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Abstract Probabilistic reward learning is characterised by individual differences that become

acute in aging. This may be due to age-related dopamine (DA) decline affecting neural processing

in striatum, prefrontal cortex, or both. We examined this by administering a probabilistic reward

learning task to younger and older adults, and combining computational modelling of behaviour,

fMRI and PET measurements of DA D1 availability. We found that anticipatory value signals in

ventromedial prefrontal cortex (vmPFC) were attenuated in older adults. The strength of this signal

predicted performance beyond age and was modulated by D1 availability in nucleus accumbens.

These results uncover that a value-anticipation mechanism in vmPFC declines in aging, and that this

mechanism is associated with DA D1 receptor availability.

DOI: https://doi.org/10.7554/eLife.26424.001

Introduction
In order to navigate an uncertain world successfully, humans and other animals are required to learn

and update the values of available actions and switch between them appropriately. Compared with

younger adults, older individuals are poor at probabilistic reward learning and subsequent optimal

action selection (Eppinger et al., 2011; Mell et al., 2005). One common account of this deficit is an

age-related deterioration of the dopamine (DA) system (Volkow et al., 1998), with two of its pri-

mary targets - striatum and prefrontal cortex (PFC) - being obvious culprits.

A wealth of animal literature demonstrates that DA signals from midbrain convey reward predic-

tion errors (RPEs) (Bayer and Glimcher, 2005; Schultz et al., 1997), which are thought to act as sig-

nals that facilitate action selection in striatum (Niv and Montague, 2009; Pessiglione et al., 2006).

Hence, one hypothesis states that aging leads to decreased striatal DA release in response to RPEs,

leading to a comparatively less efficient learning signal (e.g. slower learning rate). Supporting this,

previous studies reported lower correlations between RPEs generated from probabilistic reward

learning tasks and nucleus accumbens (NAcc) BOLD signals in older compared with younger adults

(Eppinger et al., 2013; Samanez-Larkin et al., 2014). By decomposing RPEs in a dynamic two-

armed bandit task into their two subcomponents: obtained reward (R) and expected value (Q),

Chowdhury et al. (2013) showed that, in older adults, neural activity in NAcc reflected just the

de Boer et al. eLife 2017;6:e26424. DOI: https://doi.org/10.7554/eLife.26424 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.26424.001
https://doi.org/10.7554/eLife.26424
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


former. Only after the dopaminergic system had been pharmacologically boosted could the

expected value component be detected in NAcc. While these findings support the tenet that attenu-

ation of DA-modulated expected value signals in NAcc underlies age-related performance deficits

(Chowdhury et al., 2013), a younger comparison group was lacking.

Another hypothesis is that age-related decline in probabilistic reward learning may be related to

impaired prefrontal functioning (Nyberg et al., 2010; Raz et al., 2005; Halfmann et al., 2016).

Indeed, compromised DA projections to frontostriatal circuits are reported in aging (Dreher et al.,

2008; Hämmerer and Eppinger, 2012). Anticipatory activity reflecting the value of the chosen

option in the ventromedial PFC (vmPFC) is widely reported in decision-making tasks (Balleine and

O’Doherty, 2010; Daw et al., 2006) and is modulated by DA (Jocham et al., 2011). Supporting an

involvement of PFC in age-related decline in probabilistic reward learning, one previous study sug-

gests decreased RPE signalling in vmPFC in older adults (Eppinger et al., 2015). Another study

showed that within a group of older adults with increased BOLD activity related to value anticipation

predicted better performance on the Iowa gambling task (Halfmann et al., 2016). However, despite

evidence suggesting that age-related decline in PFC value signals could be related to dopaminergic

deterioration, there is no published data directly showing this.

Furthermore, there is little work comparing younger and older populations according to an addi-

tional factor that could influence performance in these tasks, namely the impact of uncertainty or

confidence in the payoffs or values of the options on choice switching (Badre et al., 2012;

Frank et al., 2009; Vinckier et al., 2016). Uncertainty should influence the trade-off between explo-

ration and exploitation (Sutton and Barto, 1998) that an optimal policy should balance. However,

how exploration and switching are modulated in aging and how they influence performance is

unclear.

Our aim was to investigate the effect of age and DA availability on striatal and prefrontal mecha-

nisms involved in probabilistic reward learning. We included samples of 30 older and 30 younger

participants who performed a two-armed bandit task (TAB) previously used by Chowdhury et al.

(2013) while fMRI data was acquired. All participants were healthy and cognitively high functioning

(MMSE > 27). In brief, all participants performed 220 trials on the TAB (Figure 1a). On each trial,

participants chose between one of two bandits, represented by fractal images. After a variable inter-

val, the outcome was presented as a green arrow pointing up signalling a reward, or a yellow hori-

zontal bar signalling no reward. Probabilities of obtaining a reward varied over time for both

bandits, according to independent Gaussian random walks (Figure 1c, left). This required the partici-

pants to update the expected value for each bandit continuously. Participants received monetary

earnings of 1 Swedish Krona (SEK, ~$0.11) per rewarded trial. Behaviour was quantified with a Bayes-

ian observer model augmented to capture the influence of variance and confidence on switch behav-

iour. This model outperformed a Rescorla-Wagner (RW) model that tracked expected value using

simple RPEs. To investigate the relationship between the ability to learn about probabilistic rewards

and the DA system, we collected PET data using the radioligand [11C]SCH23390 to measure striatal

and prefrontal DA D1 receptor binding potential (D1 BP), as a proxy for integrity of the dopaminer-

gic system. The chosen radioligand allows for reliable measurement of BP in striatum and PFC simul-

taneously (Hall et al., 1994), as opposed to alternative markers of dopaminergic function.

Based on previous work, we hypothesised that, in younger participants, BOLD signal in NAcc

would reflect both components of the RPE signal, whereas older participants would show a reduced

expected-value component. Additionally, we expected an attenuated expected-value signal during

choice in the older compared to the younger sample in PFC. We reasoned that the strength of these

expected-value representations in both PFC and NAcc would show a relationship to DA D1 BP in

either subcortical or prefrontal regions.

Results

Task performance
The goal of the analyses was to establish the neural mechanism underlying decreased probabilistic

value learning in older participants. We did this by (1) assessing differences between age groups in

the BOLD signal related to anticipatory expected value in the vmPFC, (2) assessing differences

between age groups in the BOLD signal related to RPEs in the NAcc, and (3) investigating the
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Figure 1. Behavioural paradigm and performance on the two-armed bandit task. (a) Schematic representation of a trial in the TAB. Participants were

presented with two fractal images on each trial and selected one of them through a button press. The maximum response time was 2000 ms, meaning

the trial would count as a miss if the response time exceeded this limit and the next trial would start immediately after the next inter-trial interval. If one

stimulus was selected, this option was highlighted with a red frame. After 1000 ms, participants were presented with the outcome: either a green arrow

pointing upwards, indicating an obtained reward of 1SEK ( » $0.11), or a yellow horizontal bar, indicating no win. The position of the images on the

screen varied randomly across the 2 � 110 trials of the experiment. Reward probabilities varied throughout the experiment. (b) Behavioural

performance on the TAB, across age group. Younger participants earned more money on the TAB on average (top left, t(49) = 1.69, p(one-tailed)

=0.048). Proportion of efficient choices differed significantly between the two groups (top right, Mann-Whitney U = 286.5, p(one-tailed)=0.029). Number

of switches did not differ significantly between groups (p=0.19; bottom left), but the proportion of adaptive switches differed between age groups

(bottom right, Mann-Whitney = 271.0; p(two-tailed)=0.033). Data are represented as mean ±SEM. (c) Left pane: Varying reward probabilities for

obtaining a reward for each bandit on the 220 trials of the experiment. Center/right pane: Model predictions (black lines) and observed behaviour

(coloured lines). Model fit did not significantly differ between participants (Mann-Whitney U = 353.0, p=0.406).

