notably, whilst all the stimuli were very bright, the largest responses (to bursts) were induced at

the dimmest background (BG0, darkness) and the smallest responses (to GWN) at the brightest

background (BG1.5) (Figure 1B). Thus, the mean emitted photon rate and light information at the

source was lower for the bursts and higher for the GWNs (the signal-to-noise ratio of the observable

world increases with brightening illumination; e.g. Appendix 2—figures 5D and H). However, in

very bright stimulation, the global mean light intensity (over the experiment) becomes less critical

for good vision as the eye self-regulates its own input more. Photons galore are lost to intracellular

pupil (Howard et al., 1987; Song and Juusola, 2014) and refractory microvilli (Song et al., 2012),

which reduce quantum efficiency. Although a R1-R6’s receptive field could be bombarded by 106–

109 photons/s (in daylight), due to the dramatic drop in quantum efficiency, the photoreceptor could

only count up ~80,000–800,000 quantum bumps/s (Appendix 2). Therefore, the stimulus contrast

and bandwidth, which drive the dynamic quantum bump rate changes, summing up the photorecep-

tor output, are confounded with changes in mean intensity. And, as such, this stimulus design, by

containing four different BGs, makes it difficult to see the exact contributions of contrast, bandwidth

and mean in controlling the responses.

Information theoretical analysis (Figure 2 and Figure 2—figure supplement 1) indicated that the

response differences largely reflected differences in their quantum bump counts. The maximum sig-

nal power spectra to bursty stimuli could be up to ~6,000 times larger than that of the noise, which

was effectively stimulus-invariant (Figure 2—figure supplement 2A). Because the noise power spec-

trum largely represents the average quantum bump’s frequency composition (Wong et al., 1982;

Juusola and Hardie, 2001a; Song and Juusola, 2014), the bumps adapted to a similar size. Here,

given the brightness of the stimuli, the bumps had light-adapted close to their minimum

(Juusola and Hardie, 2001a). Thereby, the larger responses simply comprised more bumps. More-

over, with Poisson light statistics, the response precision - how well it estimated photon flux changes

- should increase with the square root of bump count until saturation; when more microvilli remained

refractory (Song and Juusola, 2014). Accordingly, signaling performance (Figure 2A,C) increased
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Figure 1. Photoreceptors respond best to high-contrast bursts. (A) Schematic of intracellular recordings to

repeated bursty light intensity time series (20 Hz bandwidth). Responses changed little (minimal adaptation) during

bursts. (B) Testing a R1-R6 photoreceptor’s diurnal encoding gamut. Means (thick traces) and 20 individual

responses (thin; near-perfectly overlapped) to 20 different stimuli; each with a specific bandwidth (columns: from

20 Hz, red, to 500 Hz, blue) and mean contrast (rows). Reducing the background (BG) of Gaussian white-noise

stimuli (GWN; 2-unit peak-to-peak modulation) from bright (1.5-unit, bottom) to dark (0-unit, top) halved their

modulation, generating bursts of increasing contrast: the lower the BG, the higher the contrast. Left-top:

responses from (A). Yellow box: maximum information responses. Arrows: dark intervals. Because of half-Gaussian

waveforms, light bursts carried fewer photons (see Figure 2—figure supplement 3). Yet their larger responses

comply with the stochastic adaptive visual information sampling theory (Song et al., 2012; Song and Juusola,

2014; Juusola et al., 2015) (Appendixes 1–3), whereby dark intervals rescue refractory microvilli for transducing

high-frequency (1–20 ms) saccadic photon surges (of high contrast) into quantum bumps efficiently. Thus, larger

responses would incorporate more bumps. Recordings are from the same photoreceptor. Vertical dotted

rectangle (orange square) and horizontal rectangle (black circle): responses for contrast and bandwidth analyses in

Figure 2A. Similar R1-R6 population data is in Figure 1—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.26117.003

The following source data and figure supplement are available for figure 1:

Source data 1. Intracellular voltage responses of the same R1-R6 photoreceptor to very bright 20 Hz, 50 Hz, 100

Hz, 200 Hz and 500 Hz bursty light stimuli at BG0 (darkness).

DOI: https://doi.org/10.7554/eLife.26117.005

Source data 2. Intracellular voltage responses of the same R1-R6 photoreceptor to very bright 20 Hz, 50 Hz, 100

Hz, 200 Hz and 500 Hz bursty light stimuli at BG0.5.

DOI: https://doi.org/10.7554/eLife.26117.006

Source data 3. Intracellular voltage responses of the same R1-R6 photoreceptor to very bright 20 Hz, 50 Hz, 100

Hz, 200 Hz and 500 Hz bursty light stimuli at BG1.

DOI: https://doi.org/10.7554/eLife.26117.007

Source data 4. Intracellular voltage responses of the same R1-R6 photoreceptor to very bright 20 Hz, 50 Hz, 100

Hz, 200 Hz and 500 Hz bursty light stimuli at BG1.5.

DOI: https://doi.org/10.7554/eLife.26117.008

Figure 1 continued on next page
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both with the stimulus bandwidth (left) and contrast (right), until these became too fast to follow.

Information transfer peaked at 100 Hz bursts, which allocated the R1-R6’s limited bandwidth and

amplitude range near-optimally, generating the broadest frequency (Figure 2A and Figure 2—fig-

ure supplement 1A) and (Gaussian) voltage distributions (Figure 2B and Figure 2—figure supple-

ment 1B).

Thus, with the right mixture of bright ‘saccadic’ bursts (to maximally activate microvilli) and darker

‘fixation’ intervals (to recover from refractoriness) forming the high-contrast input, a photoreceptor’s

information transfer approached the capacity (Shannon, 1948), the theoretical maximum, where

every symbol (voltage value) of a message (macroscopic voltage response) is transmitted equally

often (Figure 2C and Figure 2—figure supplement 1C). Remarkably, this performance (610–850

bits/s) was 2-to-4-times of that for GWN (200–350 bits/s), which has often been used for characteriz-

ing maximal encoding (Juusola and Hardie, 2001a), and twice of that for rich naturalistic stimuli

(380–510 bits/s) (Song and Juusola, 2014) (Figure 2—figure supplement 3). GWN, especially, lacks

longer darker events, which should make microvilli refractory (Song and Juusola, 2014) with fewer

sampled photons limiting information transfer (Appendixes 2–3).

There are two reasons why these information rate estimates, which were calculated from equal-

sized data chunks by the Shannon formula (Equation 1, Material and methods), should be robust

and largely bias-free. First, apart from the responses to 20 Hz high-contrast bursts (Figure 2B, red

trace), the responses to all the other stimuli had broadly Gaussian signal and noise distributions,

obeying the Shannon formula’s major assumptions (Shannon, 1948). Second, our previous tests in

comparing the Shannon formula to triple extrapolation method (Juusola and de Polavieja, 2003),

which is directly derived from Shannon’s information theory, have shown that for sufficiently large

sets of data both these methods provide similar estimates even for this type of highly non-Gaussian

responses (~5–20% maximal differences) (Song and Juusola, 2014; Dau et al., 2016). And, indeed,

new tests using additional recordings to longer stimulus repetitions (Figure 2—figure supplement

4) indicated the same. Thus here, the Shannon formula should provide a sufficiently accurate infor-

mation estimate also for the 20 Hz high-contrast burst responses, making this evaluation fair (see

Appendix 2).

Simulations reveal network contribution
These findings were largely replicated by stochastic simulations (Figures 3–4). A biophysically realis-

tic photoreceptor model, which contains 30,000 microvilli (Song et al., 2012), sampled light informa-

tion much like a real R1-R6, generating authentic responses to all the test stimuli (Figure 3A–B). Yet,

markedly, the model lacked the intracellular pupil (or any structural adaptation), which protects

microvilli from saturation (Howard et al., 1987; Song and Juusola, 2014), and network connections

(Zheng et al., 2006; Rivera-Alba et al., 2011; Wardill et al., 2012). In real photoreceptors, the

pupil screens off excess light to maximize information transfer (Howard et al., 1987; Song and Juu-

sola, 2014). Similarly, in the simulations, the mean light intensity of each stimulus was optimized

(Appendix 2) for maximum information (Figure 4A–C), establishing the photon absorption rate for a

R1-R6 photoreceptor’s best signaling performance (bits/s).

At its peak, the model transferred 633 ± 20 bits/s (mean ± SD; Figure 4C) for 100 Hz bursts of 8

� 105 photons/s, with further brightening reducing information as more microvilli became refractory.

This performance matches that of many real R1-R6s (Figure 2—figure supplement 1C), but is ~200

bits/s less than in some recordings (Figure 2C). The real R1-R6s, on balance, receive extra informa-

tion from their neighbors (Rivera-Alba et al., 2011; Wardill et al., 2012), which through superposi-

tion (Zheng et al., 2006) sample information from overlapping receptive fields. In other words, since

our stimuli (from a white LED) were spatially homogenous, these synaptic feedbacks should be able

to enhance the system’s signal-to-noise by averaging the photoreceptors’ independent photon

count estimates from the same visual area, reducing noise (Zheng et al., 2006; Juusola and Song,

2017).

Figure 1 continued

Figure supplement 1. R1-R6 output varies more cell-to-cell than trial-to-trial (cf.Figure 1) but show consistent

stimulus-dependent dynamics over the whole encoding range.

DOI: https://doi.org/10.7554/eLife.26117.004
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Figure 2. High-contrast bursts drive maximal encoding. A R1-R6’s information transfer to high-frequency 100 Hz

bursts exceeded 2-to-4-times the previous estimates. (A) Response signal-to-noise ratio (SNR, left) to 20 (red), 100

(yellow) and 500 Hz (blue) bursts, and to 50 Hz bandwidth stimuli of different contrasts (right); data from Figure 1.

SNR increased with contrast (right), reaching the maximum (~6,000) for 20 Hz bursts (left, red) and the broadest

frequency range for 100 Hz bursts (yellow). (B) Skewed bursts drove largely Gaussian responses (exception: 20 Hz

bursts, red), with 100 Hz bursts evoking the broadest amplitude range (yellow). (C) Information transfer peaked for

100 Hz stimuli, irrespective of contrast (or BG; left), having the global maximum of ~850 bits/s (capacity, infomax)

for the high-frequency high-contrast bursts. (D) Encoding efficiency, the ratio between input and output

information (Routput/Rinput), was > 100% for 20 Hz bursts. Extra information came from the neighboring cells. Rinput
at each BG was determined for the optimal mean light intensity, which maximized a biophysically realistic

photoreceptor model’s information transfer (Appendix 2). Encoding efficiency fell with stimulus bandwidth but

remained more constant with contrast. Population dynamics are in Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.26117.009

The following figure supplements are available for figure 2:

Figure supplement 1. Signaling performance vary cell-to-cell but adapts similarly to given stimulus statistics.

Figure 2 continued on next page
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Moreover, as their rhabdomere sizes (Figure 5A–B) and connectivity vary systematically (Rivera-

Alba et al., 2011), each R1-R6 receives different amounts of information (Figure 5C–D) (see also:

Wardill et al., 2012). Here, R6s, with large rhabdomeres (Figure 5B) and gap-junctions to R8

(Figure 5C), should receive the most (Wardill et al., 2012), suggesting that the best performing cells

(e.g. Figures 1 and 2) might be of the R6-type (Figure 5E). And yet whilst R7s also share gap-junc-

tions with R6s (Shaw et al., 1989), our stimuli contained little UV component to drive them.

Encoding efficiency for the different stimuli (Figure 2D and Figure 2—figure supplement 1D)

was determined as the ratio between the related photoreceptor and light information rates (Routput/

Rinput); with Rinput estimated from the simulated Poisson stimulus repeats, which maximized informa-

tion in R1-R6 model output (Figures 3B and 4C; Appendix 2). Thus, as Rinput included the photon

loss by the intracellular pupil and other structural adaptations (Howard et al., 1987; Song and Juu-

sola, 2014), it was less than at the light source. Moreover, in vivo, the combined stimulus informa-

tion captured simultaneously by other photoreceptors in the retina network must be more than that

by a single R1-R6 (Zheng et al., 2006). E.g. as summation reduces noise, the signal-to-noise of a

postsynaptic interneuron, LMC, which receives similar inputs from six R1-R6s, can be H6-times

higher than that of a R1-R6 (de Ruyter van Steveninck and Laughlin, 1996; Zheng et al., 2006),

but lower than what is broadcasted from the source (Song and Juusola, 2014). Thus, information is

lost during sampling and processing, with the analysis obeying data processing theorem (Shan-

non, 1948; Cover and Thomas, 1991). Finally, as the LED light source’s photon emission statistics

were untested (if sub-Poisson, Rinput would be higher), the efficiency estimates represented the theo-

retical upper bounds.

We found that encoding efficiency for both the recordings (Figure 2D and Figure 2—figure sup-

plement 1D) and simulations (Figure 4D) weakened with the increasing bandwidth (left) but less so

with contrast (right). This was because Rinput estimates (Appendix 2) increased monotonically with

bandwidth (Song and Juusola, 2014) and contrast, while Routput for bandwidth did not (Figure 2C).

However, as predicted, some recordings showed >100% efficiency for 20 Hz bursts, presumably due

to their extra network information (Figure 5 and Figure 5—figure supplement 1) (Zheng et al.,

2006; Wardill et al., 2012; Dau et al., 2016).

A locomoting Drosophila generates ~1–5 head/body-saccades/s, which direct its gaze in high

velocities to the surroundings (Fry et al., 2003; Geurten et al., 2014). Here, our recordings and sim-

ulations suggested that the refractoriness in R1-R6s’ phototransduction, together with network

inputs, might be tuned for capturing information during such fast light changes in time.

Saccades and fixations increase information capture from natural
scenes
To test this idea more directly, we used published body yaw velocities (Geurten et al., 2014) of a

walking Drosophila (Figure 6A) to sample light intensity information from natural images (of charac-

teristic 1/fn-statistics [van Hateren, 1997a]) (Figure 6B). This resulted in time series of contrasts

(Figure 6C, blue) that (i) mimicked light input to a R1-R6 photoreceptor during normal visual behav-

ior, containing fixations, translational movements and saccadic turns. As controls, we further used

light inputs resulting from corresponding (ii) linear median (red) and (iii) shuffled (gray) velocity walks

across the same images (Video 1). These stimuli were then played back to R1-R6s in intracellular

experiments and stochastic refractory model simulations.

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.26117.010

Figure supplement 2. Light-adapted R1-R6 noise is similar for all the test stimuli, with its high-frequencies

reflecting the mean quantum bump shape and its low-frequencies the rhabdomere jitter.

DOI: https://doi.org/10.7554/eLife.26117.011

Figure supplement 3. Strong responses to naturalistic stimulation (NS) carry only about half the information of the

strongest responses to bursts.

DOI: https://doi.org/10.7554/eLife.26117.012

Figure supplement 4. Drosophila R1-R6 photoreceptor output information transfer rate estimates to bursty stimuli

are consistent.

DOI: https://doi.org/10.7554/eLife.26117.013
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We found that saccadic viewing of natural images (Figure 6C,i), even without visual selection (i.e.

without the fly choosing what it gazes), transformed the resulting light input to resemble the bursty
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Figure 3. Model output is realistic over the whole encoding range. (A–B) Simulated responses of a stochastic

Drosophila R1-R6 model to the tested light stimuli show similar response dynamics to the corresponding real

recordings (cf. Figure 1 and Figure 1—figure supplement 1). The model has 30,000 microvilli (sampling units)

that convert absorbed photons to quantum bumps (samples). Simulations at each background (BG) were set for

the mean light level (effective or absorbed photons/s) that generated responses with the maximum information

transfer (Appendix 2). These effective light levels should correspond to the optimal photomechanical screening

throughput (by intracellular pupil mechanism and photomechanical rhabdomere contractions, Appendix 7), which

minimize saturation effects (refractory microvilli) on a Drosophila photoreceptor; see Figure 4. Notice that the

model had no free parameters - it was the same in all simulations and had not been fitted to data. Thus, these

macroscopic voltage responses emerged naturally as a by-product of refractory information sampling by 30,000

microvilli. Yellow box: maximum information responses. Vertical dotted rectangle (orange square) and horizontal

rectangle (black circle): responses for contrast and bandwidth analyses in Figure 4.

DOI: https://doi.org/10.7554/eLife.26117.014

The following source data is available for figure 3:

Source data 1. Simulated voltage responses of a biophysically realistic R1-R6 photoreceptor model to very bright

20 Hz, 50 Hz, 100 Hz, 200 Hz and 500 Hz bursty light stimuli at BG0 (darkness).

DOI: https://doi.org/10.7554/eLife.26117.015

Source data 2. Simulated voltage responses of a biophysically realistic R1-R6 photoreceptor model to very bright

20 Hz, 50 Hz, 100 Hz, 200 Hz and 500 Hz bursty light stimuli at BG0.5.

DOI: https://doi.org/10.7554/eLife.26117.016

Source data 3. Simulated voltage responses of a biophysically realistic R1-R6 photoreceptor model to very bright

20 Hz, 50 Hz, 100 Hz, 200 Hz and 500 Hz GWN light stimuli at BG1.

DOI: https://doi.org/10.7554/eLife.26117.017

Source data 4. Simulated voltage responses of a biophysically realistic R1-R6 photoreceptor model to very bright

20 Hz, 50 Hz, 100 Hz, 200 Hz and 500 Hz GWN light stimuli at BG1.5.

DOI: https://doi.org/10.7554/eLife.26117.018
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Figure 4. Model encodes light information realistically. Encoding capacity of a stochastic photoreceptor model

peaks to high-contrast bursts with 100 Hz cut-off, much resembling that of the real recordings (cf. Figure 2). (A)

Inserts show simulations for the bursty input patterns of similar high contrast values (left) that drove its responses

(outputs) with maximum information transfer rates. Output signal-to-noise ratios peaked for 20 Hz bursts (red), but

was the broadest for 100 Hz bursts (yellow). Signal-to-noise ratio rose with stimulus contrast (right). (B) The

corresponding probability density functions show that 100 Hz bursts evoked responses with the broadest Gaussian

amplitude distribution (yellow). Only responses to low-frequency bursts (20–50 Hz) deviated from Gaussian

(skewed). (C) Information transfer of the model output reached its global maximum (infomax) of 632.7 ± 19.8 bits/s

(yellow) for 100 Hz (left) bursts (right). Corresponding information transfer for Gaussian white-noise stimuli was

significantly lower. (D) Encoding efficiency peaked for low-frequency stimuli (left), decaying gradually with

increasing contrast. For details see Appendix 2.

DOI: https://doi.org/10.7554/eLife.26117.019
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high-contrast stimulation (Video 1), which maximized photoreceptor information (Figures 1–2). Such

inputs had increasingly sparse light intensity difference (first derivative) distributions in respect to

those of the linear walks or GWN stimulation (Figure 6D–E; Appendix 3). Specifically, the saccadic

o
r

Figure 5. Each R1-R6 has a different diameter rhabdomere and network connections, and thus should extract

different amounts of information from the same stimulus. (A) Electron micrograph of an ommatidium, showing R1-

R7 rhabdomeres with characteristic cross-sectional area differences. (B) R1 and R6 rhabdomeres are always the

largest and R4 the smallest (statistics in Appendix 5, Appendix 4—table 1). (C) R6 can receive ~ 200 bits/s of

network information through axonal gap-junctions from R7/R8 (Wardill et al., 2012) in the lamina about local light

changes - due to their neural superposition. Gap-junctions between R1-R6 axons and synapses (Zheng et al.,

2006; Rivera-Alba et al., 2011) in the lamina redistribute information (Appendix 2). (D) R1-R6s’ response

waveforms and frequency range varied cell-to-cell; as evidenced by the recording system’s low noise and the cells’

high signal-to-noise ratios (~1,000). Here, Cell #17 encoded 100 Hz bursts reliably until ~ 140 Hz, but Cell #11 only

until ~ 114 Hz. See also Figure 5—figure supplement 1. (E) Maximum information (for 100 Hz bursts) of 18 R1-

R6s, grouped in their predicted ascending order and used for typifying the cells. Because R6s’ rhabdomeres are

large (B), and their axons communicate with R7/R8 (C), the cells with the distinctive highest infomax were likely this

type (blue). Conversely, R3, R4 and R2 rhabdomeres are smaller and their axons furthest away from R7/R8, and

thus they should have lower infomaxes. Notably, our photoreceptor model (Song et al., 2012) (grey), which lacked

network information, had a similar infomax. The mean infomax of the recordings was 73 bits/s higher than the

simulation infomax.

DOI: https://doi.org/10.7554/eLife.26117.020

The following figure supplement is available for figure 5:

Figure supplement 1. R1-R6 photoreceptors’ response waveforms and frequency range of reliable encoding vary

cell-to-cell, and this variation does not reflect recording quality.

DOI: https://doi.org/10.7554/eLife.26117.021
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Figure 6. A Drosophila’s saccadic turns and fixation periods generate bursty high-contrast time series from natural

scenes, which enable R1-R6 photoreceptors (even when decoupled from visual selection) to extract information

more efficiently than what they could by linear or shuffled viewing. (A) A prototypical walking trajectory recoded

by Geurten et al. (2014) (B) Angular velocity and yaw of this walk. Arrows indicate saccades (velocity � |±200| o/s).

(C) A 360o natural scene used for generating light intensity time series: (i). ) by translating the walking fly’s yaw (A–

B) dynamics on it (blue trace), and (ii) by this walk’s median (linear: 63.3 o/s, red) and (iii) shuffled velocities. Dotted

white line indicates the intensity plane used for the walk. Brief saccades and longer fixation periods ‘burstify’ light

input. (D) This increases sparseness, as explained by comparing its intensity difference (first derivative) histogram

(blue) to that of the linear walk (red). The saccadic and linear walk histograms for the tested images (Appendix 3;

six panoramas each with 15 line-scans) differed significantly: Peaksac = 4478.66 ± 1424.55 vs

Peaklin = 3379.98 ± 1753.44 counts (mean ± SD, p=1.4195 � 10�32, pair-wise t-test). Kurtosissac = 48.22 ± 99.80 vs

Kurtosislin = 30.25 ± 37.85 (mean ± SD, p=0.01861, pair-wise t-test). (E) Bursty stimuli (in Figure 1, continuous) had

sparse intensity difference histograms, while GWN (dotted) did not. (F) Saccadic viewing improves R1-R6s’

information transmission, suggesting that it evolved with refractory photon sampling to maximize information

capture from natural scenes. Details in Appendix 3.

DOI: https://doi.org/10.7554/eLife.26117.022

The following figure supplement is available for figure 6:

Figure supplement 1. Drosophila R1-R6 photoreceptors generate responses with higher information transfer rates

to saccadic (bursty) naturalist light intensity time series (NS) than to corresponding linear or shuffled stimulation.

DOI: https://doi.org/10.7554/eLife.26117.023
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walks contained fixation periods that retained the

same light input values for longer durations than

the linear walks, which lacked these periods,

causing the ~63% higher peak in the saccadic his-

togram (Figure 6D). Saccadic walking also

enhanced the proportion of large intensity differ-

ences between two consecutive moments, seen

as ~18% higher histogram flanks than those for

linear walking (p=3.65 � 10�9, pair-wise t-test for

the combined 0.5–1.0 and -0.5--1 ranges). These

dynamics drove refractory sampling efficiently

(Song and Juusola, 2014), enabling a R1-R6 to

better utilize its output range, and thus capture

more information than through the median or

shuffled velocity viewing (Figure 6F; Figure 6—

figure supplement 1; cf. Figure 2—figure sup-

plement 3).

Altogether, these results (Figures 1–6) imply

that saccades and fixations improve a R1-R6’s

neural representation of the world in time. Fur-

thermore, as behaviors modulate visual inputs in

a sensorimotor-loop, bursty spike trains from the

brain (Franceschini et al., 1991;

Franceschini and Chagneux, 1994; Tang and

Juusola, 2010), which direct the gaze through

self-motion, may have evolved with photorecep-

tors’ information sampling dynamics to better

detect changes in the world. So when a freely-moving fly directs its gaze to visual features that are

relevant for its behavior, its R1-R6’s information capture may become optimized for the imminent

task.

However, visual behaviors should also affect spatial acuity (Srinivasan and Bernard, 1975;

Juusola and French, 1997; Land, 1997; Geurten et al., 2014). Hence, we next asked how R1-R6s

see saccadic light changes over space.

Testing acuity at saccadic velocities
A Drosophila’s head/body-saccades generate fast phasic photoreceptor movements, which ought to

blur retinal images (Srinivasan and Bernard, 1975; Juusola and French, 1997; Land, 1997). More-

over, saccades – when dominated by axial rotation - provide little distance information (Land, 1999)

because objects, near and far, would move across the retina with the same speed. Therefore, it has

been long thought that visual information is mostly captured during translational motion and gaze

fixation, and less during saccades.

To test this hypothesis, we reasoned that object motion and self-motion shape a photoreceptor’s

light input the same way. Thus, the influence of eye movements (and motion blur) on a R1-R6’s abil-

ity to resolve objects could be measured in experiments, where, instead of moving the eye, the

objects were moved over its stationary receptive field (Figure 7A; Appendixes 4–6).

Using this approach, we recorded individual R1-R6s’ voltage responses (Figure 7B; black traces)

to a pair of bright dots (each 1.7˚ in size and 6.8o apart, as seen by the fly), moving at constant

speed across their receptive field in front-to-back direction. The movements were either fast (205 o/

s) or double-fast (409 o/s), both within the head/body saccadic velocity range of a walking Drosoph-

ila (Figure 6A–B: 200–800 o/s) (Geurten et al., 2014), and were presented against a dark or lit back-

ground (note: during a free flight (Fry et al., 2003), saccadic velocities may reach 2,000 o/s).

Importantly, the dots’ angular separation was less than the half-width of a R1-R6’s receptive field

(Figure 7C) at the two backgrounds (Drdark = 9.47 ± 1.57˚, n = 19 cells; Drlight = 7.70 ± 1.27˚, n = 6;

mean ± SD; Figure 7—figure supplements 1 and 2) and 1.5-times the average interommatidial

angle (Dj ~ 4.5˚), which should determine Drosophila’s visual acuity (Gonzalez-Bellido et al., 2011).

Video 1. Using a Drosophila’s saccadic walk to

extrapolate light input to its photoreceptors from

natural scenes. A published recording of a fly’s

saccadic walk (Geurten et al., 2014) was used to

sample light intensity values from 360o panoramic

images of natural scenes. We collected three types of

light stimuli, resulting from: (a) saccadic, (b) median

(linear) and (c) shuffled velocities of the walk.

DOI: https://doi.org/10.7554/eLife.26117.024
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Thus, these fast-moving point objects tested the theoretical limit of what a R1-R6 should be able to

resolve.

We further estimated each cell’s respective impulse response (Appendix 6). Then following the

classic theory of compound eyes’ resolving power (Srinivasan and Bernard, 1975; Juusola and

French, 1997; Land, 1997), we calculated each R1-R6’s expected voltage output to the moving

dots by convolving its impulse response with its measured dark- or light-adapted receptive field.

Figure 7. Photoreceptors resolve dots at saccadic velocities far better than the classic models. (A) 25-light-point stimulus array centered at a R1-R6’s

receptive field (RF). Each tested photoreceptor saw two bright dots, 6.8o apart, travelling fast (205 o/s) or double-fast (409 o/s) in front-to-back direction.

(B) Responses (black), both at dark (left) or illuminated backgrounds (right), characteristically showed two peaks. In contrast, the corresponding classic

model simulations (blue) rarely resolved the dots. (C) In the simulations, each photoreceptor’s receptive field (or its Gaussian fit) was convolved with its

impulse response (first Volterra kernel). The resolvability, D, of the recordings and simulations, was determined by Raleigh criterion. (D) Recordings

outperformed simulations. (E) hdcJK910 R1-R6s (red), which lacked the neurotransmitter histamine, and so network modulation, resolved the dots as well

as the wild-type, indicating that the recordings’ higher resolvability was intrinsic and unpredictable by the classic models (Appendix 6). (F) To resolve

the two dots as well as a real R1-R6 does in light-adaptation, the model’s acceptance angle (Dr) would need to be �3.70o (blue trace); instead of its

experimentally measured value of 5.73 (black; the narrowest Dr. The population mean, grey, is wider). (G) Normalized responses of a typical R1-R6 to a

bright dot, crossing its receptive field in front-to-back or back-to-front at different speeds. Responses to back-to-front motions rose and decayed

earlier, suggesting direction-selective encoding. This lead at the half-maximal values was 2–10 ms. See Appendixes 4 and 6.

DOI: https://doi.org/10.7554/eLife.26117.025

The following figure supplements are available for figure 7:

Figure supplement 1. Dark-adapted wild-type and hdcJK910 R1-R6s’ acceptance angles differ marginally.

DOI: https://doi.org/10.7554/eLife.26117.026

Figure supplement 2. Light-adaptation narrows wild-type and hdcJK910 R1-R6s’ receptive fields similarly.

DOI: https://doi.org/10.7554/eLife.26117.027
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These Volterra-model (Juusola and French,

1997) predictions (Figure 7B–C; blue) were then

compared to the actual recordings (black).

Eyesight beyond the motion blur-
limit
Remarkably in all these tests, the recordings

showed distinctive responses to the two dots

(Figure 7B), as two peaks separated by a trough.

The relative magnitude of this amplitude separa-

tion was quantified as resolvability, using the

Raleigh criterion (Juusola and French, 1997)

(Figure 7C). However, in marked contrast, the

model predictions failed to resolve the double-

fast dots, instead blurring into one broad

response in both adapting states (Figure 7D;

blue vs. black bars, respectively). The predictions

for the fast dots were also poorer than the mea-

sured responses. Thus, a photoreceptor’s real

resolving power was significantly better and less

affected by motion blur than predicted by classic

theory (Appendix 6).

We next asked whether this better-than-

expected resolving power resulted from synaptic

interactions (Zheng et al., 2006; Freifeld et al.,

2013) by using hdcJK910 mutants (Figure 7E, red

traces), in which photoreceptors lacked their neu-

rotransmitter, histamine (Burg et al., 1993)

(Appendixes 4–6). Because hdcJK910 R1-R6s can-

not transmit information to their post-synaptic

targets (Dau et al., 2016) (LMCs, which initiate

the motion detection pathways (Joesch et al.,

2010), and the amacrine cells), neither could

these photoreceptors receive any light-driven

interneuron feedback modulation (Dau et al.,

2016). Therefore, if the synaptic interactions

improved the wild-type output to the moving

dots, then hdcJK910 R1-R6s, which lacked these

interactions, should show diminished resolvabil-

ity. But this was never observed. Instead, we

found that hdcJK910 R1-R6s resolved the dots at

least equally well as the wild-type (Figure 7D,

red). Thus, high acuity did not result from synap-

tic inputs but was intrinsic to photoreceptors.

We also calculated Dr needed to explain the

spatial acuity of the recordings. The example (Figure 7F) is from a R1-R6, which had the narrowest

light-adapted receptive field (Dr = 5.73o) (Figure 7—figure supplement 2). Its response resolved

the two fast-moving dots with a 40.5% dip. However, the Volterra model prediction, using its recep-

tive field, only resolved the dots with a 12.5% dip (cf. Figure 7D). In fact, for 41.0% resolvability, its

Dr would need to narrow to 3.70o (from 5.73o). Thus, for the prediction to match the recording, the

receptive field would have to narrow at least by one-third. Because the required (predicted) accep-

tance angles of R1-R6s were always much narrower (� 4o) than the actual measurements (Drdark =

9.47 and Drlight = 7.70; see above), measurement bias cannot explain this disparity.

We further discovered that R1-R6 recordings often showed phasic directional selectivity

(Figure 7G), with the responses rising and decaying faster to back-to-front than to front-to-back

moving dots. We asked whether these lag-time differences originated from asymmetric

Video 2. Drosophila R1-R8s in dissociated ommatidia

contract photomechanically. Wild-type and trp/trpl-

mutant R1-R8 photoreceptors contract

photomechanically to light flashes. The panels show:

top, a sideview of ex vivo wild-type R1-R8

photoreceptors of a single dissociated ommatidium

contracting to 1 ms bright light flash; bottom left, R1-

R8 of a trp/trpl null-mutant, which express normal

phototransduction reactants but lack completely their

light-gated ion channels, contracting to a similar flash.

Notably, trp/trpl photoreceptors cannot generate

electrical responses to light, with their eyes showing no

ERG signal (Appendix 7). Nonetheless, trp/trpl-mutant

photoreceptors contract photomechanically (but

require ~5 min dark-adaptation between flashes to

restore their contractility). These observations are

consistent with the hypothesis of the light-induced

phosphatidylinositol 4,5-bisphosphate (PIP2) cleaving

from the microvillar photoreceptor plasma membrane

causing the rhabdomere contractions (Hardie and

Franze, 2012). Video playback slowed down and

down-sampled to reveal the contractions, which

otherwise would be too fast to see with a naked eye.

Each video clip is repeated three times with a running

timer giving the time course of the contractions. Notice

that the longitudinal contractions reduce the

photoreceptor length. Thus, in an intact compound

eye, the rhabdomeres would move inwards, away from

the lens, likely narrowing their receptive fields (see

Appendix 7, Appendix 7—figure 10 and Appendix 8,

Appendix 8—figure 3).

DOI: https://doi.org/10.7554/eLife.26117.028

Juusola et al. eLife 2017;6:e26117. DOI: https://doi.org/10.7554/eLife.26117 15 of 149

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.26117.028
https://doi.org/10.7554/eLife.26117


Figure 8. Microsaccadic rhabdomere contractions and refractory photon sampling improve visual resolution of moving objects. (A) High-speed videos

showed fast lateral R1-R7 rhabdomere movements to blue/green flashes, recorded under far-red illumination that Drosophila barely saw (Wardill et al.,

2012). (B) Rhabdomeres moved inside those seven ommatidia (up-right: their pseudopupil), which faced and absorbed the incident blue/green light,

while the others reflected it. Rhabdomeres moved frontwards 8–20 ms after a flash onset, being maximally displaced 70–200 ms later, before returning.

(C) Movements were larger and faster the brighter the flash, but slower than R1-R6s’ voltage responses. (D) Movements followed R1-R6s’ logarithmic

light-sensitivity relationship. Concurrently, given the ommatidium optics (Stavenga, 2003b; Gonzalez-Bellido et al., 2011), R1-R6s’ receptive fields

(RFs) shifted by 0.5–4.0o. (E) Rhabdomeres moved along the eye’s horizontal (red) axis, with little vertical components (black), adapting to ~ 30%

contractions in ~ 10 s during 1 s repetitive flashing. (F) Moving ommatidium structures. Cone and pigment cells, linking to the rhabdomeres by

adherens-junctions (Tepass and Harris, 2007), formed an aperture smaller than the rhabdomeres’ pseudopupil pattern. Rhabdomeres moved ~ 2 times

more than this aperture, and ~ 10 times more than the lens. (G–H) Simulated light inputs and photoreceptor outputs for the classic theory and new

‘microsaccadic sampling’-hypothesis when two dots cross a R1-R6’s RF (i) front-to-back at saccadic speeds. (G) In the classic model, because the

rhabdomere (ii) and its broad RF (i) were immobile (ii), light input from the dots fused (iii), making them neurally unresolvable (iv). (H) In the new model,

with rhabdomere photomechanics (ii) moving and narrowing its RF (here acceptance angle, Dr, narrows from 8.1o to 4.0o), light input transformed into

two intensity spikes (iii), which photoreceptor output resolved (iv). (I) New predictions matched recordings (Figure 8—figure supplement 1). Details in

Appendixes 7–8.

DOI: https://doi.org/10.7554/eLife.26117.029
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photomechanical photoreceptor contractions. Namely, atomic-force microscopy has revealed minute

(<275 nm) vertical movements on the surface of dissected Drosophila eyes, generated by contraction

of individual microvilli as PIP2 is hydrolyzed from the inner leaflet of the lipid bilayer (Hardie and

Franze, 2012). Here, we reasoned that if the ommatidium lenses were effectively fixed and R1-R8s

levered to the retinal matrix, the contractions (Video 2) might be larger in situ, moving and shaping

the photoreceptors’ receptive fields along some preferred direction. Such mechanical feedback

could then reduce light input to R1-R8s, making it more transient and directional.

Microsaccadic sampling of retinal
images
To probe this idea, we recorded in vivo high-

speed videos of photoreceptor rhabdomeres

(viewed by optical neutralization of the cornea)

inside the eyes reacting to blue-green light

flashes (470 + 560 nm) (Figure 8A). The record-

ings were performed under far-red (>720 nm)

illumination, which is nearly invisible to Drosoph-

ila (Appendix 7).

We found that 8–20 ms after a flash the rhab-

domeres, which directly faced the light source at

the image center, shifted rapidly towards the

anterior side of their ommatidia (Figure 8B).

These local movements were faster and larger

the brighter the flash (Figure 8C), and reached

their intensity-dependent maxima (0.2–1.2 mm;

Figure 8D) in 70–200 ms, before returning more

slowly to their original positions (Appendix 7

analyses hdcJK910-rhabdomere responses).

Because the mean R1-R6 rhabdomere tip diame-

ter is ~1.7 mm (Figure 5B), a bright flash could

shift it more than its half-width sideways. Conse-

quently, the fast rhabdomere movements, whilst

still ~3 times slower than their voltage responses

(Figure 8C, wine), adapted photoreceptors pho-

tomechanically by shifting their receptive fields

by 0.5–4.0o, away from directly pointing to the

light source.

Video footage at different eye locations indi-

cated that light-activated rhabdomeres moved

in back-to-front direction along the eye’s equa-

torial (anterior-posterior) plane (Figure 8E, red;

Video 3), with little up-down components

(black). Therefore, as each ommatidium lens

inverts projected images, the photoreceptors’

receptive fields should follow front-to-back

image motion. This global motion direction,

which corresponds to a forward locomoting fly’s

dominant horizontal optic flow field, most prob-

ably explains the phasic directional selectivity we

Figure 8 continued

Figure supplement 1. Microsaccadic sampling hypothesis predicts realistic voltage output to two bright dots crossing a R1-R6’s receptive field in

saccadic speeds.

DOI: https://doi.org/10.7554/eLife.26117.030

Video 3. Drosophila R1-R8 photoreceptors contract

photomechanically in vivo, moving back-to-front inside

each observed ommatidium. We utilized the optical

cornea-neutralization technique with antidromic deep-

red (740 or 785 nm peak) illumination to observe deep

pseudopupils (photoreceptor rhabdomeres that align

with the observer’s viewing axis) in the Drosophila eye.

High-speed video captures fast rhabdomere

movements to bright orthodromic blue-green flashes

(470 + 535 nm peaks). The panels show: left, R1-R7

photoreceptor rhabdomere tips moving rapidly back-

to-front and returning slower to each 10 ms flash,

delivered repeatedly every second; right, the cross-

correlated horizontal (blue) and vertical (red)

components as the time series of this movement. Grey

vertical lines indicate each flash. The rhabdomere

movement is caused by the photomechanical

photoreceptor contractions (not by muscle activity).

These in vivo movements are large, here 1.7 mm from

dark-adapted rest-state; causing up to five degree

transient shift in the R1-R6 photoreceptors receptive

fields (Appendix 7). Note average diameter of R1-R6

rhabdomeres is 1.7 mm (Appendix 5). The high-speed

video rate was 500 frames/s. Video playback slowed

down and down-sampled to reveal the contractions,

which otherwise would be too fast to see with a naked

eye.

DOI: https://doi.org/10.7554/eLife.26117.031
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found to opposing image motions (Figure 7F;

Appendix 8). Thus, the responses to back-to-front

moving dots were faster because the dots

entered and exited each contracting photorecep-

tor’s front-to-back moving receptive field earlier;

whereas the dots moving in the opposite direc-

tion stayed slightly longer inside each receptive

field.

Video analyses further revealed that the first

rhabdomere movement was the largest

(Figure 8E), but 1 s dark intervals, as used in Fig-

ure 7, could resensitize the photoreceptors for

the next (~0.5 mm) movements. Even <100 ms

dark periods rescued noticeable motility (Fig-

ure 2—figure supplement 2E).

To inspect how rhabdomere contractions

affected the cornea lens system’s image projec-

tion, we scanned ommatidia by z-axis piezo

steps, with the imaged focal plane travelling

down from the lens surface into rhabdomeres

(Figure 8F; Video 4), delivering flashes at prede-

termined depths. Crucially, we found that the

ommatidium lens stayed nearly still, while specific

pigment and cone cells, which are connected to

the rhabdomere tips by adherens junctions

(Tepass and Harris, 2007), formed a narrow

aperture that moved with the rhabdomeres but

only half as much. Thus, as the lens system was

immobile but the aperture and sensors (rhabdo-

meres) underneath swung differentially, the light

input to the moving rhabdomeres was shaped

dynamically. This implied that, during saccadic

image motion, R1-R6s’ receptive fields might not

only move but also narrow (Appendixes 7–8;

Video 2).

Essentially, light input to a R1-R6 was modu-

lated by the photoreceptor itself (Figure 8F). To

estimate how these photomechanics influenced

encoding, we implemented them in stochastic

model simulations. We then compared how the

predicted light inputs of the classic theory

(Figure 8G) and the new ‘microsaccadic sam-

pling’-hypothesis (Figure 8H) would drive R1-R6

output during the saccadic dot stimulation.

In the classic theory, the rhabdomere is immo-

bile (ii). Therefore, light input of two moving dots

was a convolution of two broad Gaussians (i) that fused together (iii), making them irresolvable to

phototransduction (iv); this also flawed the Volterra-models (Figure 7).

In the new hypothesis, instead, as microvilli became light-activated (ii), the rhabdomere con-

tracted away from the focal point, and then returned back more slowly, recovering from refractori-

ness. And because its receptive field moved and narrowed concurrently (its acceptance angle, Dr,

halved to 4.0o), the light input of two moving dots transformed into two intensity peaks (iii), in which

time-separation was enhanced by the rhabdomere’s asymmetric motion. Crucially, with such input

driving the refractory photon sampling model, its output (iv) closely predicted the responses to the

two moving dots (Figure 8I and Figure 8—figure supplement 1). Interestingly, early behavioral

Video 4. While R1-R8s contract, the lens above is

immobile but a cone-cell aperture, connected to the

rhabdomere tips by adherens junctions, moves half as

much as the rhabdomeres. We used a z-axis

micromanipulator to shift and reposition Drosophila in

piezo-steps vertically underneath the microscope. This

allowed the focused image, as projected on the

camera, to scan through each studied ommatidium,

providing exact depth readings in mm. We then

recorded any structural movements inside the

ommatidia to light flashes at different depths; from the

corneal lens down to the narrow base, where the cone

and pigment cells form an intersection between the

crystalline cone and the rhabdomere. The left panels

show: up, ommatidium lens; middle, basal cone/

pigment cell layer; down, R1-R7 photoreceptor

rhabdomeres tips during and after flash stimulation.

The right panels show the cross-correlation time series

of these high-speed videos: up, the corneal lens and

the upper ommatidium structures were essentially

immobile), and normally remained so throughout the

recordings; Middle, cone cells that connect to the

rhabdomere tips with adherens junctions (Tepass and

Harris, 2007) showed clear light-induced movements;

down, R1-R7 rhabdomeres moved half as much as the

cone cells above. The high-speed video rate was 500

frames/s. Video playback slowed down and down-

sampled to reveal the contractions, which otherwise

would be too fast to see with a naked eye.

DOI: https://doi.org/10.7554/eLife.26117.032
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Figure 9. ‘Microsaccadic sampling’ hypothesis predicts visual hyperacuity. (A) Simulated R1-R6 output to two

dots, at different distances apart, crossing the photoreceptor’s receptive field at different speeds. The yellow

backgrounds indicate those inter-dot-distances and speeds, which evoked two-peaked responses. The prediction

is that the real R1-R6s could resolve (and Drosophila distinguish) these dots as two separate objects, whereas

those on the white backgrounds would be seen as one object. The simulations were generated with our

biophysically realistic R1-R6 model (Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015), which now

included the estimated light input modulation by photomechanical rhabdomere movements (Figure 8H). (B) The

resulting object resolution/speed heat-map, using the Raleigh criterion, D (Figure 7C), shows the stimulus/

behavioral speed regime where Drosophila should have hyperacute vision. Thus, by adjusting its behavior (from

gaze fixation to saccadic turns) to changing surroundings, Drosophila should see the world better than its

Figure 9 continued on next page
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experiments in bright illumination (Götz, 1964) suggested similarly narrow R1-R6 acceptance angles

(~3.5o).

From microsaccades to hyperacuity
Because of the close correspondence between R1-R6 recordings and the new hypothesis (Appen-

dixes 6–9), we used it further to predict whether Drosophila possessed hyperacute vision (Figure 9).

We asked whether ‘saccade-fixation-saccade’-like behaviors, when linked to refractory photon sam-

pling and photomechanical photoreceptor contractions, allowed encoding in time finer spatial

details than the compound eye’s optical limit (Dj ~4.5o). R1-R6 output was simulated to two bright

dots 1-4o apart, crossing its receptive field at different speeds at 25˚C.
We found that if the dots, or a Drosophila, moved at suitable speed, a photoreceptor should

resolve them well (Figure 9A), with this performance depending upon the inter-dot-distance. When

the dots/eye moved at 10 o/s, a R1-R6 may capture image details at 1o resolution. But with slower

movement (�2.5 o/s), adaptation should fuse the dots together, making them neurally unresolvable.

Conversely, 3o-apart-dots should be seen at 5–100 o/s speeds and 4o-apart-dots even during fast

saccades (200–300 o/s).

Thus, the ‘microsaccadic sampling’-hypothesis implied that Drosophila had hyperacute vision over

a broad speed range (Figure 9B), and through its own self-motion, could adjust the resolution of its

neural images. Further comparisons of model outputs with and without refractoriness indicated that

it extends the speed range of hyperacute vision (Appendix 8). Again, intracellular recordings corrob-

orated these predictions (Figure 9C and Figure 9—figure supplement 1), demonstrating how acu-

ity could be enhanced by encoding space in time.

These results meant that the unexpectedly fine temporal responses of R1-R6s (Figures 7–9) could

be used by downstream neurons (Zheng et al., 2006; Joesch et al., 2010; Rivera-Alba et al., 2011;

Wardill et al., 2012; Behnia et al., 2014), which can have even faster dynamics (Juusola et al.,

1995b; Uusitalo et al., 1995; Zheng et al., 2006), for spatial discrimination between a single pass-

ing object from two passing objects, even if these objects were less than an interommatidial angle

apart. The fly brain could then integrate information from hyperacute moving objects and use it for

directing behaviors.

Optomotor behavior confirms hyperacute vision
To test this prediction, we investigated the spatial resolution of Drosophila vision through their opto-

motor behavior in a conventional flight simulator system, which used brightly-lit high-resolution

prints for panoramic scenes (Figure 10; Appendix 10). We asked whether tethered Drosophila pos-

sessed motion vision hyperacuity by recording their yaw torque (optomotor response) to vertical

black-and-white bar panoramas with <4.5o wavelengths, which slowly rotated (45 o/s) to clockwise

and counterclockwise.

We found that every tested fly responded down to ~1o panoramic bar resolution (Figure 10A

and Figure 10—figure supplement 1) with their responses becoming smaller the finer its bars

(Figure 10A–C). Importantly, because these responses consistently followed the rotation direction

changes, they were not caused by aliasing. Thus, optomotor behavior verified that Drosophila see

the world at least in 4-fold finer detail than what was previously thought. Moreover, when a fine-

Figure 9 continued

compound eye’s optical resolution. (C) Intracellular R1-R6 responses resolved the two dots, which were less that

the interommatidial angle (Dj = 4.5o) apart when these crossed the cell’s receptive field at the predicted speed

range. Arrows indicate the two response peaks corresponding to the dot separation. Cf. Figure 9—figure

supplement 1; details in Appendixes 7–8. These results reveal remarkable temporal acuity, which could be used

by downstream neurons (Zheng et al., 2006; Joesch et al., 2010; Behnia et al., 2014; Yang et al., 2016) for

spatial discrimination between a single passing object from two passing objects.

DOI: https://doi.org/10.7554/eLife.26117.033

The following figure supplement is available for figure 9:

Figure supplement 1. Encoding space in time - intracellular R1-R6 recordings to two bright dots crossing the

receptive field show how their responses convey hyperacute spatial information in time.

DOI: https://doi.org/10.7554/eLife.26117.034
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grained (3.9o) panoramic image was rotated faster (Figure 10D), the response declined as predicted

(cf. two dots 4o apart in Figure 9A). This result is consistent with photoreceptor output setting the

perceptual limit for vision and demonstrates that Drosophila see hyperacute details even at saccadic

speeds (Figure 10D–F).

Discussion
We have provided deep new insight into spatiotemporal information processing in Drosophila R1-R6

photoreceptors and animal perception in general. Our results indicate that the dynamic interplay

between saccades and gaze fixation is important for both the maintenance and enhancement of

vision already at the photoreceptor level. This interplay, which is commonly observed in locomoting

Drosophila (Geurten et al., 2014), makes light input to photoreceptors bursty.

We showed that high-contrast bursts, which resemble light input during a fly’s saccadic behaviors,

maximize photoreceptors’ information capture in time, and provided evidence that such encoding
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Figure 10. Optomotor behavior in a flight simulator system confirms hyperacute vision. Classic open-loop

experiments using high-resolution panoramas. (A) 360o hyperacute black-and-white bar panorama, with 1.16o or

2.88o wavelengths (= 0.58o and 1.44o inter-bar-distances), rotated counterclockwise and clockwise (grey, arrows)

around a tethered fly, with a torque meter measuring its optomotor responses. (B) Controls: the same flies’

optomotor responses to white (no bars) and wide-bar (14.4o wavelength) rotating panoramas. (C) Every Drosophila

responded to the hyperacute panoramas (wavelength < interommatidial angle, Dj, yellow area; Figure 10—

figure supplement 1), but not to the white panorama (orange), which thus provided the recording noise level. The

flies optomotor responses were the strongest to the wide-bar panorama (perception index = 1). As the flies’

optomotor responses followed the rotation directions consistently, irrespective of the tested bar wavelengths, the

hyperacute visual panorama did not generate perceptual aliasing. (D) Optomotor responses of five flies to

hyperacute panorama with 3.9o wavelength, rotating at 50o/s and saccadic speeds of 200 and 300o/s. (E) Control

responses of the same flies to 14.4o wavelength panorama at the same speeds. (F) The flies’ ability to follow

hyperacute panorama reduces dramatically when the stimulation approaches the photoreceptors’ predicted acuity

limit, which for ~4o point resolution is just over 300o/s (cf. Figure 9A). Details in Appendix 10.

DOI: https://doi.org/10.7554/eLife.26117.035

The following figure supplement is available for figure 10:

Figure supplement 1. Optomotor behavior in a flight simulator system demonstrates that Drosophila see

hyperacute visual patterns.

DOI: https://doi.org/10.7554/eLife.26117.036
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involves four interlinked mechanisms. Light input is first regulated by two processes inside photore-

ceptors: slower screening pigment migration (intracellular pupil, 1–10 s) and much faster photome-

chanical rhabdomere contractions (0.01–1 s). These modulations have low noise (Figure 2—figure

supplement 2), enabling refractory photon sampling by microvilli to enhance information intake in

phasic stimulus components. Finally, asymmetric synaptic inputs from the network differentiate indi-

vidual R1-R6 outputs. Remarkably, over space, these mechanisms further sharpen neural resolvability

by ~4 fold below the theoretical limit of the compound eye optics, providing hyperacute vision. Fur-

ther analyses imply that these mechanisms with systematic rhabdomere size variations combat alias-

ing (Appendixes 2 and 5).

Thus, with microsaccadic sampling, a fly’s behavioral decisions govern its visual information/acuity

trade-off. To see the finest image details it should scan the world slowly, which probably happens

during normal gaze fixation. But gaze fixation cannot be too slow; otherwise, adaptation would fade

vision. Conversely, by locomoting faster, in a saccadic or bursty fashion, visual information capture in

time is increased (see also: Juusola and de Polavieja, 2003), while surprisingly little spatial details

about its surroundings would be lost.

This viewing strategy corresponds well with the recent human psychophysics results and modeling

of ganglion cell firing (Rucci and Victor, 2015), which indicate that microsaccades and ocular drift in

the foveal region of the retina actively enhance perception of spatial details (Rucci et al., 2007;

Poletti et al., 2013; Rucci and Victor, 2015). Interestingly, here our findings further imply that, in

Drosophila, the extraction of phasic stimulus features, which characterize object boundaries and line

elements in visual scenes, already starts during sampling and integration of visual information in the

microvilli, at the first processing stage (rather than later on in the retinal network or in the brain).

Our results make a general prediction about the optimal viewing strategy for maximizing informa-

tion capture from the world. Animals should fixate gaze on darker features, as this resensitizes pho-

toreceptors by relieving their refractory sampling units (e.g. microvilli). And then, rapidly move gaze

across to brighter image areas, as saccadic crossings over high-contrast boundaries enhance infor-

mation intake by increasing photoreceptors’ sample (quantum bump) rate changes/time (Appendix

9).

Given the high occurrence of eye/head-saccades in animals with good vision (Land, 1999), it

seems plausible that their photoreceptors could also have adapted encoding dynamics to quicken

response modulation, reducing motion blur. Therefore, if information sampling biophysics in rods

and cones were matched to microsaccadic eye movements, this could provide a mechanistic expla-

nation to the old paradox: how saccadic gaze fixation provides stable perception of the world, while

curtailing motion blur effects.

Materials and methods

Flies
2–10 day old wild-type red-eyed (Canton-S and Berlin) fruit flies (Drosophila melanogaster) and

hdcJK910-mutants were used in the experiments. Other transgenic and mutant Drosophila tests and

controls are explained in specific Appendixes. Drosophila were raised at 18˚C in a 12 hr/12 hr dark/

light cycle and fed on standard medium in our laboratory culture.

Electrophysiology
Sharp microelectrode recordings from Drosophila R1-R6 photoreceptors were detailed before

(Juusola and Hardie, 2001a; Juusola et al., 2016), and we only list the key steps here. Flies were

immobilized to a conical holder by beeswax (Juusola and Hardie, 2001a) (Figure 1A). A small hole,

the size of a few ommatidia, was cut in the dorsal cornea for the recording electrode and sealed

with Vaseline to prevent tissue from drying. R1-R6s’ intracellular voltage responses were recorded to

different spatiotemporal light patterns (see below) using sharp filamented quartz or borosilicate

microelectrodes (120–220 MW), filled with 3 M KCl. A blunt reference electrode, filled with fly ringer,

was inserted in the head capsule. The flies’ temperature was kept either at 19 ± 1 or 25 ± 1˚C by a

feedback-controlled Peltier device, as indicated in the figures. The recordings were performed after

1–2 min of dark adaptation, using the discontinuous clamp method with a switching frequency 20–

40 kHz. The electrode capacitance was compensated using the head-stage output voltage. To
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minimize effects of damage and external noise on the analysis, only stable recordings of low-noise

and high sensitivity were chosen for this study (sometimes lasting several hours). Such photorecep-

tors typically had resting potentials <-60 mV in darkness and >45 mV responses to saturating test

light pulses (Juusola and Hardie, 2001a).

Light stimulation
We used a high power ‘white’ LED (Seoul Z-Power P4 star, white, 100 Lumens) to test individual R1-

R6 photoreceptors’ encoding dynamics (Figures 1 and 6F). It was connected to a randomized quartz

fiber optic bundle (transmission range: 180–1,200 nm), fitted with a lens (providing ~3˚ homoge-

neous light disk as seen by the flies), and attached onto a Cardan arm system for accurate position-

ing at the center of each tested cell’s receptive field. Its light output was driven by an OptoLED

(Cairn Research Ltd, UK), which utilizes a feedback circuitry with a light-sensor. This LED has red

component wavelengths, which minimizes prolonged depolarizing afterpotential (PDA) effects.

Because long recordings can show sensitivity drifts, attributable to muscle activity (Appendix 4), the

stimulus XY-position was regularly tested and, if needed, re-centered between long stimulus runs.

We used a bespoke 25 light-point array to measure individual R1-R6 photoreceptors’ receptive

fields and responses to moving point objects (bright dots, Figure 7; dark dots, Appendix 9). Again,

a custom-made Cardan arm system was used to accurately position the array’s center light-point

(no. 13) at the center of each tested cell’s receptive field. The dot size and the minimum inter-dot-

distance, as seen by Drosophila, was 1.7o. Details of this device and the recording procedures are

given in Appendixes 4 and 6.

Stimulus patterns
Single photoreceptors’ diurnal temporal encoding gamut was tested systematically over different

bandwidth and contrast distributions; using 20 distinct light intensity time series stimuli, which were

presented at the center of their receptive fields. The used test stimuli was based upon 5 different 2 s

long Gaussian white-noise light intensity time series patterns (generated by Matlab’s randn-function),

which had ‘flat’ power spectrum up to 20, 50, 100, 200, or 500 Hz (Figure 1B), as low-pass filtered

by MATLAB’s filter toolbox, and the same peak-to-peak modulation (two units). These were then

superimposed on four backgrounds: BG0 (0 units, dark), BG0.5 (0.5 units), BG1 (one unit) or BG1.5

(1.5 units, bright) on a linear intensity scale, giving altogether 20 unique stimulus patterns. As the

two lowest backgrounds clipped downwards-modulation, prolonging dark intervals, the resulting

stimuli ranged from high-contrast bursts (c = DI/I ~ 1.46 at BG0) to low-contrast Gaussian (c ~ 0.22 at

BG1.5).

As further controls, we tested how well R1-R6 photoreceptors responded to dark contrast bursts

of different bandwidths (Appendix 9) and to their bright counterparts. In these experiments, R1-R6s

were adapted for 10 s to BG0.5 and BG1 before repeated stimulation. In addition, we recorded the

tested cells’ responses to naturalistic light intensity time series (van Hateren, 1997a; Song and Juu-

sola, 2014) (NS), selected from van Hateren natural stimulus collection (van Hateren, 1997a) (Fig-

ure 2—figure supplement 3). We also sampled light intensity time series from panoramic natural

images, using three different velocity profiles of a published 10 s Drosophila walk (see Video 1;

details in Appendix 3). These stimuli were then played back to a R1-R6 photoreceptor by the ‘white’

LED (see above).

In all these experiments,�25 consecutive responses to each repeated stimulus were recorded.

Data acquisition
Both the stimuli and responses were filtered at 500 Hz (KEMO VBF/23 low-pass elliptic filter, UK),

and sampled together at 1–10 kHz using a 12-bit A/D converter (National Instruments, USA), con-

trolled by a custom-written software system, Biosyst in Matlab (Mathworks, USA) environment. For

signal analyses, if need, the data was down-sampled to 1 kHz.

Analyses
Because of short-term adaptive trends, we removed the first 3–10 responses to repeated stimulation

from the analysis and used the most stable continuous segment of the recordings. Information theo-

retical methods for quantifying responses of approximately steady-state-adapted fly photoreceptors
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to different stimuli were described in detail before (Juusola and Hardie, 2001b; Juusola and de

Polavieja, 2003; Song et al., 2012; Song and Juusola, 2014). Below we list the key approaches

used here.

Signal-to-noise ratio (SNR) and information transfer rate estimates
In each recording, simulation or Poisson light stimulus series (see below), the signal was the mean,

and the noise was the difference between individual traces and the signal (Juusola and Hardie,

2001a). Therefore, for a data chunk of 20 responses (n = 20 traces), there was one signal trace and

20 noise traces. The signal and noise traces were divided into 50% overlapping stretches and win-

dowed with a Blackman–Harris 4-term window, each giving three 500-points-long samples. Because

each trace was 2 s long, we obtained 60 spectral samples for the noise and seven for the signal.

These were averaged, respectively, to improve the estimates.

SNR(f), of the recording, simulation, or Poisson light stimulus series was calculated from their sig-

nal and noise power spectra, <|Sf, |2> and <|Nf, |2>, respectively, as their ratio, where | | denotes the

norm and <>the average over the different stretches (Juusola and Hardie, 2001a). To eliminate

data size and processing bias, the same number of traces (n = 20) of equal length (2000 points) and

sampling rate (1 kHz; 1 ms bin size) were used for calculating the SNR(f), estimates for the corre-

sponding real recordings, photoreceptor model simulations and the simulated Poisson stimuli.

Information transfer rates, R, for each recording, simulation, or Poisson light stimulus series were

estimated by using the Shannon formula (Shannon, 1948), which has been shown to obtain robust

estimates for these types of continuous signals (Juusola and de Polavieja, 2003; Song and Juusola,

2014). We analyzed steady-state-adapted recordings and simulations, in which each response (or

stimulus trace) is expected to be equally representative of the underlying encoding (or statistical)

process. From SNR(f), the information transfer rate estimates were calculated as follows:

R¼
Z

¥

0

log2 SNR fð Þþ 1½ �ð Þdf (1)

We used minimum = 2 Hz and maximum = 500 Hz (resulting from 1 kHz sampling rate and 500

points window size). The underlying assumptions of this method and how the number and resolution

of spectral signal and noise estimates and the finite size of the used data can affect the resulting

Information transfer rate estimates have been analyzed before (van Hateren, 1992b; Juusola and

Hardie, 2001b; Juusola and de Polavieja, 2003; Song and Juusola, 2014) and are further dis-

cussed in Appendix 2. The mean and SD of each photoreceptor recording series (20 � 2000 points)

was obtained by estimating R from eleven 1,000-point data chunks with 100-point overlaps.

We also tested how the Shannon method’s information transfer rate estimates of bursty

responses compare with those obtained by the triple extrapolation method (Juusola and de Pola-

vieja, 2003) using additional longer recordings. In the triple extrapolation, photoreceptor responses

were first digitized (Figure 2—figure supplement 4A–B) by dividing these into time intervals, Tw,

that were subdivided into smaller intervals of tw = 1 ms. This procedure selects ‘words’ of length Tw
with Tw/tw ‘letters.’ The mutual information between the response S and the stimulus is then the dif-

ference between the total entropy, Hs:

HS ¼�
i

P

PS sið Þlog2PS sið Þ (2)

where PS(si) is the probability of finding the i-th word in the response, and the noise entropy HN:

HN ¼�
i¼1

P

Pi tð Þlog2Pi tð Þ
D E

t
(3)

where Pi(t) denotes the probability of finding the i-th word at a time t after the initiation of the trial.

This probability Pi(t) was calculated across trials of identical 20 Hz bursty stimulation. The values of

the digitized entropies depend on the length of the ‘words’ Tw, the number of voltage levels v, and

the size (as %) of the data file, HT,n,size. The rate of information transfer was obtained taking the fol-

lowing three successive limits (Figure 2—figure supplement 4C–E, respectively):
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R¼ RS �RN ¼ lim
Tw!¥

1

Tw
lim
v!¥

lim
size!¥

ðHTwv;size
S �H

Twv;size
N Þ (4)

These limits were calculated by extrapolating the values of the experimentally obtained entropies.

A response matrix for the analysis contained 2,000 points � 30 trials (note, the 10 first trials from the

light onset were removed to minimize any adaptation effects). The total entropy and noise entropy

of the responses were then obtained from the response matrices using linear extrapolation within

the following parameter ranges: size = 5/10, 6/10,. . .,10/10 of data; n = 4, 5,. . .,20 voltage levels;

Tw
�1 = 2, 3,. . ., 7 points. As adaptation in photoreceptors approaches steady state, their output

varies progressively less (Juusola and de Polavieja, 2003). Similarly, the entropies of their

responses, when digitized to �20 voltage levels, ceases to increase with increasing data size,

enabling their limits to be extrapolated in control by linear fits (Figure 2—figure supplement 4C–F)

or Taylor series fits. Consequently, as few as 30 response traces (each 2,000 points long) provided

similar information rate estimates to the Shannon method (Figure 2—figure supplement 4G) for 20

Hz burst stimulation. All data analyses were performed with Matlab (MathWorks).

Measuring photoreceptors’ visual acuity
We measured dark- and light-adapted wild-type R1-R6 photoreceptors’ receptive fields by their

acceptance angles, Dr, using intracellular voltage responses to random light-points in a stimulation

array. These measurements were compared to those of hdcJK910-mutants (Burg et al., 1993), in

which first-order interneurones receive no neurotransmitter (histamine) from photoreceptors and so

are incapable of feedback-modulating the photoreceptor output. Both the wild-type and mutant R1-

R6 photoreceptors’ mean Dr was about twice the mean interommatidial angle, Dj. The stimulus

apparatus, the method and result details and theoretical electron micrograph comparisons of their

mean rhabdomere sizes are explained in Appendixes 4–5.

Spatiotemporal analyses using the classic conventional models
Voltage responses of wild-type and hdcJK910 R1-R6s to moving bright dots were evaluated against

their respective classic model simulations, in which each recorded receptive field was convoluted by

the same cell’s impulse response (Srinivasan and Bernard, 1975; Juusola and French, 1997) (1st

order Volterra kernels). The motion blur effects were quantified by comparing the real R1-R6 outputs

to their deterministic model predictions. Details of the analysis are given in Appendix 6.

Biophysical modeling
Time series analyses
We used our recently published biophysically-realistic stochastic photon sampling model

(Song et al., 2012) of a Drosophila R1-R6 photoreceptor to simulate macroscopic voltage response

to different repeated light intensity time series patterns from a point source (Figures 3–4). The

model has no free parameters. Its design and the general aims and details of these simulations are

given in Appendixes 1 and 2. To eliminate data size bias, the signaling properties and performance

of the simulations were quantified and compared to the corresponding recordings by using the

same analytical routines on the same-sized data-chunks. The models were run using Matlab in the

University of Sheffield computer cluster (Iceberg).

For each stimulus, its mean was adjusted to maximize information of the simulated photoreceptor

outputs, mimicking the action of the photomechanical adaptations (intracellular pupil mechanism

and rhabdomere contractions; Appendixes 2 and 7). This optimization set the effective mean pho-

ton rates from 8 � 104 at BG1.5 to 8 � 105 photons/s at BG0 (Figure 3). Thus, each of these light

levels was considered to represent the optimal daylight input (that survived the photomechanical

adaptations and was absorbed by a rhabdomere), in which modulation enabled the largest sample

(bump) rate changes. Otherwise, more of its sampling units (30,000 microvilli) would be either

underutilized or refractory (saturation). The maximum information rates of the simulated photorecep-

tor outputs closely followed the corresponding mean information transfer rates of the real record-

ings over the whole tested encoding range (Appendix 2). This implies that the central function of the

photoreceptors’ combined photomechanical adaptations is to maximize their information transfer,

and that the resulting estimates represent realistic maxima.
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Encoding efficiency
A photoreceptor’s encoding efficiency, h, was the ratio between the information rates of its voltage

output, Routput, and the corresponding effective light input, Rinput:

h¼ Routput

Rinput

(5)

with Routput and Rinput estimated by the Shannon formula (Equation 1). Details are in Appendix 2.

Modeling R1-R6 output to moving dots
We developed a new ‘microsaccadic sampling’-model to predict how photomechanical rhabdomere

contractions (microsaccades) move and narrow Drosophila R1-R6 photoreceptors’ receptive fields to

resolve fast-moving objects. Appendix 8 gives the details of this modeling approach, which com-

bines the stochastic photon sampling model(Song et al., 2012) with additional fixed ommatidium

optics and photomechanical rhabdomere contraction parameters. The same appendix shows exam-

ples of how refractory photon sampling and rhabdomere contractions jointly improve visual acuity.

High-speed video of the light-induced rhabdomere movements
Cornea-neutralization method with antidromic far-red (>720 nm) illumination was used to observe

deep pseudopupils (Franceschini and Kirschfeld, 1971b) (photoreceptor rhabdomeres) in the Dro-

sophila eye at 21˚C. A high-speed camera (Andor Zyla, UK; 500 frames/s), connected to a purpose-

built microscope system, recorded fast rhabdomere movements in vivo to blue-green light stimuli

(470 + 535 nm peaks), which were delivered orthodromically into the eye. The method details,

mutant and transgenic Drosophila used and the related image analyses are explained in Appendix 7.

Flight simulator experiments
Open-loop configuration was used to test hyperacute motion vision. Wild-type flies were tethered in

a classic torque meter (Tang and Guo, 2001) with heads fixed, and lowered by a manipulator into

the center of a black and white cylinder (spectral full-width: 380–900 nm). A flying fly saw a continu-

ous panoramic scene (360˚), which in the tests contained multiple vertical stripes (black and white

bars of equal width). The control was a diffuse white background. After viewing the still scene for 1

s, it was spun counterclockwise by a linear stepping motor for 2 s, stopped for 2 s before rotating

clockwise for 2 s, and stopped again for 1 s. This 8 s stimulus was repeated 10 times and each trial,

together with the fly’s yaw torque responses, was sampled at 1 kHz (Wardill et al., 2012). Flies fol-

lowed the stripe scene rotations, generating yaw torque responses (optomotor responses to right

and left), the strength of which reflected the strength of their motion perception. The flies did not

follow the white control scene rotations. The panoramic scenes had ±360˚ azimuth and ±45˚ eleva-
tion, as seen by the fly. The stripe scenes had 1.0 contrast and their full-wavelength resolutions were

either hyperacute (1.16˚ or 2.88o) or coarse (14.40o), giving the inter-bar-distances of 0.58o, 1.44o

and 7.20o, respectively. The white scene has zero contrast. The tested scene rotation velocities were

45, 50, 200 and 300˚/s.

Transmission electron microscopy
The fly eye dissection, fixation embedding, sectioning and imaging protocols for EM (Figure 5A) are

described in Appendix 5.

Statistics
Test responses were compared with their controls by performing two-tailed t-tests to evaluate the

difference in the compared data. Welch’s t-test was used to accommodate groups with different var-

iances for the unpaired comparisons. In the figures, asterisks are used to mark the statistical signifi-

cance: ns indicates p>0.05, * indicates p�0.05, ** indicates p�0.01, and *** indicates p�0.001.

Software code
Custom written simulation and analyses software used in this study can be downloaded under GNU

General Public License v3.0 from: https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper. A

copy is archived at https://github.com/elifesciences-publications/Microsaccadic_Sampling_Paper.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.26117.037

‘Stochastic adaptive visual information sampling’-theory
in brief

Overview
This appendix describes the basic theoretical principles of how fly photoreceptors sample

photons, providing central background information for the results presented in the main

paper.

Stochastic adaptive sampling of information by R1-R6
photoreceptors
Many lines of evidence imply that in a Drosophila R1-R6 photoreceptor 30,000 individual

refractory sampling units (microvilli) integrate exponential photon flux changes (~106 fold)

from the environment into macroscopic voltage responses of biophysically limited amplitude

range (~60 mV) and bandwidth (~200 Hz) (Juusola and Hardie, 2001a; Song et al., 2012;

Song and Juusola, 2014; Hardie and Juusola, 2015). In essence, a light-adapted R1-R6

counts photons imperfectly, which, nonetheless, adds up highly reproducible neural

representations of light changes within its receptive field (Juusola et al., 2015).

In this study, we quantify such quantal information processing through large-scale

experimental and theoretical analyses. Our overriding aim is to analyze R1-R6s’ diurnal

encoding range systematically; from light bursts to Gaussian white-noise stimulation to point-

objects moving across their receptive fields at saccadic speeds. Because of the outstanding

stability and signal-to-noise ratio of the intracellular recordings from in vivo R1-R6s

(Juusola and Hardie, 2001a; Zheng et al., 2006; Song and Juusola, 2014; Juusola et al.,

2016), providing apparent ergodicity, we can directly compare their voltage responses to

those of biophysically realistic R1-R6 model simulations (Song et al., 2012; Song and Juusola,

2014; Juusola et al., 2015; Song et al., 2016), in which stochastically operating microvilli

sampled similar stimuli (Appendix 1—figure 1). The mechanistic knowledge so obtained

about the dynamics and limitations of quantal visual information processing provides us with

deep new understanding of how well Drosophila, and other insect eyes, can see the world.
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Appendix 1—figure 1. Schematic of the biophysically realistic Drosophila R1-R6 model, which

mimics phototransduction by transducing light input (a dynamic flux of photons) into macro-

scopic output, light-induced current (LIC). The model is modular, containing four parts, three of

which are shown here. Phototransduction occurs within a photoreceptor’s light-sensitive part,

the rhabdomere, which contains 30,000 photon sampling units, microvilli (blue bristles). Each

microvillus contains a full phototransduction cascade reactions, and can transduce single

photon energies (green dots) into unitary responses, quantum bumps (QB or samples) of

variable amplitudes. (A) In the first module, 30,000 microvilli sample incoming photons. The

light input, as photons/s, is randomly distributed over them (each row of open circles indicate

photons being absorbed by a single microvillus). (B) In the second module, the successfully

absorbed photons in each microvillus are transduced into QBs (a row of unitary events). In

each microvillus, the success of transducing a photon into a QB depends upon the

refractoriness of its phototransduction reactions. This means that a microvillus cannot respond

to the next photons until its phototransduction reactions have recovered from the previous

photon absorption, which takes about 50–300 ms. The photons hitting a refractory microvillus

cannot evoke QBs, but will be lost. (C) In the third module, QBs from all the microvilli then

integrate the dynamic macroscopic LIC. Conversely, the light input (green trace) can be

reconstructed by adding up all the photons distributed across the 30,000 microvilli.

DOI: https://doi.org/10.7554/eLife.26117.038
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Main framework
We used our previously published biophysical Drosophila R1-R6 model (Song et al., 2012;

Song and Juusola, 2014; Juusola et al., 2015; Song et al., 2016) to simulate voltage

responses to time series of light intensities. The Matlab scripts for this model are

downloadable from the repository: https://github.com/JuusolaLab/Microsaccadic_Sampling_

Paper/tree/master/BiophysicalPhotoreceptorModel. The model contains four modules

(Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015; Song et al., 2016):

. Random Photon Absorption Model: regulates photon hits (absorptions) in each microvillus,

following Poisson statistics (Song et al., 2016) (Appendix 1—figure 1A).
. Stochastic Bump Model: stochastic biochemical reactions inside a microvillus capture and

transduce the energy of photons to variable quantum bumps or failures (Appendix 1—figure

1B). Here, Gillespie algorithm provides discrete and stochastic phototransduction cascade

simulations with few reactants as every reaction is explicitly simulated.
. Summation Model: bumps from 30,000 microvilli integrate to the macroscopic light-induced

current (LIC) response (Appendix 1—figure 1C).
. Hodgkin-Huxley (HH) Model of the photoreceptor plasma membrane (Niven et al., 2003;

Vahasoyrinki et al., 2006): transduces LIC into a voltage response (Appendix 1—figure 2).

Appendix 1—figure 2. Drosophila R1-R6 photoreceptor membrane’s electrical circuit (HH-

model). A photoreceptor’s membrane potential, Vm, is the difference between the negative

inside (intracellular) and positive outside (extracellular) voltages. Vm can be calculated, using

Hodgkin-Huxley formalism, whereupon, a photoreceptor membrane is modelled as a

capacitor, Cm, voltage-gated channels as voltage-regulated conductances, g, leak channels as

fixed conductances, reversal potentials for different ion species as DC-batteries.

Abbreviations: Iksh: Shaker; Idr, delayed rectifier; Inovel, novel K
+; Kleak: K

+ leak; Icl, chloride leak
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currents. The used deterministic Drosophila photoreceptor HH-model is adapted from

(Niven et al., 2003; Vahasoyrinki et al., 2006).

DOI: https://doi.org/10.7554/eLife.26117.039

The formalism, assumptions and many tests of the biophysical photoreceptor model, which

has no free parameters, are given in our previous publications (Song et al., 2012; Song and

Juusola, 2014; Juusola et al., 2015). All its parameter values can be found and downloaded

from: http://www.sciencedirect.com/science/article/pii/S0960982212006343

Stochastic quantal models supersede empirical black-box
approaches

Stochastic photon sampling fly photoreceptor model

. Has no free parameters

. Is general - predicts realistic responses to any light stimulus pattern

. Is transferable - predicts realistic responses of different fly photoreceptors

. Provides deep mechanistic understanding to light information sampling

We have shown before that this quantal stochastic modeling approach is general and

transferable, and therefore directly applicable to quantify photoreceptor functions in different

light conditions and fly species (Song et al., 2012; Song and Juusola, 2014; Juusola et al.,

2015). Importantly, it does not require full knowledge of all molecular players and dynamics in

the phototransduction to generate realistic responses (Song et al., 2012; Song and Juusola,

2014; Juusola et al., 2015). From a computational viewpoint, the exactness of the simulated

molecular interactions is not critical. As long as the photoreceptor model contains the right

number of microvilli (e.g. 30,000 in a Drosophila and 90,000 in a Calliphora R1-R6

photoreceptor), each of which is a semiautonomous photon sampling unit, and the dynamics

of their photon-triggered unitary responses (quantum bumps [QBs] or samples) approximate

those in the real recordings, it will sample and process information much like a real

photoreceptor. Conversely, this further means that by knowing the number of microvilli and

their average QB waveform, latency distribution, and refractory period distributions, we can

closely predict a fly photoreceptor’s macroscopic response to any given light intensity time

series stimulus (cf. Figures 3–4). The same model can then be applied to estimate how well

the real photoreceptor output resolves moving objects (see Figures 8G–I and and

9; Appendix 8 gives the details of this approach).

Deterministic empirical fly photoreceptor models
. Fit parameters to specific stimulus sets
. Predict less accurately responses to new stimuli of different input statistics (to which the

models have not been tuned to before)
. Cannot provide deep mechanistic understanding of how photoreceptors sample light

information

In the conventional empirical ‘black-box’ approaches, the photoreceptor models’ filters, such

as linear and nonlinear kernels, and static nonlinearities are adjusted to minimize the

difference between the recorded responses and the model output to a specific stimulus set

(light condition) (French et al., 1993; Juusola et al., 1995b; Juusola and French, 1997;

Friederich et al., 2009). However, because such models are not built upon the real cells’

physical quantal information sampling constraints, which change from one stimulus statistics to

another (Song and Juusola, 2014), they struggle to respond accurately to new stimulus

statistics. Explicitly, the models lack intrinsic structural information of how quantum bump

dynamics and microvilli refractoriness must differ during different stimuli. For example,

Volterra (French et al., 1993) kernels estimated for Gaussian white-noise stimulation will

predict less accurately responses to bursty light inputs. This is because during bursty light

stimulation the fly photoreceptors’ quantal information sampling dynamics rapidly adapt to a

different regime, where their microvilli (sampling units) are less refractory. Hence, the real
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photoreceptors now integrate macroscopic responses from larger sample (QB) rate changes of

enhanced rise and decay dynamics. To appropriately approximate these new dynamics, the

empirical models would need to generate new kernels of different temporal profiles, which is

impossible without retuning the model parameters. Accordingly, without the biophysical

knowledge being implemented in their mathematical structure, the classic dynamic

photoreceptor models fail to predict how well the real photoreceptors resolve moving objects

(see Figure 7, Appendix 6 and Appendix 8).
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Appendix 2

DOI: https://doi.org/10.7554/eLife.26117.040

Information maximization by photomechanical
adaptations and connectivity

Overview
This appendix describes how the ‘stochastic adaptive visual information sampling’-theory

(Appendix 1) predicts and explains the roles of R1-R6 photoreceptors’ photomechanical

adaptations and network connections in information maximization at different stimulus

conditions, as shown in Figures 1–4.

In this appendix:

. We test the hypotheses that photomechanical adaptations (intracellular pupil and rhabdo-

mere contractions; see Appendix 7) and network connections in the Drosophila eye contrib-

ute importantly to optimizing the capture and representation of visual information.
. We first estimate through simulations how a R1-R6 photoreceptor’s intracellular pupil and

rhabdomere contractions are jointly optimized for maximal information sampling by its

30,000 microvilli. The simulations predict that these mechanisms’ optimal combined photon

throughput in bright conditions (to be absorbed by an average R1-R6 photoreceptor) should

be different for different stimuli.
. We then compare the model predictions to corresponding intracellular recordings and find a

comprehensive agreement between the theory and mean experiments for all the tested

stimuli.
. This striking correspondence enables us to further estimate how the lamina network shapes

information transfer of individual R1-R6 photoreceptors.
. Remarkably, our data and analyses strongly suggest that voltage output is different in each

R1-R6, which are brought together in neural superposition during development to sample

light changes from a small local visual area.
. These results are consistent with the hypothesis that the variability in the retinal sampling

matrix dynamics and topology minimizes aliasing and noise, enabling its parallel processing

to generate reliable and maximally informative neural estimates of the variable world

(Barlow H, 1961; Yellott, 1982; Song and Juusola, 2014; Juusola et al., 2015).
. Finally, we explain how to calculate a photoreceptor’s encoding efficiency for different light

stimuli, highlighting the assumptions and limits of this method.

Fly photoreceptors’ pupil mechanism
In a fly photoreceptor, intracellular screening pigments form its pupil mechanism

(Appendix 2—figure 1). The pupil protects a photoreceptor’s sampling units (30,000 microvilli

in a Drosophila R1-R6) from saturation (Howard et al., 1987; Song and Juusola, 2014). At

bright light exposure, screening pigments migrate to narrow the aperture they form

collectively (Franceschini and Kirschfeld, 1971b), shielding off excess light from reaching the

microvilli. This is important because midday sunshine on a photoreceptor may contain 106-8

photons/s, and without the pupil mechanism would deteriorate the encoding function of its

finite microvillus population (Howard et al., 1987; Song and Juusola, 2014). The pupil

opening and closing seem modulated by light-driven intracellular Ca2+-concentration changes

(Hofstee and Stavenga, 1996), and show reasonably fast dynamics (from fully open to fully

closed within 15 s) (Franceschini and Kirschfeld, 1976) for adapting its light throughput to

ambient changes. Although our biophysical (stochastically operating) Drosophila

photoreceptor model (Song et al., 2012; Juusola et al., 2015) lacks the pupil mechanism and

any other photomechanical adaptations (cf. Appendix 7), their joint effects can be predicted

through simulations; by assuming that their objective function is to maximize the

photoreceptor’s information capture.
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Appendix 2—figure 1. Compound eye and photoreceptors’ intracellular pupil mechanism. (A)

Drosophila eyes are composed of about 800 modular units, ommmadia. (B) Each ommatidium

contains a lens system and underneath it eight photoreceptor cells: the outer receptors, R1-

R6, and the inner receptors, R7/R8. In the electron micrograph, which numbers each cell’s

rhabdomere (light sensitive part), R8 is not shown because it lies directly below R7. (C)

Schematic of the intracellular pupil mechanism. Left: During dark-adaptation, screening

pigments (small dots) are scattered in the R1-R7 somata. Middle: R1-R6 light-adapted. Blue-

green bright light drives the screening pigment migration towards the R1-R6 rhabdomeres

(central discs, containing 30,000 microvilli, photon sampling units, depicted as stripes in the

discs), which express blue-green-sensitive Rh1-rhodopsin, as their phototransduction rises

intracellular Ca2+-concentration. With the pupil closing (seen as the dark rims around the

rhabdomeres), light input to the microvilli reduces. Note that R7, which expresses UV-

rhodopsin, is not light-adapted and its screening pigments remain scattered. Right: All

photoreceptors light-adapted. Bright UV-light closes all pupils because R7s express UV-

sensitive Rh3- and Rh4-rhodopsins, and in R1-R6s’ Rh1-rhodopsin is electrochemically coupled

to UV-sensitive sensitizing pigment. Redrawn and modified from (Franceschini and Kirschfeld,

1976; Elyada et al., 2009).

DOI: https://doi.org/10.7554/eLife.26117.041

Photomechanical light-screening hypothesis
We hypothesize that the intracellular pupil, besides affecting a photoreceptor’s angular and

spectral sensitivity (Stavenga, 2004a) (see Appendix 4), participates in maximizing a

photoreceptor’s information sampling by optimizing light input intensity to its microvilli in

time. Specifically in this context, it works together with all other photomechanical adaptations

within an ommatidium, including the much faster light-induced rhabdomere contractions

(Videos 2–4), in protecting the microvilli from saturation. Thus, collectively, we consider the

photomechanical adaptations (Appendix 2—figure 2) as a biological manifestation of a

mathematical information maximization function.
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Appendix 2—figure 2. Different temporal ranges of a Drosophila R1-R6 photoreceptor’s intrin-

sic light adaptation mechanisms. Photomechanical adaptations, such as light-induced

intracellular screening pigment migration (pupil mechanism, black; see Appendix 2—figure 1)

and rhabdomere contractions (red; see Appendix 7), operate with refractory photon sampling

by 30,000 microvilli (blue) and their quantum bump dynamics (sample duration and jitter,

green; see Appendix 1) in modulating light input to a photoreceptor, and consequently its

voltage output. Together these mechanisms, which work to eliminate excess photons, enable

efficient encoding of behaviorally important visual information at daylight conditions

(Figures 1–2) by covering a broad range of temporal light changes; with the pupil and

rhabdomere contractions being slower than the photon sampling dynamics.

DOI: https://doi.org/10.7554/eLife.26117.042

To function optimally, the photomechanical adaptations need to regulate input from the

ambient illumination so that the temporal light changes they let through would cause maximal

sample (quantum bump) rate changes (Song and Juusola, 2014). The higher the

photoreceptor’s sample rate changes, the higher its rate of information transfer (Song and

Juusola, 2014). Too bright light would saturate microvilli because most of them would be

rendered refractory, reducing their dynamic sample counts. Conversely, too dim light would

not utilize microvilli population fully, producing low (suboptimal) sample counts. Therefore, the

optimal light intensity throughput for maximum information capture is somewhere between.

This value is expected to depend upon five factors:

. Light intensity time series structure (we consider all the 20 light patterns tested in Figure 1B)

. Number of microvilli (~30,000 in a R1-R6 Drosophila photoreceptor)

. Refractory period distribution of the microvilli (full range: 50–500 ms in a R1-R6 Drosophila

photoreceptor)
. Quantum bump waveform (sample duration)
. Quantum bump latency distribution (‘sample jitter’)

Detailed tests and descriptions of why and how these factors contribute to encoding in fly

photoreceptors are given in our previous publications (Juusola et al., 1994; Henderson et al.,

2000; Juusola and Hardie, 2001b; Juusola and Hardie, 2001a; Juusola and de Polavieja,

2003; Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015).

Hypothesis testing and verification
To test the photomechanical light-screening hypothesis, we simulated voltage responses to 20

different light patterns (Figure 1B) at 15 different light intensity (or brightness) levels, which

ranged from 5 � 104 to 1 � 106 photons/s (5, 6, . . ., 9 � 104; 1, 2,. .., 9 � 105; 1 � 106). In

each simulation, the stochastic photoreceptor model generated 20 independent responses to

the given 2-seconds-long (2000 points) light pattern of a given intensity, following the
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published procedures (Song and Juusola, 2014). These 20 responses were used to estimate

the model’s rate of information transfer for that specific stimulus pattern (1/20) at that specific

light level (1/15). So all together, we could have simulated 20 repeated photoreceptor outputs

to 300 (20 � 15) different 2,000-points-long stimulus patterns. But because the model’s

maximum information transfer rate estimates turned out to be relatively straightforward to

determine for many light patterns (cf. Appendix 2—figure 3), the total number of simulations

never reached this limit. Nevertheless, being computationally expensive, the stochastic

simulations took months to complete.

Crucially, in all the simulations, the photoreceptor model was exactly the same. Its

stochastic bump production dynamics (waveform, latency and refractory distributions) were

governed by light-adapted values with every single parameter fixed, and these parameter

values were unchanged in each simulation. The supplement of the reference (Song et al.,

2012) lists these parameter values, which were collected from intracellular experiments or

logically extrapolated to be biophysically realistic for light-adapted Drosophila

photoreceptors. This supplement is downloadable from: http://www.sciencedirect.com/

science/article/pii/S0960982212006343

Figure 3B shows the simulated voltage responses (traces above) that carried the maximum

information transfer rates for the 20 tested light patterns (traces below) and the corresponding

intensity levels (as effective photons/s) that evoked them. The simulations match the overall

size, appearance and dynamics of the real recordings astonishingly well (Figure 1B and

Figure 1—figure supplement 1B), indicating that the photoreceptor model, with its

photomechanics optimizing light input intensity, samples and integrates light information

much like its real-life counterparts. Notice that the optimal light intensity is the same for the

different bandwidth (20, 50, 100, 200 and 500 Hz) stimuli within one BG. But for each BG

(BG0, BG0.5, BG1 and BG1.5) this optimum is different. For example, for BG0, which results in

bursty (high-contrast) stimulation, the optimal light intensity level is ~8�105 photons/s.