DOI: https://doi.org/10.7554/eLife.26424.002

The following source data, source code and figure supplements are available for figure 1:

Source data 1. Source data to Figure 1.

DOI: https://doi.org/10.7554/eLife.26424.005

Source code 1. Code that was used to perform simulation of behavioural data (figure 1c), as well as the creation of Figure 1.

DOI: https://doi.org/10.7554/eLife.26424.006

Figure supplement 1. Dopamine D1 binding potential is lower in older adults.

DOI: https://doi.org/10.7554/eLife.26424.003

Figure supplement 1—source data 1. Binding potentials in seven ROIs for young and old participants.

DOI: https://doi.org/10.7554/eLife.26424.004
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relationship between these BOLD signals and DA D1 binding potentials (BP) in a set of predefined

ROIs. To obtain the best estimate of expected value to use in our fMRI analysis, we fitted a range of

computational models and used Bayesian model selection.

Younger adults outperformed older adults on the task (Figure 1b). There was a weak group dif-

ference in total amount of money earned (Mold = 125.9, SD = 11.4; Myoung = 130.3, SD = 8.2; t(49),

p(one-tailed)=0.050). Additionally, efficient choices, defined as the proportion of total choices that

were more likely to be rewarded according to the actual (hidden) state of the Gaussian random

walks also differed between groups (Mold = 0.53, SD = 0.10; Myoung = 0.59. SD = 0.08, Mann-Whit-

ney U = 286.5, p(one-tailed)=0.029. We also investigated how switching between the two alterna-

tives contributed to performance. The number of switches was negatively related to total monetary

gains (r = �0.29, p=0.032, controlled for age). There was no evidence to suggest that the number of

switches differed between age groups (Mold = 57.3, SD = 34.6; Myoung = 68.1. SD = 29.8, Mann-

Whitney U = 323.0, p=0.190).

We assessed the ability of a variety of members of two broad families of models to capture trial-

by-trial behaviour (see Materials and methods, SI for details). The first family includes variations on

standard reinforcement learning (RL) models in which action values are learned through RPEs and

the RW updating rule. The second family of models comprises variations on a Bayesian observer in

which the probability distribution of obtaining a reward is updated after each outcome observation.

Model comparison statistics are displayed in Table 1.

The most parsimonious account came from a five parameter Bayesian observer model. This

tracked the probability of obtaining a reward for each action as a beta distribution with parameters

representing pseudo-counts of wins and win omissions. Pseudocounts for the bandit that was chosen

were updated according to the outcome, based on a learning rate of w. Pseudocounts for the bandit

that was not chosen were relaxed towards neutral values based on a forgetting rate of l. The beta

distributions generated action propensities for the two bandits according to three weighted additive

factors: one was the relative expected values (Q) of the bandits, calculated as the mean of the beta

distributions (Figure 2 and Equation 7, Materials and methods). The other two depended on differ-

ent forms of uncertainty and were associated with the choice between sticking with the previous

choice or switch.

The first determinant of switching was the current variance (V) of the option that was not chosen

on the previous trial calculated from its approximate beta distribution (Figure 2; formula 8, Materials

and methods). The variance was multiplied by a parameter u and added to the propensity of this

previously unchosen option. u was negative in all but two participants (Table 2), reflecting the fact

that increasing uncertainty about the unchosen option decreased its value, making it a less likely

Table 1. Model comparison statistics for the different models.

The winning model, defined as the model with the lowest integrated BIC (iBIC), was the Bayesian observer model with five parameters.

Parameters: b: inverse temperature parameter for softmax, a: learning rate for RW model, b: choice kernel, f: forgetting rate for RW

model, w: learning rate for Bayesian model, l: forgetting rate for Bayesian model, u: variance weighting, k: confidence weighting.

Family Parameters # Param Likelihood Pseudo-R2 iBIC

RW b, a 2 �5636.8 0.336 11309

b, a, b 3 �5317.8 0.374 10692

b, a, b, f 4 �5140.0 0.394 10355

Bayesian observer b, w 2 �5919.8 0.302 11877

b, w, l 3 �5719.2 0.326 11495

b, w, l, b 4 �5154.6 0.392 10385

b, w, l, u(chosen) 4 �5161.7 0.392 10399

b, w, l, u(unchosen) 4 �5130.0 0.395 10335

b, w, l, k 4 �5675.3 0.331 11426

b, w, l, u(unchosen), k 5 �5082.5 0.401 10259

DOI: https://doi.org/10.7554/eLife.26424.007
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choice on the current trial. Hence, increased uncertainty about the previously unchosen option

caused most subjects to stick to their current choice. This is the opposite of an exploration bonus.

This model outperformed an account based on a more conventional choice kernel, according to

which perseverating or switching was influenced only by previous choices themselves rather than

something reflecting knowledge about those choices. This suggests that perseveration, which is
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Figure 2. Schematic representation of the Bayesian model values for one participant at the time of choice at trial 21. All components that are used to

model choice at trial 21 are marked in orange. The sequence of choices for this participant was [1 1 1 2 1 1 1 2 2 1 2 2 1 1 1 2 2 2 2 1], and the payout

for these choices was [1 1 0 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1]. According to the participant’s individually fitted model parameters (w = 0.72; l = 0.28), and

following this sequence of choices and outcomes, the beta distributions defining the subjective value of the bandits were �1 ~ b �1; 2:02; 1:08ð Þ and

�2 ~ b �2; 1:26; 1:74ð Þ (see Equations 9–11, Materials and methods) at choice of trial 21. The expected value for each bandit was defined as the mean

of the beta distribution (Q1 = 0.65, Q2 = 0.42; see Equation 7, Materials and methods). The variance of the unchosen option was equal to the variance

of bandit 2, which was not chosen on trial 20 (Vuc = 0.05, see Equation 8, Materials and methods). Variance is schematically represented as a dotted

line (note that this is an approximation because the beta distributions are not symmetrical). The 2-d plot shows the joint distribution P(�1,�2) where

values of �1 are along the x-axis and �2along the y-axis. Confidence was calculated based on the values of the distributions at choice on the previous

trial. C1 was defined as the probability that a random sample drawn from �1 at the time of choice at trial 20 was greater than a sample drawn from �2

(shaded area below the diagonal, as �1 > �2 there. C1 = 0.56, Materials and methods Equation 15). C2 could be defined as 1-C1 (shaded area above

the diagonal, C2 = 0.44, Equation 16, Materials and methods). Crel was equivalent to Cchosen – Cunchosen, in this case C1-C2 (C
rel = 0.12, Equation 17).

This relative confidence was scaled by k and then added to the action that was not chosen on the previous trial (in this case bandit 2).

DOI: https://doi.org/10.7554/eLife.26424.008

Table 2. Summary statistics of the five parameters of the winning model.

Minimum 25th percentile Median 75th percentile Maximum

b 1.436 7.017 12.280 17.730 64.750

w 0.042 0.238 0.408 0.558 0.851

l 0.055 0.139 0.202 0.270 0.544

u �3.372 �1.845 �1.069 �0.678 0.234

k �0.202 0.152 0.260 0.359 0.896

DOI: https://doi.org/10.7554/eLife.26424.009
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commonly observed (Rutledge et al., 2009; Schönberg et al., 2007), may partly reflect uncertainty

aversion.