Whereas for BG1.5 of low contrast Gaussian white-noise stimulation, this is 10-times lower

(~8�104 photons/s).

We express these intensity levels in units of effective photons/s. This is because,

theoretically, we have deduced the mean photon throughput that effectively fluxes into

microvilli for a Drosophila photoreceptor to sample the best estimates of the given light

stimuli. In other words, if the photomechanical screening mechanisms set the light input

intensity for maximal information capture, as is our hypothesis, then these light intensity values

should also closely approximate the actual photon absorption changes that drive

phototransduction in the real experiments (as recorded intracellularly from wild-type R1-R6

photoreceptors, which have the normal pupil mechanism and photomechanical rhabdomere

contractility; Figure 1 and Figure 1—figure supplement 1B). Note that as the preceding

photomechanical light screening mechanisms eliminate photons, a photoreceptor’s photon

absorption rates will always be considerably lower than the photon emission rates from the

light source.

Because of the remarkable dynamic correspondence between the experiments (Figures 1–

2) and the theory (Figures 3–4) over the whole tested encoding space, we now judge that this

hypothesis must be largely true. Importantly, this realization opens up new ways to analyze

photoreceptor function. For example, by making the general assumption that the input -

photon absorptions (and light emission from our LED light source) - follows Poisson statistics,

we could further estimate the lower information transfer rate bound for each tested light

intensity pattern (as absorbed by an average R1-R6 photoreceptor), and consequently the

upper bound for the Drosophila photoreceptor’s encoding efficiency (e.g. Figure 2D,

Figure 2—figure supplement 1D and Figure 4D). More details about this assumption and the

analysis are given at the end of this appendix (Appendix 2).
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New insight into maximal visual encoding of different stimulus
statistics
The reasons why and how the optimal light intensity input (that drives a photoreceptor’s

information transfer maximally) is different for bursts and Gaussian white-noise stimulation are

summarized in Appendix 2—figure 3. Here we assess both cases using data from the

stochastic Drosophila R1-R6 photoreceptor model simulations, starting with light bursts.

Bursts
(Appendix 2—figure 3A-–D). These light intensity time series characteristically contain periods

of longer dark contrasts, intertwined with brief and bright contrast events, as shown for 100

Hz bandwidth stimulation (Appendix 2—figure 3A, dark-yellow trace). Based on our previous

analyses (Song and Juusola, 2014), longer dark contrasts help to recover more refractory

microvilli than equally-bright stimuli without these features, improving neural information

capture. This makes it more difficult for bursty stimuli to saturate the photoreceptor output. By

increasing the stimulus intensity 8-fold, here from 1 � 105 to 8 � 105 effective photons/s,

simply evoked larger macroscopic responses. These, thus, integrated more samples (bumps);

as indicated by the larger (black) and smaller (blue) trace, respectively.

Because noise changes little in light-adapted photoreceptor output (Juusola et al., 1994;

Juusola and Hardie, 2001b, Juusola and Hardie, 2001aJuusola and Hardie, 2001a;

Song et al., 2012; Song and Juusola, 2014) (Figure 2—figure supplement 2), the larger

responses to brighter bursts have higher and broader signal-to-noise ratio, SNRoutput(f),

(Appendix 2—figure 3B). This, in turn, results in higher information transfer rate estimates,

Routput (Appendix 2—figure 3C), following Shannon’s equation (Shannon, 1948):

Routput ¼
Z

¥

0

ðlog2½SNRoutputðf Þþ 1�Þdf (A2.1)

Note that with 1 kHz sampling rate used in every experiment, this estimation did not

integrate information rate for frequencies from 0 to infinite, but from 2 to 500 Hz instead.

However, the limited bandwidth would not considerably affect estimation results because: (i)

high-frequency components have SNR <<1 and therefore contain mostly noise. (ii) Whereas

even a high SNRoutput(f) contains little information in its low-frequency components, below 2

Hz. Note also that we have previously shown the generality of Shannon’s information theory

for estimating information transfer rates of continuous (analogue) repetitive responses,

irrespective of their statistical structure (Juusola and de Polavieja, 2003; Song and Juusola,

2014). That is, for sufficient amount of data, Shannon’s equation and triple extrapolation

method, which is free of signal and noise additivity and Gaussian distribution assumptions,

give comparable rate estimates. Thus, these estimates should evaluate the simulations’ relative

information rate differences truthfully; i.e. consistently with only small errors.

Markedly, a photoreceptor’s performance is systematically better to the brighter bursts

(black line) than to the less bright ones (blue line), irrespective of their bandwidth

(Appendix 2—figure 3C). Thus, for the brighter bursts, more microvilli are dynamically

activated, generating larger sample rate changes. These bumps sum up larger (and more

accentuated – see [Song and Juusola, 2014]) macroscopic responses, packing in more

information than the corresponding responses to the less bright bursts.
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Appendix 2—figure 3. Estimating optimal light intensity for 100 Hz high-contrast bursts and

Gaussian white-noise (GWN) stimuli for a R1-R6 photoreceptor’s maximal information transfer.

We hypothesize that the role of photomechanical adaptations, which include the intracellular

pupil and contracting rhabdomere (Appendix 7) of a photoreceptor, is to maximize

information capture of microvilli by dynamically adjusting the light input falling upon them.

The left side of the figure shows how encoding of light bursts (A–D) depends upon light

intensity; the right side shows the same for GWN (E–H). (A) Owing to sufficient dark periods, a

photoreceptor’s sampling units (microvilli) have enough time to recover from their

refractoriness even after they have responded to very bright bursts. This enables a

photoreceptor to maintain a large pool of available microvilli to sum up high sample (bump)

rate changes to any new incoming input, generating larger macroscopic responses to the

brighter bursts (8 � 105 photons/s, black) than to the less bright bursts (105 photons/s, blue).
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(B) Macroscopic responses with larger sample rate changes (black trace, grey area) have

higher and broader signal-to-noise ratios (Song and Juusola, 2014). (C) Correspondingly, as

the sample sizes (bumps) are similar to both stimuli (cf. Figure 2—figure supplement 2B), the

larger responses carry a higher information transfer rate (Song and Juusola, 2014),

irrespective of the tested stimulus bandwidth. (D) Therefore, a photoreceptor’s information

transfer rate to bursty inputs increases with light intensity, until the sample rate changes

eventually saturate at 8 � 105 photons/s; when most of 30,000 microvilli become refractory (i.

e. more microvilli are refractory than available to be light-activated). (E) A R1-R6 generates

similar size responses to the brighter (8 � 105 photons/s, black) and the less bright (105

photons/s, blue) GWN inputs. But the response to the less bright input shows more high-

frequency modulation. (F) Consequently, the response to the less bright input (blue area) has

higher and broader signal-to-noise ratio than the response to the brighter input (grey area).

(G) This is reflected also in the photoreceptor’s information transfer rate, regardless of the

GWN bandwidth. (H) Information transfer rate in macroscopic photoreceptor output to GWN

stimulation saturates at 8-times less bright intensity levels than to bursts (D), reaching its

maximum at 105 photons/s.

DOI: https://doi.org/10.7554/eLife.26117.043

However, because a Drosophila photoreceptor has a finite amount of microvilli, each of

which - once activated by a photon’s energy - stays briefly refractory, its sample rate changes

and thus signaling performance first increases monotonically until about 6 � 105 photons/s,

before gradually saturating, and eventually decreasing, with increasing burst brightness

(Appendix 2—figure 3D). The photoreceptor model’s maximum information transfer rate

estimate (Rmax = 631 ± 31 bits/s; marked by a square) for 100 Hz bright bursts is reached at

the optimal stimulus intensity of 8 � 105 effective photons/s. In other words, this is the amount

light the photomechanical adaptations, including the intracellular pupil mechanism and

rhabdomere contractions (see Appendix 7), should let through (to be absorbed) in bright

daylight for the fly to see bursty real-world events best. The corresponding performance

estimate with the less bright bursts (105 effective photons/s) is 493 ± 12 bits/s (circle).

Gaussian white noise
(GWN, Appendix 2—figure 3E–H). Because GWN lacks long dark contrasts, refractory

microvilli have fewer chances to recover (Song and Juusola, 2014). Consequently,

photoreceptor output to GWN begins to show signs of saturation at lower light intensity

levels. Appendix 2—figure 3E shows responses to 100 Hz bandwidth GWN with the mean

intensity of 1 � 105 (blue) or 8 � 105 (black) effective photons/s, respectively. Both responses

are about the same size, but the one to the brighter stimulation carries less high-frequency

modulation. As more microvilli become refractory, smaller sample rate changes (modulation)

map light changes into macroscopic responses. (How refractoriness dynamically modulates

bump counts and macroscopic response waveforms was analyzed in detail recently (Song and

Juusola, 2014), and thus is not repeated here). Hence, the response to the brighter GWN

(black/grey) has lower and narrower signal-to-noise ratio (Appendix 2—figure 3F) over the

frequency range than the responses to the 8-times less bright GWN (blue). Naturally, the same

holds true for the photoreceptor’s information transfer rate estimates (Appendix 2—figure

3G); the less bright GWN gives consistently a better performance (blue), irrespective of the

used stimulus bandwidth.

Again, the amount of microvilli and their refractoriness curb a photoreceptor’s signaling

performance. But to minimize their impact on encoding GWN, the photomechanical screening

needs to be more restrictive, letting in less light. With brightening 100 Hz GWN

(Appendix 2—figure 3H), the model’s information transfer rate first steeply increases until its

peak (Rmax = 369 ± 15 bits/s; marked by a circle) at 105 photons/s, and then swiftly declines as

progressively more microvilli become refractory and fewer samples are being produced. The

corresponding transfer rate estimate for 8 � 105 photons/s GWN is 249 ± 17 bits/s (square).

Notice, however, that although these results quantify the optimal photon absorption rate for

generating maximally informative responses to GWN, such performance is far from the
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models’ estimated information capacity of 631 bits/s (cf. Appendix 2—figure 3D and

Figure 4C).

Simulations’ maximal information transfer largely match those of
recordings
We next compare the maximum information transfer rate estimates (squares) of the model

simulations to those of corresponding in vivo recordings (circles) for all BG0 (bursts) and BG1

(GWN) stimuli (Appendix 2—figure 4). The simulated performance is very close to the

measured mean performance for all the tested stimuli, typically falling within the standard

deviation of the recordings’ information transfer.

In further inspection, two interesting observations can be drawn from this data. First, for

the GWN stimuli, irrespective of their bandwidth, the maximum information transfer rate

estimates of the model (dotted line) are just a few bits/s (1–10%) higher than the

corresponding mean estimates of the real recordings (continuous line). These small differences

are probably caused by recording noise. Second, the simulations to bursty stimuli carry less

information than the corresponding best recordings, and the recordings show variations in

their information transfer.

Appendix 2—figure 4. Information transfer rate estimates, Routput, of in vivo recordings and

model simulations show similar encoding dynamics. (A) Comparison of corresponding

information transfer rates of R1-R6 recordings and stochastic model simulations to light bursts

and Gaussian white noise (GWN) stimuli of different bandwidths. The recorded and simulated

information transfer estimates correspond closely over the whole tested encoding space (cf.

Figure 2—figure supplement 1 and Figure 4). (B) Their differences to light bursts help to

identify extra information in the recordings, which likely comes from the lamina network

(through gap-junctions (Wardill et al., 2012) and feedback synapses [Zheng et al., 2006]) to

individual photoreceptors. The clear variability between different recordings from individual

cells (continuous thin lines) indicates that some R1-R6s may receive up to 200–250 bits/s of

information from the network, whereas others receive less (cyan background). Some

recordings likely contained more instrumental/experimental noise (pink background), which

could render their information transfer rates (in particular to low-frequency bursts) less than
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that of the model; some of this noise likely comes from low-frequency eye and photoreceptor

movements (cf. Figure 2—figure supplement 2). Thick line and error bars give the average

information transfer rate difference between the recordings and the model (~0–50 bits/s). The

data implies that the extra network information to R1-R6s in vivo is mostly at high burst

frequencies (100–500 Hz).

DOI: https://doi.org/10.7554/eLife.26117.044

Each R1-R6 receives different amounts of information from the
network
In Appendix 2—figure 4B, the difference in information rate estimates between the

corresponding recordings and simulations to the bursty stimuli is plotted for each complete

recording series (thin lines) of individual cells. The thick line gives the mean difference to all

these cells’ performance. Most noticeably, some photoreceptor cells carry ~100–200 bits/s

more information from the bursty stimuli, but many other cells also show information rates that

surpass the model’s performance (see also Figure 5). Any information surplus (cyan

background) presumably comes from the lamina network (Zheng et al., 2006; Wardill et al.,

2012); through gap-junctions and feedback synapses from the cells that sample information

from the same small visual area (due to neural superposition [Vigier, 1907b; Vigier, 1907a;

Agi et al., 2014]). The photoreceptor model lacks this network information.

Appendix 2—figure 5. Synaptic connectivity between neurons within a lamina cartridge.

Synapse numbers color-coded as indicated by the column on the right. Large monopolar cells,

L1-L5; amacrine cell, Am; C2 and C3 are retinotopic centrifugal fibers from the next synaptic

processing layer, medulla. Image from (Rivera-Alba et al., 2011).

DOI: https://doi.org/10.7554/eLife.26117.045

In fact, each of the six R1-R6s, which pool their inputs in the same lamina cartridge for feed-

forward synaptic transmission, should show different information transfer rates. This is because

the lamina connections are asymmetric (Appendix 2—figure 5). Electron micrographs have

shown that R1, R2, R3, R4, R5 and R6 make different amounts of feedback synapses with the

lamina interneurons (Meinertzhagen and O’Neil, 1991; Rivera-Alba et al., 2011). Most

feedbacks are provided by neurons belonging to the L2/L4 circuits (Meinertzhagen and

O’Neil, 1991; Rivera-Alba et al., 2011). Whilst same-cartridge connections are selectively

from L2 to R1 and R2 and from L4 to R5, all R1-R6s receive feedback signals from L4 of
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neighboring cartridges. There are further connections from Am to R1, R2, R4 and R5, and glia

are also synaptically connected to the network (Meinertzhagen and O’Neil, 1991; Rivera-

Alba et al., 2011), but only R6 makes direct gap-junctions (Shaw et al., 1989) with R7 or R8.

These asymmetric functional connections (Zheng et al., 2006) may largely explain the

variability in photoreceptor output (Figure 1—figure supplement 1) and information rates

(Figure 2—figure supplement 1C).

Our recent work (Wardill et al., 2012) further showed that during naturalistic stimulation

R6 can receive up to ~200 bits/s of information from R8, as channeled through gap-junctions

between these cells. Therefore, we infer here that the recordings with the highest information

transfer rates (~850 bits/s) were probably of R6-type, which directly receive extra information

from its R8y and R7y neighbors (Shaw, 1984; Shaw et al., 1989; Wardill et al., 2012)

(Appendix 2—figure 6). Conversely, the recordings, in which information rates were lower

than those of the simulations (Appendix 2—figure 4B, pink background), carried presumably

more recording/experimental noise, with one potential source being minute retinal

movements (see Appendixes 4, 6–9).

Our intracellular recordings establish that during bright light stimulation, the voltage output

of an individual photoreceptor is highly repeatable (cf. Figure 1). Consequently, our recording

system could be used to study variability among individual R1-R6 photoreceptors of the fly

eye. We discovered that for the same stimuli the characteristic output waveforms and

frequency distributions of one particular cell are typically different to those of another

photoreceptor (Figure 5—figure supplement 1), even when recorded from the neighboring

cells in the very same eye (by the same microelectrode). Because the signal-to-noise ratios of

the recordings were very high (Figure 2), sometimes over 6,000, it was evident that the

observed cell-to-cell variability had little to do with the quality of the recordings. Hence, in the

Drosophila retina, R1-R6s show intercellular variability that is far greater than the observed

small intracellular variability.

Appendix 2—figure 6. Gap-junction spread information. Because of axonal gap-junctions

between R6 and R7/R8 photoreceptors in the lamina (Shaw, 1984; Shaw et al., 1989), R1-R6s

that have been genetically engineered to express UV-sensitive Rh3-rhodopsin (‘UV-flies’) can

still respond to green light by different degrees (Wardill et al., 2012). This flow of extra

‘color’- information can be readily identified in intracellular responses of different R1-R6

photoreceptors in the same ‘UV-fly’ to very bright UV (385 nm) and green-yellow (505 nm)

flashes. (A) First cell responded to UV but not to green. (B) Next cell (likely R6 in the same or

neighboring neuro-ommatidium) responded to both UV and green. This cell cannot be R7y/p,

which are less green-sensitive, or R8y/p, which are less UV-sensitive. Inset highlights a
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hypothetical recording path, somewhere close to the retina/lamina border (red arrow), and

gap-junctions (black arrows) between photoreceptor axons. Histaminergic L1 and L2 cells

receive visual information from R1-R6 photoreceptors’ output synapses in the same neuro-

ommatidium. (C) Another cell responded to UV and weakly to green-yellow. Modified from

(Wardill et al., 2012).

DOI: https://doi.org/10.7554/eLife.26117.046

Collectively, these results strongly suggest that every R1-R6, which is pooled in one lamina

cartridge under the developmental neural superposition principle (Agi et al., 2014) to

transmit information about light changes in a small area of visual space to visual interneurons

(L1-L3 and Am) (Meinertzhagen and O’Neil, 1991; Zheng et al., 2006; Zheng et al., 2009;

Rivera-Alba et al., 2011), has, in fact, its own unique output. Besides asymmetric connectivity

within a neuro-ommatidium, some of the observed response variations may also reflect

different recording locations. For example, Drosophila R1-R6s in the front of the eye might

show different responsiveness to those at the back, as already shown for localized

polarization-sensitivity differences (Wernet et al., 2012). Compound eyes of many insects

exhibit structural adaptations that alter their lens sizes and shapes locally, such as bright or

acute zones for increasing sensitivity or resolution, respectively (Land, 1998). Furthermore,

electrophysiological recordings in some fly species suggest that their photoreceptor output

vary across the eyes and could be tuned to the spatial and temporal characteristics of the light

environment (Hardie, 1985; Laughlin and Weckström, 1993; Burton et al., 2001).

Variable sampling matrix protects from aliasing, improving vision
With each R1-R6 having variable ‘network-tuned’ (and possibly ‘location-tuned’) encoding

properties and output, and with each image pixel being sampled through variable size

rhabdomeres (see Appendix 5, Appendix 5—figure 1) and ommatidial lenses (the

photoreceptors’ receptive fields vary; see Appendix 4, Figure 7—figure supplement 1 and

interommatidial angles change progressively from front to back [Gonzalez-Bellido et al.,

2011]), the Drosophila eye should generate reliable neural estimates of the variable world.

This is because a sampling matrix made out of variable pixels (neuro-ommatidia), in which size

and sensitivity show random-like constituents:

. prevents aliasing of image information (Appendix 2—figure 7); see also (Yellott, 1982;

Dippé and Wold, 1985; Juusola et al., 2015).
. mixes color information to the R1-R6 motion vision channel, whitening its spectral sensitivity

(Appendix 2—figure 7E) (Wardill et al., 2012), which is a prerequisite for an optimal motion

detector (Srinivasan, 1985).

Aliasing effects are reduced by sampling faster and/or with finer spatial resolution, and

eliminated by sampling more than twice over the highest stimulus frequency (Cover and

Thomas, 1991). The Nyquist–Shannon sampling theorem establishes a sufficient condition for

a sample rate that enables a discrete sequence of samples to capture all the information from

a continuous-time signal of finite bandwidth. Specifically, it only applies to a class of

mathematical functions having a Fourier transform that is zero outside of a finite region of

frequencies. This condition, however, cannot be fully realized in sensory systems, which show

finite spatiotemporal sampling resolution and evolved around 1/fn-stimulus (Field, 1987;

van Hateren, 1997b) distributions of the real-world objects and events. Because any physical

transformation affects signal and noise equally (data processing theorem [Shannon, 1948;

Cover and Thomas, 1991]) and because real-world low-pass filters, such as a lens, cannot cut-

off sharply at an exact point, but instead gradually eliminate frequency components and

exhibit a fall-off or roll-off slope, aliasing effects would not be removed completely in an

ordered sampling matrix. Therefore, to prevent phantom sensations of aliased signals fooling

the brain and perception of physical reality, sampling matrixes of sensory systems must entail

stochastic variations.
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Appendix 2—figure 7. Projected image of Sin(x2 + y2) function is used to illustrate the effect of

aliasing and how stochastic variability in the sampling matrix combats aliasing effectively. (A) Sin

(x2+y2) is plotted with 0.1 resolution. (B) Under-sampling the same image by an ordered

matrix leads to aliasing: ghost rings appear when the image (of the function) is sampled with

0.2 resolution. Aliasing is a critical problem, as the nervous system cannot differentiate the

fake image rings from the original real image. (C) Sampling the image (A) with a random

matrix may lose some of its fine resolution, due to broadband noise, but such sampling is anti-

aliasing; sampling with random points at 0.2 resolution. (D) Color photoreceptor distributions

across macaque (Field et al., 2010) (red, green and blue cones; left) and Drosophila retina

(Vasiliauskas et al., 2011) (R7y and R7p receptors; right) show random-like sampling matrixes,

suggesting that this sampling matrix sensitivity randomization would have an anti-aliasing role.

(E) Crucially, by integrating and redistributing R1-R6 outputs with additional gap-junctional

inputs from randomized R7/R8 color channels (Wardill et al., 2012) (D) and Appendix 2—

figure 6) for each image pixel during synaptic transmission to LMCs, any broadband sampling

noise should be much reduced and the R1-R6 (motion) channel’s spectral range whitened

(Wardill et al., 2012). Note how LMC output peaks before the corresponding R1-R6 output.

Scale bars: 10 mV / 20 ms. Sub-figure (E) is modified from (Wardill et al., 2012).

DOI: https://doi.org/10.7554/eLife.26117.047

Whilst temporal and topological sampling matrix variations in retinae combat aliasing

(Yellott, 1982; Juusola et al., 2015), their trade-off is broad-band noise (Dippé and Wold,

1985) (Appendix 2—figure 7C; the Python script for these simulations is downloadable from:

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/

AntialiasingByRandomisation). This noise, however, is much reduced (or nearly eliminated) by

parallel sampling of the same information (Song and Juusola, 2014; Juusola et al., 2015). For

example, noise reduction occurs naturally in the fly eye - both in time and in space. In every

R1-R6 photoreceptor, 30,000 microvilli sample discrete information stochastically in time,

generating virtually aliasing-free macroscopic responses of very high signal-to-noise

(Figure 5—figure supplement 1). Whereas, across the lamina neuro-ommatidia of variable

connectivity and spectral sensitivity, neural superposition integrates local R1-R8 signals of

overlapping information from each pixel (a small largely aligned area in the visual space) to

improve the signal-to-noise ratio of the sampled images (see Appendix 5). Such images should

provide the brain reliable and maximally informative estimates of the environment.
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Estimating a R1-R6’s encoding efficiency
A photoreceptor’s encoding efficiency, h, is the ratio between the information rates of the

voltage output, Routput, and the effective light input (photon absorptions), Rinput, that drove it:

h¼ Routput

Rinput

(A2.2)

As we already had determined the maximum photoreceptor output information rates,

Routput (Equation A2.1; Figure 2C, Figure 2—figure supplement 1C and Figure 4C), only the

corresponding information rates of the effective light stimuli, Rinput, needed to be worked out.

Because the output simulations’ maximum information rates matched well the corresponding

mean rates of the real recordings (Appendix 2—figure 6A), we had extrapolated successfully

each effective light intensity (photon absorption) time series that drove the voltage response.

Therefore, we could now estimate the rate of information transfer of the effective light input

by making the following assumptions:

. Photon emission from the light source (LED) follows Poisson statistics; this may or may not be

true (see the discussion below).
. But if true, the effective photons, which survived photomechanical adaptations (Appendix 2—

figure 2) and were absorbed by a photoreceptor and used for calculating Rinput, should also

follow Poisson statistics (Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015;

Song et al., 2016).

Photons are thought to be emitted by the light source, such as the LEDs, at random,

exhibiting detectable statistical fluctuations (shot noise). Such dynamics can be modelled by

Poisson statistics (Song and Juusola, 2014). Therefore, as each light stimulus trace differs

from any other, with their mean equaling their variance, we could estimate through simulations

their average signals and noise, and signal-to-noise ratios, SNRinput(f). The corresponding

information transfer rates, Rinput, could then be estimated by Shannon’s equation

(Equation A2.1). For each tested stimulus pattern, this was done by using the same amount of

simulated input data as with the output data (2,000 points x 20 repetitions) to control

estimation bias. More details and examples about Poisson stimulus simulation procedures are

given in (Song and Juusola, 2014).

. Notice that currently there are no manmade sensors more efficient than the biological photo-

receptors themselves for measuring the photon emissions from the LED light source. There-

fore, we had no good direct methods to measure the LED’s photon rate changes at the same

level of accuracy as the photoreceptor output that it evoked. Accordingly, calculating mutual

information directly between the less accurate light input estimate and the more accurate

photoreceptor output would be both impractical and erroneous.

For the simulated inputs and outputs, the data processing theorem (Shannon, 1948)

dictates that Rinput � Routput; thus h �1 (�100%). If not, then one or both estimates are biased

or incorrect; information cannot be created out of nothing. However, for the efficiency

estimates based on the real recordings, it is quite possible that Routput > Rinput, and thus h >1

(>100%), because R1-R6s receive extra information from the network (Appendix 2—figure 5

and Appendix 2—figure 6) that is missing from the Rinput estimates of an average R1-R6

photoreceptor’s photon absorptions (cf. Appendix 2—figure 4B).

We recognize that there are methodological limitations and unknowns, which may affect

the accuracy and consistency of these estimates:

. Experimental and theoretical evidence suggests that photon output of some light sources

might be sub-Poisson (Teich et al., 1984); meaning, not maximally random. If this were true

for our LED, then our approach would slightly underestimate Rinput, used in the experiments,

and consequently overestimate Drosophila photoreceptors’ encoding efficiency.
. Shannon’s equation can bias information transfer rate estimates for any corresponding light

input and photoreceptor output differently. This is because the signal and noise components

of the input and output may deviate from the expected Gaussian by different amounts. Even
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though we used systematically the same amount of data for both estimates (20 � 2,000 data

points), in the cases where light distribution is skewed (bursty stimuli) but the photoreceptor

output is more Gaussian, it is possible that Shannon’s equation would underestimate input

but not (or less so) output information, causing us to overestimate efficiency.
. Small data chunks limit analyses. In the past, we have compared information transfer rate

estimates, as obtained by Shannon’s equation to those estimated through the triple extrapo-

lation method (Juusola and de Polavieja, 2003), which is directly derived from Shannon’s

information theory. For ergodic data of different distributions, and when appropriately

applied, both methods provided similar estimates (Figure 2—figure supplement 4)

(Juusola and de Polavieja, 2003; Song and Juusola, 2014). However, the triple extrapola-

tion method works best with large sets of data; preferably containing �30 responses to the

same stimulus (Juusola and de Polavieja, 2003). In the current study, because of the practi-

cal limitations (to map a photoreceptor’s whole encoding space within a reasonable time), all

the selected recordings and simulations consisted responses to 20 stimulus repetitions. This

data size was deemed insufficient for an accurate estimate comparison between the two

methods and was not done here. In the analyses, to provide fair comparison between simula-

tions and recordings in all tested conditions, all the data chunks (for the recordings, simula-

tions and stimuli) were exactly the same size (20 � 2,000 points) and they were processed

systematically in the same way (apart from the two exceptions we discuss next). Therefore,

the data-size bias should be under control and the results comparable within these limits.
. Implementation of Shannon’s equation (Equation A2.1) in digital computers typically

requires windowing of the data chunks (for signal and noise) before calculating their power

spectra though Fast Fourier Transfer (FFT). Windowing combats spectral leakage (smearing),

but this affects especially low-frequency signals, in which information content is low. So this

trade-off can be considered reasonable, and its effect on most performance estimates is mar-

ginal. But here as the input and output information transfer is calculated separately, window-

ing affects more 20 Hz GWN light input than its corresponding photoreceptor output. This is

because windowing clips lower frequency power from 20 Hz GWN input, whereas in the sim-

ulated and real voltage responses much of this power is nonlinearly translated (through adap-

tation) to higher frequencies, including those over 20 Hz. The simulated light input, of

course, carries no information on frequencies > 20 Hz, but now it has also lost in windowing

some of its low-frequency modulation, which the photoreceptors could translate into high-

frequency voltage modulation (note, photomechanical phase enhancement can further con-

tribute to this nonlinearity, see Appendix 3). For the two lowest intensity levels only, we

judge that because of this methodological bias, the efficiency estimates for the 20 Hz GWN

input-output data became unrealistic by a small margin of 10–40 bits/s, implying that

Routput > Rinput. Therefore, for data to these two stimuli only, we applied box-car windowing

(instead of the normal Blackman-Harris type), to retain its low frequency information content,

and so to reduce this bias.

Because of all these possible error and bias sources, a Drosophila photoreceptor’s

encoding efficiency (h) estimates given in this publication must be considered as upper

bounds. Nonetheless, for real photoreceptors, it is realistic to expect their maxima to

approach 100%, and in some cells (likely R6s) be beyond, for the tested low-frequency stimuli

(20 Hz). This is because of the extra information from the network, which is missing from the

simulated mean photon absorption estimates. (Note that in the in vivo experiments, the light

source emits at each moment 100–10,000-times more photons than what can be absorbed by

the tested photoreceptor. Thus, the light source’s Rinput
emitted always exceeds a

photoreceptor’s Rinput
absorbed).

Overall, the maximum h values are slightly higher but consistent with our previous

(conservative) estimates of 90–95%, in which the light input intensity to microvilli was inferred

by comparing the wild-type photoreceptor performance to that of white-eye mutants, lacking

the intracellular pupil. Therefore, we conclude (again conservatively) that the error margin of

these new encoding efficiency estimates may reach ±5%.
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Appendix 3

DOI: https://doi.org/10.7554/eLife.26117.048

Similarities and differences in encoding bursts and other
stimuli

Overview
This appendix explains why the encoding of high-contrast bursts is both highly informative and

reliable, proving additional insight to the results presented in Figures 1–6. It also explains how

we generated the different light intensity time series from panoramic images of natural scenes,

following a Drosophila‘s saccadic walking patterns (Figure 6), and how these stimuli were

analyzed and used in the experiments.

Why do bursty responses carry the most information?
Figure 2—figure supplement 3 shows that R1-R6 photoreceptors can sample more

information from high-contrast bursts than from naturalistic light intensity time series (1/fn-

stimuli). We can explain this performance difference by the bursty stimuli’ proportionally more,

and more evenly distributed, long dark contrasts. Such events enable refractory microvilli to

recover efficiently from their previous light-activation so that large numbers of them are

continuously available to sample ongoing light changes; i.e. to transduce photons to quantum

bumps. This leads to larger sample (quantum bump) rate changes and, thus, to a higher rate

of information transfer (see also: Song and Juusola, 2014).

Moreover, fast high-contrast events survive the slower intracellular pupil mechanism

(Appendix 2, e.g. Appendix 2—figure 2) and photomechanical rhabdomere contractions

(Appendix 7) well (Figure 8C). And consequently, fewer photons are being filtered out (lost)

from high-contrast bursts than from naturalistic stimulation (Figure 2—figure supplement 3B,

pink trace) or Gaussian white-noise (grey), which adapt the photoreceptors more continuously

to the given light background. Therefore, at the level of the light source, bursty stimuli can

have much lower power than the other two stimuli to drive photon-to-quantum bump

sampling efficiently by 30,000 microvilli.
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Appendix 3—figure 1. Bursts are informative. Whilst having similar information transfer rates,

the responses to bursty stimuli (left) show higher signal-to-noise ratio within brief (10–100 ms)

perceptually relevant time windows than the responses to Gaussian white-noise (GWN, right).

The data are from the same cell. (A) 25 intracellularly recorded voltage responses to repeated

bursty and GWN light stimuli. Individual responses (superimposed) are shown in light grey and

their mean in black traces. Both of these responses series carry similar information contents

(~350 bits/s), as estimated by Shannon’s equation (see Equation A2.1). (B) The signal (average

response) standard deviation (SD) in 10 ms windows to bursty stimulation vary much more

than that to white-noise. The noise variability (blue traces) in the two sets of responses (SD in

10 ms time windows) is similar. (C) Signal-to-noise ratio is much greater in the responses to

light bursts than to white-noise stimulation; it was calculated as the ratio between signal SD

and noise SD, using 10 ms time resolution.

DOI: https://doi.org/10.7554/eLife.26117.049

Relevance of bursty responses for seeing germane visual patterns
From an information theoretic point of view, the amount of visual information that is encoded

by a photoreceptor can be similar for bursty (phasic) and Gaussian (tonic) signals (Figure 2C;

cf. 20 Hz 0.6-contrast bursts and 100 Hz 0.32-contrast GWN). However, when signal-detection-

theoretic measures are applied, bursts outperform ‘tonic’ GWN signals in indicating visual

‘things’; i.e. the occurrence of perceptually relevant changes in light input. Bursts appear

somewhat like all-or-none events (Appendix 3—figure 1), having much higher local signal-to-

noise ratios in the rising or decaying phases of a photoreceptor’s voltage responses

(Zheng et al., 2006). They tower over the background noise, making their detection much

easier than for the tiny blips of the GWN signals. Accordingly, photoreceptors’ voltage bursts
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support robust transmission of behaviorally relevant visual information and should further

improve the reliability of synaptic transmission and perception (Zheng et al., 2006;

Zheng et al., 2009).

Light intensity time series based on a Drosophila’s walk
By combining a fly’s movement during free walking (Geurten et al., 2014) with natural image

statistics, we estimated light intensity stimuli, which a Drosophila R1-R6 photoreceptor would

face during locomotion through different natural scenes (Figure 6 and Video 1).

To reproduce a fly’s saccadic movements and fixations during its 10 s walk (Figure 6A), we

used the published angular velocity data (Geurten et al., 2014) (Figure 6B; Appendix 3—

figure 2C). This was traced from Figure 1D in (Geurten et al., 2014), using the unobscured

section between 0.05–9.95 s, and re-sampled with 1 ms steps. The velocity was integrated

over time to give the yaw signal (yaw(t)). Both the velocity and the yaw matched the original

published data. Finally, the yaw was wrapped between 0o and 360o.

For generating the light intensity time series stimuli, which a walking fly would experience

in different surroundings, we used six different 360o panoramic images (high-density digital

photographs of natural scenes), taken from the internet (Appendix 3—table 1). These natural

scenes were arbitrarily chosen from Google image search results, and we do not know how

representative their image statistics are, for example, in respect to the van Hateren database

(van Hateren, 1997a). Each image’s left (0o) and right (360o) side were stitched together to

enable continuous viewing over a full rotation. The images were preprocessed in the following

way:

. Because stitching can cause errors (distortions), the lower and upper quarters of the images

were discarded.
. The color images (Appendix 3—figure 2A) were reduced to gray scale, and their gamma

correction was removed, enabling us to use their raw intensity values (Appendix 3—figure

2B).
. For each image, light intensity values were collected from 15 horizontal line scans taken in

regular intervals (from top to bottom; Appendix 3—figure 2B).

Appendix 3—table 1. The used six panoramic high-resolution digital images of natural scenes

were downloaded from:

https://commons.wikimedia.org/wiki/File:Swampy_forest_panorama.jpg

https://commons.wikimedia.org/wiki/File:2014-08-29_11_51_08_Full_360_degree_panorama_from_the_fir-
e_tower_on_Apple_Pie_Hill_in_Wharton_State_Forest,_Tabernacle_Township,_New_Jersey.jpg

https://en.wikipedia.org/wiki/File:Helvellyn_Striding_Edge_360_Panorama,_Lake_District_-_June_09.jpg

https://commons.wikimedia.org/wiki/File:Schleienl%C3%B6cher_Hard_360%C2%B0_Panorama.jpg https://
farm3.staticflickr.com/2820/9296652749_7c502de9e7_o.jpg

http://www.bodenstab.org/panorama/images/Green%20Valley/panorama.jpg

DOI: https://doi.org/10.7554/eLife.26117.050

As each image spanned 360o horizontally, we could calculate the degree-value between

0o and 360o for each pixel (intensity) in the horizontal line scans (Intensity(angle)). The pixel

intensity values (within the chosen horizontal line) were then sampled at the corresponding

yaw positions (Appendix 3—figure 2D; in degrees) of the fly’s walk for each 1 ms time-bin

(Intensity(yaw(t))). This generated unique light intensity time series (Appendix 3—figure 2E),

which mimicked walk-induced photoreceptor stimulation from the given scene. In the

sampling, each yaw value was automatically rounded to the closest pixels angle value

(Appendix 3—figure 2C, blue). Note: this process assumes that, during a free walk, the fly

head would not rotate or move vertically. The Matlab script is in: https://github.com/

JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/PanoramicIntensitySeries.
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We also generated two sets of control light intensity time series data from the same

images. first control: to compare saccadic movements to linear movements (named linear),

we used the same walk’s median yaw velocity of 63.3 o/s (median(abs(angularvel(t))))

(Appendix 3—figure 2D, red traces). second control: we shuffled the angular velocity trace

values (named shuffled; gray traces); this removed all time correlations in the velocity trace

without affecting its histogram. Appendix 3—figure 2E shows two examples of the saccadic

(test) and the two control light intensity time series, taken from two different horizontal scan

lines (scans 8 and 15 in Appendix 3—figure 2B).
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Appendix 3—figure 2. Image processing steps. (A) 360o panoramic natural images were

downloaded from the internet. (B) The images were reduced to gray-scale and their gamma-

correction was removed to expose their underlying intensity differences more accurately. We

then used 15 evenly spaced horizontal (x-axis) line scans to sample their relative intensity

values at different vertical (y-coordinate) position. The white dotted lines show two of these

scan lines. (C) Angular velocities during a free fly’s walk, from (Geurten et al., 2014). (D)

These velocities were translated to a yaw signal (degree values) over time (named saccadic:

blue trace). Red trace shows the linear (median) yaw signal, which corresponds to a fly
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walking in one direction with the fixed speed of 63.3 o/s. The shuffled yaw (gray trace) is

generated by randomly selecting angular velocity values from the recorded walk (in C). (E)

These three different yaw signals (o). were then used to sample intensity values from the

linear line scans (in B; here shown for #8 and #15) at each 1 ms time-bin, generating unique

light intensity time series from the panoramic image. Here the corresponding traces are

shown for the first 4 s to highlight how differences in locomotion cause large differences in

temporal light stimulation (i.e. light input to photoreceptors). Video 1 shows how these

three different walking (or locomotion) dynamics (saccadic, linear and shuffled) affect the

image stream to the eyes, using the panoramic ‘swamp forest’ scene (Figure 6C).

DOI: https://doi.org/10.7554/eLife.26117.051

Light intensity time series analysis – differential histograms
Intensity changes for saccadic, linear and shuffled locomotion dynamics were calculated by

subtracting two neighboring points in each intensity series (using Matlab ‘diff’-function). The

corresponding ‘intensity change’-histograms were calculated from all 15 traces per each

image. Differential histogram was calculated as the mean of the ‘intensity change’-

histograms.

We found (predictably) that the differential histograms of the saccadic light intensity time

series were sparser than those of the corresponding linear light intensity time series stimuli

(of the same median velocity; Figure 6D). This was true for all the tested panoramic images

(Appendix 3—figure 3). Saccadic sampling (blue traces) ‘burstified’ light input. This was

because it increased the proportion of rare large intensity differences between two

consecutive moments in comparison to linear sampling (red); i.e. saccades made the

histogram flanks to reach out further. Furthermore, the fixation periods made it more likely

that light intensity over the neighboring moments remained similar or the same (higher

proportion of zero values). These features are obvious in Video 1.
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Appendix 3—figure 3. Difference histograms of the six panoramic images of natural scenes

(used in this study) as scanned by saccadic (blue) and linear (red) yaw signals of the same

median velocity. Saccadic viewing increased the burstiness (Video 1) and, thus, sparseness in

the difference histograms beyond that of the linear viewing. This was because saccades,

proportionally, generated more large light intensity variations; seen by the extended flanks

of the histograms. Conversely, fixation periods prolonged the periods of similar light

intensities. Thus, the likelihood that the light intensity at one moment would be similar or the

same at the next moment was increased; seen by the histograms’ higher counts for zero

difference.

DOI: https://doi.org/10.7554/eLife.26117.052

Selecting the stimulus patters and their playback velocity
There are important factors to consider when selecting the stimulus series and their playback

velocity for testing how self-motion affects R1-R6 photoreceptors ability to encode

naturalistic stimulation.

A fly photoreceptor’s information transfer rate is limited by (i) the number of its photon

sampling units (Howard et al., 1987; Song et al., 2012; Song and Juusola, 2014;

Juusola et al., 2015) (30,000 and 90,000 microvilli in a typical Drosophila and Calliphora R1-

R6, respectively) and (ii) the speed, (iii) reliability (jitter) and (iv) recoverability (refractoriness)

of their phototransduction reactions (Juusola and Hardie, 2001b; Juusola and Hardie,

2001a; Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015). In general, the

more efficiently the light stimulus utilizes the available microvilli population in generating the

larger sample (quantum bump) rate changes, the higher the photoreceptor’s information
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transfer rate (Song and Juusola, 2014) (see Appendix 2). Consequently, the efficiency of

photon sampling depends upon the stimulus speed and statistics (Juusola and de Polavieja,

2003; Zheng et al., 2009; Song et al., 2012; Song and Juusola, 2014) (Appendix 3—

figure 4). For naturalistic light intensity time series stimulation (NS), we have previously

shown that:

. A R1-R6 photoreceptor’s information transfer increases with stimulus playback velocity until

saturation, when most of its microvilli likely become refractory for most of the time

(Juusola and de Polavieja, 2003; Song et al., 2012; Song and Juusola, 2014;

Juusola et al., 2015) (Appendix 3—figure 4A–C). This information increase results from

the increased entropy rate in photoreceptor output (Appendix 3—figure 4B), as it reliably

packs in more sample rate changes in a given time unit. The corresponding noise entropy

rate (Juusola and de Polavieja, 2003), similar to noise power (Figure 2—figure supple-

ment 2A), remains practically invariable.
. Sample rate changes in R1-R6 output further depend upon the stimulus structure

(Juusola and de Polavieja, 2003; Song et al., 2012; Song and Juusola, 2014;

Juusola et al., 2015) (the distribution of its dark and bright contrasts). For example, R1-R6

output information peaks at lower playback velocity (10 kHz) for NS1, which had fewer long

dark-contrast periods (to recover refractory microvilli) than for NS2 (>20 kHz), which had

more and more evenly spaced dark-contrasts (Appendix 3—figure 4).

For testing how naturalistic saccadic, linear and shuffled locomotion patterns affect

Drosophila R1-R6s’ encoding performance (Figure 6F), we used the three corresponding

light intensity time series stimuli (first 8,000-points) from ‘swampy forest’ panorama (line scan

#8). These stimulus sequences were selected because each of them carried high-contrast

modulation. In the intracellular experiments and model simulations, these stimuli were

repeatedly presented one after another to each tested photoreceptor with 4 kHz playback

velocity. This stimulus speed was chosen because:

. It would cover well the broad velocity range of natural visual inputs to photoreceptors,

including both the slower walking and the faster saccadic flight behaviors.
. Each stimulus could be presented in 2 s, enabling us to collect 30 responses in 1 min and

the three different sets of data in 3 min, keeping the recording conditions under control.
. It evokes high R1-R6 information transfer, which for many high-contrast NS sequences

approaches their maxima (Juusola and de Polavieja, 2003; Zheng et al., 2009) (cf. Appen-

dix 3—figure 4D–E). Theoretically, Drosophila R1-R6 output information rate cannot

exceed ~850 bits/s (Figure 2C), which was evoked by 100 Hz bursts. Such stimulus entailed

the right mix of bright and dark contrasts to optimally utilize a R1-R6’s frequency and ampli-

tude ranges.

These stimuli evoked comparable responses (of high information rates) both from R1-R6

photoreceptors in vivo and the biophysically realistic R1-R6 model (Appendix 1). The

recordings and the simulations showed consistently that the voltage responses to saccadic (i.

e. the most bursty) light intensity time series had the highest information transfer rate

(Figure 6F; Figure 6—figure supplement 1).
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Appendix 3—figure 4. Photoreceptor output information rate depends on the speed and

temporal structure of naturalistic stimulation (NS). (A) Intracellular voltage responses of a

blowfly (Calliphora vicina) R1-R6 to a NS sequence repeated at different playback velocities.

(B) The entropy rate, RS, of photoreceptor responses increases with the playback velocity

until saturation, whereas the noise entropy rate, RN, remains virtually unchanged (cf.

photoreceptor noise power spectra in Figure 2—figure supplement 2A). This improves the

photoreceptor’s encoding performance. (C) Information transfer rate (Shannon, 1948;

Juusola & de Polavieja, 2003) (R = RS RN) increases with playback velocity for four different

NS sequence until saturation. Such dynamics resemble information maximization in

Drosophila photoreceptor output by stimulus bandwidth broadening (Figure 2C). However,

because Calliphora R1-R6s generate quicker responses than Drosophila R1-R6s, their

information transfer saturates at considerably higher stimulus frequencies (Juusola et al.,

1994; Juusola and Hardie, 2001b; Juusola and Hardie, 2001a; Gonzalez-Bellido et al.,

2011; Song et al., 2012; Song and Juusola, 2014), suggesting superior encoding

performance at high saccadic velocities. (A–C) Data is from (Juusola and de Polavieja, 2003)

(Figure 5). (D) Drosophila R1-R6 output shows relative scale-invariance to NS pattern speed.

NS was repeated at different playback velocities and the corresponding intracellular

responses of a R1-R6 are shown above. Responses to four NS velocities are highlighted

(yellow: 1 kHz, 10 s window; cyan: 3 kHz, ~3.3 s window; magenta: 10 kHz, 1 s window; gray:
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30 kHz, ~0.3 s window). (E) The time-normalized shapes of R1-R6 output emphasize similar

aspects in NS, regardless of the used playback velocity (here from 0.5 to 30 kHz). R1-R6s

integrate voltage responses of a similar size for the same NS pattern, much irrespective of its

speed. Mean ± SD shown, n = 7 traces. (D–E) Data is from (Zheng et al., 2009) (Figure 4).

DOI: https://doi.org/10.7554/eLife.26117.053

Finally, we note that it is possible that in scenes with different spatial structure

(particularly lower spatial frequency structure), flies would use different turn velocities to

bring contrast features into ideal sampling range (irrespective of saccades making sampling

shorter). Future studies need to explore whether such a match with saccade statistics exists.
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Appendix 4

DOI: https://doi.org/10.7554/eLife.26117.054

Spatial resolution (visual acuity) of the Drosophila eye
(conventional measure)

Overview
This appendix describes in detail a new method to measure a Drosophila photoreceptor’s

receptive field, and provides important background information about the experimental and

theoretical results presented in Figures 7–9.

In this appendix:

. We test the hypothesis that in the Drosophila eye visual information is integrated laterally in

dim conditions, and fed back synaptically to its photoreceptors, contributing to their spatial

responsiveness.
. We measure dark- and moderately light-adapted wild-type R1-R6 photoreceptors’ receptive

fields by their acceptance angles, Dr, using intracellularly recorded voltage responses to light

flashes, delivered from randomized positions of an orthogonal stimulation array.
. We compare these measurements to those of histamine-mutants (Burg et al., 1993;

Melzig et al., 1996; Melzig et al., 1998) (hdcJK910), in which first-order interneurons are

blind (receiving no neurotransmitter from photoreceptors) and so incapable of feedback-

modulating photoreceptor output.
. We show that the average acceptance angles of dark-adapted wild-type photoreceptors are

10.9% broader than those of the mutant, while light-adapted cells show no such difference.
. We characterize slow spontaneous retinal movements in the Drosophila eye and show how

this activity can influence intracellular photoreceptor recordings.
. Our results suggest that in dim conditions spatial information is pooled in the lamina and

fed-back to wild-type photoreceptors. Such excitatory lateral synaptic modulation, which is

missing in the mutant, increases spatial sensitivity, broadening the photoreceptors’ receptive

fields.

Optical limits of the fly compound eyes’ visual acuity
Visual acuity is defined as the minimum angle that the eye can resolve. In the fly compound

eye, if each ommatidium constitutes a sampling point in space, then the eye’s maximal spatial

resolution is set by the density of its ommatidial array (Snyder et al., 1977). Suppose a regular

pattern of black and white stripes is presented to a fly. The maximum spatial frequency that

the fly can resolve, ns, is achieved when one ommatidium points to a black stripe and its

adjacent ommatidium points to the next white stripe (Appendix 4—figure 1A). Thus, the

interommatidial angle (Snyder and Miller, 1977), Dj, is the key parameter in determining ns.

For the compound eyes with hexagonal layout, as is the case of most flies, the effective

interommatidial angle, Dje (Appendix 4—figure 1B), can be calculated as:

D’e¼ cos 30
�� �

D’¼
ffiffiffi

3
p

2
D’ (A4.1)

Thus, the upper limit of the fly eye’s visual acuity is given by:

ns ¼
1

2 D’eð Þ ¼
1

ffiffiffi

3
p

D’ð Þ
(A4.2)

Whether this limit is achieved or not depends upon the spatial performance of a

photoreceptor (Snyder, 1977). However, when estimating a photoreceptor’s receptive field,

which is quantified by its width at half-maximum, or acceptance angle (Warrant and McIntyre,

1993), Dr, we need to consider several contributing factors.
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Firstly, since the ommatidium lens and a photoreceptor’s rhabdomere are very small,

optical quality is strongly affected by light diffraction, of which airy pattern (the point-spread

function) depends upon light wavelength, l, lens diameter, D, rhabdomere diameter, d, and

focal distance, f (Appendix 4—figure 1C). Theoretically, the blurring functions at the

ommatidium lens and rhabdomere tip are both Gaussian and therefore can be combined

(Snyder, 1977) to yield a simple approximation of Dr:

D�¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

D

� �2

þ d

f

� �2

s

(A4.3)

However, owing to the rather complex waveguide properties of small-diameter

rhabdomeres, this formula is somewhat inaccurate. Van Hateren (van Hateren, 1984) and

Stavenga (Stavenga, 2003b; Stavenga, 2003a) found that along a fly photoreceptor’s

rhabdomere only a limited number of light patterns (modes) could be formed and that this

number depends upon the incident angle of light, leading to a smaller actual Dr than what

Equation A4.3 implies.

Another contributing factor is the spatial cross talk, in which a photon escapes the

rhabdomere it first travels in and enters an adjacent rhabdomere (Horridge et al., 1976). Such

an effect is likely to happen when the cross-talk index of the ommatidia/rhabdomere structure

is less than three (Wijngaard and Stavenga, 1975). This was indeed reported for Drosophila

(Gonzalez-Bellido et al., 2011), suggesting that its neural images might have lower resolution

than theoretically calculated from the optics.

Lastly, the intracellular pupil mechanism further affects Dr estimation. Inside each

photoreceptor cell, there are tiny pigment granules that migrate toward its rhabdomere

boundary upon light adaptation (see Appendix 2, Appendix 2—figure 1). These pigments

absorb and scatter light that travels inside the rhabdomere, reducing the light influx

absorbable by its rhodopsin molecules (Kirschfeld and Franceschini, 1969; Boschek, 1971;

Roebroek and Stavenga, 1990). Consequently, the pupil mechanism shapes a

photoreceptor’s angular and spectral sensitivity (Stavenga, 2004a). Moreover, in Appendix 2,

we show by experiments and theory that it further helps to maximize a photoreceptor’s

information transfer; by optimizing the light intensity passing into the rhabdomere.

Appendix 4—figure 1. Classic theories of compound eye optics. (A) It is assumed that the

minimum angle a compound eye can resolve is its interommatidial angle, Dj. (B) The effective

interommatidial angle of an eye with a hexagonal layout, Dje, is smaller than its actual

interommatidial angle, Dj. Equation A4.1 gives their geometrical relation. (C) Light diffraction

at the ommatidial lens and the rhabdomere tip strongly affects the optical quality of the image

pixel that a photoreceptor samples. D = ommatidial lens diameter; d = rhabdomere tip

diameter; f = focal length; l = wavelength. Redrawn from (Land, 1997).

DOI: https://doi.org/10.7554/eLife.26117.055

Rationale for investigating wild-type and hdc R1-R6s’ receptive
fields
The fly compound eyes are small and size-constrained, presumably to save energy and

improve survival (Land, 1998; Laughlin et al., 1998; Niven et al., 2007). This puts their

sensitivity/acuity trade-off under intense evolutional pressure (Snyder et al., 1977;

Laughlin, 1989; Nilsson, 1989; Warrant and Mcintyre, 1992). While an increase in
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ommatidium size would improve photon capture, it would also result in fewer sampling points

(image pixels) in the eye, lowering the resolution of its neural responses (neural images of the

world). In dim conditions, where photon noise is relatively large compared to available

information (signal), the task to enhance visual reliability and sensitivity becomes challenging.

Optical mechanisms, including the widening of photoreceptor receptive fields by pupil

opening (Williams, 1982; Laughlin, 1992; Nilsson and Ro, 1994; Stavenga, 2004a), can

increase the amount of light collected in each ommatidium only to some extent. Yet under

dim illumination, insect visual behaviors appear remarkably robust (Pick and Buchner, 1979;

Warrant et al., 1996; Honkanen et al., 2014), suggesting that their eyes’ neural mechanisms

could successfully overcome the apparent shortfall in photon supply (Warrant, 1999).

Sensitivity can be increased neurally at the cost of decreasing acuity by (i) increasing

photoreceptors’ voltage/light intensity gain (Laughlin and Hardie, 1978; Matić and Laughlin,

1981; Song et al., 2012), (ii) increasing their integration time (temporal summation)

(Skorupski and Chittka, 2010; Song et al., 2012) and (iii) spatially summing information, or

reducing lateral inhibition from neural neighbors (Srinivasan et al., 1982; van Hateren,

1992c; 1993b). Experimentally, spatial summation has been shown to occur in the

directionally-selective motion-detecting (DSMD) neurons of the fly lobula plate

(Srinivasan and Dvorak, 1980), but it is possible that such signals might also reflect upstream

processing in the earlier optic neuropiles (the lamina, medulla and lobula).

Although the fly photoreceptor biophysics for adapting temporal summation are well

characterized (Juusola et al., 1994; Juusola and Hardie, 2001b, Juusola and Hardie,

2001aJuusola and Hardie, 2001a; Song et al., 2012; Song and Juusola, 2014; Hardie and

Juusola, 2015; Juusola et al., 2015) (see Appendixes 1–3), the neural substrate for spatial

summation is less well understood. In the lamina, electrical couplings by gap-junctions were

found only between the photoreceptor axons that share the same optical axis (Ribi, 1978;

Shaw, 1984; van Hateren, 1986; Shaw et al., 1989) in neural superposition. Hence, these

presynaptic connections probably cannot distribute spatial information. Nonetheless,

postsynaptically, the evidence is more suggestive. Intracellular responses of the histaminergic

interneurons (large monopolar cells, LMCs) to narrow (point source) and wide-field light stimuli

match well the theoretical predictions of spatiotemporal summation (Dubs et al., 1981;

van Hateren, 1992a, 1992b). This notion was further advocated by the structural study in the

nocturnal bee Megalopta genalis (Greiner et al., 2005) lamina, which revealed extensive

synaptic connections between adjacent cartridges. Finally, early functional studies of the

housefly (Musca domestica) photoreceptors (Dubs et al., 1981) indicated that quantum

bumps, recorded to dim light at the behavioral threshold, contain additional small-amplitude

events. These were judged not to be generated by the impaled cells but by single photon

captures in their neighbors; with the receptive fields being wider than what were expected

from the optics alone (Dubs, 1982).

In this appendix, we test whether or how spatial information is integrated laterally and fed

back synaptically to photoreceptors, contributing to their acceptance angles, Dr. The tight

coupling between feed-forward and feedback pathways in the photoreceptor-lamina circuit is

known to have crucial roles in maintaining robust adaptation and temporal coding efficiency

(Zheng et al., 2006; Nikolaev et al., 2009; Zheng et al., 2009). Theoretically, similar spatial

information regulation should further improve fly vision. Specifically here, we take advantage

of Drosophila genetics and compare R1-R6 photoreceptor outputs of wild-type and hdcJK910

mutant. Synaptic transmission from hdcJK910 photoreceptors is blocked, making their

interneurons effectively blind (Dau et al., 2016). Therefore, feedback from the mutant LMCs

(and possibly from amacrine cells (Zheng et al., 2006; Hu et al., 2015), Am, which also

receive histaminergic input from photoreceptors) to R1-R6s cannot contain any lateral

modulation, neither inhibitory nor excitatory.

We show that the dark-adapted wild-type R1-R6 photoreceptors’ mean acceptance angles

are 10.9% broader than in the mutant, while no significant differences are found between the

light-adapted cells. We further show how stimulus history and retinal movements affect the

receptive fields in the Drosophila eye. Our results suggest that in dim conditions spatial

information is pooled in the lamina and channeled back to R1-R6 photoreceptors in the form
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of excitatory synaptic modulation, which increases spatial responsiveness by broadening the

cells’ receptive fields.

Measurement and calculation of a R1-R6’s receptive field
A photoreceptor’s receptive field can be estimated electrophysiologically by measuring its

intracellular response amplitudes, Vn, to a light flash intensity, In, at varying angular positions,

an. From all these Vn, In, and an values generated by a complete scan, the receptive field width

can be computed by three different methods as comparatively reviewed below.

Method 1
Vn is clamped to a constant value in a closed-loop system, which accordingly vary In for each

tested light source positions (Smakman et al., 1984; Smakman and Stavenga, 1987).

Sensitivity at each position, Sn, is then defined by:

Sn ¼
Io

In
(A4.4)

where I0 is the intensity required from a point source at the center of the receptive field. The

definition of sensitivity can be equivalently expressed as the light source at an off-axis

position. The off-axis light intensity needs to be 1

sn
fold brighter than the axial one to stimulate

responses of the same amplitude.

After corresponding Sn was computed for every Sn, the sensitivity-angle relation is fitted by

a Gaussian function. The width at the half-maximum of this Gaussian curve is called the

acceptance angle. This is the conventional parameter, Dr, for quantifying the receptive field

width.

Method 2
in which the same light flash intensity In is tested at many different angular positions, is the

most widely used (Wilson, 1975; Horridge et al., 1976; Hardie, 1979; Mimura, 1981;

Gonzalez-Bellido et al., 2011). Initially, the V/log(I) relation of the impaled photoreceptor is

determined at the center of its receptive field by presenting logarithmically intensified flashes

from a point-like light source (through scaled neutral density filters). Vn elicited by the light at

each off-axis angle, Vn, is then substituted into the V/log(I) function to estimate, Ia, the light

intensity that was effectively absorbed by the cell’s photopigments. Angular sensitivity, Sn, is

given by Equation A4.5:

Sn ¼
Ia

In
(A4.5)

Gaussian fitting and the acceptance angle calculation are performed as in Method 1.

Method two is based upon the same principle as Method 1, which is to assess the light

intensity necessary to elicit a criterion response (Warrant and Nilsson, 2006). When the light-

point with intensity I0 is exactly at the optical axis of the cell, sensitivity is the highest with the

response amplitude V0. To evoke Vn = V0 by a light source located at an angular position, an,

it is required that the effective intensity Ia equals to I0. Given the angular sensitivity formula:

Sn ¼
Ia

In
¼ Io

In
(A4.6)

the necessary intensity In would be 1

Sn
fold brighter than Io.

Though Method 2 does not require a closed-loop system and is, therefore, less

experimentally challenging, its effective intensity, Ia, estimation has drawbacks. Fitting V/log(I)

function to a small number of maximum amplitude values, which are adaptation-dependent,

can introduce scaling errors. Whilst its underlying assumptions, that the voltage/(effective

intensity) relation is static and independent of light source position, neglect possible dynamic

and lateral interactions between neighboring cells.
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Nonetheless, the outcomes of both methods are theoretically independent of

photoreceptor biophysics and the test flash intensity. Hence, they enable electrophysiological

receptive field measurements to be compared with those derived from optical, morphological

and waveguide theories.

Method 3
Similar to Method 2, each tested photoreceptor is stimulated by the same light intensity

flashes at different angular positions around its optical axes. Response amplitude Vn to a light

flash coming from an angle an is then normalized to the maximum response evoked by the on-

axis light source, V0. The receptive field is determined by the Gaussian fitting of the relation

between ratios Vn/V0 and incident angle an. This may yield wider half-maximum widths (Dr

values) than the acceptance angles (Washizu et al., 1964; Burkhardt, 1977) estimated by

using Method 1 and Method 2.

We used Method 3 to estimate R1-R6 photoreceptors’ receptive fields from intracellular

recordings, despite its disadvantages; the results would depend on the flash intensity and

would not be fully comparable to other approaches and the previous studies in Drosophila.

Our main rationale was that this method characterizes ‘how well the flies see’ most directly

and reliably, without making any assumptions about lateral interactions between

photoreceptors and LMC feedbacks. Moreover, the method’s limitations should not

compromise our objectives to compare the receptive fields in different genotypes and to

report how these are affected by different light conditions and stimulation history. And

importantly, these receptive field estimates could be directly used in further calculations to

assess the same photoreceptors’ theoretical acuity to detect moving objects, as shown in

Appendixes 6–8. Experimentally, it was also unfeasible to expand our recording set-up either

with a closed-loop system (as in Method 1) or with easily exchangeable neutral density filter

sets for characterizing V/log(I) function (as in Method 2).

25 LED light-point array and LED pads
A R1-R6 photoreceptor’s receptive field was scanned by using an array of 25 light-points,

mounted on a Cardan arm (Appendix 4—figure 2). Each light-point (small light guide end)

subtended an angle of 1.7˚ as seen by the fly, transmitting its light output from its specific LED

(1/25). The system was controlled by 2 channels, both with voltage inputs ranging from 0 V to

10 V. Channel 0 was used to select the light-point while Channel 1 was used to linearly set its

intensity.
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Appendix 4—figure 2. 25 light-point stimulus array. Each tested dark-adapted photoreceptor’s

receptive field (red Gaussian) was assessed by measuring its intracellular responses to

successive flashes from 25 light-points. In light-adaptation experiments, two 39-LED pads, (on

both sides of the vertical stimulus array) provided background illumination. The intact fly was

fixed inside the conical holder, which was placed upon a close-looped Peltier-element system,

providing accurate temperature control (at 19˚C). The rig was attached on a black anti-

vibration table, inside a black-painted Faraday cage, to reduce noise and light scatter.

DOI: https://doi.org/10.7554/eLife.26117.056

Appendix 4—figure 3A shows a typical light-point’s spectral density measured at the light-

guide end. Each light-point had a narrow spectral Peak1 at ~450 nm and a broader Peak2

at ~570 nm, in which intensities and wavelengths are listed in Appendix 4—table 1. Based on

their relatively small variations, all 25 light-points provided reasonably uniform light input,

except the 4-times brighter No.22 (see below). This is because a fly photoreceptor’s response

amplitudes differ only marginally until light intensity changes several-fold, as defined by the

sigmoidal V/log(I) relationship (Matić and Laughlin, 1981). Standard light flashes,

containing ~2 � 106 photons/s at Peak1 and ~3 � 106 photons/s at Peak2, were produced by

setting Channel 1 to an input value of 2 V. Here, the estimated photon counts are given at the

light source, not at the level of photoreceptor sampling. Moreover, in the experiments, to

evoke subsaturating responses, we used a neutral density filter plate to cut the light-point

intensity by 100-fold.

Appendix 4—table 1. Light flash peak wavelengths and intensities delivered by each of the 25

light-points in the stimulus array The given light intensities were measured at the light source by

Hamamatsu Mini C10082CAH spectrometer, before 100-fold neutral density filtering. Thus, these

values are estimated to be 102-3-times higher than the corresponding effective photon rates at

the level of R1-R6 sampling (see Appendix 2—figure 3). Accordingly at the optical axis, the

center LED (No.13), with the neutral density filter on it, evoked subsaturating (~20–35 mV)

responses from Drosophila R1-R6 photoreceptors (Appendix 4—figure 4).
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Light-
Point

Peak1
wavelength (nm)

Peak1 intensity (106

photons/s)
Peak2
wavelength (nm)

Peak2 intensity (106

photons/s)

No.1 448 2.720 571 2.805

No.2 452 1.790 570 2.818

No.3 448 2.618 565 2.900

No.4 451 1.840 576 3.020

No.5 451 2.570 575 3.710

No.6 451 2.214 572 3.640

No.7 452 1.430 575 2.020

No.8 446 2.203 570 2.990

No.9 453 1.465 571 2.350

No.10 451 3.300 578 5.100

No.11 453 1.877 575 3.080

No.12 455 1.763 575 3.020

No.13 451 2.334 575 3.440

No.14 451 2.009 576 2.634

No.15 454 2.400 568 4.480

No.16 452 2.390 572 4.165

No.17 455 3.190 566 3.010

No.18 452 1.990 578 3.320

No.19 455 1.958 578 3.336

No.20 454 1.745 569 2.670

No.21 450 2.642 573 2.314

No.22 452 9.520 572 13.300

No.23 452 2.420 575 3.380

No.24 452 2.658 573 3.284

No.25 452 1.670 570 2.750

DOI: https://doi.org/10.7554/eLife.26117.057

Appendix 4—figure 3. Spectral properties of the light stimuli. (A) Typical spectral density of

the light impulses delivered by the 25-point array. Note the spectra has two prominent

peaks, named Peak1 (~450 nm) and Peak2 (~570 nm). (B) Spectral density of a single LED on

the two Lamina pads, which were used to provide ambient background illumination during

light-adaptation experiments. These spectral intensities (photon counts) were measured by a

spectrometer (Hamamatsu Mini C10082CAH, Japan).

DOI: https://doi.org/10.7554/eLife.26117.058

Light-point No.22 was 4-fold brighter than the others. However, no attempt was made to

correct its intensity for three reasons. Firstly, it was located at the tested receptive fields’

periphery, and thus had limited influence on the measurements. Secondly, because this
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‘error’ occurred stereotypically in every experiment, the brighter No.22 would not bias the

comparative studies (see below). Lastly, having one brighter light-point was beneficial for

other experiments, as will be shown in Appendix 6.

Two Lamina LED pads, each with 39 similar LEDs, provided ambient illumination to

moderately light-adapt the tested photoreceptors. The pads were located at the outer half

and outside each tested cell’s receptive field (Appendix 4—figure 2). Thus, a large portion

of their light projected onto the neighboring photoreceptors. But the pads also illuminated

the whole recording chamber, revealing its spatial structure and possibly inducing spatial

processing in the lamina network. Light from each of the pad’s LEDs peaked at 460 nm

(Appendix 4—figure 3B), delivering estimated ~2 � 105 photons/s.

Pseudo-random receptive field scans
Before recording intracellular voltage responses from a R1-R6 photoreceptor, we located its

receptive field center. This was done by flashing the light-point No.13 (at the center of the

array) and moving the array (with the Cardan arm along its XY-axes) until the maximum

response amplitude was elicited. The array was then locked at this position.

In the dark-adaptation experiments, the photoreceptor faced darkness (Appendix 4—

figure 4A) for 30–60 s before its receptive field was measured. In the light-adaptation

experiments, preselected background illumination (using the LED pads: Appendix 4—figure

2) was turned on 30–60 s before the corresponding receptive field measurement.

Appendix 4—figure 4. Measuring a R1-R6 photoreceptor’s receptive field with intracellular

recordings. (A) Schematic Image of how the LED stimulus array - seen as 25 light-points (light-

guide-ends in a row) was centered by a Cardan arm system in respect to the studied

photoreceptor and the fly eye. (B) Channel 0 input was used to select the LED (light-point) to

be turned on. (C) Channel one input defined light intensity of the selected LED. A standard

light impulse (flash) was produced by a 2 V input, which lasted 10 ms. (D) A photoreceptor’s
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intracellular voltage responses to a complete receptive field scan. These sub-saturating

responses were recorded at 19˚C. Amplitude Vn of each flash response was the local

maxima. V0 is the amplitude of the response to a light flash at the center of the receptive

field (on-axis).

DOI: https://doi.org/10.7554/eLife.26117.059

A complete scan of a photoreceptor’s receptive field comprised 25 subsaturating flashes

from all the light-points, one after another in a pseudo-random order (Appendix 4—figure

4B). Each flash lasted 10 ms, and was 490 ms apart from the next one (Appendix 4—figure

4C). Although this inter-flash-interval largely rescued the photoreceptor sensitivity,

spatiotemporal adaptation might have still affected their responses. For instance, a flash near

the center of the receptive field would light-adapt the cell more than one at the periphery,

possibly causing the response to the next flash to be artificially smaller. Therefore, by

randomizing the order of flash positions - with the Matlab command randperm(25) - we

could reduce this kind of potential adaptation effects.

Channel 0 input was turned on only when Channel one was set to zero V; that is, in the

resting period when all the light-points were off. Otherwise, the transitions of Channel 0

input values would generate running dot images. Each tested photoreceptor’s responses to

2–5 repetitions of pseudorandom scans were averaged (Appendix 4—figure 4D) before the

acceptance angle (or half-maximum width), Dr, of its receptive field was determined

(Appendix 4—figure 5).

Appendix 4—figure 5. Estimating a dark-adapted Drosophila R1-R6 photoreceptor’s recep-

tive field and its half-width. Flash response amplitudes Vn were initially normalized to V0, the

maximum response elicited by an on-axis light-point. A Gaussian curve was then fitted to

these normalized values, yielding an estimate of the receptive field. Half-maximum width of

this Gaussian function, Dr, defined the tested photoreceptor’s acceptance angle. The

schematic fly eye inset clarifies how a single photoreceptor integrates light from the world

spatially through its receptive field (green area), whilst being bounded by the ommatidial

lens system. For a standard measurement, each tested photoreceptor’s intracellular

responses to 2–5 repetitions of pseudorandom scans (as shown in Appendix 4—figure 4)

were averaged.

DOI: https://doi.org/10.7554/eLife.26117.060

Gaussian white-noise (GWN) stimuli
Light-point No.13 intensity was controlled by setting Channel 0 input to 5 V and modulating

Channel one input with a white-noise time series, which had a mean value of 2.5 V and cut-

off frequency of 200 Hz. With these settings, light-point No.13 emitted 2.5 � 106 photons/s

at Peak1 (451 nm) and 3.75 � 106 photons/s at Peak2 (575 nm) on average (Appendix 4—
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table 1). But, as in other experiments, these intensities were reduced 100-fold by neutral

density filtering

Receptive fields of dark-adapted photoreceptors
In every experiment, we first assessed the recorded photoreceptor’s receptive field after

dark-adaptation (Figure 7—figure supplement 1A). Wild-type R1-R6s’ mean acceptance

angle, measured as their receptive fields’ half-maximum width, Dr, was 9.47 ± 0.36˚ (± SEM,

n = 19 cells), ranging from 7.00˚ to 11.65˚. Interestingly, hdcJK910 R1-R6’s receptive fields

were 10.9% narrower (p =0.0397, two-tailed t-test). Their mean, minimum and maximum

acceptance angles were 8.44 ± 0.32˚ (n = 18 cells), 6.18˚ and 11.50˚, respectively.
Because each photoreceptor’s flash response amplitudes, Vn, were directly used to

estimate its receptive field (Figure 7—figure supplement 1B), rather than being converted

to angular sensitivities (see above), the obtained Dr metric depended upon the cell’s output/

input characteristics and the test flash intensity. To ensure that wild-type and hdcJK910

photoreceptors’ Dr comparison was unbiased by variable on-axis light sensitivities, we also

compared their maximum response amplitudes, V0, and V0/Dr relations.

The corresponding V0 values were very similar (Figure 7—figure supplement 1B) and

mostly within 20–35 mV sub-saturated linear range of the photoreceptors’ V/log(I) curves

(Dau et al., 2016). Moreover, in both wild-type and the hdc mutant, the linear correlations

between V0 and Dr reflected only a weak trend of more sensitive photoreceptors (larger V0)

having wider receptive fields (larger Dr) (Figure 7—figure supplement 1C,D).

Together, these findings indicate that the narrower Dr of dark-adapted hdcJK910

photoreceptors neither resulted from altered phototransduction nor was an artefact of this

measurement method.

Receptive fields of light-adapted photoreceptors
A photoreceptor’s Dr measured under light-adaptation (at specific ambient illumination;

Appendix 4—figure 2) should be smaller than during dark-adaption. There are four reasons

for this difference:

. Light-adaptation steepens a photoreceptor’s V/log(I) function (Laughlin and Hardie, 1978;

Matić and Laughlin, 1981; Eguchi and Horikoshi, 1984). This reduces the difference

between I0 and Ia50 (or the effective intensity that could evoke response amplitude V0/2 ),

which in turn leads to a smaller a50 (or the corresponding angular position of Ia50) and thus

to a smaller Dr, as reported by the chosen method.
. Because the test flash intensity was kept unchanged, their contrast would be lower during

light-adaptation than in the dark-adaption experiments, further reducing the Io/Ia50 ratio,

a50 and Dr.
. Light adaptation activates screening pigment migration, narrowing the intracellular pupil

(cf. Appendix 2, Appendix 2—figure 1). The narrower pupil effectively reduces the amount

of light from off-axis angles that can be absorbed by rhodopsin-molecules in the rhabdo-

mere (Hardie, 1979; Smakman et al., 1984; Stavenga, 2004a; Stavenga, 2004b), reduc-

ing Dr.
. Theoretical studies and some experimental data suggest that in dim conditions neural sig-

nal summation from neighboring cells may enhance sensitivity. But in bright conditions, lack

of summation, increased lateral inhibition or both improve image resolution

(Srinivasan et al., 1982; van Hateren, 1992c; 1993a; Warrant, 1999; Klaus and Warrant,

2009).

To quantify how moderate ambient light affects the fly eye’s spatial responsiveness, we

analyzed the receptive fields of six wild-type (n = 6) and eight hdcJK910 (n = 8)

photoreceptors both at their dark- and light-adapted states.

At the dark-adapted state, the acceptance angles of wild-type and hdcJK910 R1-R6s’

receptive fields, Dr, were 9.65 ± 1.06˚ and 8.16 ± 0.62˚ (mean ± SEM), respectively (Box

4.8A). However, owing to the smaller test and control group sizes than in Figure 7—figure
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supplement 1A, this average difference (15.44%), though similar, was now statistically

insignificant (p=0.258, two-tailed t-test).

At the light-adapted state, under the given ambient illumination (Figure 7—figure

supplement 2B), the corresponding Dr values were 7.70 ± 0.52˚ for wild-type
photoreceptors and 6.98 ± 0.46˚ for their hdcJK910 counterparts. Thus, light-adaptation
significantly reduced Dr values from dark-adaptation (p = 3.49�10�4, paired two-tailed

t-test). Switching from the dark- to light-adapted states, wild-type photoreceptors’ receptive

fields narrowed down by 18.44 ± 3.5% (Figure 7—figure supplement 2C), slightly more than

those of mutants, which changed by 13.68 ± 3.37%. Yet, none of these parameters differed

significantly between the wild-type and mutant photoreceptors.

R1-R6 acceptance angles are much broader than the theoretical
prediction
Based on the ommatidium dimensions, as extracted from histological images of fixed/non-

living retinae, and the waveguide optic theory, Stavenga (Stavenga, 2003b) calculated that

the acceptance angles or dark-adapted Drosophila R1-R6 photoreceptors should be from 3.8

to 5.0o (as amended for 16.5 mm diameter ommatidium lens). Yet, our current (Dr = 9.47o;

Figure 7—figure supplements 1 and 2) and earlier (Gonzalez-Bellido et al., 2011)

measurements (Dr = 8.23o; using Method two above) clearly showed that their acceptance

angles in vivo are in fact about twice as large. What kind of physical mechanism(s) could

explain this discrepancy between the theory and measurements?

We briefly introduce here some key points of the new ‘microsaccadic sampling

hypothesis’, which is examined in detail in Appendixes 7–8.

. Living R1-R6 photoreceptors are not still but transiently contract to light (Hardie and

Franze, 2012) (Video 3). We show in Figure 8 (see also Appendixes 7–8) that this causes

considerable horizontal rhabdomere movements (up to 1.4 mm, peaking ~60–150 ms after a

flash onset and returning back slower). As the lens system stays practically put, the rhabdo-

mere tips shift away from the central axis, skewing the light input and narrowing the photo-

receptors’ receptive fields dynamically.
. Rhabdomere contractions also move their tips axially; transiently down the focal plane

(Video 2).
� In a dark-adapted state, rhabdomere tips are elongated upwards (closer to the omma-

tidium lens), and possibly out of focus, collecting light through the lens system over a

wider space. Thus, R1-R6s’ acceptance angles would be broader for light flashes spaced

by normal (500 ms) intervals, which recover refractory microvilli, returning rhabdomeres

to their old positions. But during a bright passing light stimulus, which progressively con-

tracts R1-R6s, their acceptance angles dynamically narrow as the rhabdomeres draw a

bit deeper in the retina.

� At a moderate light-adaptation state (Figure 7—figure supplement 2), the intracellular

pupil mechanism has reduced light input and the rhabdomere lengths should occupy a

position (or set-point), which allows further contractions to light increments (cf. hair cells

in the inner ear [Howard et al., 1988]). However, here, R1-R6s’ acceptance angles would

still be broader for flashes with 500 ms intervals. Thus, the rhabdomeres would return to

their pre-flash positions, which are closer to the lens than during a bright passing light

stimulus.
. Photomechanical R1-R6 contractions are partially levered by the adherence junctions

(Tepass and Harris, 2007) from their rhabdomeres to the above cone cells and epithelial

pigment cells, which form the inner wall of the ommatidium underneath the lens

(Figure 8F). Thus, as the photoreceptors contract to light, their adherence junctions appear

to pull the pigments cells, moving and narrowing the aperture (and the light beam) in the

front of their rhabdomere tips (Video 4).
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Slow Drosophila retina movements
Despite a Drosophila’s head and thorax being immobilized to the conical holder

(Appendix 4—figure 4A), its eyes could still move affecting the electrophysiological

recordings (Kirschfeld and Franceschini, 1969). Retinal movements, caused by spontaneous

intraocular muscle activity, have been described in larger flies (Franceschini et al., 1991;

Franceschini and Chagneux, 1994; Franceschini et al., 1995; Franceschini and Chagneux,

1997; Franceschini, 1998) and treated by different methods, including cooling, anesthesia

and fixing their slightly pulled-out antennae (Smakman et al., 1984).

Here we report possibly related but slower retinal movements in fixed Drosophila

preparations in vivo. Appendix 4—figure 6A shows an example, in which the optical axis of

a R1-R6 photoreceptor moved between two consecutive receptive field scans. In the first

scan, the receptive field center, which was localized by the largest flash response,

corresponded to the light-point No.12. However, the second receptive field scan indicated

that the cell’s optical axis pointed toward the light-point No.10. This displacement

corresponds to an angular movement of ~3o. We found that about 50% of photoreceptors, in

which receptive fields were scanned more than once (8/18 wild-type and 8/16 mutant cells),

displayed similar retinal movements in the range of 1–3.5o. Moreover, these movements

occurred in both front-to-back and back-to-front directions, validating that they were not

equipment related artefacts; for example, not caused by gravitational drift in the 25 light-

point stimulus array (Appendix 4—figure 2).

It has been suggested that recordings from damaged fly photoreceptors may result in (i)

extraordinarily wide acceptance angles, (ii) diminishing sensitivity (Wilson, 1975), or (iii)

markedly asymmetrical receptive fields, attributed to artificial electrical coupling between

neighboring cells (Smakman and Stavenga, 1987). To ensure that high-quality Dr

measurements were presented in this study, we only considered data from photoreceptors in

which intracellular responses were stable and repeatable, and their receptive fields

reasonably symmetrical. However, we acknowledge that Drosophila eye movements can

inadvertently affect the receptive field assessment accuracy.

The slow retinal movements and drifts that shift R1-R6 photoreceptors’ receptive fields

are likely driven by eye muscle (Hengstenberg, 1971) activity. These movements can

modulate light input to photoreceptors, causing spontaneous dips and peaks in their output

during continuous repetitive stimulation, as is sometimes seen during long-lasting

intracellular recordings (Appendix 4—figure 6B). Because this additional input modulation

seems largely occur in the timescale of seconds, it should reduce mostly the low-frequency

signal-to-noise ratio in the R1-R6 output. In this study, to obtain as good estimates as

possible of the Drosophila photoreceptors’ encoding capacity, we only used data from the

very best (most stable) recording series. These recordings (Figures 1–2; Figure 1—figure

supplement 1; Figure 2—figure supplement 1) showed very little or no clear signs of such

perturbations.
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Appendix 4—figure 6. Retinal movements in the Drosophila eyes shift photoreceptors’ recep-

tive fields, modulating their light input and hence the transduced voltage output. (A) A R1-R6

photoreceptor’s receptive field shifted between consecutive measurements to 25 light-point

stimuli. The first scan showed that the receptive field center was closest to light-point No.12;

while in the second scan, the peak response was evoked by the light-point No.10. The

difference between the optical axes, as indicated by the two scans, was ~3o. (B) Examples of

R1-R6 photoreceptors’ intracellular responses that show slow spontaneous voltage drifts,

saccades, jumps or modulation (red arrows and boxes) during repeated light intensity time

series stimulation from a fixed point source. Characteristically, these perturbations do not

correlate with the light stimuli but are erratically superimposed on the responses’ normal

adapting trends. Because they occur in the time scale of seconds and show variable

rhythmicity, they are likely caused by intrinsic eye muscle activity. Before the recordings, the

light stimulus source (3o light-guide-end, as seen by the fly) was carefully positioned at the

center of each tested photoreceptor’s receptive field.

DOI: https://doi.org/10.7554/eLife.26117.061

Furthermore, in Appendixes 7–8, we quantify how all Drosophila photoreceptors exhibit

fast light-triggered photomechanical micro-saccades, peaking ~100 ms after the stimulus

onset and lasting 0.2–3 s, depending upon the stimulus intensity. These microsaccades

directly modulate light input from the moving objects and consequently photoreceptor

output, and we show through simulations and recordings how they can improve the

spatiotemporal resolution of neural images (Figures 8 and 9; Figure 8—figure supplement

1 and Figure 9—figure supplement 1).
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Conclusions
In this appendix, we described how receptive fields (spatial responsiveness) and acceptance

angles (Dr) of wild-type and synaptically-blind hdcJK910 R1-R6 photoreceptors were

estimated, using intracellular voltage responses to new light-point array stimulation. Their

characteristics in the dark- and moderately light-adapted states, and after prolonged light

stimulation, were compared to test the hypothesis that spatial information summation in the

lamina contributes to Drosophila photoreceptor function. We found that the dark-adapted

wild-type R1-R6s show wider receptive fields. But in steady illlumination, the two

photoreceptor groups’ Dr-estimates adapted similarly.

Could the difference between the dark-adapted wild-type and hdcJK910 receptive field

widths result from recording artefacts? It is well known that LMCs’ hyperpolarizing

intracellular responses to light pulses depolarize the surrounding extracellular space

(Shaw, 1975), seen as the on-transient in the electroretinogram (ERG) recordings

(Heisenberg, 1971). Theoretically, these signals could be picked up by recording

microelectrodes, adding artificial components to the intracellularly measured Vn, and so

making wild-type photoreceptors’ receptive fields appear wider (Hardie et al., 1981).

However, we can essentially rule out this notion because the Gaussian functions, which

quantified the actual recordings, were fitted to their real flank amplitudes rather than to zero

(Appendix 4—figure 5). Consequently, any extra DC component would not affect the

resulting Dr-estimates. Furthermore, our past comparative study, which included different

synaptic mutant flies, failed to find clear signs for ERG contamination in high-quality

intracellular wild-type photoreceptor recordings (Zheng et al., 2006). Whereas by lacking

neurotransmitter histamine, hdcJK910 LMCs cannot respond to light (Burg et al., 1993;

Melzig et al., 1996; Melzig et al., 1998), and thus hdcJK910 photoreceptor recordings

cannot be ERG contaminated. Hence, we conclude that ERG signals could only have

marginal contribution to our results at most.

In fact, the dark-adapted photoreceptors’ Dr-estimates constituted the most reliable data

in this appendix, with the largest number of samples (nwild-type = 19, nhdc = 18 cells) obtained

through consistent recording protocols. In every experiment, the receptive field assessment

in the dark-adapted state was strictly the first examination, following the standard stimulus

centering procedure. This minimized any potential downgrade in the recording quality or

variation in the stimulation history. Notably, our estimate of WT Drosophila R1-R6

photoreceptors’ average receptive field half-width in the dark-adapted state,

Dr = 9.47 ± 0.36˚ (n = 19 cells; see Method 3, above), is reasonably similar to the previous

estimate of 8.23 ± 0.54˚ (n = 11 cells) (Gonzalez-Bellido et al., 2011), which was obtained

through a less stationary recording apparatus/method with more assumptions (see Method

2, above).

The dominant factors determining a fly photoreceptor’s receptive field are optical,

waveguide properties and, particularly for the chosen measurement method, the

phototransduction characteristics (Snyder, 1977; Land, 1997; Stavenga, 2003b,

2003a). For blowflies, it has been shown that the receptive field shape can be largely derived

from the optical structure dimensions with the waveguide theory (Smakman et al., 1984).

Given the hdcJK910 mutants’ seemingly normal ommatidial and rhabdomere optics, as seen in

vivo (Appendix 7) and under electron microscopy (Appendix 5; R1-R6 rhabdomere

diameters, d, were ~96% of the wild-type), and their wild-type like photoreceptor voltage/

intensity relations to brief light pulses (Dau et al., 2016), it is reasonable to expect that their

Dr-estimates would be close to wild-type. This should especially be true in light-adaptation,

which is predicted to make photoreceptor output more independent of its neighbors

(Atick, 2011; van Hateren, 1992c, 1992b). And indeed, we found Dr-estimates of the light-

adapted wild-type and hdcJK910 photoreceptors alike. But because of this conformity, the

10.9% difference between their dark-adapted acceptance angles requires an additional

explanation. Although at the flanks this difference increases (Figure 7—figure supplement

1A), it still may seem rather small when compared to the measured cell-to-cell variation

within each genotype, with the respective maxima being 66% and 88% wider than the
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minima, and its statistical significance becomes less with fewer samples (Figure 7—figure

supplement 2A). Nevertheless, the finding is conceptually important as it supports an

expansion in the classic spatial vision paradigm; from the optical constraints to spatial

information summation in the network (Stöckl et al., 2016).

The dark-adapted wild-type photoreceptors’ wider receptive fields are consistent with

what we know about how synaptic inputs are channeled from lamina interneurons to R1-R6

axons (Meinertzhagen and O’Neil, 1991; Sinakevitch and Strausfeld, 2004; Zheng et al.,

2006, 2009; Abou Tayoun et al., 2011; Rivera-Alba et al., 2011; Hu et al., 2015). Thus, the

corresponding narrower receptive fields of mutant photoreceptors seem most sensibly

attributed to the missing excitatory feedback modulation from their interneurons

(Zheng et al., 2006; Nikolaev et al., 2009; Zheng et al., 2009; Dau et al., 2016). As shown

by intracellular recordings (Zheng et al., 2006; Dau et al., 2016), feedforward and feedback

signals dynamically contribute to photoreceptor and interneuron outputs in vivo. When the

probability of light saturation is low, the stronger synaptic transmission in both pathways

helps to amplify their response amplitudes.