The second determinant of switching was a measure of the relative confidence in the choice that

was made on the previous trial (see Materials and methods). We assumed that subjects used their

approximate Bayesian posterior distributions over the values of the bandits to calculate this confi-

dence, Crel, as their subjective probability that the option they chose was better (a calculation they

made before observing the outcome on that trial). A term Crelkwas then added to value of the action

that was not chosen on that previous trial (see Methods) where kwas fitted to each participant. Thus,

if kwas positive, then a subject would be more likely to switch on trialt if she had been more confi-

dent on trialt� 1.

Note that relative confidence was calculated on the preceding trial because, at the time of the

choice, the model has no information about the option that will be chosen on that trial. Perhaps sur-

prisingly, k was positive in 49 out of 57 participants (Table 2) – thus for the majority of subjects, the

more sure they were that the chosen option was better, the more they sought to switch and try the

alternative. It is important to acknowledge, however, that there are subtle interactions with the

effects of the means and variances of the options with which relative confidence is partly correlated.

Nevertheless, k was negatively correlated with total monetary gains on the task (r(54) = 0.42,

p=0.001, controlled for age; Supplementary file 1), with negative values of k in those participants

with the highest performance. This implies that k has the expected effect on performance despite

having an unexpected sign at the group level. The overall tendency for k to be positive and u to be

negative does not stem from autocorrelation between the two as the sign of these parameter is

largely the same when the model is specified with only one of these parameters (data not shown).

The final step to realizing choice was to feed the ultimate action propensities into a softmax with

temperature parameter b.

We found that variation in the number of switches was better accounted for by variation in the

parameters of the winning model than by that in parameters of the best RW model

(Supplementary file 1b). No single model parameter differed between age groups (Mann-Whitney

test: b, U = 386.0, p=0.761; w, U = 345.0, p=0.338; l, U = 401.0, p=0.949; u, U = 307.0, p=0.117; k,

U = 374.0, p=0.620). A multivariate analysis with the model parameters as independent variables

and age group as a fixed factor did not yield any significant predictor of age group (F = 0.91,

p=0.482). Model fit, defined by the individual log likelihood for each participant, also did not differ

between age groups (Mann-Whitney U = 353.0, p=0.406). In the best-performing RW model (which

fit the behavioural data less well), younger participants learned more quickly (Supplementary file

1c).

Because measures of successful performance differed between groups but the number of

switches did not, we used our winning model to investigate the nature of switches separately in each

group. We used the expected values from the winning model to assess the proportion of adaptive

switches (to subjectively better bandits) versus maladaptive switches (to subjectively worse bandits)

and found that young participants had a higher proportion of adaptive switches compared with old

participants (Mold = 57.4, SD = 23.4; Myoung = 68.3. SD = 18.2, Mann-Whitney test U = 271.5,

p=0.033, Figure 1b, bottom right). The proportion of adaptive switches was positively associated

with total monetary gains (r(54) = 0.49, p<0.001), suggesting that the age difference in performance

partly resulted from differences in strategic switching.

Value anticipation in vmPFC
To investigate brain activity reflecting value anticipation, we estimated a GLM that included the cho-

sen value Q on that trial as a regressor to be correlated with the BOLD signal at the time of choice

(see Materials and methods, GLM 1). Clusters in vmPFC, bilateral hippocampus, visual cortex and

bilateral precuneus showed a positive correlation between BOLD and Q at the time of choice at p

(FWE-corrected)<0.05 (Supplementary file 3).

We next tested if the expected-value signal differed between age groups. We used the cluster

showing a positive correlation between BOLD and Q at the time of choice in vmPFC (Figure 3,

Supplementary file 3) as a functional ROI to extract the individual parameter estimates. A two-sam-

ple t-test, orthogonal to the test used to define this ROI, revealed that younger participants showed

a stronger representation of Q in vmPFC compared to the older participants (Mold = 2.84,
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SD = 5.25; Myoung = 6.44, SD = 6.07; t(55) = 2.38; p=0.021). This difference in vmPFC value signal

did not arise because of the difference in learning performance: when we restricted our analysis to

high performers as defined by a median split (13 old, 15 young), a difference in performance was no

longer significant (p=0.60), but the strength of expected-value signal in vmPFC was correlated with

age (r(26) = �0.39, p=0.040) and we found a marginally significant difference between age groups

(Mold = 4.21, SD = 4.81; Myoung = 8.29, SD = 5.72; t(26) = 2.03, p=0.054). For illustrative purposes,

we plotted the time course of the expected-value signal in vmPFC over the course of a trial. This

suggests that, on average, the expected-value signal was stronger and sustained for longer through-

out the trial in younger compared with older adults (Figure 3c).

The parameter estimate for Q in vmPFC was positively related to total monetary gains (r(53)

=0.37, p=0.006, controlling for age and model fit in a partial correlation). This correlation remained

significant without controlling for age, model fit or both. Q in vmPFC was a significant predictor of
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Figure 3. Value anticipation in vmPFC is related to behavioural performance and D1 BP in NAcc. (a) Cluster in vmPFC that shows expected value

activity at the time of the choice. Peak voxel x,y,z �5,52,–6; p<0.05, FWE corrected. (b) Parameter estimates for younger and older participants

extracted from the cluster in Figure 3a. Activity differs significantly between age groups (t(55) = 2.38; p=0.021). Error bars represent standard errors of

the means. (c) Time-course visualisation of the expected value signal in vmPFC. Shaded areas indicate standard errors. The expected-value signal is

significantly larger and prolonged in the younger compared to the older sample. (d) There is a positive relationship between expected-value signal

magnitude and total monetary gains (r(53) = 0.37, p=0.006 when controlling for age and model fit). For display purposes, the correlations are shown

with residuals after regressing out age and model fit. (e) DA D1 BP in NAcc is positively related to Q in vmPFC (r(53) = 0.28, p=0.038, when controlling

for age). For display purposes the correlations are shown with residuals after regressing out age.

DOI: https://doi.org/10.7554/eLife.26424.010

The following source data is available for figure 3:

Source data 1. Source data for figure 3: cluster correponding to Q in vmPFC at the time of choice.

DOI: https://doi.org/10.7554/eLife.26424.011

de Boer et al. eLife 2017;6:e26424. DOI: https://doi.org/10.7554/eLife.26424 7 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.26424.010
https://doi.org/10.7554/eLife.26424.011
https://doi.org/10.7554/eLife.26424


all measures of performance (bivariate correlations: total monetary gains: r(55) = 0.47, p<0.001

adaptive switches: r(55) = 0.39, p=0.003; efficient choices: r(55) = 0.38, p=0.004). Age was also a sig-

nificant predictor of all measures of performance (bivariate correlations: total monetary gains: r

(55) = -0.32, p=0.050; adaptive switches: r(55) = -0.26 p=0.052; efficient choices: r(55) = -0.32

p=0.015). Age was also a significant predictor of Q in vmPFC (r(55) = -0.32 p=0.016). Age was no

longer a significant predictor of performance after controlling for Q in vmPFC (beta age = �0.12,–

0.23, and �0.15; p=0.328, 0.086 and 0.255, for monetary gains, efficient choices and adaptive

switches, respectively), whereas Q in vmPFC remained a significant predictor of all measures of per-

formance (beta Q in vmPFC = 0.43, 0.30, and 0.34; p=0.001, 0.023 and 0.012 for monetary gains,

efficient choices and adaptive switches, respectively). This is consistent with a full mediation of age

effects on performance by Q in vmPFC. Note, however, that it is difficult to make inferences on

mediation effects of age in a cross-sectional dataset (Lindenberger et al., 2011).