Therefore, taken together with the findings of Dubs et al. (1981) and Dubs (1982), these

results suggest that under dim illumination, lateral excitation spreads synaptically within the

lamina of the fly visual system. Spatial information summation is likely implemented by the

first-order interneurons and fed back to photoreceptors through connections

(Meinertzhagen and O’Neil, 1991; Rivera-Alba et al., 2011) that utilize excitatory

neurotransmitters (Zheng et al., 2006; Hu et al., 2015). This model is further supported by

our anatomical observations (Appendix 5 and Appendix 7), which imply that there are no

major developmental defects in hdcJK910 retina and that their lens systems and rhabdomere

sizes are broadly wild-type-like.
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Appendix 5

DOI: https://doi.org/10.7554/eLife.26117.062

R1-R6 rhabdomere sizes, neural superposition and
hyperacuity schemes

Overview
This appendix shows how R1-R6 rhabdomere diameters vary systematically and consistently in

Drosophila ommatidia and provides supporting background information for the results

presented in Figures 7–9 and Appendix 4.

In this appendix:

. We measure wild-type and hdcJK910 histamine-mutant (Burg et al., 1993; Melzig et al.,

1996; Melzig et al., 1998) R1-R6 photoreceptors’ rhabdomere sizes from the electron micro-

graphs of their retinae.
. We compare these measurements to their electrophysiologically measured receptive field

estimates (Appendix 4).
. We show that the mean wild-type R1-R6 rhabdomere diameter, dR1-R6, is only ~4.1% wider

than in hdcJK910 mutant eyes. This difference may contribute in part to their 10.9% wider

average acceptance angle (Dr) in a dark-adapted state (Appendix 4), but cannot fully explain

it (see also Appendix 7).
. We further show that in both phenotypes R1, R3 and R6 rhabdomeres are systematically

larger than R2 and R4 rhabdomeres. As for the maximum difference, the mean R1 rhabdo-

mere diameter (dR1 = 1.8433 ± 0.1294 mm, mean ± SD) is about 18% wider than that of R4

(dR4 = 1.5691 ± 0.0915 mm, n = 25, p = 2.3419�10�11, 2-tailed t-test).
. These findings imply that each R1-R6 photoreceptor should have a different receptive field

size (coinciding with their considerable Dr variation seen in Appendix 4, Figure 7—figure

supplement 1C).
. Our results further suggest an asymmetric information integration model, in which the neural

superposition of different-sized overlapping receptive fields (of the neighboring R1-R6s) has

a potential to contribute in enhancing Drosophila’s visual acuity beyond the presumed optical

limits of its compound eyes (as revealed by behavioral experiments in Appendix 9).

Readjusting the current theoretical viewpoint
Neural superposition eyes provide more samples from local light intensity changes for each

image pixel, represented by large monopolar cell (L1 and L2) outputs. In the conventional

viewpoint, each pixel’s signal-to-noise improves by
ffiffiffi

6
p

because its L1 and L2 receive similar

inputs from six ‘physiologically identical’ R1-R6 photoreceptors, which sample information

from the same small area in the visual space. Thus, the conventional assumptions and limits for

neural superposition performance are:

. Each R1-R6 functions virtually identically, generating similar outputs to the same light input

. Each R1-R6 in superposition has an identical receptive field size and shape

. The receptive fields in superposition overlap perfectly

. Each image pixel represents sampling and processing within its inter-ommatidial angle

. Inter-ommatidial angle sets the visual resolution of the Drosophila eye

This appendix presents anatomical and theoretical evidence that these assumptions and

limits are overly simplistic and suggests ways the real neural images could be sharpened

beyond them to improve Drosophila vision.

Juusola et al. eLife 2017;6:e26117. DOI: https://doi.org/10.7554/eLife.26117 81 of 149

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.26117


Electron micrographs

Fixation
Flies were cold anaesthetized on ice and transferred to a drop of pre-fixative (modified

Karnovsky’s fixative (Shaw et al., 1989): 2.5% glutaraldehyde, 2.5% paraformaldehyde in 0.1

M sodium cacodylate buffered to pH 7.3) on a transparent agar dissection dish. Dissection was

performed using a shard of a razor blade (Feather S). Flies were restrained on their backs with

insect pins through their lower abdomen and distal proboscis. Their heads were severed,

probosces excised, and halved. The left half-heads were collected in fresh pre-fixative and

kept for 2 hr at room temperature under normal lighting conditions.

After pre-fixation, the half-heads were washed (2 � 15 min) in 0.1 M Cacodylate buffer, and

then transferred to a 1 hr post-fixative step, comprising Veronal Acetate buffer and 2%

Osmium Tetroxide in the fridge (4˚C). They were moved back to room temperature for a 9 min

wash (1:1 Veronal Acetate and double-distilled H2O mixture), and serially dehydrated in multi-

well plates with subsequent 9 min washes in 50%, 70%, 80%, 90%, 95% and 2 � 100% ethanol.

Post-dehydration, the half-heads were transferred to small glass vials for infiltration. They

were covered in Propylene Oxide (PPO) for 2 � 9 min, transferred into a 1:1 PPO:Epoxy resin

mixture (Poly/Bed 812) and left overnight. The following morning, the half-heads were placed

in freshly made pure resin for 4 hr, and placed in fresh resin for a further 72 hr at 60˚C in the

oven. Fixation protocol was kindly provided by Professor Ian Meinertzhagen at Dalhousie

University, Canada.

Sectioning and staining
Embedded half-heads were first sectioned (at 0.5 mm thickness) using a glass knife, mounted

in an ultramicrotome (Reichert-Jung Ultracut E, Germany). Samples were collected on glass

slides, stained using Toluidine Blue and observed under a light microscope. This process was

repeated and the cutting angle was continuously optimized until the correct orientation and

sample depth was achieved; stopping when approximately 40 ommatidia were discernible.

The block was then trimmed and shaped for ultra-thin sectioning. The trimming was necessary

to reduce cutting pressure on the sample-block and resulting sections, thus helping to prevent

‘chattering’ and compression artefacts. Ultra-thin sections (85 nm thickness) were cut using a

diamond cutting knife (DiATOME Ultra 45o, USA), mounted and controlled using the

ultramicrotome. The knife edge was first cleaned using a polystyrol rod to ensure integrity of

the sample-blocks. The cutting angles were aligned and the automatic approach- and return-

speeds set on the microtome. Sectioning was automatic and samples were collected in the

knife water boat.

Sections were transferred to Formvar-coated mesh-grids and stained for imaging: 25 min in

Uranyl Acetate; a double-distilled H2O wash; 5 min in Reynolds’ Lead Citrate

(Reynolds, 1963); and a final double-distilled H2O wash.
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Appendix 5—figure 1. R1-R6 photoreceptors’ rhabdomere sizes differ consistently. (A) Electron

micrographs of a characteristic wild-type (left) and hdcJK910 (right) ommatidia. Each

ommatidium contains the outer receptors, R1-R6, and the inner receptors, R7/R8, which can

be identified by their rhabdomeres’ relative positions. Here R8s are not visible because these

lie directly below R7s. Markedly, both wild-type and hdcJK910 R1-R6 photoreceptor

rhabdomere sizes vary systematically. (B) The mean rhabdomere sizes measured from 25

ommatidia from 10 flies. hdcJK910 R1-R6 rhabdomere cross-sectional areas are smaller than

those of the wild-type cells, but show similar proportional variations. Error bars show SEMs.

DOI: https://doi.org/10.7554/eLife.26117.063

Rhabdomere measurements
Transmission EM images for R1-R6 rhabdomere size comparisons were taken below the

rhabdomere tips, as sectioned 25 mm down from the corneal surface of the ommatidium lens.

25 wild-type and hdcJK910 ommatidia (n = 25) from 10 flies of each phenotype were used to

estimate R1-R6 rhabdomere sizes. The images were processed with ImageJ software. Because

the rhabdomere cross-sectional area is often better approximated by an ellipse than a circle

(Appendix 5—figure 1A), for greater accuracy, its circumference was fitted with an ellipse.

For an EM rhabdomere area, A, its mean diameter was then taken: d ¼ 2�
ffiffiffi

A
p

q

. Note that

the obtained mean rhabdomere diameter estimates are somewhat smaller than the previous

estimates, which measured the minimum and maximum rhabdomere diameters from edge-to-

edge (Gonzalez-Bellido, 2009; Gonzalez-Bellido et al., 2011). Here, instead, we standardized

the measurement protocol to reduce d-estimation bias between the wild-type and hdcJK910
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electron micrographs to obtain straightforward statistical comparisons of their means.

Nevertheless, both these and the previous (Gonzalez-Bellido, 2009) d-estimates indicated

systematic rhabdomere size differences.

R1-R6 rhabdomere sizes differ
Drosophila R1-R6 photoreceptors’ rhabdomere sizes vary systematically and consistently in

each ommatidium (Appendix 5—figure 1B). R1 and R6 rhabdomere cross-sectional areas are

always the largest and R4 rhabdomeres the smallest (Appendix 5—table 1).

Appendix 5—table 1. Statistical comparison of wild-type Canton-S R1-R6 rhabdomere cross-

sectional areas. The table gives the differences as p-values, calculated for 25 ommatidia of 10

flies at the same retinal depth. Red indicates statistically significant difference. R4 rhabdomeres

are smaller than the other rhabdomeres, whereas R1 and R6 are always the largest.

Significance t-test
2-tail

wild-type
R1

wild-type
R2

wild-type
R3

wild-type
R4

wild-type
R5

wild-type
R6

wild-type R1 N/A 5.3626 �
10�7

1.3033 �
10�4

3.6882 �
10�10

1.5564 �
10�5

0.8282

wild-type R2 5.3626 �
10�7

N/A 0.1531 0.0371 0.3760 3.4906 �
10�7

wild-type R3 1.3033 �
10�4

0.1531 N/A 0.0011 0.5736 1.3187 �
10�4

wild-type R4 3.6882 �
10�10

0.0371 0.0011 N/A 0.0047 1.2193 �
10�10

wild-type R5 1.5564 �
10�5

0.3760 0.5736 0.0047 N/A 1.3479 �
10�5

wild-type R6 0.8282 3.4906 �
10�7

1.3187 �
10�4

1.2193 �
10�10

1.3479 �
10�5

N/A

DOI: https://doi.org/10.7554/eLife.26117.064

Theoretically, a fly photoreceptor’s receptive field size depends upon its rhabdomere

diameter, d (Equation A4.3). This relationship was recently supported experimentally by

comparing the rhabdomere diameters and acceptance angle estimates, Dr, of Drosophila

R1-R6 photoreceptors to those of killer fly (Coenosia attenuata), both of which eyes have

rather similar ommatidial lens sizes (16–17 vs 14–20 mm) and focal lengths (21.36 vs 24.70

mm) (Gonzalez-Bellido et al., 2011), cf. Equation A4.3. In ♀ Drosophila, maximum d was ~2

mm and in ♀ Coenosia ~1 mm, while Drosophila’s mean Dr-estimate was 8.23 ± 0.54o and

Coenosia’s 2.88 ± 0.07o (Gonzalez-Bellido et al., 2011). Thus, the wider rhabdomere tip

correlates strongly with the wider receptive field.

Accordingly, with each Drosophila ommatidium hosting R1-R6 rhabdomeres of distinct

size differences (Appendix 5—figure 1B, left; Appendix 5—table 1), the receptive fields of

the neighboring R1-R6, which are pooled together in neural superposition, should differ in

size and overlap broadly. These observations and analysis concur with the broad variability of

the intracellularly measured wild-type R1-R6s’ receptive field widths (Appendix 4:Figure 7—

figure supplement 1A,C).

However, although collectively the mean wild-type R1-R6 rhabdomere cross-sectional

areas (Appendix 5—tables 2,3) are larger than their hdcJK910 counterparts (Appendix 5—

figure 1B), their corresponding diameter differences are small. The average wild-type R1-R6

rhabdomere diameter, (WT dR1-R6 = 1.70 ± 0.15 mm; mean ± SD, n = 150 rhabdomeres;

Figure 5) is only ~4.1% wider than in hdcJK910 mutant eyes (hdcJK910 dR1-R6 = 1.64 ± 0.10 mm;

n = 150 rhabdomeres), as extrapolated from the ellipsoid rhabdomere area fits. Thus,

hdcJK910 photoreceptors’ smaller average rhabdomere diameters can contribute to

their ~ 10.9% narrower Dr (Appendix 4:Figure 7—figure supplement 1A,D), but cannot fully

explain it (Appendix 5—figure 1B, right).
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Appendix 5—table 2. Statistical comparison of hdcJK910 R1-R6 rhabdomere cross-sectional

areas. The table gives the differences as p-values, calculated for 25 ommatidia of 10 flies at the

same retinal depth. Red indicates statistically significant difference. R2, R4 and R5 rhabdomeres

are smaller than R1, R3 and R6 rhabdomeres.

Significance t-test
2-tail

hdcJK910

R1
hdcJK910

R2
hdcJK910

R3
hdcJK910

R4
hdcJK910

R5
hdcJK910

R6

hdcJK910 R1 N/A 4.7387 �
10�10

0.2281 6.3122 �
10�10

1.0125 �
10�10

0.2335

hdcJK910 R2 4.7387 �
10�10

N/A 7.9300 �
10�11

0.7006 0.9897 2.0471 �
10�10

hdcJK910 R3 0.2281 7.9300 �
10�11

N/A 1.9466 �
10�10

5.0272 �
10�12

0.9921

hdcJK910 R4 6.3122 �
10�10

0.7006 1.9466 �
10�10

N/A 0.6830 4.3275 �
10�10

hdcJK910 R5 1.0125 �
10�10

0.9897 5.0272 �
10�12

0.6830 N/A 1.6775 �
10�11

hdcJK910 R6 0.2335 2.0471 �
10�10

0.9921 4.3275 �
10�10

1.6775 �
10�11

N/A

DOI: https://doi.org/10.7554/eLife.26117.065

Appendix 5—table 3. Statistical comparison of wild-type and hdcJK910 R1-R6 rhabdomere

cross-sectional areas. The table gives the differences as p-values, calculated for 25 ommatidia

of 10 flies at the same retinal depth. Red indicates statistically significant difference. The wild-

type and mutant R3 and R4 rhabdomeres are the same size (highlighted in bold); the other

wild-type rhabdomeres are larger than their respective counterparts.

Significance t-test
2-tail

wild-type
R1

wild-type
R2

wild-type
R3

wild-type
R4

wild-type
R5

wild-type
R6

hdcJK910 R1 0.0014 0.0012 0.1434 1.0091 �
10�7

0.0302 0.0015

hdcJK910 R2 1.8211 �
10�11

0.0078 1.5520 �
10�4

0.6952 7.1690 �
10�4

3.5405 �
10�12

hdcJK910 R3 5.1489 �
10�5

0.0073 0.4818 1.8478 �
10�7

0.1415 3.8432 �
10�5

hdcJK910 R4 1.7483 �
10�11

0.0051 1.0904 �
10�4

0.5015 4.9066 �
10�4

3.7421 �
10�12

hdcJK910 R5 9.2505 �
10�12

0.0056 1.0272 �
10�4

0.6710 4.8280 �
10�4

1.5313 �
10�12

hdcJK910 R6 5.6987 �
10�5

0.0083 0.4903 2.8960 �
10�7

0.1480 4.3539 �
10�5

DOI: https://doi.org/10.7554/eLife.26117.066

Theoretical models for spatial hyperacuity
In the Drosophila compound eye, R1-R6 photoreceptors’ mean acceptance angle (Dr ~9.5o)

is on average about twice as wide (see Appendix 4) as its mean inter-ommatidial angle (Dj

~4.5o) (Gonzalez-Bellido et al., 2011). Such an eye design could potentially facilitate spatial

hyperacuity through neural image processing. In the vein of previous suggestions for

manmade optoelectrical systems (Luke et al., 2012) and retinae of other species (Zurek and

Nelson, 2012), we consider three alternative hypothetical scenarios based upon neighboring

R1-R6s’ overlapping receptive fields (RFs) (Pick, 1977).

The first case (Appendix 5—figure 2, left) considers RF variations of the photoreceptors

in neural superposition. An image of an object (here, a thin 1o vertical bar, grey) stimulates

simultaneously eight photoreceptors (R1-R8), which gather light information about the same

area in the visual space by their overlapping RFs (for clarity only R1-R3’ RFs are shown;

orange Gaussians). However, because the rhabdomere diameters, d, vary considerably and
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consistently between them (e.g. R1 and R6 rhabdomere diameters areas are ~18% wider

than those of R4s; Appendix 5—figure 1), so could also be their RF sizes (see Appendix 4,

Equation A4.3), causing overlaps. Six of these inputs (R1-R6) are pooled in the lamina.

Consequently, even a small (1o) displacement of the vertical bar stimulus (grey) could lead to

variable but specific light intensity modulations in each of the six converging input channels.

Their signals to LMCs (L1-L3), which in high signal-to-noise conditions transforms input

modulations into phasic responses (Zettler and Järvilehto, 1972; Järvilehto and Zettler,

1973; Zheng et al., 2006; Zheng et al., 2009; Wardill et al., 2012), could therefore be

different before and after the bar displacement and possibly neurally detectable.

In the second case (Appendix 5—figure 2, middle), six photoreceptor cells of the same

type (say R2s) in the neighboring ommatidia gather light information from the neighboring

small visual areas (~4.5o apart, as separated by the interommatidial angle), but their

receptive fields (~9.5o half-widths) overlap; for clarity only three R2s are shown: orange, blue

and red. Lateral connections (L4, Lawf and Am cells) between lamina neuro-ommmadia could

then be used by LMCs to compare their outputs, enhancing the spatial resolution of each

neural channel (see Appendix 2, Appendix 2—figure 5).

In the third case (Appendix 5—figure 2, right), R1-R6 photoreceptor cells in the same

ommatidium gather light information from the neighboring small visual areas, but their

receptive fields overlap; again for clarity only three: orange (R1), blue (R2) and red (R3) are

shown. Lateral connections (L4, Lawf and Am cells) between adjacent lamina neuro-

ommatidia may enable LMCs to compare their outputs, enhancing the spatial resolution of

each neural channel.

Appendix 5—figure 2. Theoretical ways to neurally improve the optical image resolution in

the fly compound eyes. Left, neural superposition with overlapping photoreceptor receptive

fields. Middle, same type photoreceptors (here R2s) in the neighboring ommatidia (Dj ~ 4.5
o) collect light from neighboring visual areas, but their receptive fields (RFs) overlap, having

twice as large acceptance angles, Dr ~ 9.5 o. Right, neighboring photoreceptors in the same

ommatidium collect light from neighboring visual areas with their RFs overlapping. By

comparing the resulting variable photoreceptor outputs from a small visual object (0.5 o

vertical grey bar), neural circuitry may resolve objects finer than the inter-ommatidial angle

(Dj).

DOI: https://doi.org/10.7554/eLife.26117.067

All these circuit models could theoretically contribute to motion vision hyperacuity, which

occurs when a stationary Drosophila eye resolves object motion finer than its ~4.5o inter-

ommatidial angle (the average sampling point or photoreceptor spacing). And crucially, in

Appendix 10, we use a flight simulator system to demonstrate and quantify Drosophila

hyperacute optomotor behavior to sub-interommatidial stimuli (1-4o). However in Appendix

7-8, we further provide decisive evidence that the spatiotemporal resolution of the early

neural images is improved by synchronized and coherent photomechanical rhabdomere

contractions (Hardie and Franze, 2012), which move and narrow R1-R6s’ receptive fields.

Together with refractory information sampling, this enables photoreceptors to encode space
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in time. Therefore, as the RFs narrow with moving stimuli, this reduces the overlap between

the neighboring RFs and, consequently, affects the potential resolving power of the circuit

models in Appendix 5—figure 2.

We conclude that at the photoreceptor level the overlapping RFs provide neither

necessary nor sufficient mechanistic explanations for the Drosophila spatiotemporal

hyperacuity. However, at the lamina interneuron level, such connectivity arrangements may

further enhance hyperacute vision. It is also possible that any kind of retinal image

enhancement would be further coordinated centrally to match the visual needs of a

locomoting fly. In walking blowflies, intraocular muscles in both the left and right eye seem

to contract synchronously with increasing rates, causing vergence eye movements

(Franceschini et al., 1991; Franceschini and Chagneux, 1994; Franceschini et al., 1995;

Franceschini and Chagneux, 1997; Franceschini, 1998). Finally, we note that in lobula plate

motion sensitive cells, responses to moving visual stimuli increase with locomotion

(Chiappe et al., 2010; Haag et al., 2010; Maimon et al., 2010; Tang and Juusola, 2010),

although there is currently no evidence to relate this phenomenon to hyperacuity, as

characterized here.

Possible dynamics arising from connectivity and variable
rhabdomere sizes
Temporal output modulation through gap-junctions between R1-R6 and R7-R8

photoreceptor axons could further contribute, as a possible network mechanism, to the

acuity improvements that we report in this publication (Figures 7–8; see Appendix 6).

Drosophila R1-R6s have larger rhabdomeres, each with ~30,000 microvilli, whereas those of

R7s and R8s contain only ~15,000. Owing to superposition in each neuro-ommatidium, both

of these photoreceptor classes integrate photons from the same small area in space, but for

given light changes, the macroscopic R1-R6 output rises and decays faster than those of R7s

and R8s. This is because R1-R6 rhabdomeres integrate twice as many samples (quantum

bumps) from the same stimulus and their membranes have likely smaller time constant

(Anderson and Laughlin, 2000). Therefore, at each moment in time, R1-R6 and R7-R8

outputs carry a dynamic phase difference. If their responses were to antagonize each other

through the gap-junctions between R6 and R7/R8 axons (Shaw, 1984; Shaw et al., 1989;

Wardill et al., 2012), similar to the crosstalk between Calliphora R7 and R8 outputs

(Hardie, 1984), phasic R1-R6 output components could be enhanced even further.
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Appendix 6

DOI: https://doi.org/10.7554/eLife.26117.068

Neural images of moving point-objects (R1-R6 recordings
vs. classic predictions)

Overview
This appendix describes a new method to measure Drosophila photoreceptor output to

moving dots, and shows how these responses provide much higher visual resolution and

motion blur resistance than what is predicted by the classic theories, supporting the results in

Figures 7–9.

In this appendix:

. We measure how well dark- and moderately light-adapted wild-type Drosophila R1-R6 pho-

toreceptors resolve bright dots (point-objects), which cross their receptive fields at different

speeds.
. We compare these intracellular recordings to those of histamine-mutants, hdcJK910

(Burg et al., 1993; Melzig et al., 1996; Melzig et al., 1998), in which first-order interneurons

are blind (receive no neurotransmitter from photoreceptors) and thus incapable of feedback-

modulating the photoreceptor output.
. We further record voltage responses of blowfly (Calliphora vicina) R1-R6 photoreceptors to

moving point-objects, as an additional test of our experimental setup, stimulus paradigm and

mathematical analyses, validating this method.
. We evaluate the wild-type and mutant recordings against their respective classic model simu-

lations, in which each recorded receptive field is convolved by the same cell’s impulse

response.
. Our results indicate that both wild-type and hdcJK910 R1-R6s resolve moving dots about

equally well, and significantly better than the corresponding classic model simulations.
. These findings demonstrate that the classic deterministic photoreceptor models

(Srinivasan and Bernard, 1975; Juusola and French, 1997; Land, 1997) for resolving mov-

ing objects grossly underestimate the visual resolving power of real photoreceptors.
. Consequently, the classic theory overestimates the effects of motion blur on Drosophila

vision during saccadic behaviors.

Retinal limitations and capacity to resolve moving objects
A single photoreceptor’s voltage responses can give important insight into neural image

processing behind a fly’s ability to detect small objects, whether in high-speed chasing flights

or against a cluttered background (Burton and Laughlin, 2003; Brinkworth et al., 2008).

Theoretically, when a point-object moves uniformly across an array of photoreceptors, each

cell would produce a similar response. But these responses would be displaced in time, t,

which it takes for the object to travel between two adjacent cells’ receptive field centers

(Srinivasan and Bernard, 1975). Thus, the response of the whole array, as a collective neural

representation of the moving point-object, would be a travelling pattern with a mirrored

waveform. Mathematically, this can be extrapolated from a single photoreceptor’s response.

We now apply this classic approach to simplify the questions about neural images of moving

point-objects and compare its predictions to R1-R6s’ spatiotemporal responses.

First, we consider the problem of neural latency compensation in motion perception. This is

related to the flash-lag effects observed in humans (Krekelberg and Lappe, 2001;

Nijhawan, 2002). Due to the inevitable phototransduction delays, every sighted animal should

encounter this problem and Drosophila is not an exception. At 19˚C, its photoreceptors’
voltage responses rise ~10 ms from the light flash and peak 15–30 ms later (Juusola and

Hardie, 2001b). Given that a fly’s saccadic turning speed (Fry et al., 2003) in flight can

exceed 1000 o/s, such delays need compensating by network computations. Otherwise, neural
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images of its surroundings could lag behind their actual positions by more than 25o, making

fast and accurate visual behaviors seemingly infeasible.

Such compensations have been shown to occur early on in vertebrate eyes. In the tiger

salamander and rabbit retina, ganglion cells’ firing rates lag behind flashing but not moving

bars (Berry et al., 1999). Whether similar processing happens in insect eyes is unknown. By

analyzing Calliphora, wild-type Drosophila and hdcJK910 R1-R6 output to a point-object

crossing their receptive fields, we find their time-to-peak values broadly similar to those

evoked by light flashes. Therefore, these lag times are not, or at most weakly, compensated

by the signal spread between photoreceptors.

Second, we examine whether R1-R6 output to point-object motion displays directional

preference, as suggested by the asymmetric synaptic feedback to them (Meinertzhagen and

O’Neil, 1991; Rivera-Alba et al., 2011). While both L1 and L2 monopolar cells mediate a

major neural pathway in the lamina, L2s show richer connectivity. Only L2 projects feedback to

R1-R6 and have reciprocal connections with L4, which in turn connects to L4s of the

neighboring neural cartridges (Braitenberg and Debbage, 1974), providing further feedback

to photoreceptors (Meinertzhagen and O’Neil, 1991; Rivera-Alba et al., 2011). We find that

whilst the photoreceptors’ peak responses show no clear directional preference, their rise and

delay time courses to front-to-back and back-to-front moving point-objects often differ

significantly. Although it is still possible that these differences may in part be augmented by

the asymmetric network feedback, we show in Appendixes 7–8 that they actually originate

from photomechanical R1-R8 contractions (Hardie and Franze, 2012).

Third, we investigate whether network regulation affects R1-R6 cell’s spatiotemporal acuity.

By using the classic approaches (Srinivasan and Bernard, 1975; Juusola and French, 1997;

Land, 1997), we estimate the theoretical blur effects and the eye’s ability to resolve bright

dots moving at certain speeds. Furthermore, we apply the Volterra series, a widely used

‘black-box’ modeling method (Marmarelis and McCann, 1973; Eckert and Bishop, 1975;

Gemperlein and McCann, 1975; Juusola et al., 1995b; Korenberg et al., 1998), to simulate

wild-type and hdcJK910 R1-R6 output to these point-objects (Juusola et al., 2003; Niven et al.,

2004). Remarkably, the simulations make it clear that these models cannot predict the

recordings accurately (see Appendix 1 and Figures 7 and 8G–I).

Spatiotemporal resolution of the eye is thought to be determined by two components with

special characteristics: the static spatial resolution of light input, as channeled through the

optics (Srinivasan and Bernard, 1975; Hornstein et al., 2000), and the temporal response

dynamics of photoreceptors. These characteristics are further influenced by the

photoreceptors’ adaptation state and synaptic feedback. The classic approaches suggest that

because wild-type R1-R6s’ acceptance angles (Dr) are 10.9% wider than those of hdcJK910 but

their response dynamics are similar (see Appendix 4), they should produce blurrier images (of

wider spatial half-width, S). Moreover, as hdcJK910 R1-R6s lack synaptic feedback modulation

(Dau et al., 2016), their predicted higher acuity should reflect differences in spatiotemporal

photon sampling dynamics. Our recordings show, however, that both wild-type and hdcJK910

R1-R6s resolve moving dots at least twice as well what the classic theory predicts, and that any

resolvability difference between these cells largely disappears against a lit background. Thus,

in dim conditions, lateral summation within the network may sensitize R1-R6 output by

trading-off acuity, whereas in bright conditions more independent photoreceptor output

sharpens neural images. Nonetheless, the classic theory cannot account for these dynamics, as

it greatly overestimates the effect of motion blur on photoreceptor output.

We later demonstrate in Appendixes 7–8 how and why the model simulations (of this

appendix) differ from the corresponding recordings. Essentially, this is because the classic

theoretical approaches do not incorporate two interlinked biophysical mechanisms that are

critical for high acuity. (i) Rapid photomechanical photoreceptor contractions (Hardie and

Franze, 2012) accentuate light input dynamically by shifting (front-to-back) and narrowing the

cell’s receptive field as moving bright point-objects enter in its view. While (ii) stochastic

refractory photon sampling by microvilli accentuates the temporal dynamics in R1-R6 output.

These mechanisms work together to improve the acuity and resolvability of moving objects far

beyond the predictions of the classic models.
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Moving visual stimuli
The 25 light-point array and LEDs pads, which we used for creating images of moving objects

and providing ambient illumination, respectively, are described in Appendix 4. In the

Drosophila experiments, the 25 light-point array was placed 6.7 cm away from the fly,

subtending an angle of 40.92o. This gave each light-point (dot) 1.7o size and minimum inter-

dot-distance. In the Calliphora experiments, these parameters were 17 cm (distance) and

16.73o (viewing angle).

Images of one moving point-object (dot) were produced by briefly turning each light-point

on and off, one after another in an incremental (for front-to-back direction) or decremental

order (for back-to-front direction). Accordingly, Channel 0 input was driven with increasing or

decreasing ‘ramp’ (Appendix 6—figure 3A), while Channel one input was set to 2 V. The

travelling time of an object, or duration of the ‘ramp’, was between 50 ms and 2 s, resulting in

object speeds within naturalistic range (Schilstra and Hateren, 1999; Hateren and Schilstra,

1999; Fry et al., 2003): from 20 to 818 o/s for Drosophila and 8 to 334 o/s for Calliphora.

The ability to resolve two moving point-objects of Drosophila photoreceptors were tested

in dark-and light-adaptation conditions. In light-adaptation experiments, two 39-LED pads, on

both sides of the 25 light-point array, provided background illumination (see Appendix 4,

Appendix 4—figure 2). The two dots in the 25 light-point array were separated by 6.8o (four

dark points in between) and moved together at different speeds; typically, 205, 409 or 818 o/s.

Each stimulus was presented 8–10 times to the fly and the resulting photoreceptor responses

were averaged before being analyzed.

Gaussian white-noise (GWN) stimuli
To evaluate how well the classic theory of fly compound eye optics/function (Srinivasan and

Bernard, 1975; Juusola and French, 1997; Land, 1998) explains single Drosophila R1-R6

photoreceptors ability to resolve moving dots, we needed to estimate each photoreceptor’s

linear impulse response (the first Volterra kernel) separately. The cell’s voltage response to

moving dots could then be predicted by convolving each recorded receptive field by the same

cell’s impulse response

Light-point No.13 intensity was controlled by setting Channel 0 input to 5 V and

modulating Channel one input with a Gaussian white-noise (GWN) time series, which had the

mean value of 2.5 V and cut-off frequency of 200 Hz. With these settings, light-point No.13

delivered 2.5 � 106 photons/s at Peak1 (451 nm) and 3.75 � 106 photons/s at Peak2 (575 nm)

on average (cf. Appendix 4—Table 1). Finally, these intensities were reduced 100-fold by

neutral density filtering

Volterra series model of each tested Drosophila R1-R6
The principal assumptions of the Volterra series method are that the system has finite memory

and is time-invariant (Schetzen, 1980). That is, (i) the relationship between output

(photoreceptor voltage response) y(t) and input (light stimuli) u(t) is characterized by an

unchanging impulse response and (ii) y(t) depends only on current and past values of u(t - t) fi

u(t) with limited regression time, t. The continuous form of this input/output relationship is

described by the following equation:

y tð Þ ¼ k0 þ
Z

T

0

k1 tð Þu t� tð Þdtþ
Z

T

0

Z

T

0

k2u t� t1ð Þu t� t2ð Þdt1dt2 (A6.1)

where k0, k1 and k2 are the zero-, first- and second-order time-invariant kernels, which

define the system’s impulse response. T is the finite system memory limit.

Note that the model order is not limited, as expressed only up to second-order in

Equation A6.1, but instead could be extended arbitrarily further. However, it has been shown
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that a light-adapted fly photoreceptor’s response to GWN light intensity time series

stimulation, as used in these experiments, can be approximated well by the linear terms

(Juusola et al., 1994; Juusola et al., 1995a).

Therefore, the estimation of system output was simplified to a linear convolution of input

with zero- and first-order kernels. Each measurement of photoreceptor voltage response and

light stimuli could be fitted into the discrete and simplified form of Equation A6.1 as:

y nð Þ ¼ k0 þ k1 0ð Þu nð Þþ k1 1ð Þu n� 1ð Þþ . . .þ k1 Tð Þu n�Tð Þ
y n� 1ð Þ ¼ k0 þ k1 0ð Þu n� 1ð Þþ k1 1ð Þu n� 2ð Þþ . . .þ k1 Tð Þu n� 1�Tð Þ

..

.

y n�Nð Þ ¼ k0 þ k1 0ð Þu n�Nð Þþ k1 1ð Þu n�N� 1ð Þþ . . .þ k1 Tð Þu n� n�Tð Þ

(A6.2)

The group of Equation A6.2, which approximates Nvalues of photoreceptor output, was

then re-arranged into matrix form:

y nð Þ
y n� 1ð Þ

..

.

y n�Nð Þ

0

B

B

B

B

@

1

C

C

C

C

A

¼

1 u nð Þ u n� 1ð Þ � � � u n�Tð Þ
1 u n� 1ð Þ u n� 2ð Þ � � � u n� 1�Tð Þ

..

.

1 u n�Nð Þ u n�N� 1ð Þ � � � u n�N�Tð Þ

0

B

B

B

B

@

1

C

C

C

C

A

�

k0

k1 0ð Þ
k1 1ð Þ
..
.

k1 Tð Þ

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

(A6.3)

Equivalently, Equation A6.3 could be symbolized as:

Y ¼ P� (A6.4)

where vector Ycontained a sequence of N output values, P was the regression matrix

constructed from the lagged input values, and the column � elements were the kernel values.

The problem of determining a photoreceptor’s Volterra series model was hence broken down

to designing input stimuliu tð Þ and measuring output values y tð Þ to construct matrices P and Y

of Equation A6.4, and estimating �.

u(t) was a GWN series with 200 Hz bandwidth, which thus tested the whole frequency

range of photoreceptor output. Initially, each tested photoreceptor was steady-state-adapted

to the chosen light background (the average brightness of the GWN stimuli) for 30–60 s (see

also Appendix 4). Input was then delivered from the light-point No.13, by setting Channel 0 to

5 V and modulating Channel one input by the GWN series around the mean value of 2.5 V.

Each time series was 3-second-long and was repeated 8–10 times before the responses were

averaged. The first 1.5 s of the recorded data was used to estimate the kernel values.

Photoreceptor output y(t) was sampled at 10 kHz. It was then preprocessed by removing

the mean value and trends, and down-sampled.

Once the matrices Y and P of Equation A6.4 are constructed, there are several approaches

to estimate � with minimal error, such as the least squares regression by using Gram-Schmidt

orthogonalisation (Korenberg et al., 1988; Korenberg and Paarmann, 1989) or Meixner

functions (Asyali and Juusola, 2005). Here, � was approximated by the single value

decomposition method (Golub and Reinsch, 1970; Lawson and Hanson, 1974), in which the

factorization of matrix P and the calculation of its Moore-Penrose pseudoinverse matrix, P+,

were carried out by the command pinv(P) in MATLAB. The linear least-squares estimation of �,

�, was given by:

�¼ PþY (A6.5)

The computed kernels and the second half of GWN stimuli were then substituted to

Equation A6.2 to yield the model prediction of the photoreceptor response. The accuracy, or

fitness, F, of the prediction was quantified by the complement of its mean squared error:
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F¼ 1�MSE¼ 1�
�

y0 � yð Þ2
�

y��yð Þ2
(A6.6)

where y were the actual data measured from the photoreceptor voltage response and y’ were

the values simulated by the mathematical model.

Conventional simulation of intracellular responses to object motion
After determining and testing the Volterra model, we next approximated the light stimuli

(input) delivered by the point-objects crossing a photoreceptor’s receptive field. Since a

photoreceptor’s voltage response was assumed to be linearly correlated to light input, the

response amplitudes to the subsaturating light flashes during the receptive field scans (see

Appendix 4) were also considered linear measurements of the effective intensity from each

light-point. Therefore,um tð Þ, created by one moving point-object, was modelled as 25 intensity

steps, in which amplitudes were proportional to their corresponding flash responses

(Appendix 6—figure 1). The temporal width of each step was calculated according to the

object speed. Similarly, u0m tð Þ of two moving point-objects was constructed from the

superimposition of um tð Þ and um t þ Dð Þ, where D was calculated according to the point-objects’

speed and their separation angle.

Appendix 6—figure 1. Estimating the light input from a moving object. The effective light

stimulus, which was delivered to a photoreceptor by a moving point-object, was estimated by

a linear transformation of the cell’s receptive field. The width of each intensity step was

calculated according to the point-object speed.

DOI: https://doi.org/10.7554/eLife.26117.069

Lastly, a photoreceptor’s voltage response to point-object motion was simulated by

substituting input um tð Þ or u0m tð Þ and the kernels values to the zero- and first-order terms of

Equation A6.2.

Maximal responses to moving dots lag behind their actual positions
Neural images in the fly retina, lamina and medulla are generated by retinotopically mapping

the surrounding light intensity distribution. This means that light coming from each point in

space is sampled and processed by one neural cartridge (or neuro-ommatidia)

(Meinertzhagen and O’Neil, 1991). While a stationary object might be seen by several

photoreceptors belonging to neighboring ommatidia due to their large acceptance angles

(Appendix 4) and overlapping receptive fields (Appendix 5), the object position is almost

certainly perceived on the photoreceptor’s optical axis. This position, along its corresponding

lamina/medulla cartridge below, produces the largest/fastest intracellular responses

(Appendix 6—figure 2; see also Appendix 4) as it channels the maximum light influx into the

rhabdomere (see Appendix 2).
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Appendix 6—figure 2. A R1-R6 photoreceptor’s sensitivity is the highest at the center of its

receptive field. (A) Schematic showing how subsaturating isoluminant light pulses were

delivered at different locations within each tested photoreceptor’s receptive field. (B) The

center stimulus (light-point No.13) typically evoked a response (orange trace) with the larger

amplitude and faster rise-time than any stimulation at the flacks (light-points No.9 and No.10,

respectively). (C) Average voltage responses of six photoreceptors to corresponding center

and side stimulation. (D) Normalized responses make it clear that the responses to the center

stimulus rise faster. (E) Time to the half-width response is significantly briefer (p = 1.39�10�5)

with the center stimulus. However, time-to-peak of the responses to center and side light-

points shows more variability between individual cells (p = 0.125). Mean ± SD; two-tailed

t-test; nwild-type = 6 cells.

DOI: https://doi.org/10.7554/eLife.26117.070

Furthermore, it is customarily assumed that a moving point-object’s position would be

associated with the peak of its neural image. However, this does not necessarily mean that a

R1-R6’s response maximum would indicate the object position. Rather, it is more plausible -

especially during high signal-to-noise ratio conditions (bright stimulation) - that the lamina

circuitry (cf. Appendix 2, Appendix 2—figure 7) would be amplifying more the photoreceptor

signal derivative. This is because the large monopolar cells (LMCs) are then more tuned to

responding to the rate of light changes (Zettler and Järvilehto, 1972; van Hateren, 1992b;

Juusola et al., 1995a; Zheng et al., 2006).

In fact, neural latency might be compensated at the subsequent processing stages in the

visual system, so that the peak of the travelling network response wave would closely follow

the object’s actual position, as is the case of the vertebrate ganglion cells (Berry et al., 1999).

Theoretically, if such ‘correction’ occurred maximally at the single neuron level, it would mark

the coincidence of two events. (i) The neuron’s response would peak as (ii) the object passes

its receptive field center.

To examine whether, or to what degree, neural images of moving objects are compensated

for latency at the first processing stage in the fly R1-R6 photoreceptors, we measured their

intracellular voltage responses while presenting the fly with a bright dot moving at different

speeds.
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Appendix 6—figure 3. Photoreceptor response maxima lag moving objects. (A) Channel 1

input was driven by an incremental ramp to create an image of a bright dot (point-object)

moving from the No.1 light-point to the No.25 (front-to-back). Similar decremental ramps

were used to produce back-to-front motion. (B) Intracellular responses of Calliphora

photoreceptors to a moving point-object showed two response peaks: a large peak at t2,

which corresponded to the moment it travelled pass the cell’s optical axis at t1, and a smaller

peak at t4 caused by the exceptional brightness of light-point No.22, which was turn on at t3. x

was the object’s travelling time. (C) An example of the linear correlation between t2 and x.

Below each data point is its corresponding stimulus (dot) velocity. (D) An example of the linear

correlation between t4 and x. Again, the corresponding dot velocities are shown.

DOI: https://doi.org/10.7554/eLife.26117.071

Appendix 6—figure 3B depicts a typical response waveform of a blowfly (Calliphora vicina)

R1-R6 to a bright moving dot (the point-object in Appendix 6—figure 3A). Let x be the time

needed for it to travel through the 25 light-point array, t1 be the moment when the dot pass

the cell’s optical axis, i.e. the corresponding light-point is turned on, and t2 be when the

intracellular response peaks. With varying x, and thus the dot speed, t1, can be computed as:

t1 ¼ a� x (A6.7)
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where the coefficient a is a constant. The aim was to align the 25 light-point array so that the

point No.13 lies at the tested photoreceptor’s receptive field center. Therefore in theory, a is

approximately 0.48. However, the light-point No.13 might, in fact, be off-axis. For example,

the cell’s receptive field center could lie in between No.13 and No.12, causing inaccuracy in

the calculation of a, t1 and lag time b, which is given by:

b¼ t2 � t1 (A6.8)

To overcome this ambiguity, we plotted t2 againstx, given that:

t2 ¼ t1 þ b¼ a� xþ b (A6.9)

Appendix 6—figure 3C illustrates an example of the relationship between t2 and

xobtained from a Calliphora R1-R6. The two parameters fitted exceedingly well to a linear

relationship (adjusted R-squared >0.9999), in which coefficient a and lag time b were found as

0.486 and 14.62 ms, respectively. These data show that in this particular case, indeed light-

point No.13 was close to the center of the cell’s receptive field and that lag time b was

virtually unchanged for different object speeds. The on-axial position of the light-point No.13

was later confirmed by 11 receptive field scans, all of which indicated that response elicited by

a light flash from No.13 was the largest (data not shown).

The same photoreceptor was also stimulated by repeating a light flash, to which its voltage

response peaked 15 ms later. The small difference between the lag time of motion response

and the response time-to-peak to a flash does not readily imply neural network latency

compensation. In case of the moving stimuli, photoreceptor was stimulated when the dot

entered its receptive field, causing its intracellular voltage to start depolarizing before the dot

reached the cell’s optical axis. Conversely, the photoreceptor’s response to light impulse was

only elicited after the stimulus onset, making its time-to-peak slightly longer than the lag time.

In the classic flash-lag psychological experiment, where a flashing bar and another

uniformly illuminated one travelled together, the former was perceived to be trailing

(Nijhawan, 1994; Brenner and Smeets, 2000). Thus, it is probable that at some stage in the

visual system, the voltage response peak (maximum) caused by moving object would display

shorter delay than those elicited by increasing light intensity. In the present study, the light-

point No.22 was 4-fold brighter than the others, as discussed in Appendix 4, and indirectly

played the role of the flashing bar, causing a ‘local peak’ in a photoreceptor’s voltage

response (Appendix 6—figure 3B). Hence, to further examine neural latency of R1-R6 output,

we next assessed the lag time, b’, corresponding to this peak in the response. Given t3 is the

moment when No.22 was turned on, which can be calculated as:

t3 ¼ a0� x (A6.10)

and is the time of the local response peak (Appendix 6—figure 3), lag time is defined as their

difference:

b0 ¼ t4 � t3 (A6.11)

The relationship between t4 and x could also be described by linear fitting with almost zero

residue (Appendix 6—figure 3D), yielding a’ and b’ values of 0.83 and 13.29 ms, respectively.

These data exemplify that a photoreceptor’s response maxima, no matter whether caused

by a point-object moving across its receptive field or by an unexpected increase in light

intensity, show similar lag time characteristics. Both b and b’ were independent of the object

speed and comparable to the response time-to-peak, as induced by a comparable flash. These

features were reproducible and general; observed in all seven tested Calliphora

photoreceptors, without exception (Appendix 6—table 1).

Appendix 6—table 1. Response latency to dot motion analyses in Calliphora R1-R6s

(Mean ± SD). Intracellular recordings were performed at 19˚C. The tested moving dot (point-

object) velocities were: 334.6, 167.3, 111.53, 83.65, 66.92, 55.77, 47.8, 41.83, 37.18 and 33.46 o/

sec.
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Animal
Flash response time-
to-peak (ms)

Peaks corresponding to the
receptive field center

Peaks corresponding to the
light-point No.22

Lag-time b

(ms) Adj. R-Sqr
Lag-time
b0 (ms) Adj. R-Sqr

Calliphora 14.85 � 0.78 14.6 � 0.64 0.99985 � 0.00012 13.9 � 3.59 0.99985 � 0.00017

n = 7 n = 5

DOI: https://doi.org/10.7554/eLife.26117.072

Drosophila photoreceptors’ voltage responses did not clearly exhibit the ‘local peak’ to

the light-point No.22; possibly owing to their slower temporal dynamics. Nevertheless, the

temporal position of the ‘global peak’, measured by t2 of wild-type (n = 12) and hdcJK910

(n = 3) photoreceptor outputs, consistently showed linear correlation to x and comparable

lag-time/time-to-peak values (Appendix 6—table 2). Their corresponding maxima showed

slightly larger lag time variations, and thus the linear fits were not as error-free as with the

Calliphora data. Nonetheless, overall, the mathematical relation between their peak

response lag time and the object speed appeared similar. The comparable wild-type and

hdcJK910 R1-R6 output maxima to the tested point-object velocities, as recorded from their

somata, suggests that their response dynamics mostly reflect similar phototransduction

processing, with possibly only marginal influence from the lamina network.

Appendix 6—table 2. Response latency to dot motion analyses in Drosophila wild-type and

hdcJK910 R1-R6s (Mean ± SD). Intracellular recordings were performed at 19˚C. The tested

point-object velocities were: 818.4, 409.2, 272.8, 204.6, 163.68, 136.4, 116.91, 102.3, 90.93 and

81.84 o/s. Note, these statistics are collected from individual recordings, not from paired data.

Animal
Flash response
time-to-peak (ms)

Front-to-back Back-to-front

Lag-time b

(ms) Adj. R-Sqr
Lag-time b

(ms) Adj. R-Sqr

Wild-type
Drosophila

23.81 � 1.41 21.41 � 4.5 0.99649 � 0.0065 22.54 � 4.15 0.99378 � 0.007

n = 12 n = 5

hdcJK910 24.4 � 1.08 21.82 � 1.36 0.9992 � 0.0008 23.79 � 5.72 0.9978 � 0.003

n = 3

DOI: https://doi.org/10.7554/eLife.26117.073

Altogether, these data imply that fly phototransduction machinery (see Appendixes 1–2)

samples intensity changes and object motion much the same way. Because its peak

responses lag behind the actual positions of the moving objects, the neural latency of

moving objects is most likely compensated downstream by image processing within the

interneuron networks, starting with the LMCs (cf. Appendix 2, Appendix 2—figure 7E).

Response rise and decay to object motion show directional
selectivity
As summarized in Appendix 6—table 2, Drosophila photoreceptors’ maximum responses to

a front-to-back or back-to-front moving bright dot did not exhibit clear signs of latency

compensation, as indicated by their similar time-to-peak durations (estimated from the

population means of individual unpaired recordings). Interestingly, in the paired recordings,

however, the response rise and decay time-courses often showed considerable latency

modulation.
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Appendix 6—figure 4. Photoreceptor output’s time-to-peak is insensitive to object motion

direction but its waveforms rise and decay faster to back-to-front motion. Examples of

intracellular voltage responses of the same dark-adapted Drosophila photoreceptor to a

bright dot (point-object), which crosses its receptive field in back-to-front (green) or front-to-

back (brown) directions (Mean ± SEM). The insets show a schematic of the compound eye

structure, with the green Gaussian representing a R1-R6’s receptive field. (A–D) Voltage

responses to 409, 205, 136 and 102 ˚/s object speeds, respectively, plotted over the whole

duration of the corresponding stimuli. (E) Whilst the similarly timed respective response

peaks showed no clear directional preference, the response waveforms, nevertheless,

systematically rose and decayed earlier to back-to-front (green) than to front-to-back motion

(brown), irrespective of the object speed. (F) The response rise-time (measured by time to

half-maximal response), decreased with increasing object motion but it was always less to

corresponding back-to-front (green) than front-to-back (brown) motion. This delay difference

(white bars) was significant for all the tested object speeds and varied between 2 and 10 ms

(mean ± SEM, 0.01 � p � 2.18 x 10�14, 9 � n � 12 trials, two-tailed t-test). (G) Because the

response rise and decay times changed in unity, the resulting response half-widths to

corresponding back-to-front and front-to-back object motion were largely similar. (H)
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Accordingly, the response half-width decreased with increasing object motion, but showed

only small (<4 ms) inconsistent differences (bars) between the corresponding back-to-front

and front-to-back object speeds. These results are consistent with the fast light-induced

photoreceptor contractions, which move their receptive fields in front-to-back direction, as

observed directly in high-speed video recordings in vivo (Appendix 7).

DOI: https://doi.org/10.7554/eLife.26117.074

When a R1-R6 contracts to light input, its receptive field moves front-to-back

(Appendixes 7–8). Thus, with the ommatidium lens inverting images, its responses to the

back-to-front dot motion raise systematically slightly earlier (Appendix 6—figure 4E,F). This

rise-time lag reduces because the dot moves against the receptive field motion, whilst the

rise-time lag increases during comparable front-to-back motion when the dot moves along

the receptive field motion. In other words, a dot stayed a bit longer within a R1-R6’s

receptive field during front-to-back motion than back-to-front motion. Such phasic

differences were consistently observed in most recordings over the tested speed range. For

example, 205 o/s back-to-front movement evoked narrower temporal response half-widths in

8/10 R1-R6s than the opposite movement. Similarly, 409 o/s back-to-front movement evoked

narrower temporal response half-widths in 6/10 R1-R6s (in 2 cells, these were identical; and

wider in 2).

Appendix 6—figure 4 depicts intracellular responses to a moving dot, passing a

photoreceptor’s receptive field front-to-back and back-to-front at (A) 409, (B) 205, (C) 136

and (D) 102 o/s.

Although their time-to-peak values appeared similar, the response rise and decay

dynamics showed clear differences (Appendix 6—figure 4E–H), which correlated with the

dot speed and motion direction. We shall later show in Appendix 7, using high-speed video

recordings of photoreceptor rhabdomeres, that their photomechanical contractions

(Hardie and Franze, 2012) occur in back-to-front direction. Light input modulation by these

directional microsaccades can much explain the phasic differences in photoreceptor output

to different directional point-object motions.

In summary, a prominent feature of R1-R6s’ voltage responses to opposing object motion

directions is their similar time-to-peak values. This was found in all somatic recordings of

Calliphora and Drosophila photoreceptors. Intriguingly, though, we further identified small

(2–10 ms) but significant differences in the response rise and decay to front-to-back and

back-to-front object motion. These phasic differences in photoreceptor output can be largely

explained by each cell’s directional photomechanical contractions, and we later show how

these contribute to improving the fly’s visual acuity (Appendixes 7–8). It is plausible that

these directional preferences would be further enhanced downstream at the level of network

processing. During bright stimulation, LMCs respond most strongly to the rate of change in

photoreceptor output (Juusola et al., 1995a; Zheng et al., 2006; Zheng et al., 2009;

Wardill et al., 2012), with the rich connectivity of the optic lobes proving further possibilities

for the required phase coding (Meinertzhagen and O’Neil, 1991; Rivera-Alba et al., 2011;

Wardill et al., 2012; Behnia et al., 2014).

Classic theory greatly overestimates motion blur in R1-R6 output
We showed in Appendix 4 that dark-adapted hdcJK910 photoreceptors have narrower

receptive fields (acceptance angles) than their wild-type counterparts but broadly similar

response dynamics (Figure 7—figure supplement 1). Thus, the prediction is that hdcJK910

R1-R6s should produce slightly sharper neural images than their wild-type counterparts after

dark-adaptation. Classic theoretical approaches have been used to predict how the spatial

and temporal factors might jointly affect visual acuity (Srinivasan and Bernard, 1975;

Juusola and French, 1997). Accordingly here, we first predict with them the motion blur

effects on wild-type and hdcJK910 R1-R6 outputs. Later on, we test the ability of these cells to

distinguish two dots moving together, separated by less than the cell’s acceptance angles.

Since a fast moving bright dot can stimulate several photoreceptors virtually at the same

time (Appendix 6—figure 5A), theoretically, it should not be perceived as a single point but
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a streak, of which length is a function of object speed. This motion blur effect is classically

quantified by the spatial half-width S of object’s neural image. Because the spatial response

in the retina has a similar waveform with the temporal response of a single photoreceptor

(Srinivasan and Bernard, 1975; Juusola and French, 1997), S can be calculated as:

S¼w�Th (A6.12)

where w is the object speed and Th (cf. Appendix 6—figure 4G) is the temporal half-width

of a single photoreceptor response.

Appendix 6—figure 5. Object motion blur according to the classic theory, applied to the neu-

ral images in the Drosophila eye as it was thought to affect them in the past. (A) Hypothetical

spatial pattern of an instantaneous voltage response at an ommatidial array produced by a

moving point-object. Figure redrawn from (Srinivasan and Bernard, 1975). (B) Spatial half-

width of neural image of a moving point-object as a function of its speed in Dim and Bright

conditions. For all the tested speeds, Shdc were significantly smaller than Swild-type
(p = 0.0036–0.049, t-test), except for 205˚/s in Bright condition, where the statistical test

yielded p=0.137. S was calculated using data at 19˚C. Mean ± SEM, nwild-type = 4–15,

nhdc = 3–16, two-tailed student test.

DOI: https://doi.org/10.7554/eLife.26117.075

Appendix 6—figure 5B illustrates the predicted relationship between the object speed

and neural image resolution in wild-type and hdcJK910 Drosophila. These estimates imply that

the spatial half-width of wild-type neural images should be 1-2o wider than that of the

hdcJK910 during both the dim and bright conditions, reflecting wild-type R1-R6s’ wider

acceptance angles (Dr) (see Appendix 4, Figure 7—figure supplements 1A and 2B). This

prediction agrees with the previous theoretical works (Srinivasan and Bernard, 1975;

Juusola and French, 1997), which used similar methods to indicate two distinct regions of

image resolution. Thus, theoretically, at low object speeds, visual acuity should be mostly

determined by a photoreceptor’s spatial receptive field, but at high speeds, the motion-blur

effect should increase rapidly, becoming the dominating factor. The corresponding trend

differences (as separated by a thin dotted line) suggest that the point-object speed

threshold dividing the two regions would be about 100–120 o/s.

Remarkably, however, we next demonstrate how these theoretical predictions greatly

overestimate motion blur effects in R1-R6 output, and that these cells can, in fact, resolve

image details finer than the half-width of their receptive fields, even at very high saccadic

speeds.
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Appendix 6—figure 6. Resolving two moving point-objects. (A) Two light-points (bright dots)

moving together were presented in the tested photoreceptor’s receptive field at 19˚C. The
dots were 6.8˚ apart and travelled at 409˚/s in the front-to-back direction. For clarity, neutral

density filters and the LEDs pads used for background illumination are not shown in this

picture. (B) In Dim, 12 out of 18 wild-type photoreceptors could resolve them, showing the

response waveform depicted by the continuous line, with the larger trailing peak. While six

other could not distinguish the two objects; showing the waveform of by the dotted line. In

Bright, 5 out of 6 examined wild-type photoreceptors resolved the two dots. (C) Response

waveform of hdcJK910 R1-R6s exhibited two distinct peaks, with the leading one was the

larger. In Dim, 15 out of 16 tested mutant photoreceptors could resolve the two objects and

14 of them displayed this waveform. In Bright, all of 8 recorded hdcJK910 photoreceptor

responses resolved the objects. D-values were calculated from the amplitude of the smaller

peak and the dip in between. (D) In Dim, D-values of hdcJK910 R1-R6 responses were

significantly larger than their wild-type counterpart. Dwild-type = 4.51 ± 0.67%,

Dhdc = 10.5 ± 1.35%, p = 0.00075, t-test, nwild-type = 12, nhdc = 15. (E) In Bright, the

difference of D-values of the two photoreceptor groups was statistical insignificant. Dwild-

type = 9.81 ± 1.65%, Dhdc = 16.71 ± 1.86%, p = 0.117, t-test, nwild-type = 5, nhdc = 8. (F). )
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Changing from Dim to Bright condition, D-values of wild-type photoreceptors appeared to

exhibit larger changes than those of mutant photoreceptors. However, the difference was

not statistically significant due to the large cell-to-cell variation. RC wild-type = 262 ± 126%, RC

hdc = 31 ± 11%, p = 0.164, nwild-type = 4, nhdc = 7. (D–F) Mean ± SEM, two-tailed student test.

DOI: https://doi.org/10.7554/eLife.26117.076

In the second type of experiment, two bright dots, which were less than the half-width of

a R1-R6’s receptive field (6.8o) apart, crossed its receptive field at 409 o/s (Appendix 6—

figure 6A). Each tested photoreceptor’s ability to distinguish the dots was assessed whether

its response showed two clear peaks (Appendix 6—figure 6B, solid line) or only one (dotted

line). Quite unexpectedly, even at the low room-temperature of 19˚C, where
phototransduction is slower than at the flies’ preferred temperature of 25˚C (Sayeed and

Benzer, 1996; Juusola and Hardie, 2001b), 12/18 of wild-type R1-R6 photoreceptors and

15/16 hdcJK910 R1-R6s could clearly resolve the two dots. (Note that at 25˚C, every tested

R1-R6 resolved them well; Figure 9—figure supplement 1E–F). Amongst the wild-type

responses, the trailing peak was often larger than the leading one (Appendix 6—figure 6B,

solid line), whereas all but one hdcJK910 R1-R6 had the larger leading peak (Appendix 6—

figure 6C). This observation suggests that excitatory synaptic feedback modulation, which

hdcJK910 photoreceptors lack, may enhance the second peak in the wild-type responses.

Resolvability was further quantified by D-values:

D¼ d

P
% (A6.13)

Where P is the amplitude of the smaller peak and d is the depth of the response dip

between the two peaks (Appendix 6—figure 6C). In darkness, D-values measured from the

mutant photoreceptors were, on average, more than double those of wild-type (Dwild-

type = 4.51 ± 2.33%, Dhdc = 10.5 ± 5.23%), indicating that hdcJK910 R1-R6s resolve the two

points more clearly than their wild-type counterpart (Appendix 6—figure 6D). Under light-

adaptation (ambient illumination), while R1-R6s of both genotypes exhibited significant

improvements in their image resolution (Dwild-type = 9.81 ± 3.7%, Dhdc = 14.85 ± 6.95%), the

difference between the two groups decreased and was at the margin of statistical

significance (Appendix 6—figure 6E; p=0.058, t-test). Taking into account only the cells in

which D-values were measured in both dim and bright conditions, the enhancement of D-

values to the ambient light change was quantified by their relative change:

RC ¼DBright�DDim

DDim
% (A6.14)

On average, wild-type D-values improved by 262%, ranging from 43% to 604%. These

changes appeared to be markedly larger than those observed in hdcJK910 photoreceptors,

which varied from 4% to 89% and averaged as 31%. Yet, the difference between the two

groups was not statistically significant because of the large individual variations

(Appendix 6—figure 6F).

In Figure 7, we further analyze the resolvability of those high-quality wild-type and

hdcJK910 R1-R6s, from which we recorded the impulse response and receptive field

measurements at the two adapting backgrounds - dim and bright at 25˚C, as well as
responses to both 205 and 409 o/s moving dots. Such data allowed us to compare the classic

theory to the real recordings even more thoroughly.

Together, these results show that the theoretical spatial half-width, S, grossly

underestimates R1-R6 photoreceptors’ image resolution. Recordings clarify that two bright

dots that travel 409 o/s can, in fact, be resolved by a single photoreceptor, even when the

dots (6.8o separation) are less than the photoreceptor’s acceptance angle (Dr = 9.5o) apart.

Therefore, a R1-R6 photoreceptor’s real spatial half-width for the same high (saccadic) speed

must be less than half of the theoretical estimate (~15o; Appendix 6—figure 5B). In other

words, the classic theory overestimates the role of motion blur on Drosophila vision, as its

R1-R6 photoreceptors resolve fast-moving dots beyond the predicted motion blur limit.
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The recordings further indicate, consistent with hdcJK910 R1-R6s’ marginally narrower

acceptance angles (Appendix 4, Figure 7—figure supplement 1 and 2), that their

spatiotemporal resolution is somewhat better than that of wild-type photoreceptors, both in

dim and moderately bright conditions. However, when ambient light intensity was changed,

the spatiotemporal resolutions of wild-type R1-R6s improved more. Here, possible

contributing factors include:

. Slight (~4%) differences in the photoreceptors’ rhabdomere diameters (see Appendix 5)

. Dynamic and homeostatic regulation of [Ca2+]i, membrane properties and synaptic feed-

back (Dau et al., 2016)
. Intracellular pupil (see Appendix 2 and Appendix 4)
. Differences in photomechanical rhabdomere contractions (see Appendixes 7–8)
. Electrical coupling between the cells

Their potential roles are further discussed in Appendixes 7–8

Modeling R1-R6 output by the Volterra series method
Volterra kernels of each photoreceptor model were computed from the first half (1.5 s) of

GWN data (https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/

VolterraModelOfPhotoreceptor), before the other half of recorded light stimuli and voltage

responses were used to validate the model. Because the output simulation accuracy depends

upon input statistics and the model computation specifications, the system identification

process was optimized by selecting suitable parameters.

Firstly, to test whether the selected 200 Hz input bandwidth was appropriate

(Appendix 6—figure 7A), we analyzed the resulting signal-to-noise (SNR) ratio of

photoreceptor output (Appendix 6—figure 7B). SNR decayed below 1 at around 66 Hz; at

which point photoreceptor response contained more noise than signal. Thus, the GWN

stimuli predictably activated a R1-R6 photoreceptor’s whole frequency range.

Secondly, we assessed different sampling rates. According to the Nyquist-Shannon

sampling theorem, a signal without frequencies higher than B Hz can be perfectly sampled

and reconstructed (Shannon, 1948) by sampling rate Fs of 2B Hz. Because the bandwidth of

interest was 0–66 Hz, the data could be processed, in theory, at any sampling rate from 132

Hz to the recorded rate of 10 kHz, without compromising its information content.
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Appendix 6—figure 7. Predicting responses to Gaussian white noise (GWN). (A) GWN light

stimulus power spectrum with 200 Hz cut-off frequency. (B) Signal-to-noise ratio (SNR) of a

wild-type R1-R6 photoreceptor’s voltage response at 19˚C. Here, because the mean stimulus

intensity was kept well within the subsaturating range (100-times lower than in the

experiments of the main paper), having 200 Hz bandwidth, SNRmax of the photoreceptor

output was ~ 20 (consistent with high-quality recordings for this specific stimulus condition)

(Juusola and Hardie, 2001a). Noise power exceeded signal power at around 66 Hz. hdcJK910

R1-R6 outputs exhibited similar characteristics (data not shown for clarity). (C) Examples of

kernels computed at different sampling rates from the same raw data. (D) Accuracy of GWN

response simulation by Volterra series models for wild-type and hdcJK910 R1-R6s. Fwild-

type = 86 ± 2.5%, Fhdc = 86.6 ± 1.6%. (E) Simulations of Drosophila R1-R6 responses to GWN

stimuli matched the actual data closely. (B, D) Mean ± SEM, nwild-type = 9, nhdc = 8.

DOI: https://doi.org/10.7554/eLife.26117.077

We found that higher sampling rates yielded models, which predicted R1-R6 output with

slightly higher accuracy. However, their kernels also exhibited larger fluctuations, and the

kernels did not decay to zero over time, most likely due to high-frequency noise. For

Fs = 1,000 Hz and higher, such fluctuations undermined the physiological meaning of the

Volterra first-order kernel (Appendix 6—figure 7C), which is the photoreceptor’s impulse

response (Victor, 1992). Thus, the kernels computed from too richly-sampled data would be

useful only for response prediction to this particular GWN stimulus.

On the other hand, while computations performed with lower Fs data would produce

smoother kernels, a low sampling rate would also limit the model’s other applications. For

example, Volterra series models were used to simulate photoreceptor response to the image

of moving objects created by the 25 light-point array. For an object moving at 409 o/s, its

travelling time across the array was 100 ms, or 4 ms per light-point. As the simulation

required at least two data-points per light-point, Fs was chosen to be 500 Hz, at which rate

reasonably smooth kernels could still be produced (Appendix 6—figure 7C). Moreover,
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because the first-order kernel values decayed to zero at 50–60 ms, it was deemed that a 80

ms kernel length was sufficient for the computations.

Volterra series models, computed from data sampled at 500 Hz, could consistently predict

response of Drosophila photoreceptors to GWN stimuli (for example, see Appendix 6—

figure 7E). On average, the model simulation accuracy, given by Equation A6.6, was ~86%

for both wild-type and hdcJK910 photoreceptors (Appendix 6—figure 7D). These high F

values confirmed that a linear Volterra series model could approximate light-adapted

Drosophila photoreceptor output to the test stimulation appropriately.

Classic theory underestimates how well R1-R6s resolve fast
moving dots
By approximating the light input directly from the receptive field measurements

(Appendix 6—figure 1) and the corresponding R1-R6 output by Volterra series

(Appendix 6—figure 7C), we could estimate each tested Drosophila photoreceptor’s

responses to moving bright dots. This was done by convolving the extrapolated light stimuli

with the corresponding impulse responses.

The model predictions for a single moving stimulus were far less consistent than those for

GWN stimuli. Appendix 6—figure 8A,B show representative simulations with broadly

acceptable and clearly unacceptable accuracies, respectively, together with the

corresponding intracellular recordings.

From both the recordings and simulations, we further calculated the theoretical dot

motion effects on the neural image resolution, or spatial half-width, S (Appendix 6—figure

8C). As explained above (cf. Appendix 6—figure 5), the classic theory can only broadly

suggest the relative differences between wild-type and mutant performances. Here, its

application to the simulations further underestimated the spatial half-width predictions of

wild-type recordings and over-estimated those of the hdc mutant.
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Appendix 6—figure 8. Prediction accuracy of the Volterra series photoreceptor models to

moving point-objects varies considerably. (A) Two examples of model simulations, which were

reasonably close to the actual intracellular recordings to the tested dot motion. (B) Two

examples of simulations that clearly differed from the recordings. (C) Theoretical predictions

of photoreceptor output spatial half-width, calculated from the recordings and simulations as

a function of the point-object speed. Mean ± SEM, nwild-type = 9, nhdc = 8. The theoretical

spatial half-widths of the simulations differ from those of the recordings. E.g. the wild-type

recordings (black) predicted consistently narrower S than the corresponding simulations

(blue). The predicted resolvability of the resulting neural image, or spatial half-width (S), was

consistently lower for the simulations than for the recordings. (D) Crucially, Volterra series

models failed to predict how well the actual photoreceptor output resolves two close objects

moving together very fast (shown for 409 and 818 o/s). For the 818 o/s prediction, we used

here the fastest impulse response, recorded from another cell, but even so, the model still

could not resolve the two dots. Thus, the actual spatial half-width of R1-R6s, limiting

Drosophila’s resolving power at high image velocities, is about half of that estimated in (C).

(Note, the dynamic biophysical mechanisms causing this difference – both in light input and

photoreceptor output - are explained in Appendix 8. Recordings and simulations were at

19˚C.
DOI: https://doi.org/10.7554/eLife.26117.078
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Most critically, however, Volterra series models consistently failed to predict the fast

phasic components of the recorded voltage responses, and thus their real resolvability, to

two fast moving dots (Appendix 6—figure 8D; see also Figure 7). The model simulations,

and hence its underlying classic theory, always predicted lower resolvability than what we

saw in the actual recordings. Further investigations (Appendixes 7–8) revealed that this

discrepancy reflected the missing biophysical mechanisms of the empirical black-box models

(see Appendix 1). Specifically, the used photoreceptor models lacked: (i) the

photomechanical rhabdomere movements, which shift and narrow a R1-R6’s receptive fields,

and (ii) the refractory sampling, which allows many microvilli (after the first dot) to recover

from refractoriness (Song et al., 2012; Song and Juusola, 2014; Juusola et al., 2015) to

respond to the second dot. Moreover, by tuning and validating the Volterra kernels to GWN

stimuli at relative steady-state, we inadvertently limited its exposure to (iii) excitatory

dynamic synaptic feedback modulation (Zheng et al., 2006; Dau et al., 2016), which

accentuates sudden changes in photoreceptor output. For these reasons, the responses of

real R1-R6s, which naturally utilize the given mechanisms, showed systematically larger

widths and second-peaks, providing higher resolvability.

We show in Figure 8G–I, Figure 8—figure supplement 1 and Appendixes 7–8 that a

new biophysically realistic microsaccadic sampling model, which allows for realistic refractory

quantal phototransduction (Song and Juusola, 2014) and photomechanical rhabdomere

contractions (Hardie and Franze, 2012), yields (significantly better) theoretical predictions

that closely approximate the real R1-R6 output. Importantly, in Appendix 9, we further show

that R1-R6 output to two dark dots, moving at saccadic speeds, has the same relative

resolution as their output to the corresponding two bright dots. Collectively, our results

demonstrate that Drosophila photoreceptors resolve fast moving objects far better than

what was believed previously.

Conclusions
In this appendix, we used intracellular recordings and classic theoretical approaches to study

how fly photoreceptors encode moving bright dots. Model simulations about each tested

R1-R6s’ spatiotemporal responses were compared to the actual recordings to the same

stimuli. We found that both wild-type and hdcJK910 photoreceptors resolved moving dots

nearly equally well, and significantly better than the corresponding deterministic simulations.

These findings demonstrate that the classic dynamic photoreceptor models (Srinivasan and

Bernard, 1975; Juusola and French, 1997; Land, 1997), which lack knowledge about the

underlying phototransduction biophysics and photomechanics, grossly underestimate the

spatiotemporal resolution of the real cells.

Animals counter self-motion blur effects by moving their eyes. This compensates for head

and body movements by keeping the neural image position near stationary as long as

possible (Land, 1999). Interestingly here, a fly photoreceptor’s response to two moving

point-objects represents an opposite case where image motion, in fact, improves acuity. In

the classic theory, to resolve two stationary objects, at least three photoreceptors are

required so that the intensity difference in between can be detected. Because Drosophila

photoreceptors’ interommatidial angles (Land, 1997; Gonzalez-Bellido et al., 2011) vary

from 3.4o to 9.0o and their average acceptance angle is ~9.5o (Appendix 4), its eye should

not resolve two point-objects 6.8o apart. Nevertheless, responses of single photoreceptors,

during even very fast (saccadic-speed) (Geurten et al., 2014) movements, show large

enough dips (in their temporal dynamics) to indicate that the objects are resolved neurally. In

the classic theory instead, the outputs of several adjacent photoreceptors had to be

processed together to distinguish two moving point-objects from one stationary object, in

which brightness changes over time. This example highlights the inseparability of

spatiotemporal information processing and acuity.

The unique advantages of the present study were the bespoke equipment and stimulus

paradigm. These allowed high-quality photoreceptor recordings with precisely controlled

moving point-objects stimulation. Therefore, we could directly test and compare the
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theoretically predicted relationship between the neural image resolution and the object

speed (Srinivasan and Bernard, 1975; Juusola and French, 1997) to the experimental data.

However, the equipment also had limitations to be improved in future research. Wider object

speed range is necessary, especially for testing insect eyes with fast responses. Owing to the

long transient time, each light-point now required 2 ms switching period. Consequently, the

minimum travelling time was 50 ms and the object speed limit in Calliphora experiments was

334 o/s, which is far slower than observed during the flies’ saccadic flight behaviors

(Schilstra and Hateren, 1999; Hateren and Schilstra, 1999) (2,000–4,000 o/s). Whilst

positioning the light-point array closer to the fly eye would increase object angular speed, it

would compromise resolution as fewer light-points would then lie within a tested cell’s

receptive field.

In Appendixes 7–9, we show how both the enhanced resolvability of moving point-objects

and the phasic modulation of their rising and decaying phases, as was shown here, emerge

from the joint contributions of photomechanical rhabdomere contraction and its refractory

information sampling.

Juusola et al. eLife 2017;6:e26117. DOI: https://doi.org/10.7554/eLife.26117 107 of 149

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.26117


Appendix 7

DOI: https://doi.org/10.7554/eLife.26117.079

Photomechanical microsaccades move photoreceptors’
receptive fields

Overview
This appendix describes a new powerful high-speed video recording method to measure

photomechanical rhabdomere movements in situ, and provides important experimental and

theoretical background information for the results presented in Figures 8–9.

In this appendix:

. We utilize the optical cornea-neutralization technique (Franceschini and Kirschfeld, 1971b;

Franceschini and Kirschfeld, 1971) with antidromic deep-red (740 or 785 nm peak) illumina-

tion to observe deep pseudopupils (photoreceptor rhabdomeres that align with the observ-

er’s viewing axis) in the Drosophila eye. We use an ultra-sensitive high-speed camera with a

purpose-built microscope system to record fast rhabdomere movements across the com-

pound eyes, while delivering blue-green stimuli (470 + 535 nm peaks) orthodromically into

the eye.
. We show that light-activation moves rhabdomeres (Video 3) side-ways (horizontally) both in

dark- and light-adapted eyes. This movement starts after a 8–20 ms delay from the light stim-

ulus onset, and reaches its peak in about 70–150 ms. Because these movements have fast

onset and light intensity-dependency, which are similar to those of the R1-R6 photorecep-

tors’ intracellular voltage responses to comparable stimuli, they must result from individual

photoreceptors’ photomechanical contractions; see (Hardie and Franze, 2012).
. We show that trp/trpl-mutant photoreceptors, which have normal phototransduction reac-

tions but lack the light-gated ion channels, also contract to light. Since these photoreceptors

cannot produce electrical responses and thus communicate electrically or synaptically with

other cells, including eye muscles, their contractility cannot be caused by eye muscle activity

but must be intrinsic, supporting the earlier hypothesis (of phototransduction reactants inter-

acting locally with the plasma membrane) (Hardie and Franze, 2012).
. We show that light moves rhabdomeres fast in the back-to-front direction, while darkness

returns them back to their original positions slower. Because the ommatidium lens inverts

images, R1-R8 photoreceptors’ receptive fields move in the opposite direction - front-to-

back after light and back-to-front after darkness. Therefore, when front-to-back moving

bright dots cross the eyes, the photoreceptors’ receptive fields move along. But when bright

dots cross the eyes in the back-to-front direction, the photoreceptors’ receptive fields move

against them (cf. Appendix 6).
. At the level of rhabdomere tips, the horizontal movements can be up to 1.4 mm, as measured

occasionally in light-adapted eyes. Therefore, given the known optical dimensions, these

photomechanical microsaccades can rapidly shift R1-R6 photoreceptors’ receptive fields by

~5o. Remarkably, such a large image pixel displacement reaches the average interommatidial

angle, Dj ~4.5-5o, in the Drosophila eye (cf. Appendix 4; Appendix 4—figure 1).
. We show that the light stimulus also contracts rhabdomeres axially (Video 2; inwardly: 0.5–

1.7 mm), down away from the lens. This transient increase in focal length should contribute in

narrowing R1-R6’s receptive fields dynamically. We further show that specific cone- and pig-

ment-cells inside each ommatidium form an aperture, which is connected to the rhabdomere

tips. During light stimulation, this aperture moves laterally with the rhabdomeres but only

half as much (Video 4). And since the ommatidium lens remains practically immobile, the

light beam falling upon the rhabdomeres is shaped dynamically. These observations mean

that a R1-R6’s receptive field must both move and narrow during dynamic light stimulation.
. We show that rhabdomeres of hdcJK910 histamine-mutant (Burg et al., 1993; Melzig et al.,

1996; Melzig et al., 1998) R1-R6 photoreceptors, in which visual interneurons are blind

(receive no neurotransmitter from photoreceptors), have broadly wild-type-like contraction
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dynamics, again refuting the role of eye muscle activity in the data. But interestingly, their

light-sensitivity is about 10-fold reduced, similar to their voltage responses (Dau et al.,

2016). In part, this may reflect hdcJK910 photoreceptors’ smaller size. Given that hdcJK910

rhabdomere diameters are ~4% smaller than in wild-type (Appendix 5), their length should

also be reduced in the same proportion. As the average wild-type R1-R6 is ~100 mm, hdcJK910

R1-R6s should be ~4 mm shorter. And indeed we find in situ that hdcJK910 rhabdomere tips

are ~4 mm further away from the lens than the wild-type tips. In addition, the higher [Ca2+]i,

caused by tonic excitatory synaptic feedback overload (Dau et al., 2016), may further affect

their mobility, possibly retaining them in a slightly more contracted state.

Rapid adaptation caused by light-induced R1-R8 contractions
Atomic force microscopy (AFM) at the dissected Drosophila eyes’ corneal surface (Hardie and

Franze, 2012) has shown up to 275 nm radial movements to brief light pulses, caused by

transient photomechanical R1-R8 photoreceptor contractions. Such movements are too small

and fast to see with the naked eye, and were initially considered: (i) only to participate in

gating photoreceptor’s transduction-channels, and (ii) possibly too small to affect fly vision in

general. In this appendix, we use high-speed video microscopy to show that in vivo the

underlying photomechanical rhabdomere (light sensor) movements are larger both laterally

(horizontally: 0.3–1.4 mm) and axially (inwardly: 0.5–1.7 mm). Because these movements are

also synchronous, ubiquitous, robust and reproducible, they influence how the fly eyes sample

visual information about the world.

High-speed video recordings of light-induced rhabdomere
movements
Dark-adapted dissociated photoreceptors rapidly contract to light (Hardie and Franze, 2012)

(Video 2). It has been suggested that this contraction results from light-induced

phosphatidylinositol 4,5-bisphosphate (PIP2) cleaving, which modulates their rhabdomere

membrane volume and so participates in gating the phototransduction-channels (trp and trpl)

(Hardie and Juusola, 2015).

Here, we directly test the hypotheses that (i) the photomechanical photoreceptor

contractions occur also in intact flies in normal stimulus conditions, and (ii) these movements

serve the purpose of modulating light input to photoreceptors and thus photoreceptor

output. We do this by recording high-speed video of how Drosophila photoreceptor

rhabdomeres move to different light stimuli in vivo, and by analyzing and characterizing how

these movements affect R1-R6s’ receptive fields. Later on, in Appendix 8, we include their

light input parameter changes in biophysically-realistic mathematical models to predict R1-R6

voltage output to moving visual stimuli.

Imaging setup for recording photomechanical rhabdomere
contractions
We used the optical cornea-neutralization method to monitor how light stimuli evoke

Drosophila photoreceptor rhabdomere movements. The imaging system was constructed

upon an upright microscope (Olympus BX51), secured to a XY-micrometer stage on an anti-

vibration table (MellesGriot, UK) (Appendix 7—figure 1). To minimize light pollution in the

recordings, the system was light-shielded inside a black Faraday cage with black lightproof

curtains in the front, and the experiments were performed in a dark room. For collecting and

recording deep pseudopupil images, the system was equipped with a 40x water immersion

objective (Zeiss C Achroplan NIR 40x/0.8 w, ¥/0.17, Germany) and an ultra-sensitive high-

speed camera (Andor Zyla, UK), respectively.
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Appendix 7—figure 1. Microscope system for high-speed video recording of light-induced

photoreceptor movements. (A) High-speed camera (Andor Zyla, UK) recorded images of deep

pseudopupils in the eye of an intact living Drosophila under deep-red antidromic illumination

(here 740 nm LED + 720 nm long-pass edge filter underneath the fly head). Each studied fly

was immobilized inside a pipette tip. (B) A 10 ms blue-green light flash, delivered through the

microscope system (orthodromically) into the left fly eye (above), was used to excite R1-R8

photoreceptors; the inset below shows R1-R7 rhabdomeres (blue) of one ommatidium just

before the flash. (C) Light caused the rhabdomeres to twitch photomechanically in back-to-

front direction (arrows) after 8–16 ms delay, with the photoreceptors being maximally

displaced in ~ 100 ms from the stimulus onset. Invariably, this was seen as a sudden jump in

the recorded rhabdomere position (red). (D) The difference in the rhabdomere position

(displacement) before and after the flash, depended upon the light intensity, ranging between

0.3–1.4 mm; note a typical R1-R6 rhabdomere diameter is about 1.7 mm (Appendix 5). The

frame subtraction (before and after the light flash) indicates that only the rhabdomeres that

aligned directly with the blue/green light source moved (within the seven central ommatidia;

yellow area), while the rest of the eye remained immobile. Accordingly, the difference image

shows little ommatidial walls, as these and other immobile eye structures became mostly

subtracted away. In contrast, eye muscle activity, which is every so often seen with this

preparation (Appendix 4, Appendix 4—figure 6) occurs more gradually and moves all the eye

structures together.

DOI: https://doi.org/10.7554/eLife.26117.080

A Drosophila was gently fastened to an enlarged fine-end of a 1 ml pipette tip by puffing

air from a 100 ml syringe at the large end until the fly head and ~1/5 of the thorax emerged

outside (Appendix 7—figure 1A). The head and thorax were carefully fixed (from the

proboscis and cuticle) to the pipette wall in a preferred orientation by melted beeswax,

without touching the eyes. The fly was then positioned with a remote-controlled XYZ-fine

resolution micromanipulator (Sensapex, Finland) underneath the water immersion objective,

using both visual inspection and live video stream on a computer monitor.

Antidromic illumination (through the fly head) revealed the deep pseudopupils of the fly

eyes. It was provided with a high-power deep-red light source (740 nm LED with 720 nm high-

pass edge-filter; or 785 nm LED with ±10 nm bandpass filter), driven by a linear current LED

driver (Cairn OptoLED, UK). Note that very bright deep-red illumination, which is a

prerequisite for good signal-to-noise ratio high-speed video imaging, activates R1-R8

photoreceptors only marginally. This is because their different rhodopsins’ absorbance maxima

are at much lower wavelengths (Britt et al., 1993; Wardill et al., 2012). The photoreceptors’

near insensitivity to >720 nm red light was confirmed in vivo by ERG recordings

(Appendix 7—figure 2).
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Orthodromic light stimulation (through the 40x objective into the eye), which evoked the

photoreceptor contractions, was delivered by two high-power LEDs: 470 nm (blue) and 545

nm (green), each separately controlled by its own driver (Cairn OptoLED, UK). These peak

wavelengths were selected to activate R1-R6s’ rhodopsin (Rh1) and its meta-form near

maximally, and so through joint stimulation to minimize desensitization by prolonged

depolarizing after-potentials (PDA) (Minke, 2012). Simultaneous stimuli from the two LEDs

were merged into one focused beam by a 495 nm dichroic mirror and low-pass-filtered at 590

nm. Pseudopupil signals of the observed fly eye (left or right) were split spectrally by another

dichroic mirror (600 nm), and essentially only red image intensity information (�600 nm) was

picked up by the high-speed camera.

Appendix 7—figure 2. Testing R1-R8 photoreceptors sensitivity to deep-red illumination by

electroretinogram (ERG) recordings. (A) ERGs were recorded in intact Drosophila, placed inside

a conical holder, to 1 s long very bright green (545 nm), red (740 nm) and deep-red (740 nm

LED with 720 nm high-performance long-pass filter) pulses. A normal ERG contains a large but

slow photoreceptor (DC) component and the faster on- and off-transients (Heisenberg, 1971),

which signal histaminergic transmission to lamina interneurons. (B) The very small ERG

response (wine) to the deep-red pulse indicated very little R1-R8 photoreceptor activation.

Mean ± SD shown, n = 6–7 wild-type flies.

DOI: https://doi.org/10.7554/eLife.26117.081

Recording procedures
Light stimulus generation was performed by a custom-written Matlab (MathWorks, USA)

program (Biosyst; M. Juusola, 1997–2015) (Juusola and Hardie, 2001a; Juusola and de

Polavieja, 2003) with an interface package for National Instruments (USA) boards (MATDAQ;

H. P. C. Robinson, 1997–2008). The length of the light stimuli (including the continuous deep-

red background and the blue/green stimulus patterns) was made to match the number of

frames to be acquired by the Andor camera, and the stimuli were externally triggered by the

camera software (Solis). During the recordings, the frames were first buffered in the RAM in

high-speed and then transferred on the computer’s hard drive. Light stimulus intensity could
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be attenuated by a neutral density filter set (Thorn Labs, USA), covering a 5.3 log intensity unit

range.

Key observations from unprocessed high-speed footage
High-speed video microscopy (Appendix 7—figure 1 e.g. Video 3) from intact wild-type

Drosophila eyes (n >> 100 flies) showed repeatedly and unequivocally that:

. Full-field light flashes evoked rapid local R1-R7 rhabdomere movements within those seven

ommatidia, which at the center of the imaged view, faced the blue/green stimulus source

directly (Appendix 7—figure 3A, orange area). Rhabdomeres in few other neighboring

ommatidia also moved marginally (yellow area), but not obviously in other ommatidia. This

meant that only the ommatidia that aligned with the blue/green stimulation absorbed the

incident light, while those to one side reflected it. This local area, which showed photome-

chanical rhabdomere movements, closely matched Drosophila’ normal pseudopupil (Appen-

dix 7—figure 3B).
. The rhabdomere movement was in the back-to-front direction (Appendix 7—figure 1B–D),

whilst in darkness, the rhabdomeres returned in front-to-back to their original positions more

slowly. These dynamics and their directions were similar in both the left and right eye.
. Because light always moved the rhabdomeres back-to-front, the corresponding neural

images of the left and the right eye comprise left-right mirror symmetry; i.e. against the verti-

cal (sagittal) plane, the rhabdomeres in the left and right eye display mirror symmetric

motion. We show later in Appendix 8 how this symmetry may allow Drosophila photorecep-

tors to encode orientation information during saccades or image rotation.
. The rhabdomere movement directions seemed homogeneous (at least in the first approxima-

tion) across each tested eye, appearing similar in its different regions: whether measured at

its up, down, front or back ommatidia. Such ‘pixel interlocking’ across the whole eye’s visual

field may help to preserve, or enhance, the neural images’ spatial resolution of the world.

Appendix 7—figure 3. Photomechanical rhabdomere movements were localized inside those

seven ommatidia that form the normal pseudopupil. (A) High-speed video recordings in the

Drosophila eye showed clear rhabdomere displacement before (marked blue) and after

(marked red) a blue/green flash only within seven ommatidia (orange area). This was revealed

by subtracting the corresponding frame contours. The rhabdomeres of these seven ommatidia

aligned directly with the blue/green stimulus, which was carefully centered above in the

microscope port (Appendix 7—figure 1). Marginal rhabdomere movements were further
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detected in six other neighboring ommatidia (yellow area). These results meant that only the

rhabdomeres that faced the centered Orthodromic blue/green stimulus absorbed its light and

contracted, while the rest of the eye reflected this stimulus and remained immobile. Note that

this local rhabdomere activation pattern was restricted by the same eye design principle that

causes the insect eye pseudopupil. (B) The Drosophila eye, in which photoreceptors were

made to express green-fluorescence, displayed a green pseudopupil only form those seven

ommatidia that directly faced the observer (and the blue light source through the microscope

lenses). This happened because these ommatidia (their rhabdomeres) both absorbed the

incident blue light and their GFP-molecules released green light back to the observer’s eye/

camera, while the other ommatidia around reflected the blue light.