The results were not dependent on the use of the Bayesian model to estimate Q values (when

using the RW model Q estimates; when including both age and Q, beta age = �0.20,–0.22, �0.21,

p=0.111, 0.093, 0.104; beta Q in vmPFC = 0.33, 0.28, 0.26, p=0.010, p=0.030, p=0.047 for mone-

tary gains, efficient choices and adaptive switches, respectively).

RPE signals in striatum
RPEs are widely reported in NAcc (Behrens et al., 2008; Niv et al., 2012); but see also

(Stenner et al., 2015; Wimmer et al., 2014). RPEs are thought to be a critical signal conveyed by

dopaminergic neurons (Bayer and Glimcher, 2005; Hart et al., 2014) that guide action selection in

probabilistic learning tasks (Pessiglione et al., 2006; Hart et al., 2014; Rolls et al., 2008) like the

TAB. Although our winning computational model, a Bayesian observer model, does not use RPEs,

we may expect the brain to, nonetheless, track RPEs as the discrepancy between outcomes

observed and outcomes predicted by the model (Daw et al., 2011). When investigating RPE signals

in fMRI data, a common approach is to identify regions in which activity is correlated with the RPE

defined as a single regressor (R(t)–Qa(t)). However, because R and RPE are correlated

(Behrens et al., 2008; Niv et al., 2012; Li et al., 2011), when using this approach the amount of var-

iance attributed to RPE may be overestimated (Behrens et al., 2008; Guitart-Masip et al., 2012)

and the identified signals can be seen as putative RPEs. For this reason, it has been suggested that

the effects of R and Q need to be estimated separately and only regions showing both signals with

opposite signs can be considered as conveying a canonical RPE signal (Behrens et al., 2008).

Following this approach, we first defined an ROI for NAcc in each hemisphere in which BOLD was

correlated with the full RPE regressor at the time of outcome (Materials and methods, GLM

2, Figure 4a, MNI peak voxel coordinates x,y,z = 14,12,–10; k = 72; z = 7.03 and x,y,z = -14,8,–10; k

= 47; z = 6.74 with p(FWE-corrected)<0.05). From these regions, we extracted parameter estimates

for reward and expected value separately as estimated in a separate GLM model (Materials and

methods, GLM 3). We replicated previous findings in older adults (Chowdhury et al., 2013), as we

saw a significant effect of R, but no significant negative effect of Q in both ROIs (Figure 4b). Con-

trary to our hypothesis, we did not observe a canonical prediction error in the young sample either.

Again, we observed a positive effect of R, but no significantly negative effect of Q. Note that this is

not inconsistent with the result reported by Chowdhury et al. (2013), where no fMRI data were col-

lected for the young control group. No evidence for differences between the different age groups’

mean activation for R or Q were found (p>0.29). In addition, when performing a less stringent test

and extracting parameter estimates from this ROI for the full RPE, defined as one regressor (R-Q),

we did not observe any differences between the groups’ mean activation (p>0.45). These negative

results were not dependent on using the Bayesian observer model to generate Q as they were con-

sistent across models (Supporting figure to Figure 4). There was no indication that the lack of

expected value signal in the NAcc at the group level was caused by some participants showing poor

learning of expected value, as the correlation between Q in NAcc and the different measures of per-

formance (monetary gains, effective choices, and adaptive switches) was not significant (p>0.25).

In order to assess how well the RW model and the Bayesian observer model generated predic-

tions of the BOLD signal, we estimated two comparable GLMs including only R and Q as generated

by each model as parametric modulators at the time of the outcome. We then compared the resid-

uals of the respective GLMs on specific ROIs. The RW model generated better predictions of the

BOLD signal in NAcc (paired t-test comparing residuals of the respective GLM models within
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Figure 4. Clusters in bilateral NAcc linked to putative reward prediction error (RPE) at the time of the outcome. These were selected as candidate

regions to test for canonical RPE showing both a positive effect of reward and a negative effect of Q as calculated by the Bayesian observer model.

Extracted parameter estimates for R and Q as calculated by the Bayesian observer model from the regions shown in Figure 4a. Although we found a

strong effect of reward bilaterally, no expected-value signal was observed for either age group (p>0.10).

Figure 4 continued on next page
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functional ROIs; t(56) = 5.69, p<0.001). This is in line with the extent of the literature showing puta-

tive or canonical RPEs as being encoded in NAcc (Daw et al., 2011; McClure et al., 2003;

O’’Doherty et al., 2003), because the RW model used RPEs to learn the value of actions. On the

other hand, the Bayesian observer model generates better predictions of the BOLD signal in the

vmPFC when Q as generated by each model was included as a parametric modulator at the time of

choice (paired t-test comparing residuals of the respective GLM models across all voxels in the

respective vmPFC ROIs; t(56) = 5.62, p<0.001).

Relationship to D1 DA BP
We also investigated the relationship among DA D1 BP, age, brain function and performance. We

collected PET data using [11C]SCH23390 radiotracer that allows DA D1 BP to be measured across

the whole brain. We calculated D1 BP in seven a priori ROIs. The selected ROIs were dlPFC, vlPFC,

OFC, and vmPFC in cortex, and putamen, caudate and NAcc in striatum in each hemisphere. BP val-

ues were calculated and averaged across hemispheres. The selected regions were chosen based on

their relevance to our task, as they have previously been reported to be important for various cogni-

tive processes, ranging from value learning and reward sensitivity to working memory and cognitive

flexibility (see SI for details). Younger participants had higher values for binding potentials in all ROIs

considered (p<0.001 in all seven ROIs, Figure 1). BP in none of the ROIs was correlated with any

measure of performance or any of the model parameters after controlling for multiple comparisons

(p>0.02; adjusted threshold when controlling for 42 comparisons: p=0.001, Supplementary file 2a).

D1 BP among ROIs was highly correlated after controlling for age (r(53) = 0.411–0.911, p<0.001,

Supplementary file 2b).

The group difference in value signals in PFC could be a result of the well-documented age-related

decline in DA availability (Volkow et al., 1998; Bäckman et al., 2010). To investigate this, we per-

formed linear regressions predicting the strength of the link between Q and BOLD in vmPFC from

DA D1 BP in all PET ROIs. Because of the high correlation between age and BP in all ROIs (r

(56) > 0.73, p<0.001), we first examined the relationship between BP and Q in vmPFC without con-

trolling for age. BP in NAcc and putamen were related to Q in vmPFC after correcting for multiple

comparisons (corrected threshold considering seven ROIs p=0.007; NAcc: r(56) = 0.41, p=0.002;

putamen: r(56) = 0.36, p=0.006). When controlling for age as a predictor of no interest, this correla-

tion only survived for NAcc (r(53) = 0.28 p=0.038, Figure 3e). This result was confirmed by a media-

tion analysis: Age was a significant predictor of both BP in NAcc (r(54) = -0.78, p<0.001) and Q in

vmPFC (r(55) = -0.32, p=0.016). BP in Nacc was also a significant predictor of Q in vmPFC r(54)

=0.41, p=0.001. Age was no longer a significant predictor of Q in vmPFC after controlling for BP in

NAcc (beta age = �0.01, p=0.964; beta BP in NAcc = 0.42, p=0.038). This is consistent with a full

mediation of age effects on Q in vmPFC by DA D1 BP in NAcc. Further, despite the main effect of

age on D1 BP in NAcc, there was no significant interaction between age group and NAcc D1 BP (F

(1,52) = 1.20; p=0.279) in modelling Q in vmPFC; thus, the relationship between DA D1 BP in NAcc

and Q in vmPFC did not differ between age groups.

We did not find any significant relationship between the representation of Q in NAcc at outcome

time and D1 BP in any of the ROIs examined (p>0.11 in bivariate correlations; p>0.13 when control-

ling for age).

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.26424.012

The following source data and figure supplements are available for figure 4:

Source data 1. Activation cluster in ventral striatum as defined by the winning Bayesian model, as well as parameter estimates of R and Q in left and

right ventral striatum.

DOI: https://doi.org/10.7554/eLife.26424.015

Figure supplement 1. Canonical RPE parameter estimates from the Rescorla-Wagner model.

DOI: https://doi.org/10.7554/eLife.26424.013

Figure supplement 1—source data 1. Activation cluster in ventral striatum as defined by the winning Rescorla-Wagner model, as well as parameter

estimates of R and Q in left and right ventral striatum.

DOI: https://doi.org/10.7554/eLife.26424.014
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Discussion
We used a probabilistic reward learning task along with computational modelling, PET measures of

the D1 system and fMRI in healthy, cognitively high functioning younger and older participants to

investigate the effects of age on value-based decision making and its modulation by DA. We showed

that probabilistic reward learning was impaired in older compared to younger participants. We also

showed that value anticipation in vmPFC predicted performance beyond age and was attenuated in

older participants. Furthermore, the value signal in vmPFC was modulated by D1 BP in NAcc. Finally,

our computational model showed that the tendency for choice perseveration can be described as

aversion to the variance of the unchosen option and that, for most participants, greater subjective

confidence in a previous choice promoted switches away from that choice.

Dopamine, aging and value signals
An age-related impairment in probabilistic reward learning has been widely reported (Mell et al.,

2005; Eppinger et al., 2013; Chowdhury et al., 2013; Eppinger et al., 2015; Samanez-

Larkin et al., 2012). The age-related deterioration of the dopaminergic system (Volkow et al.,

1998) has been hypothesised to underlie age-related cognitive decline (Volkow et al., 1998;

Bäckman et al., 2010). One mechanism through which DA deficits can affect probabilistic learning

performance in aging is by attenuation of value signals in the brain (Halfmann et al., 2016). Antici-

patory value signals are commonly reported in vmPFC (Rolls et al., 2008; Kim et al., 2011) as well

as in striatum (Schönberg et al., 2007; Behrens et al., 2008) and are modulated by DA

(Pessiglione et al., 2006; Chowdhury et al., 2013; Schlagenhauf et al., 2013). Additionally, RPEs

detected in NAcc (Wimmer et al., 2014; Samanez-Larkin et al., 2012; Kim et al., 2011) are

thought to reflect dopaminergic signals from midbrain (Bayer and Glimcher, 2005; Schultz et al.,

1997), supporting optimal action selection in probabilistic reward learning (Frank et al., 2004).

We found a robust value anticipation signal in vmPFC in both age groups, which is in keeping

with neuroimaging findings across a range of similar tasks (Daw et al., 2006; Wimmer et al., 2014).

As expected, this signal was attenuated in the older compared with the younger sample. Further-

more, the strength of the signal predicted performance on the task beyond age and was related to

D1 BP in NAcc. Our results are consistent with a full mediation of the age effects on performance by

Q in vmPFC, that is, age no longer predicts performance when controlling for the strength of BOLD

that reflects Q in vmPFC. The same is true for the strength of Q in vmPFC: the effect of age can be

explained by lower DA D1 BP in the older age group. Note, however, that it is difficult to make infer-

ences on mediation effects of age in a cross-sectional dataset (Lindenberger et al., 2011). To the

best of our knowledge, this is a novel finding demonstrating a relationship between integrity of the

mesolimbic DA system and the prefrontal value signal supporting probabilistic learning in humans.

This suggests that age-related deficits in probabilistic learning may reflect DA decline blurring value

anticipation in vmPFC.

It is unsurprising that anticipatory value signals have a great impact on the ability to perform the

present task, considering that damage to vmPFC/medial orbitofrontal cortex (mOFC) in humans and

monkeys impairs value-guided decision making (Halfmann et al., 2016; Camille et al., 2011;

Noonan et al., 2010; Rudebeck and Murray, 2014; Rushworth et al., 2011). The nature of this sig-

nal is still debated (Noonan et al., 2012), as is the cross-species generalizability for prefrontal

regions (Neubert et al., 2015). Some have proposed that vmPFC tracks the value of items regard-

less of their nature, because vmPFC activation reflects the value across a range of tasks with different

reward features from money to aesthetic and social rewards (Behrens et al., 2008; Kim et al., 2011;

McNamee et al., 2013; O’Doherty, 2007; Philiastides et al., 2010). Others have proposed that

vmPFC performs value comparisons, because neural signals represent the value difference between

alternative options (Rushworth et al., 2011; Boorman et al., 2009; Chau et al., 2014). Regardless

of its exact nature, our findings show that the signal is important not only for reward learning in gen-

eral but that its attenuation is linked to age-related deficits in probabilistic learning. This notion fits

with previous suggestions that age-related impairment in probabilistic learning relates to deficits in

PFC function (Hämmerer and Eppinger, 2012; Samanez-Larkin and Knutson, 2015). Our results

show that performance in the TAB is supported by the expected value signal in the vmPFC and that

the strength of this signal explains the effects of age on performance. However, considering that the

TAB can be seen as noisy reversal learning task, it is a possibility that differences in executive
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functions - such as the ability to inhibit a response to previously rewarded option - contribute to

group differences in our task (Bari and Robbins, 2013).

Value anticipation in vmPFC was modulated by D1 BP in NAcc across both age groups and when

controlling for age, again showing a full mediation of age effects on vmPFC signals by DA in NAcc.

This finding is in agreement with the view that gating and selection of relevant information in cortex

relies on processing within corticostriatal loops (Shipp, 2017), which is modulated by DA

(Reynolds and Wickens, 2002). Pharmacological evidence in humans suggests that D2 receptors

have a role in modulating gating of information in working memory (Cools and D’Esposito, 2011),

but experiments studying this process with selective pharmacological manipulations of the D1 sys-

tem in humans are lacking. However, computational work suggests a role for striatal D1 receptors in

cortico-striatal gating (Gruber et al., 2006). The value representation in vmPFC might therefore

emerge through this DA-modulated iterative gating process in NAcc. Although BPs are highly corre-

lated across ROIs, a mediation analysis was only significant for the NAcc. This is compatible with the

literature on reward processing in the corticostriatal loops. The critical nodes for processing of

reward information and motivation are NAcc and the mOFC, including vmPFC (Haber and Knutson,

2010). Our data suggest that good performance, based on selection of adaptive actions, relies on

D1 availability in NAcc, which in turn allows for robust value anticipation in vmPFC. Note, however,

that the relationship between D1 BP and performance was not significant when controlling for age,

which precludes inferences about a direct role of DA on performance.