DOI: https://doi.org/10.7554/eLife.26117.082

Image analysis
To accurately quantify the size and direction of the observed rhabdomere movements in time

we devised specific image-analysis procedures. First, the stored images (raw data frames of

each recording) in the hard drive were exported as a tiff stack, in which pixel intensity range

was set by the frames’ minimum and maximum values, using the camera software (Andor

SOLIS). ImageJ software was then used to convert the tiff-stack into a single tiff-file. The

Matlab scripts to process and analyze the images are downloadable from the repository:

(https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/

AnalyzeRhabdomereMovement). These methods included (Appendix 7—figure 4A):

i. Loading the image stack.
ii. Subtracting the median and mean from each frame and setting its negative values to (0. 0)

to remove the dark noise background. This process was repeated for every frame.

iii. Calculating 2D cross-correlation between each frame and the reference frame.
iv. iv. Selecting the cross-correlation values, which were �95% of the maximum (peak) value.

This was repeated for every frame.

v. Calculating the weighted average position of the peak by using all the positions of the pre-

vious selection and using the cross correlation values as weights both in x- and y-direction.

This was repeated for every frame.

vi. Subtracting the reference frame position from every frame.
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Appendix 7—figure 4. Cross-correlation image analysis to estimate photomechanical R1-R7

rhabdomere movements. (A) Analytical steps are shown for the reference frame at time zero

(f0), 2 ms before the 10 blue/green light stimulus pulse (red), and for the frame at the

maximum rhabdomere displacement (f49), 98 ms after (dark yellow). High-speed camera

images of rhabdomeres were recorded using 750 nm red light. (i) Image stacks were

uploaded, and (ii) the median of each frame was subtracted to remove its noise background.

(iii) 2D cross-correlation was calculated for each frame, and (iv) the values within 5% of their

peak value were selected. (v). ) The weighted mean peak positions gave each frame’s x- and

y-positions at its specific time point, and their distance, sqrt(x2+y2), the total rhabdomere

displacement (in pixels) against the reference frame position. Notice that the 2D cross-

correlation images have flipped x- and y-axis directions (up, U, appears down, D; front, F,

appears back, (B). (B) The resulting rhabdomere displacement distance and the corresponding

x- and y-positions are plotted for each frame in time at 2 ms resolution (500 frames/s), against

the reference frame position, P0(0, 0, 0). A comparable (inverted) atomic force microscopy

data (cyan) closely matches the rise-time dynamic of the cross-correlation rhabdomere

displacement estimate, validating our analytical approach. The analysis also implies that well

dark-adapted photoreceptors may respond weakly to deep-red (740 nm) light onset (black

trace 0–100 ms). Note R8 rhabdomere, which lies directly below R7, likely contracts too.

DOI: https://doi.org/10.7554/eLife.26117.083

Quantifying rhabdomere travels and their receptive field shifts
In this study, the rhabdomere displacement measurements are given in microns (mm) and the

resulting receptive field movements in degrees (o). Appendix 7—figure 5A shows a whole

image of a Drosophila’s left eye, as focused upon its rhabdomeres in the center and magnified

by the microscope system to use the camera’s full 2048 � 2,048 pixel range. By placing a

high-resolution mm-graticule on the same focal plane (Appendix 7—figure 5B), we calibrated

that the whole image is 303 � 303 mm. After converting the recorded rhabdomere

displacements from pixels (Appendix 7—figure 4) into microns, we then used the published

parameters (Stavenga, 2003b) about the Drosophila ommatidium optics (Appendix 7—figure
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5C) to translate these measurements into corresponding receptive field movements in

degrees.

Drosophila ommatidium optical parameters were described by (Stavenga, 2003b) and

(Gonzalez-Bellido et al., 2011). Its biconvex facet lens focuses light to a rhabdomere (grey

rectangle) tip. The outer and inner lens curvatures, r1 = -r2, are 11 mm, and its thickness, l1, is 8

mm. Distance from lens to the rhabdomere, l2, is 15 mm. Reflective indices, n, for the object

space, lens and image space, respectively, are: n1 = 1, n2 = 1.45 and n3 = 1.34.

We used standard ray transfer matrix analysis (Laufer, 1996) to determine optical

properties between the lens surface, P1, and the rhabdomere tip, P2. Both of these are

represented as vectors of their positions, y, and angles, �: P1 ¼
y1
�1

� �

and P2 ¼
y2
�2

� �

. Then,

the optical system of the facet lens follows equation P2 ¼ M P1, where

M ¼ 0:23 1:61 � 10�5

�3:63 � 104 0:71

� �

, obtained from the ray transfer matrix analysis.

The transform matrix clarifies that the distance, y2 (at P2), mostly depends upon the angle

�1 (of P1). Thus, 1 mm movement gives 1 � 10�6/1.61 � 10�5 = 0.0621 (rad) angular change,

which is 3.56 ˚/mm. This movement is an inverse of the visual field movement. Note that by

using the comparable optical parameter values of (Gonzalez-Bellido et al., 2011) (and

considering the normal lens f-value variation across the Drosophila ommatidia), gives

practically the same movement ratio (±5% error).

Appendix 7—figure 5. Calibrating the rhabdomere displacements in microns and their recep-

tive field movements in degrees. (A) A whole image of a Drosophila’s left eye, the camera chip’s

full 2048 � 2,048 pixel range. (B) a high-resolution graticule placed at the same focal plane as

the image (A) gives the full image size of 303 � 303 mm. Thus one pixel ~ 0.1479 mm. (C) A

schematic of the main optical components in a normal Drosophila ommatidium. Its optical

properties indicate that a 1 mm rhabdomere displacement shifts its receptive field by 3.56˚.
DOI: https://doi.org/10.7554/eLife.26117.084
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Trp/trpl-mutants confirm the contractions’ photomechanical origin
We then tested whether the rhabdomere contractions were generated by the photoreceptors

themselves (photomechanically) or by eye muscle activity. This was done by recording in trp/

trpl null-mutants, which express normal phototransduction reactants but lack completely their

light-gated ion channels. Consequently, these photoreceptors did not generate electrical

responses to light, and their eyes showed no ERG signal (Appendix 7—figure 6A).

Nonetheless, high-speed video recordings revealed that trp/trpl-mutant photoreceptors

contracted photomechanically (Appendix 7—figure 6B; see also Video 2). These observations

are consistent with the hypothesis of the light-induced phosphatidylinositol 4,5-bisphosphate

(PIP2) cleaving from the microvillar photoreceptor plasma membrane causing the rhabdomere

contractions (Hardie and Franze, 2012).

Appendix 7—figure 6. Photoreceptors of blind trp/trpl null-mutants flies show photomechani-

cal contractions. (A) ERGs of trpl/trpl mutants show no electrical activity indicating that these

flies are profoundly blind. (B) High-speed video recordings at their rhabdomeres show light-

induced lateral movements, indicating that (i) these photoreceptors contact photomechanically

and (ii) these movements cannot involve eye muscle activation.

DOI: https://doi.org/10.7554/eLife.26117.085

When rhabdomeres move, the ommatidium lens system above
stays still
Using the high-speed video microscopy, we next tested whether the Drosophila lens system or

any other ommatidium structures moved during the rhabdomere movements (Appendix 7—

figure 7). In the experiments, a z-axis micromanipulator (Sensapex, Finland) was used to shift
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and reposition Drosophila in piezo-steps vertically. This allowed the focused image, as

projected on the camera, to scan through each studied ommatidium, providing exact depth

readings in mm. We then recorded any structural movements inside the ommatidia at different

depths; from their corneal lens down to the narrow base, where the cone and pigment cells

form an intersection between the crystalline cone and the rhabdomere tips (Tepass and

Harris, 2007).

Appendix 7—figure 7. When the rhabdomeres move the ommatidium lens stays still. (A) High-

speed video recordings at different depths inside ommatidia before and after a bright light

flash. (B) Cornea (ommatidium) lens and the optical structures to the narrow base of the crystal

cone remained virtually immobile. Below these, the cone cells showed movement that was half

of that seen in the rhabdomeres. In the schematic, red dots and lines indicate adherens

junctions that link the photoreceptors to the pigment and cone cells.

DOI: https://doi.org/10.7554/eLife.26117.086

We found that when the rhabdomeres moved photomechanically (Appendix 7—figure 7B,

red trace; Video 4) the corneal lens and the upper ommatidium structures were essentially

immobile (grey), and normally remained so throughout the recordings. However, clear

stimulus-induced movements were detected at the basal cone/pigment cell layer (orange; also

inset) that connects to the rhabdomere tips with adherens junctions (Tepass and Harris,

2007). Although it is less clear how much these structures reflected the rhabdomere motion

underneath or were pulled by it, it is quite certain that they formed an aperture in the light

path, which moved less than the light-sensors (rhabdomeres) below (orange vs. red). In

Appendix 8, we analyze how such an interaction might dynamically narrow the R1-R6s’

receptive fields to visual motion.

Overall, these results further verified that in normal stable recordings the used blue/green

light flash was not evoking eye muscle activity, which would otherwise move the whole eye.

Light intensity-dependence of rhabdomere movements (in vivo dynamics)

Through a wide-ranging testing regime, we further discovered (Appendix 7—figure 8 and

Appendix 7—figure 9) that:

. Light-induced R1-R7 rhabdomere movements were robust and repeatable. Appendix 7—fig-

ure 8A shows 10 trials (thin grey traces) and their mean (black) to a 10 ms bright flash mea-

sured from the same ommatidium. Between each flash, the eye was dark-adapted for 30 s.

Characteristically, the rhabdomeres contracted to every light flash without a failure. Whilst

these movements showed amplitude variations, their dynamic behavior was similar. Here,

they reached their peak (mean = 0.806 mm, Appendix 7—figure 8B) in about 140 ms and

then decayed back to the baseline slower, mean tr ~190 ms (Appendix 7—figure 8C).
. Dark-adapted R1-R7 rhabdomeres’ maximum movement range (Appendix 7—figure 9A–I)

was considerably larger (0.3–1.2 mm) than the displacement range measured ex vivo by

atomic force microscope (Appendix 7—figure 9B, AFMmax �0.275 mm) (Hardie and Franze,
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2012) on the corneal surface. This difference is hardly surprising. AFM measures axial

(inward) cornea displacements, presumably resulting from a large number of simultaneous

photoreceptor contractions underneath, whereas our high-speed video microscopy method

measures orthogonal (horizontal) rhabdomere movements locally at their source. Owing to

the slight excitation caused by the bright 740 nm red-light background needed for in vivo

imaging (Appendix 7—figure 9B), the actual rhabdomere movements in full dark-adapted

conditions could be even larger.

Appendix 7—figure 8. Photomechanical rhabdomere motion is robust and repeatable. (A)

Consecutive rhabdomere motions (grey thin traces) of the same ommatidium and their mean

(black) to 10 stimulus repetitions (bright flash). The mean response recovery is fitted with an

exponential, tr. (B) Each response maximum is shown against its time delay (time-to-peak) with

the mean and SD. (C) Each response recovery time constant is plotted against its maximum

with the mean and SD. Recording at t = 20˚C.
DOI: https://doi.org/10.7554/eLife.26117.087

. The rhabdomere movement recordings (thin grey traces) from single ommatidia of individual

flies vary more than the corneal AFM data (black traces). The sizable variations in their move-

ment range and fine dynamics (such as minor oscillations) imply both considerable trial-to-

trial (Appendix 7—figure 8) and fly-to-fly variability (Appendix 7—figure 9). Much of this is

clearly physiological, as rhabdomere movement sizes and waveforms to specific stimuli were

similar in one fly but often slightly different to those seen in another fly. However, because of

the extreme sensitivity of our method (Appendix 7—figure 4, providing subpixel movement
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resolution), some of the variations clearly reflected experimental noise. Such noise included

microscopic mechanical vibrations in the recording system, minute spontaneous eye muscle

activity (see Appendix 4, Appendix 4—figure 6), and Poisson-noise, in which the image sig-

nal-to-noise ratio - as captured by the camera’s CMOS sensor – reduced the more the faster

the sampling. Appropriately, the average responses (red) to different intensity flashes were

smoother, yet still remained much larger than in the AFM data.

Appendix 7—figure 9. Comparing optically resolved wild-type rhabdomere movements to cor-

responding atomic force microscope (AFM) recordings from the corneal surface. To ease the

comparisons, the AFM data is inverted. (A) Rhabdomere motion within individual ommatidia

(grey thin traces) and their mean (red) evoked by the brightest 10 ms test flash are plotted

against the largest AFM recording (black) to the brightest 5 ms test flash (data from

Hardie and Franze, 2012). The rhabdomere movement range is larger than what the AFM

data suggests. (B) AFM recordings to a broad logarithmic light flash intensity range. (C–I

Rhabdomere movements vs. AFM recordings to light flashes of broadly comparable

diminishing intensities. Notice that some individual rhabdomere movement recordings show

minor oscillations that could be related to recording noise or physiological activity. (J) the

mean and SD of normalized rhabdomere movements to the brightest test flash are compared
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with the normalized AFM recordings to three different test flash intensities. All these AFM

recordings fall within the SD of the given rhabdomere recordings.

DOI: https://doi.org/10.7554/eLife.26117.088

. The average rise and decay time courses of the normalized rhabdomere movement record-

ings followed closely those of the normalized AMF recordings (Appendix 7—figure 9J).

Such dynamic conformity strongly suggests that both the methods capture accurately photo-

mechanical R1-R8 photoreceptor contractions in their fast natural time resolution. But these

observations also provided further evidence that ex vivo AFM data underestimate the actual

magnitude of rhabdomere movements within ommatidia. In fact, it seems possible that to

maximize neural images’ spatial resolution, the eye’s architectural design dampens the lens

system movement, while its sensors (rhabdomeres) contract. This would inadvertently impede

the AFM signal (axial movement), and any horizontal lens shift (Appendix 7—figure 7), mea-

sured on the corneal surface.

Estimating light intensity falling upon the rhabdomeres
Only in 2 out of 21 tested Drosophila eyes, the rhabdomeres moved unmistakably (twitched)

to a very dim 10 ms blue/green LED flash, in which intensity was reduced ~200,000 fold by

neutral density filters. Therefore, in these two positive occasions: (i) the resulting response

must have been quantal with (ii) the 10 ms flash maximally containing ~1–3 absorbed photons.

Furthermore, because this flash only succeeded in ~1/10 eyes, its average maximum intensity

could only be �3/10 photons/10 ms, i.e. �0.03 photons/ms. This means that the brightest

flash (logI(0)), which was not filtered, could maximally contain �6,000 photons/ms, or �6

million photons/s, making the used light intensity range natural and directly comparable to

that used for the intracellular recordings (Figures 1–2 and 6–9).

This reasoning is in line with the similar LED driver settings used in all the experiments, and

the similar V/log(I) and (mm)/log(I) functions, which resulted from these experiments.

In vitro rhabdomere movements
As further controls, we measured photomechanical R1-R8 rhabdomere contractions of freshly

dissociated ommatidia (Hardie and Franze, 2012) to green (480 nm) light flashes using high-

speed video recordings with infrared 850 nm background illumination (Appendix 7—figure

10). The benefit of this in vitro method was that it provided a clear side-view of the tested

wild-type and mutant rhabdomeres, enabling us to estimate their axial (longitudinal inward)

contraction component; or how much the rhabdomere tip moved away from the ommatidium

lens (Video 2). In vivo, such fast lengthwise light-sensor movements should contribute to R1-

R6 photoreceptors’ transiently narrowing receptive fields (see Appendix 8).

We found that after dark-adaptation bright flashes could evoke 0.8–1.7 mm longitudinal

rhabdomere contractions. These were characteristically accompanied by synchronous (about

equally large) crosswise movement (or twist), which likely forms the basis of the sideways

rhabdomere displacement; seen during the in vivo recordings (e.g. Appendix 7—figure 1).
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Appendix 7—figure 10. Photomechanical rhabdomere contractions in dissociated ommatidia.

(A) Two frames of high-speed video footage of contracting R1-R8 photoreceptor rhabdomeres

in vitro, evoked by a bright flash. The size-view imaging reveals the size and dynamics of their

photomechanical lengthwise changes. (B) Characteristic maximum longitudinal rhabdomere

contractions range from 0.8 to 1.7 mm. Thus, in an intact eye, during contractions the

rhabdomeres would move inwards, away from the lens. This movement is likely to move the

rhabdomere tips into the ommatidium lens’ focal point, narrowing the photoreceptors’

acceptance angles (see Appendix 8, Appendix 8—figure 3). Notably, many rhabdomeres also

twist during these contractions, providing additional crosswise movements. See Video 2.

DOI: https://doi.org/10.7554/eLife.26117.089

Photomechanical rhabdomere movements vs. R1-R6s’
voltage responses
We next compared intracellular wild-type and hdcJK910 R1-R6 voltage outputs, evoked by 10

ms light flashes after brief dark-adaptation, to their characteristic rhabdomere movements

(Appendix 7—figure 11). R1-R6 output and rhabdomere motion exhibited broadly

comparable delays (or dead-time), but overall the rhabdomeres moved considerably slower

than how their voltage was changing (cf. the thick black traces in A–B, and the thick red traces

in C–D for similar flash intensities).The voltage responses peaked 25–30 ms from the light

onset, and the rhabdomere movements 40–120 ms later. At this point, the photoreceptors

had almost repolarized back to their dark resting potential (indicated by zero ordinate).
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Moreover, the recordings suggested that for a given flash hdcJK910 rhabdomeres typically

moved less and returned faster to their original positions than their wild-type counterparts.

To further characterize their light-dependent differences, we plotted the maximum wild-

type and hdcJK910 rhabdomere movements of many flies against the corresponding flash

intensities over the whole tested light range. The analysis revealed that:

Appendix 7—figure 11. Comparing dark-adapted wild-type and hdcJK910 R1-R6s’ photome-

chanical rhabdomere contractions to their corresponding electrophysiological responses at

19˚C. (A) Intracellular voltage responses of dark-adapted wild-type R1-R6s to a 10 ms

subsaturating light pulse, delivered at the center of their receptive field. (B) Characteristic non-

averaged photomechanical rhabdomere movements (displacement in time) of a typical wild-

type fly, as quantified by the cross-correlation analysis (Appendix 7—figure 4) to very dim

(log(�3.5)), moderate (log(�2)) and very bright (log(0)) 10 ms light flashes. (C) Intracellular

responses of dark-adapted hdcJK910 R1-R6s to a similar stimulus (as in a). (D) hdcJK910

rhabdomere movements to very dim, moderate and very bright 10 ms flashes are

characteristically slightly smaller than the corresponding wild-type recordings in (B). (E) The

wild-type and (F) hdcJK910 rhabdomere displacements increase with logarithmic light intensity.

(G) Mean wild-type rhabdomere movement was larger than that of hdcJK910 over the tested

intensity range, with the hdcJK910 photoreceptors’ apparent right-shift indicating a 10-fold
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reduced sensitivity. (H) This right-shift is broadly similar to these photoreceptors’ V/LogI

characteristics, measured from their ERG slow components (Dau et al., 2016).

DOI: https://doi.org/10.7554/eLife.26117.090

. Both wild-type and hdcJK910 rhabdomere movements increased with flash intensity (Appen-

dix 7—figure 11E–F), following a characteristic sigmoidal displacement/logI-relationship.

. The average hdcJK910 rhabdomere movements were smaller than those in wild-type eyes. In

part, this could result from hdcJK910 R1-R6s being smaller than their wild-type counterparts,

and embedded deeper inside the ommatidia. As their rhabdomere diameters are ~4%

smaller than those of the wild-type (Appendix 5), their length should also be reduced propor-

tionally; with the average wild-type R1-R6 being ~100 mm tall, hdcJK910 R1-R6s should be ~4

mm shorter. Accordingly, by using the z-axis micromanipulator (see above), we measured in

situ (rest) that hdcJK910 rhabdomere tips were 3.5 mm further away from the lens than the

wild-type tips (hdcJK910: 27.4 ± 1.2 mm; wild-type: 23.9 ± 1.2 mm; n = 6 ommatidia, six flies).
. hdcJK910 rhabdomere contractions further implied reduced sensitivity (Appendix 7—figure

11), seen as a 10-fold right-shift in their displacement/logI-curve in respect to the wild-type

data.
. Interestingly, this sensitivity difference resembles that seen between the wild-type and

hdcJK910 ERGs (Appendix 7—figure 11H). We have recently provided compelling evidence

that the missing histaminergic (inhibitory) neurotransmission from hdcJK910 photoreceptors to

interneurons (LMCs and amacrine cells) causes a tonic excitatory synaptic feedback to R1-

R6s, depolarizing them ~ 5 mV above the normal wild-type dark resting potential (Dau et al.,

2016). Thus, hdcJK910 R1-R6s should experience a tonic Ca2+ influx and be permanently in a

more ‘light-adapted’ state. Here, our results suggested that Ca2+ overload may desensitize

the biophysical machinery that moves the rhabdomeres, reducing its dynamic range.

Light-adapted rhabdomere motion reflects rhodopsin/meta-
rhodopsin balance
Given the slightly reduced back-to-front rhabdomere mobility of hdcJK910 photoreceptors, we

next asked whether prolonged light-adaptation itself would reduce wild-type photoreceptors’

rhabdomere movement. To study this question, we examined how the rhabdomeres in seven

individual flies responded to different light impulses at different adaptation states.

First, to obtain the baseline responses in each fly eye, we recorded their rhabdomere

movements to a bright and a very bright full-field green-blue flash after 30 s of dark-adaption

(Appendix 7—figure 12A and B, respectively). As before, we found that the brighter the light

flash, the larger and the faster their rhabdomere movements were on average.

Interestingly, however, when the flies were adapted to a moderate or bright blue (470 nm)

light field for 30 s, which converts most (if not all) rhodopsin Rh1 to its active meta-form

(causing PDA, prolonged depolarizing afterpotential), the flashes now evoked only weak or no

rhabdomere movement (Appendix 7—figure 12C–D). Such reduced mobility somewhat

resembled that in some hdcJK910 rhabdomeres (Appendix 7—figure 11D). These observations

can be explained, at least in part, with the basic molecular model proposed for rhabdomere

contraction (Hardie and Franze, 2012). Here, meta-rhodopsin would continuously activate

G-protein and in turn phospholipase C (PLC). PLC would then cleave most PIP2 off the

microvillar membrane, causing a tonic photoreceptor contraction, which facilitates light-gated

channel openings and thus increases Ca2+ influx. But because a 10 ms bright green (545 nm)

light pulse would convert only some fraction of meta-rhodopsin back to its non-activated form,

this effect would be small proportionally, and could only partially rescue the rhabdomere

contractibility.
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Appendix 7—figure 12. Wild-type photomechanical rhabdomere movement dynamics at differ-

ent light-adaptation states. Characteristic non-averaged photomechanical rhabdomere

movements of 7 wild-type flies and their means (thick traces) to bright (logI(�1); left) or to very

bright (logI(0); right) light flashes. The recordings were performed in relative darkness (>720

nm) or when the eyes were adapted for 30 s to different green (545 nm) or blue (470 nm) light

intensity levels; from weak (logI(�3)) to bright (logI(�1)). (A–B) In dark-adaptation, consistent

with the results in Appendix 7—figure 11, the brighter the flash, the larger and faster the

evoked mean rhabdomere movements. (C–D) Prolonged blue light exposure converted

virtually all Rh1-rhodopsins to their active meta-form, causing a PDA (prolonged depolarizing

afterpotential). PDA increases the photoreceptors’ intracellular calcium load, cleaving PIP2

from the plasma-membrane and so keeping them in a contracted state. A very bright green

flash rapidly converts some of the meta-Rh1 back to Rh1, enabling small and brief rhabdomere
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movements, which resemble those seen with hdcJK910 flies (Appendix 7—figure 11). (E–

H) Adaptation to different green-light intensity levels did not abolish rhabdomere movements

to light increments. These movements can, in fact, be larger than in the same cell’s dark-

adapted state, as was seen in Fly4 and Fly6 recordings. Notice that a 1.2–1.4 mm rhabdomere

displacements means ~4-5o shifts in a R1-R6 photoreceptor’s receptive field (Appendix 7—

figure 4), which can be more than the average Drosophila interommatidial angle.

DOI: https://doi.org/10.7554/eLife.26117.091

Rhabdomere contractions resensitize refractory sampling units
On the other hand, under more natural green light-adaptation (Appendix 7—figure

12E&ndash;H), the eyes’ normal back-to-front rhabdomere contractibility to light increments

was retained, and sometimes even increased, in respect to their dark-adapted baseline

responses (Appendix 7—figure 12A–B). Consequently in every fly eye (7/7), the rhabdomeres

moved more when green-adapted than when moderately blue light-adapted (Appendix 7—

figure 12C), as quantified by their flash-induced maximum displacements (Appendix 7—

figure 12I).

These results indicate that in normal spectrally-broad natural environments, light

increments (positive contrasts) will evoke fast evasive rhabdomere movements, steering them

away from pointing directly to a bright light source. This novel photomechanical adaptation

should together with the slower screening pigment migration (intracellular pupil mechanism,

Appendix 2) help to recover (resensitize) a rhabdomere’s refractory sampling units (30,000

microvilli). Thus, the rhabdomere movements likely participate in optimizing photon sampling

for maximum information capture (Appendixes 1–2). This further means that a rhabdomere’s

state of contraction is constantly being reset to the ongoing light input, providing the capacity

to respond to the next stimulus increment. Therefore, although being slower, in many sense,

Drosophila photoreceptors’ mechanical adaptation resembles the inner ear hair-cells’ adaptive

resensitization (Howard et al., 1988; Corey et al., 2004).
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Appendix 8

DOI: https://doi.org/10.7554/eLife.26117.092

Microsaccadic sampling hypothesis for resolving fast-
moving objects

Overview
This appendix describes a new ‘microsaccadic sampling’-hypothesis that predicts a Drosophila

photoreceptor’s voltage responses to moving dots, and provides important background

information about the experimental and theoretical results presented in Figures 7–9.

In this appendix:

. We use our biophysical Drosophila R1-R6 model (Appendix 1), with different degrees of pho-

tomechanical rhabdomere movements modulating light input (Appendix 7), to simulate pho-

toreceptor voltage output to moving bright dots that cross its receptive field in different

directions, speeds and inter-distances.
. By comparing the model simulations to intracellular recordings, we reveal the likely biome-

chanics that allow R1-R6s to resolve adjacent dots at saccadic velocities (Appendix 6).
. We show that when a rhabdomere contracts away from the ommatidium lens’s focal point,

its receptive field must move and narrow dynamically. Together these processes actively

reshape both the light input and photoreceptor output to separate and sharpen neighboring

visual objects in time, improving their resolvability.
. Crucially, with such photomechanical light input modulation, the model photoreceptor out-

put closely approximates that of the real R1-R6s, as recorded to two moving bright dots

crossing their receptive fields at different speeds (Figures 7–9; Appendix 6).
. Hence, with refractory photon sampling and photomechanical rhabdomere movements, we

can correctly predict and convincingly explain visual acuity of R1-R6s to moving objects.

Modeling a R1-R6’s receptive field dynamics to moving dots
Based on the combined results in Appendix 1-7, we develop a new ‘microsaccadic sampling’-

hypothesis, which predicts how photomechanical rhabdomere contractions (microsaccades)

move and narrow Drosophila R1-R6 photoreceptors’ receptive fields (RFs) to resolve fast-

moving objects. We present extensive analytical and experimental evidence to show how

these mechanisms operate with the photoreceptors’ refractory information sampling to reduce

light-adaptation and to increase the spatiotemporal resolution of their voltage responses,

improving visual acuity.

Using the results in Appendix 1-7, we can now work out the biomechanics, which allow a

R1-R6 to resolve two close bright dots crossing its receptive field at saccadic speeds. We do

this systematically by comparing the output of our biophysical model (Song et al., 2012;

Song and Juusola, 2014; Juusola et al., 2015) (Appendix 1), in which input is modulated by

different degrees of rhabdomere photomechanics (Appendix 8—figure 1A-C), to the

corresponding recorded real R1-R6 output (Appendix 8—figure 1D). Specifically, we consider

three input modulation models:

A. Stationary rhabdomere model (receptive field is fixed)
B. Photomechanical rhabdomere model (receptive field moves)
C. Photomechanical rhabdomere model (receptive field moves and narrows)

In the following, to make these different models (A-C) directly comparable, we first present

the findings for two bright dots, which cross the receptive field at 205 o/s (Appendix 8—

figure 1), before generalizing the results for a vast range of stimuli and giving more examples.

Note that these simulations and recordings were performed at 19–20˚C. Later on in this

appendix, we show how at the Drosophila’s preferred temperature range (24–25˚C)
(Sayeed and Benzer, 1996) these dynamics are naturally faster (Juusola and Hardie, 2001b)

and improve visual acuity further. The scripts for light stimulus calibrations and for simulating
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responses to two moving dots are in the repository: https://github.com/JuusolaLab/

Microsaccadic_Sampling_Paper/tree/master/CalibrateLightInput-PhotoreceptorMovement.

A. Stationary rhabdomere model (receptive field is fixed)
This approach is broadly analogous to the classic theory (Appendix 4 and Appendix 6). It was

implemented in four steps (Appendix 8—figure 1):

i. Two bright dots, which were 6.8o apart, crossed a R1-R6’s RF (Dr = 8.1o) front-to-back at

the saccadic speed of 205 o/s.

ii. Concurrently, the ommatidium lens focused their light onto a rhabdomere tip.

iii. The resulting dynamic light input at the rhabdomere tip was a convolution of the two dot

intensities with the cell’s receptive field over time (Srinivasan and Bernard, 1975;

Juusola and French, 1997).

iv. The light input (photons/s) drove the photon sampling and refractory quantum bump (QB)

production of 30,000 microvilli (Song et al., 2012; Song and Juusola, 2014; Juusola et al.,

2015), which formed the rhabdomere. The resulting macroscopic photoreceptor output

(Hardie and Juusola, 2015) dynamically integrated the QBs.

Appendix 8—figure 1. Microsaccadic sampling-hypothesis predicts R1-R6 output dynamics to

fast moving bright dots. We compare stochastic sampling model predictions of increasingly

realistic light input modulation (A–C to real recordings D). In each case, the light stimulus is

two fast moving bright dots (i), which cross a R1-R6’s receptive field (RF, half-width = 8.1o)

front-to-back at 205 o/s. The immobile ommatidium lens focusses their light onto a

rhabdomere tip (ii). But because of diffraction, their images blur (airy disk). Interestingly,

however, in Drosophila, the airy disk half-width (~1.7oor ~ 0.6 mm) is smaller than the

rhabdomere diameter (~1.7 mm; Appendix 5). The dynamic light input falling upon the

Juusola et al. eLife 2017;6:e26117. DOI: https://doi.org/10.7554/eLife.26117 127 of 149

Research article Computational and Systems Biology Neuroscience

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/CalibrateLightInput-PhotoreceptorMovement
https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/CalibrateLightInput-PhotoreceptorMovement
https://doi.org/10.7554/eLife.26117


rhabdomere (iii) is then estimated by convolving the two dot intensities with the cell’s

receptive field over time (i). This light input is sampled stochastically by 30,000 microvilli, in

which quantum bumps integrate the dynamic voltage response (iv). (A) In the simulations,

where the rhabdomere is stationary during the dots flyby (corresponding to the classic theory

(Srinivasan and Bernard, 1975; Juusola and French, 1997), ii), their light fuses together (iii).

This is because the simulated photoreceptor’s RF half-width (8.1o) is wider than the distance

between the dots (6.8o). Accordingly, the photoreceptor output (iv) cannot distinguish the

dots. (B) Next, we include the light-induced fast back-to-front rhabdomere movement in the

model (ii; as measured in the high-speed video recordings in Appendix 7, Appendix 7—figure

1), but keep the cell’s RF shape the same. The resulting RF movement makes the light input

rise and decay slightly later than in the previous case (iii; cf. the green and dotted grey

(A) traces), but still cannot separate the two dots. The resulting photoreceptor output (iv)

shows a single peak, which is slightly broader than the output from the immobile cell in (A). (C)

In the full model, as the contracting rhabdomere jumps away from the focal point (ii), the light

input both moves with the cell’s RF and dynamically narrows it from 8.1o to 4.0o. These

processes differentiate the light input (from the dots) into two separate intensity spikes over

time (iii), which the photoreceptor output can clearly separate in two distinctive peaks (iv). (D)

In vivo intracellular photoreceptor recordings from a wild-type R1-R6 to the two moving dot

stimulus show comparable dynamics to the full model’s prediction. In the simulation, the same

cell’s RF (i) was moved and narrowed dynamically (ii-iii) according to our hypothesis in (C). This

close correspondence, which occurred even without the additional response accentuation

from the synaptic feedbacks (Appendix 6), implies that Drosophila photoreceptors’ RFs must

move and narrow with their photomechanical rhabdomere contractions. Appendix 8—figure

3 proposes four mechanisms to narrow RF.

DOI: https://doi.org/10.7554/eLife.26117.093

Characteristically in this approach, input modulation reduced to a single peak as the RF

convolution fused the light from the two dots together (iii). This made them irresolvable to the

discrete photon sampling (iv). Specifically here, light input could not separate the two dots

because the given receptive field half-width (8.1o) was wider than the distance between the

dots (6.8o). The resulting model output, thus, failed to capture the resolvability of the real R1-

R6 output (Appendix 8—figure 1, iv).

Markedly, the model prediction (Appendix 8—figure 1A, iv) much resembled those of the

deterministic Volterra-models, in which similarly broad RFs were used in the calculations (see

Appendix 6).

B. Photomechanical rhabdomere model (receptive field moves).
In this case (Appendix 8—figure 1B), we kept the cell’s receptive field shape the same (i; Dr =

8.1o) but included the light-induced fast horizontal (back-to-front) rhabdomere movement in

the model (ii). The given model parameters (Appendix 8—table 1) were fixed to closely

approximate the experimentally observed rhabdomere movement dynamics (see Appendix 7).

Here, the following deductions were made

. Each photoreceptor contracted independently to light. Although this movement is linked to

the synchronous contractions of its neighbors inside the same ommatidium, such cooperativ-

ity makes no difference to the model.
. Rhabdomere movement started 8 ms after the first dot reached the outer rim of a photore-

ceptor’s receptive field, called the trigger zone. This delay matched both the delay in R1-R6

output (Appendix 7: Appendix 7—figure 11) and the apparent dead-time in AFM data

(Hardie and Franze, 2012) to a bright light flash (Appendix 7: Appendix 7—figure 9J). The

trigger zone was 14.6o from the photoreceptor receptive field center, matching the typical

spatial threshold where dark-adapted wild-type R1-R6s responded faintly to subsaturating

peripheral light flashes (Appendix 4, Figure 7—figure supplement 1).
. Maximum horizontal rhabdomere movement was set to be 0.58 mm, corresponding to a 1.6o

shift in its receptive field. This value is close to the measured average of the maximum light-

induced rhabdomere movements in wild-type fly ommatidia (Appendix 7, Figure 8D).
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. Rhabdomere movements had two phases. In the first phase, a rhabdomere moved 1.6o in

back-to-front direction for 100 ms, reaching its maximum displacement. This caused a recep-

tive field to shift in the opposite, a (front-to-back) direction. Importantly, the first phase could

not be disturbed. In the second phase: the rhabdomere slowly returned to the original posi-

tion in 500 ms. The second phase could be disturbed. Both the phases followed linear

motion.

Appendix 8—table 1. Parameters for modeling a R1-R6’s receptive field (RF) dynamics caused

by its rhabdomere contraction

Trigger
zone:
trig

Starting
RF half-
width:
Drstart

Delay before
rhabdomere
motion: lag

Rhabdomere
motion:
(time-to-

peak)
Phase 1

Resulting
parallel
RF shift:
RFshift

RF shift
direction:
a (front-
to-back)

Rhabdomere
motion:
Phase 2

Ending
RF half-
width:
Drend

14.6 o 8.1o 8 ms 100 ms 1.6o 0 500 ms 4.0o

DOI: https://doi.org/10.7554/eLife.26117.094

As in the first case, the moving receptive field model (Appendix 8—figure 1B) was

implemented for the same stimulus in four steps (i-iv):

i. Two bright dots, 6.8o apart, crossed a photoreceptor’s RF (Dr = 8.1o) front-to-back at the

saccadic speed of 205 o/s.

ii. The ommatidium lens focused their light onto a rhabdomere tip. But here, after 8 ms

delay, the rhabdomere started to move back-to-front as it contracted photomechanically.

iii. The resulting dynamic light input was, therefore, a convolution of the two dot intensities

and the cell’s receptive field, which moved at different speeds in the same direction

(front-to-back).

iv. The light input drove the photon sampling and refractory QB production of 30,000 micro-

villi, while the resulting macroscopic photoreceptor output summed up the QBs.

We found that the resulting receptive field movement caused (iii) the light input rise and

decay slightly later than when the rhabdomere was immobile (cf. green and dotted grey

traces). However, because the two dots were close and crossed the cell’s receptive field fast,

the given co-directional receptive field motion failed to separate the light from them. Thus,

(iv) the resulting photoreceptor output showed a single peak, which was slightly broader

than the output from the immobile model.

C. Photomechanical rhabdomere model (receptive field moves and
narrows).
There is a large disparity between the measured (Appendix 4: Dr = 7.00–11.65˚) and the

optical waveguide theory derived (Stavenga, 2003b) (Dr = 3.5–5.3o) acceptance angles of

dark-adapted R1-R6s. Even Snyner’s simple formula (Snyder, 1977) (Appendix 4:

Equation A4.3), which overestimates (van Hateren, 1984; Stavenga, 2003b) Dr from the

measured Drosophila ommatidium optical dimensions, gives a theoretical upper bound (Dr

<5o) that is smaller than the smallest intracellularly measured values.
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These upper bounds for green light (545 nm) were obtained for the smallest and largest

ommatidium lens (16–17 mm) with average rhabdomere diameter EM measurements (1.7 mm)

(Appendix 5), using the experimentally estimated focal length (21.36 mm) (Gonzalez-

Bellido et al., 2011).

Moreover, interestingly, Götz estimated from Drosophila optomotor behavior, using the

early flight simulator system (Götz, 1964), that in bright illumination R1-R6 Dr would be 3.5o.

To resolve the paradox between the conflicting experimental and theoretical Dr-

estimates, which in the past were based upon histological measurements of fixed/stained

(dead/immobile) retinal structures, we hypothesized that the photomechanical rhabdomere

contractions not only move a photoreceptor’s RF but also dynamically narrow it

(Appendix 8—figure 1C). What is more, we reasoned that the RF narrowing should depend

upon stimulus history; the cell’s ongoing light exposure. Therefore, our specific prediction

was that when moving bright dot stimuli entered a R1-R6’s RF, the resulting dynamic input

modulation would transiently sharpen R1-R6 output, improving its temporal resolution.

Again, the feasibility of the hypothesis was assessed by analyzing and comparing the

resulting biophysical model output to real R1-R6 recordings. The model was implemented in

four steps (Appendix 8—figure 1C):

i. Two bright dots, 6.8o apart, crossed a photoreceptor’s RF (Dr = 8.1o) front-to-back at the

saccadic speed of 205 o/s.

ii. The ommatidium lens focused their light onto a rhabdomere tip. After 8 ms delay, the

rhabdomere started to move back-to-front as it contracted photomechanically. And now,

with this movement, its acceptance angle, Dr, also narrowed transiently, from 8.1o to 4.0o

(Appendix 8—table 1). In the model, the further away the rhabdomere moved from its

starting position at the focal plane, the more its receptive field narrowed (or skewed).

iii. The resulting dynamic light input was, therefore, a convolution of the two dot intensities

and the cell’s RF, which narrowed and moved at different speeds in the same direction

(front-to-back).

iv. The light input drove the microvillar photon sampling and refractory QB production, which

were summed up over the whole rhabdomere to a macroscopic photoreceptor voltage

output.

Importantly, the predicted photoreceptor output showed now two distinct peaks,

indicating that the two dots (iv) were resolved neurally. Moreover, the simulations closely

resembled the recordings to the similar stimulus (cf. Appendix 8—figure 1C-D).

In another test (Appendix 8—figure 1D), we estimated the same R1-R6’s light input (iii)

from its RF (i; through programmed look-up table operations, see Appendix 6—figure 1)

and used this to predict its output (iv; blue dotted trace). We discovered that the simulated

output was indeed similar to the cell’s actual recorded output to the same stimulus (black

trace), with the timing of their two peaks matching closely. This close dynamic

correspondence between the simulations and recordings was robust and reproducible in

different tested stimulus conditions (Appendix 8—figure 2C-D), meaning that the given

model structure likely incorporated the basic biophysical mechanisms that R1-R6s use in

encoding moving stimuli.
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Appendix 8—figure 2. The hypothesis predicts R1-R6 output to double-fast moving point-

objects. All the parameters of the simulations are fixed to the experimentally measured values,

similar to Appendix 8—figure 1. The stimulus is the same two bright dots, but this time,

they cross the cell’s receptive field (RF) double-fast, 409o/s (i). (A) Again, if the rhabdomere

remains stationary during their flyby (corresponding to the classic theory, ii), their light fuses

(iii), and the photoreceptor output cannot distinguish the dots (iv). (B) By including the light-

induced back-to-front rhabdomere movement (ii) but with the same RF shape, the light input

broadens slightly (iii), but cannot separate the two dots. Consequently, the photoreceptor

output (iv) shows a slightly narrower single peak than in the previous case in (A). (C) If,

however, the rhabdomere contraction (away from the lens’ focal point, ii) moves the RF and

actively narrows it (from 8.8o to 4.9o), the light input from the dots is transformed into two

intensity spikes (iii), which R1-R6 output separates into two peaks (iv). (D) Corresponding

intracellular R1-R6 recordings show comparable dynamics to the full model (C). These and

other simulations and recordings, which all show good correspondence, establish that

photoreceptors’ RFs must move and narrow dynamically during light stimulation.

DOI: https://doi.org/10.7554/eLife.26117.095

In summary, for the biophysical model to match up the real R1-R6 cells in resolving two

bright moving dots, its receptive field must move and transiently narrow from its original size

(Appendix 4: Drstart = 7.00–11.65 ˚) to the size predicted by the optical waveguide theory

(Drend = 3.5–5.3o). Moreover, within this dynamic Dr change range, the resulting model

outputs become realistic and robust. Using this modeling approach, we could appropriately

predict the real photoreceptors’ voltage responses to the different moving dot stimuli

(Appendix 6), irrespective of the tested dot speed, direction (front-to-back or back-to-front)

and inter-dot distance. For example, by replacing the mean measured rhabdomere

displacements with some of the larger values (Appendix 7), the simulations resolved moving

dots similarly well to the recordings even at very high stimulus speeds 400–800 o/s.
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From the neural coding point of view, this broad agreement between our ‘microsaccadic

sampling’-hypothesis and the experiments makes it almost certain that photomechanical

rhabdomere contractions (Appendix 7) move and narrow R1-R6 photoreceptors’ RFs to

enhance visual acuity. But from the viewpoint of reducing light-adaptation, these processes

seem like by-products of a simple evasive action, which steers the rhabdomere away from

pointing directly to the light source (to recover more refractory microvilli; see Appendix 2).

Nevertheless, while elementary optics makes it clear why a horizontal rhabdomere motion

must move a R1-R6’s receptive field in the opposite way, it is harder to see what physical

mechanisms could narrow it. We next consider four potential processes within the

ommatidium lens system that could just do this.

What could cause the receptive field narrowing during moving
light stimuli?
Four hypothetical mechanisms, together or separately, could explain the required RF

narrowing:

1. When a rhabdomere moves back-to-front (Appendix 8—figure 3), it moves away from the

center axis, which remains fixed because the ommatidium lens system does not move (see

Appendix 7, Appendix 7—figure 7). Therefore, as the rhabdomere tip moves horizontally

(Video 3), the light input point-spread function (airy disc) should fall only partly upon it.