Aside from considering expected value in vmPFC, one might have hypothesised that attenuated

RPEs in NAcc of older participants would account for the age-related performance deficit

(Chowdhury et al., 2013), because of the connection between DA and RPEs in NAcc. This hypothe-

sis builds on the common observation that RPE signals in NAcc are present in younger adults

(McClure et al., 2003; O’’Doherty et al., 2003). In contrast to this, we did not observe neural activ-

ity reflecting a canonical RPE signal in NAcc in either age group. Although we found a significant

effect of reward, we did not obtain a negative effect of expected value. Note that we did not find a

canonical RPE in NAcc when using the best of the RW models either. This suggests that the lack of

expected value signal in NAcc is not merely caused by generating expected value with the Bayesian

ideal observer model which does not make use of RPEs to update value representations.

The lack of canonical RPE signal in NAcc could stem from the fact that we used a very stringent

test for RPEs. Previous studies using the same stringent method report mixed results. Whereas some

studies report significant positive effects of reward obtainment and negative effects of expected

value (Behrens et al., 2008; Niv et al., 2012), others do not find this canonical signal in NAcc

(Chowdhury et al., 2013; Stenner et al., 2015; Wimmer et al., 2014; Li and Daw, 2011). The con-

ditions under which a canonical RPE can be detected may depend on task characteristics. For exam-

ple, if the RPE signal is not behaviourally relevant for the task at hand it may not be encoded in the

NAcc. In our case, however, RPEs are behaviourally relevant because the choice between bandits is

based on fine-grained differences in their values. However, for other paradigms, the lack of behav-

ioural relevance of RPEs could potentially explain a negative result (Stenner et al., 2015; Guitart-

Masip et al., 2012). Another important aspect may be the temporal proximity of the choice cues

and the outcome presentation in the task. This may hinder the dissection of opposing responses to

these events with fMRI. We cannot rule out the possibility that our negative result stems from this

feature of our task design and for this reason, we cannot provide conclusive evidence on the lack of

canonical RPE signal in the NAcc. Our results point, however, to the need for stringent tests in future

studies of the neural underpinnings of RPEs with fMRI.

The lack of canonical RPEs in older participants has already been observed using the same task

(Chowdhury et al., 2013). In that study, canonical RPEs were detected in NAcc of older participants

after boosting the dopaminergic system with levodopa. These findings were interpreted as evidence

that older participants had deficient RPEs signals in NAcc due to DA decline, and that remediating

this deficit could restore the RPE signal. However, no younger comparison group was scanned to

confirm that the deficient expected value signal observed in the older participants on placebo was

age-specific. Chowdhury et al. (2013), nevertheless, showed that the expected value signal in NAcc

is sensitive to DA manipulations. Contrary to what one might expect from these data, the relation-

ship between expected value (Q) as predicted by the winning model and NAcc BOLD signal was not

modulated by D1 BP in any ROI considered. The reason for this negative result remains unknown. In

striatum, D1 receptors have lower affinity to DA than D2 receptors and their stimulation is

de Boer et al. eLife 2017;6:e26424. DOI: https://doi.org/10.7554/eLife.26424 12 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.26424


hypothesised to be dependent on phasic changes in DA (Maia and Frank, 2011). Because RPE in

NAcc is thought to reflect phasic fluctuations of DA levels (Schultz et al., 1997), one would expect

that D1 receptors would be sensitive to these fluctuations. Our results do not support this view. An

alternative account is that the dopaminergic modulation of BOLD signal in NAcc observed by

Chowdhury et al. (2013) after administration of levodopa is related to stimulation of D2 rather than

D1 receptors. Supporting this view, recent evidence suggests that D2 receptors can encode both

tonic and phasic DA signals in striatum (Marcott et al., 2014).

Computational mechanisms of switch behaviour
Using computational modelling, we explored different possible influences on the trade-off between

exploration and exploitation in the probabilistic reward-learning task. We considered two families of

computational models, variations of a standard RL model using RPEs to learn the mean expected

value of the bandits and variations in Bayesian ideal observer model that tracked the probability of

obtaining a reward for each bandit as a beta distribution. In both model families, including a param-

eter that promoted forgetting of the unchosen bandit improved model fit. Similarly, including a per-

severation parameter to account for the tendency to repeat choices regardless of expected value

(Rutledge et al., 2009; Schönberg et al., 2007; Lau and Glimcher, 2005) improved model fit in

both families. However, a Bayesian model that modulated the expected value of the unchosen

option by the variance of that option outperformed any model with perseveration. Across partici-

pants, the variance of the unchosen option had a negative impact on the value of that option. This is

opposite to an exploration bonus or uncertainty based exploration term that arises in various more

or less normative accounts of exploration (Dayan and Sejnowski, 1996) and has been observed in

some experiments (Badre et al., 2012; Wilson et al., 2014). However, many previous studies of

decision-making have also shown that variance may be penalised as a form of risk sensitivity

(Symmonds et al., 2011; Payzan-LeNestour et al., 2011; d’Acremont et al., 2013), and this is a

cousin of the effect that we observed. Furthermore, our model comparison showed that uncertainty

aversion is a better account of the perseveration typically observed in bandit tasks (Rutledge et al.,

2009; Schönberg et al., 2007) than a choice kernel. This is a novel insight into the mechanism usu-

ally referred to as perseveration and suggests that aversion to the uncertainty about the option that

was not chosen previously causes a tendency to stick to ones choices. Whether perseveration

observed in other paradigms can be accounted for in the same way remains unknown.

Additionally, a Bayesian model that modulated the value of the most recent choice by the relative

subjective confidence in that choice outperformed all other models. Increased relative confidence

about the most recent choice resulted in increased attractiveness for the other option. This implies

that participants were more likely to switch away from the most recent choices as their subjective

confidence in those choices increased. This may appear counterintuitive, as one would expect that

increased confidence would lead to choice repetition (Vinckier et al., 2016). However, performance

improved as the effect of relative confidence decreased, and those participants showing the highest

performance had the reverse effect of confidence on choice. In other words, these participants’

behaviour was consistent with a negative confidence parameter rather than a positive confidence

parameter, implying that increased confidence in previous choices promoted staying with the previ-

ously chosen option. One reason for the unwarranted use of confidence in the majority of partici-

pants could stem from participants perceiving the task as highly volatile. As a result, they may infer

that increasing confidence in the most recent choice indicates that the unchosen option has become

better than the chosen option (Behrens et al., 2007; Mathys et al., 2011). Additionally, the

observed effect of k could reflect safe exploration: if the participant is convinced they have recently

chosen the best option a lot (hence their confidence), they can afford to explore the more uncertain

option. These possibilities provide interesting directions for future research.

Despite the performance difference, we did not find age differences in any single model parame-

ter, precluding any conclusions about which computational process is affected in old age. In fact, it

is likely that the process underlying age differences in performance is not parametrised in the win-

ning Bayesian model. This stands in contrast with the less accurate but simpler RW model, in which

the effect of aging was consistently manifested in the learning rate (Supplementary file 1c).
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Conclusions
We measured brain activity in younger and older adults performing a probabilistic learning task and

found that a signal in vmPFC at the time of choice reflecting expected value was correlated to suc-

cessful performance. This activity was dependent on DA availability and age, providing support for

age-related prefrontal and dopaminergic alterations as candidate mechanisms for impaired probabi-

listic reward learning and subsequent optimal action selection commonly reported in aging. These

results provide insights into the neural and behavioural underpinnings of probabilistic learning and

highlight the mechanisms by which age-related dopaminergic deterioration impacts decision

making.

Materials and methods

Participants
Thirty healthy older adults aged 66–75 and thirty younger adults aged 19–32 were recruited through

local newspaper advertisements in Umeå, Sweden. Sample size and power were calculated based on

previous studies. One was a study of DA D1 BP differences between age groups (Rieckmann et al.,

2011). The authors found clear differences in DA D1 BP after testing 20 participants in each age

group: Cohen’s d = 3.00 (pooled SD = 0.04) for frontal and parietal areas, Cohen’s d = 1.60 (pooled

SD = 0.21) for striatal ROIs. Assuming this difference, in order to obtain 90% power on a two-tailed

independent sample t-test, 10 participants were needed in each age group. Additionally, to estimate

the appropriate sample size for the behavioural task, we used the previous study by

Chowdhury et al. (2013), who found a behavioural difference on the same task between younger

and older participants of similar age ranges: Cohen’s d = 0.57 (pooled SD = 0.99). Assuming this dif-

ference, in order to obtain 70% power on a one-tailed t-test of a behavioural difference between

two samples, 30 participants were needed in each group. Higher power could not be reached, due

to financial constraints posed by the cost of PET scans.

The health of all potential participants was assessed before recruitment by a questionnaire admin-

istered by the research nurses. The questionnaire enquired about past and present neurologic or

psychiatric conditions, head trauma, diabetes mellitus, arterial hypertension that required more than

two medications, addiction to alcohol or other drugs, and bad eyesight. All participants were right-

handed and provided written informed consent prior to commencing the study. Ethical approval was

obtained from the Regional Ethical Review Board. Participants were paid 2000 SEK (~$225) for par-

ticipation and earned up to 149 additional SEK (~$17) in the two-armed bandit task (TAB). Three

older participants were excluded from the TAB analysis, one due to excessive head motion during

fMRI scanning, one for only ever selecting one of the two stimuli in the task, and one due to a mal-

functioning button box, resulting in no recorded responses. One additional older participant did not

complete the full PET scan, but this participant’s fMRI and task data are still included in the analysis

where possible. This resulted in a total of 57 participants for fMRI and task analysis (27 old, 30

young) and 56 participants for PET analysis (26 old, 30 young).

Procedure
Participants completed a health questionnaire via telephone prior to recruitment. All participants

performed the Mini Mental State Examination (MMSE). Scores ranged from 26 to 30 in the young

sample (mean = 29.4, SD = 0.97) and from 27 to 30 in the older sample (mean = 29.4, SD = 0.77),

with no difference between the two (p=0.89). PET and fMRI scanning were planned 2 days apart.

However, due to a technical problem with the PET scanner, 12 participants were scanned at a longer

delay apart (range 4–44 days apart). On the MRI scanning day, participants completed the TAB and

another unrelated task inside the MRI scanner. Participants also completed a battery of tasks outside

the scanner. Only results from the TAB will be discussed here.

Two-armed bandit task
The TAB (10) was presented in Cogent 2000 (Wellcome Trust for Neuroimaging, London, UK).

Figure 1a depicts a schematic representation of one TAB trial. Participants were instructed to

choose the fractal stimulus they thought to be most rewarding at each trial and were informed of

the changing probability of obtaining a reward for each stimulus. These probabilities varied
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independently from one another. Probabilities were generated using a random Gaussian walk

(Daw et al., 2006). Before scanning, participants were presented with five practice trials. The same

set of random Gaussian walks was used for all participants, but assignment of random walk to stimu-

lus identity was counterbalanced across participants.

Computational modelling of behavioural data
We built a variety of different models which can be classified into two main families. The first

includes variations on standard RL models whereby action values are learned through reward predic-

tion errors (RPEs) using the RW updating rule. The second family of models include variations on a

Bayesian ideal observer whereby the probability distribution of obtaining a reward is updated after

each outcome observation. All models, regardless of family, use a softmax rule with an inverse tem-

perature parameter b (with b > 0) to determine the probability that the participants chooses action

a:

P a tð Þ ¼ að Þ ¼
exp bma tð Þ½ �

exp bm0 tð Þ½ �þ exp bm1 tð Þ½ �
(1)

here, ma tð ) is the propensity for selecting action a. The next section lays out howma tð ) is defined in

the models we explored.

Reinforcement learning models

For RL models, expected values (Q) for trial t were calculated for each action a 2{0,1} (corre-

sponding to each bandit). Qa(t + 1) is calculated according to standard RW updating rule:

Qa tð Þ tþ 1ð Þ ¼ Qa tð Þ tð Þþ ad tð Þ (2)

dðtÞ ¼RðtÞ�QaðtÞðtÞ (3)

Qa(t)(t) is the expected value of the option a tð Þ selected on trial t. Q for both actions was set to

0.5 at the start of the experiment. d(t) is the difference between expected value and received reward

(R) on trial t. R is a binary with the value of 1 on rewarded trials, and 0 on unrewarded trials. a is the

learning rate, with 0 < a <1, indicating the weight given to the RPE on the current trial. A greater

value for a results in faster updating of Q.

In the simplest model, ma tð Þ ¼ Qa tð ). We included an additional parameter in the definition of

ma tð ): a perseveration parameter b (with �¥< b<¥), reflecting the common observation that partici-

pants tend to either repeat their choices, or avoid repetition (Rutledge et al., 2009;

Schönberg et al., 2007; Lau and Glimcher, 2005). This parameter raises or lowers the expected

value of a stimulus if that stimulus was also chosen on the previous trial. Thus,

ma tð Þ ¼ Qa tð Þþb�a¼a t�1ð Þ (4)

where a positive value of b reflects a tendency to perseverate (repeat the same choice), and a nega-

tive value reflects avoiding perseveration.

We considered another definition of ma tð Þ, where in addition to the perseveration parameter b,

we considered the possibility that the unchosen stimulus may decay in value each time it is not

selected by the participant. This was instantiated by the inclusion of a ‘forget’ parameter ’ (with

0<’< 1)(Barch et al., 2003), so that the Q value for the unchosen option relaxes towards 0.5. Thus,

Qa tþ 1ð Þ ¼Qa tð Þþ’ 0:5�Qa tð Þð Þ�a 6¼a t1ð Þ (5)

In this model, the value of the chosen option is updated as described in Equation 2.

Bayesian observer models

Choice behaviour was modelled by representing the probability of obtaining a reward for each

possible action a 2 0; 1f g (corresponding to each bandit) as a beta distribution

�a ~ b �a; ga; "að Þ (6)

that is updated upon observation of the outcome on each trial. On any given trial, these models
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generate expectations about the mean probability of obtaining a reward (which we will refer to

as Qa tð Þ, for consistency with the RL models) and its variance (Va tð Þ):

Qa tð Þ ¼
ga

gaþ "að Þ
(7)

Va tð Þ ¼
ga"a

ga þ "að Þ2 ga þ "aþ 1ð Þ
(8)

The parameters of the beta distributions were initialised at 1 (ga ¼ "a ¼ 1). This implies that

Q0 1ð Þ ¼Q1 1ð Þ ¼ 0:5 and maximum variance V0 1ð Þ ¼V1 1ð Þ ¼ 0:143 reflecting an expectation of reward

equal to chance for both bandits and a lack of knowledge about the underlying probability distribu-

tions. After getting a reward for choosing action a, ga is increased by 1 and both ga and "a are

relaxed towards 1. Conversely, after reward omission, "a is increased by 1 and both ga and "a are

relaxed towards 1. Hence,

ga tð Þ tþ 1ð Þ ¼ 1�!ð Þga tð Þ tð Þþ!þ 1; and

"a tð Þ tþ 1ð Þ ¼ 1�!ð Þ"a tð Þ tð Þþ!; if R tð Þ ¼ 1
(9)

ga tð Þ tþ 1ð Þ ¼ 1�!ð Þga tð Þ tð Þþ!; and

"a tð Þ tþ 1ð Þ ¼ 1�!ð Þ"a tð Þ tð Þþ!þ 1; if RðtÞ ¼ 0
(10)

For the unchosen bandit, both ga and "a are relaxed towards 1:

g1�a tð Þ tþ 1ð Þ ¼ 1�lð Þg1�a tð Þ tð Þþl; and

"1�a tð Þ tþ 1ð Þ ¼ 1�lð Þ"1�a tð Þ tð Þþl;
(11)

! and l are individual participants’ freeparameters governing how fast reward probabilities are

updated (!, with 0<!<1 ) and forgotten (l, with 0<l<1). In the simplest model we considered,

!¼ l. We also considered the possibility that updating and forgetting mechanisms occurred at dif-

ferent speeds, hence allowing ! and l to be different.