This may clip or skew the rhabdomere’s RF (acceptance angle, Dr), narrowing it.

2. Besides moving rhabdomeres horizontally (Appendix 7), photomechanical photoreceptor

contractions also move them 0.5–1.7 mm inwards (Video 2; Appendix 8—figure 3B). In a

dark-adapted state, the rhabdomeres are elongated towards the lens with their tips possi-

bly not being at the focal point. Hence, in this position, the rhabdomeres should collect

light from broader angles (Appendix 4, from the brief test pulses: Appendix 4—figure 4),

and partially recover (re-elongate) before the next pulse comes. But during more continu-

ous light stimulus, their contraction pulls their tips inwards, towards the possible focal point

of the lens, which could narrow Dr towards its theoretical values (3.5–5.3o).

3. Rhabdomere tips are linked by adherence junctions to the cone cells (above them) and pig-

ment cells (at their upper corners) (Tepass and Harris, 2007) (Appendix 8—figure 3C).

When the rhabdomeres contract these connections likely pull the pigment cells above, gen-

erating a dynamic aperture (Video 4), which moves and possibly tightens, to narrow Dr

(see Appendix 7, Appendix 7—figure 7).

4. In dark-adaptation, the waveguide crosstalk between neighboring rhabdomeres could

broaden their receptive fields. But light-induced horizontal rhabdomere movement may

eliminate the crosstalk between the neighbors, narrowing Dr towards the theoretical values

(3.5–5.3o).

Appendix 8—figure 3. How ommatidium dimensions change during light-induced photore-

ceptor contractions. The three images show the same transverse section of three Drosophila
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ommatidia, with their rhabdomeres appearing as six darker curvy strips. The rhabdomeres

contract (cyan arrow) to light (yellow arrow, as focused by the lens), moving both (A)

horizontally (back-to-front) and (B) vertically (down arrow), see Appendix 7. Because the

rhabdomeres are connected to the surrounding structures by adherence junctions

(Tepass and Harris, 2007) (red boxes highlight the transition areas), their contraction

induces (C) moving and possibly narrowing of the aperture (green horizontal arrow) formed

by the cone and pigment cells, which are directly above the rhabdomeres (lighter blue

areas). Ultimately, the curvature of the lens and focal distance might also change slightly.

Image modified from (Gonzalez-Bellido et al., 2011).

DOI: https://doi.org/10.7554/eLife.26117.096

Specific predictions of our new hypothesis and their experimental
validations
The microsaccadic sampling-hypothesis, as implemented by our biophysically realistic

photoreceptor model (Appendix 1) with combined photomechanical rhabdomere dynamics,

makes important predictions about the coding benefits of moving and narrowing R1-R6

receptive fields that can be tested experimentally.

The first prediction is that, for a given stimulus or saccadic velocity, R1-R6 output to a

back-to-front moving bright dot should appear before the output to a front-to-back moving

dot. This is because the back-to-front moving dot should enter and exit a contracting

photoreceptor’s front-back moving receptive field earlier; whereas the dot moving in the

opposite direction should stay marginally longer inside its RF. Appendix 8—figure 4

compares the theoretical predictions (output simulations) of the same three models as earlier

(A, B and C; their details are above) and corresponding exemplary intracellular recordings

(D) for these two stimuli.

Both the full model simulations (C) and many recordings (D) indicate that this prediction is

indeed what happens for a R1-R6 with a symmetrical RF (i). The responses (red traces) to

back-to-front moving dots rise and decay faster than the responses (blue traces) to front-to-

back moving dots. Similar response dynamics of another intracellular recording series from

another R1-R6 are highlighted in Appendix 6 (Appendix 6—figure 4). Notice, however, that

these results are explicitly true for symmetrical receptive fields. If, on the other hand, a R1-

R6’s RF was asymmetrical - say, profoundly skewed towards the front of the eye, then its

response to the front-to-back moving dot might, in fact, rise earlier, or there could be little

difference between the responses. Thus, it is the mathematical relationship between the

scale of RF asymmetricity and the scale of the rhabdomere back-to-front movement, which

ultimately sets whether a front-to-back or back-to-front stimulus would win. Notice also that

dynamic photomechanical rhabdomere movements and eye muscle activity make RF

recordings difficult to perform, and consequently, experimental inaccuracies and limitations

can influence the results. Thus, some of the natural variations in the recordings may result

from imprecise stimulation control. For example, imperfect positioning of a 25 light-point

stimulus array - either off-center of a cell’s receptive field or if not aligned perfectly parallel in

respect to the eye’s back-to-front axis - could bias a recording (more about this variation and

the cell numbers in Appendix 6).
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Appendix 8—figure 4. The new hypothesis predicts and the recordings show that R1-R6 out-

put rises and decays earlier to a back-to-front moving bright dot than to a front-to-back mov-

ing dot of equal velocity. (A) A classic model with (i) a symmetrical receptive field and (ii) an

immobile rhabdomere leads to identical (iii) light inputs and virtually identical (iv)

photoreceptor outputs (minute differences result from stochastic photon sampling),

respectively, for the dots moving in the opposite directions. (B) A model with (ii) a moving

rhabdomere generates both dynamic (iii) light input and (iv) photoreceptor output, which rise

and decay earlier for the back-to-front moving dot (red traces) than the front-to-back moving

dot (blue traces). (C) Our full model with rhabdomere contraction dynamics that move and

narrow its receptive field. This makes the light input and photoreceptor output rise and

decay faster than in the other two models, with the back-to-front waveforms leading the

front-to-back counterparts. (D) The intracellular responses of a R1-R6 photoreceptor to the

given two dot stimuli, as recorded in vivo, show similar dynamics to the full model in (C) with

its back-to-front signals (red) leading the front-to-back signals (blue).

DOI: https://doi.org/10.7554/eLife.26117.097

Interestingly, for both opposing object directions, the narrowing of a R1-R6’s receptive

field (Appendix 8—figure 4C-D) makes its voltage responses briefer than what would be the

case without this process (A-B). Therefore, the resulting faster temporal photoreceptor

output dynamics combat the effects of motion blur, supporting the theoretical and

experimental results in Appendix 6 (Appendix 6—figure 8).

The second prediction is that, for high (saccadic) speeds, R1-R6s resolve two front-to-back

moving bright dots better than when these move back-to-front (Appendix 8—figure 5).

Thus, the normal back-to-front rhabdomere movement should improve the fly eye’s

spatiotemporal resolution during fast forward locomotion or object motion. This is indeed

what we saw in the full model simulations (Appendix 8—figure 5D) and in some stable

experimental recordings (Appendix 8—figure 5E). Because of the back-to-front rhabdomere
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movement, which was inverted by the ommatidium lens, the light input (Appendix 8—figure

5C) for two front-to-back moving dots were separated further apart as intensity spikes (blue

trace) than that for the opposite motion (red). Consequently, the resolvability in the resulting

R1-R6 output (Appendix 8—figure 5D) also became greater for front-to-back moving

stimuli. This of course further meant that in comparison to the case of the immobile

rhabdomere with the same narrow acceptance angle (Dr = 4o), the neural resolvability of the

back-to-front moving rhabdomere, which kept the same stimulus longer within its receptive

field, would be still better.

Appendix 8—figure 5. Fast rhabdomere movements are predicted to improve the resolvabil-

ity of fast front-to-back moving objects the most. (A) Two bright dots, 6.8o apart, cross a

photoreceptor’s receptive field (RF; Drstart = 8.1o) either in back-to-front (red, left) or front-

to-back (blue, middle) at 409 o/s (i). (B) The new photoreceptor model translated the light-

induced back-to-front rhabdomere motion into concurrent RF narrowing (Drend = 4.0o) and

front-to-back movement (as reversed by the ommatidium lens). (C) Consequently, the light

input from the dots was transformed into two intensity spikes. These spikes were further

apart in time for the front-to-back moving dots and for the opposing stimuli. (D) The two

peaks in in the corresponding model-predicted R1-R6 output (blue) for front-to-back moving

dots (highlighted by arrows) indicated that the dots were neurally detectable. In contrast, the

predicted R1-R6 output for back-to-front moving dots (red) failed to separate these two

point-objects at 19˚C. (E) An example of intracellular recordings from one R1-R6

photoreceptor to the same two stimuli at 25˚C. This cell’s voltage responses also resolved

the front-to-back moving dots better than their back-to-front moving counterparts. These

and other comparable simulations and recordings suggest that microsaccadic rhabdomere

movements improve the neural resolution (and representation) of fast moving visual objects.

DOI: https://doi.org/10.7554/eLife.26117.098

Juusola et al. eLife 2017;6:e26117. DOI: https://doi.org/10.7554/eLife.26117 135 of 149

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.26117.098
https://doi.org/10.7554/eLife.26117


Photoreceptors resolve moving object up to high body-saccadic
speeds
We next used the complete photoreceptor model (above) to estimate how well a typical R1-

R6 photoreceptor can resolve two bright dots, which are less than the average acceptance

angle (Dr) apart, moving together at increasingly fast (saccadic) velocities. This time,

however, the simulations were performed at the flies’ preferred temperature (Sayeed and

Benzer, 1996) of 25˚C, rather than at 19˚C (as in the previous data). We have shown earlier

that warming accelerates R1-R6s’ phototransduction dynamics and refractory microvilli

recovery (Juusola and Hardie, 2001b; Song et al., 2012; Song and Juusola, 2014). Because

the resulting increase in their sample (quantum bump) rate changes improves information

transfer rate (Juusola and Hardie, 2001b; Song et al., 2012; Song and Juusola, 2014), we

expect here that their output to moving dots should also show improved resolvability. We

later compare these estimates to the measured head/body-saccade speeds of freely

locomoting Drosophila (Fry et al., 2003; Geurten et al., 2014).

Appendix 8—figure 6 shows the simulated light input (C) and photoreceptor output (D)

to the dots (6.8o apart) crossing a R1-R6 photoreceptor’s RF (Drstart = 8.1o, Drend = 4.0o) in

front-to-back direction at 205 (left), 409, 600, 700, 800 and 1000o/s (right). We found that

the slower the dots moved (A), the better the predicted photoreceptor output distinguished

them as two separate events (peaks) in time (D). Remarkably, the output resolved the dots at

speeds until ~600 o/s (cyan background). As a neural threshold for representing sub-RF

details, this image speed is indeed very high. It means that Drosophila should lose little

neural image detail during its normal saccadic body rotations during walking; the measured

rotation speed range is ~200–800 o/s (Geurten et al., 2014). At the higher speeds, the two

response peaks fused into one. Notice that because the predicted light input (as modulated

by the rhabdomere contraction) resolved the dots even at 1,000 o/s (Appendix 8—figure

6C), the resolution limit in the photoreceptor output (Appendix 8—figure 6D) resulted from

its intrinsic signal integration time limit; for the given (experimentally measured) quantum

bump size, latency and refractoriness distributions (Juusola and Hardie, 2001a; Song et al.,

2012; Song and Juusola, 2014). Notice also how the response amplitude and half-width

were reduced more the faster the dots crossed the receptive field. Thus, the rhabdomere

then simply captured and integrated fewer photons in a given time unit.
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Appendix 8—figure 6. The hypothesis predicts that at the preferred temperature (25˚C) Dro-
sophila R1-R6 photoreceptors can distinguish two bright dots 6.8 o apart travelling together

at ~ 600 o/s. (A) The starting and ending receptive field size (RF; Drstart = 8.1o; Drend = 4.0o) in

all the simulation was the same. (B) in every case, the rhabdomere contracted, moving and

narrowing the RF. (C) This translated light input into two clear sharp peaks. (D)

Photoreceptor output separated the dots as two peaks at velocities until above 600 o/s (left,

cyan background), indicating that they were neurally resolvable. At 700 o/s or higher speeds

(right), the dots were not resolved as the outputs had only a single peak. Mean ± SD shown,

n = 6 repeated stochastic simulations to each stimulus.

DOI: https://doi.org/10.7554/eLife.26117.099

Prediction that R1-R6s encode hyperacute images in space-time
Given that R1-R6 output shows unexpectedly high acuity even at very fast saccadic velocities

(Appendix 8—figure 6), we asked how well these cells could in fact resolve slower moving

point-objects. Could a normal R1-R6 encode image details, which were less than the average

interommatidial angle apart? That is, could Drosophila actually see the world in finer

resolution than their compound eyes maximum sensor (or pixel) spacing, which is the limit

predicted by the classic optical theory (Land, 1997)?

We tested this hypothesis theoretically by using the full ‘microsaccadic sampling’-model

(Figure 9). In these simulations, two bright dots were now either 1o, 2o, 3o or 4o apart. Thus

the dot spacing was less than the Drosophila compound eye’ average interommatidial angle

(Dj ~4.5-5o). The dots were then moved across a R1-R6 photoreceptor’s RF (Drstart = 8.1o; Dr

end = 4.0o) at different speeds, ranging from 5 (slow gaze fixation) to 400 o/s (very fast body

saccade).

The model predicted that a typical R1-R6 photoreceptor would resolve the dots in

hyperacute details (Figure 9) over a broad range of velocities. These theoretical predictions

were broadly confirmed by intracellular recordings (Figure 9—figure supplement 1), whilst

flight simulator experiments verified that Drosophila indeed have hyperacute vision

(Figure 10).
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Refractory sampling improves hyperacute motion vision
To quantify how refractory photon sampling contributes to the sharpening of the

macroscopic responses during moving hyperacute 2-dot stimuli, we further compared the

outputs of two different photoreceptor models for the same stimuli (Appendix 8—figure 7),

with the brightness as in Appendix 8—figure 1. For both cases, the resulting dynamic light

input – reflecting the narrowing and moving receptive field, as caused by photomechanical

rhabdomere contraction - was the same, but the models’ photon sampling differed. The test

model had 30,000 stochastically operating refractory microvilli and the control was a

comparable mock model, which converted every incoming photon into a quantum bump.

Appendix 8—figure 7. Refractory sampling enhances neural resolution for different aspects of

hyperacute images. (A) Examples of simulated macroscopic light-induced current responses

(normalized LICs) of two different photoreceptor models. Both models have 30,000 microvilli.

In the first model (red), every photon causes a quantum bump; hence, its photon sampling

has no refractoriness. In the second model (black), photon sampling is refractory. Both

models are stimulated with the same moving two bright dots, with their actual light inputs

being first modulated by photomechanical rhabdomere contractions (following the

microsaccadic sampling hypothesis). Based on the tests with different velocities and inter-

dot-distances, refractoriness consistently causes a phase lead in LIC responses. (B)

Refractoriness improves response resolution for hyperacute stimuli (inter-dot-distance <4.5o)

at slow velocities (�20 o/s). The resolvability, D, of the recordings and simulations, was

determined by Raleigh criterion (cf. Figure 7C). (C) An example of how refractoriness can

enhance response resolution for larger stimulus separations at high saccadic velocities. The

difference from the lower peak to the trough is larger in the black trace (refractory photon

sampling) than in the red trace (complete photon sampling).

DOI: https://doi.org/10.7554/eLife.26117.100
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Firstly, we found that the refractory sampling consistently improved the response

resolution beyond that of the control for bright hyperacute dots (inter-dot-distance <4.5o) at

slow velocities (�20 o/s) (Appendix 8—figure 7A–B). Thus, refractoriness enhances neural

image resolution during slow self-motion or when high-resolution objects move slowly. Its

effects were particularly well seen in the differing rising phases of the normalized light-

induced current (LIC) responses of the two models. With the slow moving stimuli, the rising

responses of the refractory sampling model (black traces) always led those of the non-

refractory model (red).

Additionally, in other trials, we found that when the dots were more than the average

acceptance angle apart (Drstart � 9.5o) but moved across a R1-R6 photoreceptor’s receptive

field at very fast saccadic speeds (�400 o/s), the refractoriness often enhanced neural image

resolution beyond that of the controls (Appendix 8—figure 7C). This observation is

consistent with our previous finding that stochastic refractoriness of light-activated microvilli

exerts a memory of past events in bump integration (Song and Juusola, 2014). This memory

accentuates certain stimulus features relative to others so that a R1-R6 samples information

from different inter-dot-distance/speed-combinations differently. Ultimately, it could well be

that the real R1-R6s’ refractory photon sampling statistics are adapted (through their visual

lifestyle) to the statistics of moving high-resolution natural images. Of course, here, the used

2-dot stimuli and the models, which were isolated from the lamina network feedbacks, are

too simple to fully explore such statics and the intricacies of hyperacute Drosophila vision.

Horizontal vs. vertical motion hyperacuity
The two most important biophysical factors of Drosophila photoreceptors, which lead to

motion hyperacuity - whereupon space is encoded in time - are their sufficiently narrow

receptive fields (Drend < 5o) and refractory photon sampling (quantum bump dynamics).

Therefore, theoretically, as R1-R6s’ receptive fields should narrow when an object crosses

them, irrespective of its motion direction; Drosophila is expected to have hyperacute vision

for both horizontal and vertical motion.

However, as we considered in Appendix 8—figure 4, R1-R6 photoreceptors’ neural

resolvability should be the best for front-to-back moving objects. In this case, due to their

back-to-front sweeping rhabdomeres, R1-R6s’ receptive field can broaden slightly in

horizontal direction. This dynamic may in part contribute to the curious observation that L2

monopolar cell terminals’ receptive fields (in the medulla) are anisotropic, elongated in

horizontal (yaw) direction and narrower in vertical (pitch) direction, as measured by calcium-

imaging experiments (Freifeld et al., 2013).

Mirror symmetric contractions may also provide navigational
heading signal
As we showed in Appendix 7, light increments evoke mirror symmetric back-to-front

rhabdomere movements in the left and right fly eye. Interestingly, during fast saccadic body

rotations, this phenomenon could surprisingly help a fly’s visual orientation (Appendix 8—

figure 8). The microsaccadic sampling-hypothesis predicts that image rotation causes a

phasic difference in photoreceptor outputs between the left and the right eye, with the

signals always arriving slightly faster from the eye, towards which the fly rotates. Because this

difference depends upon the rotation speed, it could be used for signaling changes in the

fly’s heading direction or to improve visual navigation. For example, when flying across more

homogenous surroundings, such as an open field with few distinctive visual landmarks, the

central brain could use saccadic turns to recalibrate the fly’s head-direction in its internal

world map near instantaneously; matching the intended direction to the new direction, as

pointed by the global phase difference between the left and right eye signals.
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Appendix 8—figure 8. During a left saccade, signals from the left-eye lead the signals from

the right-eye. Because incoming light, in both the left and right eyes, contracts their

rhabdomeres in the back-to-front direction, photoreceptors can transmit information about

the field rotation or the fly’s orientation changes to the brain. Specifically, the output from

the eye towards which the fly turns phase leads, and thus neurally signals rotation direction.

Here we illustrate the underlying mechanism by using a brief 205 o/s left saccade (in a world

of 6.8o black-and-white gratings), as an example. (A) During the left saccade, the flow field

facing the left eye moves back-to-front (red arrow) across its photoreceptors’ receptive fields

(i). The image of the moving flow field is inverted by the ommatidium lens, and so moves

front-to-back (blue arrow) while being sampled by the rhabdomere (ii). Light contracts the

rhabdomeres in back-to-front direction (red arrow). With the projected image and the

photon-sampler (rhabdomere) moving against each other, the light input from two bright

bars (iii) becomes narrowed and accelerated. Accordingly, photoreceptor output shows two

prominent peaks, in which distance to each other is compacted in time (iv). (B) During the

left saccade, the flow field facing the right eye moves front-to-back (blue arrow) across its

photoreceptors’ receptive fields (i). Again, the ommatidium lens inverts the image, which

now moves back-to-front (red arrow) over the rhabdomere (ii), which contracts in the same

direction (red arrow). With the projected image and the rhabdomere moving together, the

light input from two bright bars (iii) excites the photoreceptor longer, in which output shows

two prominent peaks elongated in time (iv). (C) The light input to the left eye photoreceptors

(red trace) rise and decay faster than the corresponding light input (blue trace) to the right

eye photoreceptors. (D) R1-R6 output in the left eye (red trace) is faster and briefer than the

photoreceptor output (blue trace) in the right eye. (E) Consequently, by correlating the

outputs from the left and right eye photoreceptors in time, the fly brain can obtain

information about the directional changes in the visual space, in respect to its head

orientation.

DOI: https://doi.org/10.7554/eLife.26117.101
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Appendix 9

DOI: https://doi.org/10.7554/eLife.26117.102

Microsaccadic rhabdomere movements and R1-R6s’
information capture

Overview
This appendix describes how photomechanical rhabdomere movements affect Drosophila R1-

R6 photoreceptors’ information capture, compares microsaccadic information sampling of

dark and bright objects and provides useful background information about the experimental

and theoretical results presented in Figures 1–9.

In this appendix:

. We explain why and how rhabdomere movement noise influences R1-R6 output mostly at

low frequencies, causing relatively little information loss.
. We test and compare how microsaccadic sampling affects encoding of bursty bright or dark

image contrasts, using intracellular recordings.
. We further examine how well R1-R6s encode two dark moving point-objects (dots), and com-

pare these recordings with those to corresponding bright moving dots.
. The results confirm that Drosophila R1-R6 photoreceptors resolve both bright and dark mov-

ing hyperacute patterns (<interommatidial angle, Dj ~4.5-5o), and can respond to bright or

dark point-objects, which are less than their acceptance angles (Dr ~ 9.5o) apart, even at high

saccadic velocities. Thus, microsaccadic sampling hypothesis provides a robust functional

explanation for Drosophila‘s hyperacute vision (Appendix 10).
. The results support the idea that a fly’s optimal viewing strategy would involve fixating on

dark features, which recover refractory microvilli, and then shifting gaze to bright features, to

maximize information capture. This of course would require that it can neurally shift attention

(across the eyes) to visual objects of interest, as some results suggest (Tang et al., 2004;

van Swinderen, 2007; Tang and Juusola, 2010; Paulk et al., 2014; Seelig and Jayaraman,

2015).

Microsaccades accentuate high-frequency resolution but generate
low-frequency noise
Photomechanical rhabdomere contractions (microsaccades; Appendix 7) can maximally shift

the center of a R1-R6 photoreceptor’s receptive field by ~5o, and through this self-induced

light input modulation (Figure 8) cause variations (noise) in its voltage output. Such

‘rhabdomere movement noise’ is inevitable if the photoreceptor signal is classified and

estimated as the average of the repeated responses, just as we did in the performance

calculations (e.g. Figure 2).

The condition itself bears resemblance to taking snapshots of a stationary scene from

different positions and averaging these. The mean image shows an obvious smear, even if the

positions were only a fraction of a photoreceptor’s receptive field (‘pixel’) apart. However,

during repeated light stimulation, the rhabdomere movements adapt rapidly (Figure 8E,

Figure 2—figure supplement 2), with this noise affecting less the subsequent performance

estimates. Thus, when quantifying the photoreceptor performance to repeated light intensity

time series stimulation (e.g. Figure 2), we removed the first 3–10 responses, in which these

movements had the largest effect. In the recordings, this noise would then be rather constant

across the collected responses.

Rhabdomere movement noise is missing from the simulated R1-R6 output (Figures 8–

9). Therefore, given that the stochastic photoreceptor model’s transduction noise is adapted

to the mean light intensity (Appendix 2), similarly to that of the recordings (Figure 2—figure

supplement 2A–B), we could isolate it as the difference between the recorded and simulated

R1-R6 output (Figure 2—figure supplement 2C–D). The analysis suggests that rhabdomere
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movement noise affects mostly low-frequency R1-R6 output, reducing its signal-to-noise ratio,

and importantly, it effectively matches the rhabdomere jitter in high-speed video footage

(Figure 2—figure supplement 2E,F).

The contractions deviate the rhabdomere from directly facing the light source, reducing

photon influx especially during bright stimulation (Figure 8C–D). Such evasive action,

however, has surprisingly little detrimental effect on the R1-R6s’ information transfer. This is

because bright stimulation (>106 photons/s) contains too much light to be transduced by

30,000 microvilli into quantum bumps, and R1-R6s actively screen off excess photons to

maximize information in their voltage output. In Appendix 2, we showed that R1-R6s’

photomechanical adaptations (the contractions and intracellular pupil mechanism) are jointly

optimized with refractory sampling (to modulate quantum efficiency [Song et al., 2012;

Song and Juusola, 2014]) for maximal information intake at different stimulus conditions.

Moreover, owing to bump adaptation and microvilli refractoriness, which accentuate light fast

changes in macroscopic voltage output (Song et al., 2012; Song and Juusola, 2014;

Juusola et al., 2015) (e.g. (Song and Juusola, 2014): Figures 9–10, improving high-frequency

resolution), slower signals in return become compressed. Importantly, this low-frequency

response range (<~10 Hz), where also rhabdomere movement noise mostly resides

(Figure 2—figure supplement 2D), carries relatively little information (Song and Juusola,

2014) (about the behaviorally more relevant faster changes in the world).

Are saccades and fixations optimized to microsaccadic sampling?
Recordings and simulations (Figures 1–2) showed unequivocally that R1-R6s information

capture is maximized for high-frequency saccade-like bursts with dark fixation intervals. This

suggests that the optimal daytime viewing strategy would be to fixate on dark features in the

visual scenes, as this recovers refractory microvilli, and then rapidly move gaze to over bright

features, as this increases quantum bump (sample) rate changes and thus information capture

in time. And indeed, in behavioral experiments, Drosophila readily fixates on and track dark

objects, such as vertical bars (Götz, 1980; Tang and Juusola, 2010; Bahl et al., 2013). But

because the fly eye photoreceptors sample a continuous panoramic view of the world, many

of them - at any one time - would unavoidably face bright contrasts, which reduce their

sensitivity even when their photomechanical adaptations (Appendix 2) operate maximally. We

therefore also tested by intracellular R1-R6 recordings how encoding of dynamic bright or

dark contrast changes may differ.
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Appendix 9—figure 1. Optimal saccadic viewing strategy for maximizing R1-R6 photorecep-

tors’ information capture requires fixating on darker image features. (A) Intracellular responses

of a R1-R6 to repeated saccadic bright (left) and dark (right) bursts. (B) Output to bright

saccadic bursts was always more vigorous when mixed with dark fixation periods (BG, above)

than with bright periods (middle), irrespective of the stimulus frequency distribution. When the

same R1-R6s were fixated (light-adapted) on a bright background (below), they still responded

well to dark saccadic bursts (of the inverse waveforms), but the amplitude range of these

responses was less than to bright bursts (above, dark BG). (C) Corresponding R1-R6 output

signal-to-noise ratios were the highest for the bright-saccadic-burst/dark-fixation-period

stimuli (black traces). Signal-to-noise ratios were lower but alike for the brighter saccades with

bright fixation periods (grey) and the dark saccades with bright fixation periods (light grey).

(D) Information transfer rates confirmed the global maximum for 100 Hz bright saccade-like

bursts with dark fixations (black bars; cf. Figure 2C). Whilst bright fixation periods reduced

information (with more microvilli becoming refractory), the bit rates for bright (grey) and dark

(light grey) saccadic modulation, of equal but opposite contrasts, were similar.

DOI: https://doi.org/10.7554/eLife.26117.103

Appendix 9—figure 1A shows examples of consecutive responses recorded from a R1-R6

to repeated high-frequency saccadic bright or dark contrast bursts (with 100 Hz cut-off).

Expectedly, following the stochastic adaptive visual information sampling theory (Appendixes

1–2), the responses to bright (positive) contrasts after dark ‘fixation’ periods (background, BG)

were significantly larger than those to dark (negative) contrasts after bright ‘fixation’ periods.

Notice, however, that although in terms of absolute light intensity (I) changes (or peak-to-peak

amplitude modulation) the two stimuli were equal, the negative bursts had smaller absolute

contrast values (C ¼ DI=I) than the positive ones. This is because the darkening bursts reached

their absolute contrast maximum (darkness, �1) only occasionally, whereas the corresponding

brightening bursts reached higher absolute contrasts (>1; owing to their lower mean light

intensity).

To counter this bias, we used three sets of stimuli to examine individual R1-R6s’ response

dynamics to both positive and negative bursts of equal or different contrast distributions

(Appendix 9—figure 1B). First (top row), the photoreceptors were stimulated with positive

contrast bursts (peak-to-peak modulation = 1 intensity units), which contained high-frequency
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saccade-like events on a dark background, having different cut-off frequencies (from 20 to 500

Hz, as in Figure 1). In the second set (middle), the same stimuli were superimposed on a

bright background (one unit). Finally (bottom), the stimulus modulation was inverted (to

negative contrast bursts) and superimposed on the same bright background (one unit). Thus,

for the second and third sets, the stimulus contrasts were equal but opposite.

We found (again in agreement with the theory) that whilst the responses were always the

largest to positive contrast bursts on a dark background, the corresponding responses to the

positive and negative contrast bursts on bright background, although smaller, were about the

same size (Appendix 9—figure 1B). Since we further know that the larger responses contain

more quantum bumps (Figure 2), with the average bumps light-adapting to about the same

size (e.g. Figure 2—figure supplement 2A–B), the responses’ signal-to-noise ratios

(Appendix 9—figure 1A) and information transfer rates (Appendix 9—figure 1D) were

predictable. R1-R6s’ signaling performance was the greatest to the larger positive contrast

bursts on a dark background (black), and more than halved to the smaller corresponding

positive (grey) and negative (light grey) contrast bursts over the test bandwidths. Notably, the

responses to the opposite but equal positive and negative contrast bursts carried effectively

equal information contents, underscoring the importance of contrast invariance at the primary

visual encoding stage (Juusola, 1993; Song et al., 2012; Juusola et al., 2015).

Therefore, given the fast speed of adaptation (microvilli refractoriness and dynamic

quantum bump size modulation) and its photomechanical counterbalancing (Appendixes 2, 7),

the sensitivity of neighboring photoreceptors across the eyes can differ greatly at any one

moment, depending upon whether they face dark or bright contrasts. This realization also

implies that when a fly moves its gaze in saccades, the dark and bright spatial contrast

differences in the world should be automatically translated into large temporal contrast

changes between the neighboring retinotopic image pixels (neuro-ommatidia). Enhancement

of local differences and similarities in neural images by spatiotemporal synaptic (Zheng et al.,

2006; Freifeld et al., 2013) and gap-junctional (Wardill et al., 2012) co-processing (including

network adaptation [Nikolaev et al., 2009; Zheng et al., 2009]) across the first optic ganglia,

the lamina and medulla, should further improve object detection and fly vision.

Microsaccadic sampling of bright or dark moving point-objects
Natural scenes are rich with dark features: shadows, object boundaries, surfaces of lesser

reflectance etc., which have shaped visual circuit functions, perception and behaviors

(Barlow H, 1961; Yeh et al., 2009; Joesch et al., 2010; Ratliff et al., 2010; Kremkow et al.,

2014; Song and Juusola, 2014). Consequently, a fly’s self-motion generates both dark and

bright moving features travelling across its eyes. We have shown that R1-R6s can resolve fast-

moving and hyperacute bright dots (Figures 7–9 and Figure 9—figure supplement 1). But

how well can these cells resolve dark moving dots?

We studied this question with the 25 light-point stimulus array (explained in Appendix 4

and Appendix 6). As before, the stimulus array was first carefully placed at the studied R1-R6’s

receptive field center, but this time, all the light-points were switched on, and we generated

two travelling dark points of specified speeds and interdistances. As during these experiments

the cells were light-adapted (depolarized) by the lit stimulus array, the two moving dark dots

evoked hyperpolarizing responses.

Appendix 9—figure 2A shows R1-R6s’ characteristic responses to two dark (black traces)

and bright (red) dots of specific speeds (102, 205 and 409 o/s) and interdistances (3.4, 5.1 and

6.8o apart), recorded from the same cells. In all these cases, the hyperpolarizing responses

resolved the two dots, generating two troughs separated by a peak, but these responses were

considerably smaller than those to the corresponding bright dots. However, when normalized,

the photoreceptors’ relative neural resolvability of the dark dots matched that of the bright

dots (Appendix 9—figure 2B).

Thus, in concordance with the behavioral experiments (Figure 10), these and other

intracellular recordings established that Drosophila R1-R6 photoreceptors see both bright and

dark moving hyperacute patterns (<interommatidial angle, Dj ~4.5-5o), and can resolve point-
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objects, which are less than their acceptance angles (Dr ~ 9.5o) apart, even at high saccadic

velocities.

Appendix 9—figure 2. Comparing R1-R6s’ intracellular responses to hyperacute or saccadic

bright or dark moving dots. (A) Mean (thick traces) and individual responses (thin) of three

individual R1-R6s to two bright (red, above) or dark (black, below) dots (of different inter-dot-

distances and speeds), crossing the cells’ receptive fields in front-to-back direction. Responses

to the hyperacute dots (3.4o inter-dot-distance) are shown left; responses to the saccadic

speed stimuli in the middle (205 o/s) and right (409 o/s). In all cases, these outputs resolved the

two dots, but predictably the responses were always smaller to the dark dots at the bright

background than to the bright dots at the dark background (as more microvilli should remain

refractory when adapting to bright background). (B) The normalized and sign-inverted R1-R6

outputs to dark dots were similar to their normalized outputs to bright dots, with both

showing equally good Raleigh-resolvability (cf. Figure 7C). Naturally, as the Drosophila eye

samples light information from each point in space by eight photoreceptors (due to neural

superposition) and balances this estimate with those of the neighboring lamina cartridges, its

perception/resolvability of hyperacute and saccadic image motion is improved further.

DOI: https://doi.org/10.7554/eLife.26117.104

Microsaccadic sampling hypothesis and efficient coding
Our results indicate that R1-R6 photoreceptors’ information transfer adapts to the context of

stimulus statistics; with refractory microvilli, fast quantum bump adaptation (Henderson et al.,

2000; Juusola and Hardie, 2001a; Song et al., 2012) and photomechanical microsaccades

maximizing encoding of phasic information from high-contrast bursts. Remarkably, the

extraction of phasic stimulus features, which characterize object boundaries and line elements

in visual scenes, already starts during sampling and integration of visual information in the

microvilli, at the first visual processing stage. The darker periods in stimuli relieve the effects of

microvilli refractoriness, enabling greater sensitivity: more and slightly larger samples

(quantum bumps) can be generated transiently to the next light change (Figure 1). This

increases the signal-to-noise ratio of the integrated macroscopic response, especially in its

phasic (fast rising/decaying) components (Appendix 3, Appendix 3—figure 1). However,

unlike later information processing in the network, during which presynaptic inputs are often

translated to postsynaptic spike-bursts of high sparseness for specific features, the neural code

of photoreceptors must consider all stimulus features together. It adapts to allocate

information in high-contrast bursts into continuous Gaussian broadband voltage signals

(Figure 2A–B), utilizing the output range optimally.

In the viewpoint of efficient coding, stochastic refractory sampling, fast quantum bump

adaptation and photomechanical contractions benefit vision in three important ways:

. They exchange redundant information in mean voltage to more useful information in relative

modulation, enabling photoreceptors to encode reliable estimates of the world within their

limited output ranges, despite strongly and quickly changing intensities.
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. They lower the metabolic cost of information with fewer bumps integrating a lower mem-

brane potential, consuming less ATP (Song and Juusola, 2014).
. And when linked to bursty saccadic head/body movements, they increase high-frequency

information capture from the world and reduce motion blur.

These results further imply that saccadic behaviors enable the fly eye to convey to the fly

brain a far more efficient and accurate neural image of the variable world than what was

believed before. Thus, saccades not only contribute to gaze-stabilization (Land, 1973;

Fox and Frye, 2014), which historically is considered to be their major function

(Land, 1999), but they also “burstify” light input for efficient and accurate sampling.
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Appendix 10

DOI: https://doi.org/10.7554/eLife.26117.105

Drosophila behavior in a flight simulator system confirms
hyperacute vision

Overview
This appendix describes the used optomotor behavioral paradigm in a classic Drosophila flight

simulator system to study visual resolution, and provides important background information

about the experimental and theoretical results presented in Figure 10 in the main paper.

In this appendix:

. We test in open-loop conditions whether wild-type Drosophila can generate yaw-torque

(optomotor responses) to hyperacute vertical black-and-white stripe-scenes that rotate clock-

wise and counterclockwise at 45 o/s.
. Our results clearly indicate that wild-type Drosophila have hyperacute vision (seeing finer

image details than the average interommatidial angle, Dj ~4.5, of their compound eyes),

with the measured behavioral responses closely following the prediction of our new ‘micro-

saccadic sampling’-hypothesis (see Appendix 8).

Testing Drosophila visual behavior in flight simulator system
Wild-type ‘Berlin’ Drosophila were raised on standard food medium at 25˚C and 60% relative

humidity with a 12 hr light and 12 hr dark cycle, with light on at 8 a.m. In the experiments, we

used 2- to 3-day-old female flies. Under cold-anesthesia (lasting <3 min), a small copper-wire

hook was fixed with a droplet of UV-light sensitive glue (Loctite) between each fly’s head and

thorax. After preparation, flies were left to familiarize themselves with their hooks overnight in

single vials, which provided them water and sucrose.

A custom-built, computer controlled flight simulator system (Wardill et al., 2012) was used

to study Drosophila’s optomotor behavior. A tethered Drosophila was connected to the

torque-meter (Tang and Guo, 2001) by a small clamp holding the copper-wire hook, which

fixed the fly’s head in a rigid position and orientation, but allowed stationary flight

(Götz, 1964; Heisenberg and Buchner, 1977). The torque meter transduced yaw torque into

electrical voltage.

A fly, tethered from the torque meter, was lowered by a mechanical micromanipulator in

the center of a white featureless plastic hollow cylinder (a diffuser). Inside it, we placed high-

resolution visual patterns (bars, stripe patterns, etc.), which were laser-printed on a

transparent film, forming a 360o panorama around the fly’s long axis. The panorama could be

rotated around its vertical axis by a servomotor. Outside, the diffuse cylinder faced a

surrounding ring-shaped light-tube (special full-band: 350–900 nm) that provided uniform

illumination on the panorama. The light intensity during the panoramic motion stimulation,

although bright, was always less (0.5–1.5 log-intensity units) than the direct stimuli used in the

intracellular recordings (cf. Figure 1).

Open-loop experiments
Inside the flight simulator, a flying fly saw a continuous (360o) stripe-scene (black-and-white

bars) of predetermined spectral and spatial resolution, which was free of motion artefacts,

flashing or aliasing. After one second of viewing the still scene, it was spun to right (clockwise)

by a linear stepping motor (in which output was recorded simultaneously by a separate

potentiometer coupled to the motor) for two seconds, stopped for two seconds, before

rotating to left (counterclockwise) for two seconds, and stopped again for a second. This

eight-second stimulus was repeated 10–25 times and each trial, together with the fly’s

coincident yaw torque responses, was sampled at 1 kHz and stored in a PC’s hard-drive for
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later analysis, using custom-written software (Biosyst) (Juusola and Hardie, 2001a).

Presumably to stabilize gaze, flies tend to follow the scene rotations, generating yaw torque

responses (optomotor responses to right or left), the strength of which is believed to reflect

the strength of their motion perception (Götz, 1964; Heisenberg and Buchner, 1977;

Wardill et al., 2012). The fixed stimulus parameters for moving stripe scenes, as shown in the

figures, were: azimuth ±360˚; elevation ±45˚; velocity, 45, 50, 200 or 300 ˚/s; contrast, 1.0, as
seen by the fly. Figure 10A show the averages (n = 9 flies) of the mean optomotor responses

(n = 22–35 trials for each fly).

We first tested optomotor responses of wild-type flies to black-and-white stripe-scenes

(spectral full-width: 380–900 nm) of three different spatial resolutions (wavelength: 1.16o,

2.88o and 14.4o), rotating at 45o/s, as shown in Figure 10A–C. To verify that air flow, or some

hidden features in the stimulus panorama, was not affecting optomotor responses, we used

the white diffuser cylinder alone, which showed no clear contrast to human eye, as the control

stimulus. These control field rotation experiments were repeated using the same flies

(Figure 10—figure supplement 1). We found by that the white control stimulus did not evoke

torque responses.

We also tested optomotor responses of five flies to 3.9o (hyperacute) and 14.4o (control)

wavelength panoramic stipe-scenes, rotating at 50, 200 and 300 o/s (Figure 10D–F). The

results were consistent with the predictions of the full photoreceptor model (cf. Figure 9A,

two dots 4o apart), which incorporated both the refractory photon sampling and

photomechanical rhabdomere motion dynamics.

Quantifying optomotor behavior. The optomotor responses of individual flies to the same

repeated field rotations vary in strength and repeatability (Figure 10—figure supplement

1A), but their visual performance to different spatial resolution stripe scenes is clearly

different. These differences can be quantified by measuring the mean torque response of a

single fly to stimulus repetitions and by averaging the mean responses of the many flies of the

same stripe scene resolution (Figure 10—figure supplement 1B; here 9). This reduces noise

and non-systematic (arbitrary) trends of single experiments, revealing the underlying response

strength and optomotor behavior characteristics. These population responses are shown in

Figure 10 for a straightforward comparison.

In open-loop experiments, a fly’s torque response returns gradually to baseline after the

optomotor stimulus stops, but this can take seconds (varying with individual flies). Accordingly,

in our experiments, which contain only brief 2-s-long inter-stimulus-intervals, the torque

responses typically recover only fractionally (10–70%) during these still periods toward the

baseline. Therefore, for comparing the optomotor behavior different stripe scene resolutions,

we used the maximum range (or peak-to-peak) of the torque response, evoked by the

combined leftward and rightward field rotation stimulus. The maximum range and variability in

the torque responses to the same optomotor stimulus are shown with controls in Figure 10—

figure supplement 1C and D, respectively.

Markedly, the optomotor responses to hyperacute stripe-scenes were not caused by

aliasing. This is because perceptual aliasing (such as the wagon-wheel effect or Moiré

patterns), if induced by the rotating hyperacute scenes, would have been perceived as slowed

down image rotation, eventually reversing to the opposite direction (the reverse rotation

effect). And thus, if the tested flies had seen such motion patterns, they would have

consequently followed them slower and rotated against the real scene rotation direction. Such

optomotor behavior was never observed in our experiments.

Why did the previous behavioral studies not find hyperacute
vision?
In 1976, Buhner probed Drosophila’s visual acuity by stimulating the upper frontal part in one

of its eyes with small local moving grating patterns (covering about 50 ommatidia) while a fly

walked on track-ball (Buchner, 1976). Notably, the aim of his study was not to find the finest

resolution what a Drosophila can resolve but instead to deduce the likely columnar

organization of its directionally sensitive elementary motion detectors from a fixed fly’s
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tendency to follow moving stimulus patterns. Thus, this was also an open-loop paradigm, but

the used microscope-mediated local grating stimulation was very different from the global

hyperacute panoramic visual scenes of our study. Specifically, we note that in Buchner’s study:

. Visual acuity was not tested below the interommatidial angle (Dj ~4.5); with the overall

results deduced by eliminating the presumed boundary elements and contrast attenuation

from the data.
. The used mean stimulus light intensity (luminance; 16 cd/m2) was low. Therefore, the result-

ing image grating at the level of individual photoreceptors would have been dim and spatio-

temporal signal-to-noise ratio of light input and photoreceptor output low. Based on our

intracellular data (Juusola and Hardie, 2001a; Song et al., 2012), this dim light intensity

would have made it practically impossible for R1-R6 photoreceptors to resolve very fine (or

hyperacute) visual patterns.
. The sensitivity and the time resolution of the used trackball system (Buchner, 1976) seem

significantly less than in our bespoke torque meter (Tang et al., 2004), requiring extensive

data averaging. This would have made it more difficult for the trackball system to resolve the

weaker (small amplitude) behavioral responses to fine spatial contrast changes (Figure 10A).

More recently, because of the historical belief that interommatidial angle limits a fly’s visual

acuity, many experimentalists have started using coarse LED-matrixes, typically with 4.5-5o

maximum resolution, to probe visual learning and optomotor responses. As our study here

shows, these kinds of visual stimuli are very different from the panoramic high-resolution

printed scenes with thin continuous lines and symbols and thus are expected evoke quite

different neural responses.
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