As stated previously, ma tð Þ reflects the propensity of selecting action a, where the simplest defini-

tion of ma tð Þ is ma tð Þ ¼ Qa tð Þ as defined in Equation 7, either calculated from a model with one sin-

gle update parameter ! ¼ lð Þor with two separate update parameters ! 6¼ lð Þ.

We then considered a variety of possible additions to ma tð Þ which reflected various factors that

might influence choice. We tested different combinations of nested models using methods of model

comparison. First was choice perseveration b�a¼a t�1ð Þ just as in Equation 4.

The second potential addition concerned the variance Va tð Þ of the beta distributions for the indi-

vidual bandits. In principle, since the subjects might have framed their decision as being between

sticking and switching, there could be separate influences associated with the bandit that was or

was not chosen on the previous trial. Thus, we considered two separate contributions:

�chosenVa tð Þ�a¼a t�1ð Þ and (12)

�unchosenVa tð Þ�a¼1�a t�1ð Þ: (13)

If �chosenor �unchosen are positive, then there is a tendency to choose in favour of high variance – a

form of uncertainty or exploration bonus.

Finally, we considered the possibility that subjective confidence that participants can calculate

about the correctness of their choices might modulate choice. Based on Sanders et al. (2016), confi-

dence (C) can be defined as:

C¼P correctjobservations; choiceð Þ (14)

Given that our Bayesian observer model tracks subjective estimates of the mean and the variance

of the probability distribution of obtaining a reward for each bandit, the probability in Equation 14

can be approximated by:
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C1 tð Þ ¼P �1>�0ð Þ ¼

Z

1

�1¼0

d�1b �1; g1; "1ð Þ

Z �1

�0¼0

d�0b �0; g0; "0ð Þ (15)

C0 tð Þ ¼P �0>�1ð Þ ¼ 1�C1 tð Þ (16)

Given the simple relationship between these two confidences, there are various essentially equiv-

alent ways of incorporating it into choice. We considered the relative confidence in the choice on a

trial:

Crel tð Þ ¼P �a tð Þ>�1�a tð Þ

� �

�P �1�a tð Þ>�a tð Þ

� �

¼ 2P �a tð Þ>�1�a tð Þ

� �

� 1 (17)

and assessed the extent to which the relative confidence on trial t� 1 encouraged switching on trial

t by adding a factor kCrel t� 1ð Þ�a¼1�a t�1ð Þ to the action that was not chosen on trial t� 1. Here, posi-

tive values of k make the subjects more likely to switch if they had been more confident.

Model fitting and comparison
Model parameters were fitted using an expectation-maximisation approach (Guitart-Masip et al.,

2012; Huys et al., 2011). We used a Laplacian approximation to obtain maximum a posteriori esti-

mates for the parameters for each participant iteratively, starting with flat priors. After an iteration,

the resulting group mean posterior and variance for each parameter were used as priors in the next

iteration. This method was used to prevent the individuals’ parameters from taking on extreme

values.

Models were compared using the integrated Bayesian Information Criterion (iBIC) (Guitart-

Masip et al., 2012; Huys et al., 2011), where small iBIC values indicate a model that fits the data

better after penalizing for the number of parameters. Comparing iBIC values is akin to a likelihood

ratio test.

Statistical analysis of behaviour and brain variables
We calculated a number of behavioural measures: (1) the total monetary gains in Swedish Crowns

(SEK), (2) percentage of efficient choices (the proportion of choices in which participants chose the

option that was most likely to be rewarded according to the random Gaussian walks), (3) number of

switches between bandits, and (4) percentage of adaptive switches, defined as switches to subjec-

tively better bandits (according to the winning model) versus switches to subjectively worse bandits.

We used independent sample one-tailed t-tests to assess group differences in task performance,

based on previously reported observations of impaired probabilistic reward learning performance in

old age (Eppinger et al., 2011; Mell et al., 2005). We hypothesised that the older group mean

would be lower than the young group mean. Non-parametric independent two-tailed two sample

Mann-Whitney tests were used to assess group differences in model parameters and other variables

that were non-normally distributed. Regular two-tailed two-sample t-tests were used elsewhere.

Pearson’s correlations were used to analyse the data further, controlling for age and model fit, as

defined by the participant’s log likelihood, where appropriate. Statistical analyses were performed in

SPSS 22 and R3.3.0.

MRI acquisition
Brain imaging data were acquired on a 3.0TE MR-scanner (GE Medical Systems). T1-weighted 3D-

SPGR images were acquired using a single-echo sequence (voxel size: 0.5 � 0.5 � 1 mm, TE = 3.20,

flip angle = 12 deg). Functional images were acquired using a T2*-sensitive gradient echo sequence

(voxel size: 2 � 2 � 4 mm, TE = 30.0 mis, TR = 2000 ms, flip angle = 80 deg), and contained 37 slices

of 3.4 mm thickness, with a 0.5 mm gap between slices. Volume acquisition occurred in an inter-

leaved fashion. 330 volumes were obtained for each of the two functional runs. During acquisition of

fMRI time series, heart rate and respiratory data were collected using a breathing belt and a pulse

oximeter.
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MR analysis
fMRI analysis was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Prepro-

cessing steps included (in this order): slice-time correction, realignment, coregistration to the T1-

weighted image, movement correction using ArtRepair (see below), normalisation to MNI space

using a diffeomorphic registration algorithm (DARTEL) as implemented in SPM (Ashburner, 2007)

with spatial resolution after normalisation 2 � 2�2 mm. Data were smoothed with a final Gaussian

kernel equivalent to a standard 8 mm. This kernel was achieved in two steps, including the ArtRepair

motion correction (see below). The fMRI time series data were high-pass filtered with cut-off 128 s,

and whitened with an AR(1) model. For each participant, the canonical hemodynamic response func-

tion was used to compute their statistical model.

The movement parameters showed that 15 participants moved >3 mm in any direction during

functional runs. To correct for movement artefacts, we used the ArtRepair toolbox (Mazaika et al.,

2005; Levy and Wagner, 2011). ArtRepair assesses the amount of motion between volume acquisi-

tions from the mean intensity plot and linearly interpolates scans in which motion over a user-speci-

fied threshold is present. We set our threshold to the recommended value of 1.5% deviation of the

mean intensity between scans. The average number of interpolated scans for our participants was

12.2 (1.8%) (SD = 19.6 (3.0%)) and one participant was excluded for showing movement >1.0 mm

in >25% of scans, in line with default recommendations. ArtRepair requires smoothing of the individ-

ual subject data with a Gaussian smoothing kernel of 4 mm. A Gaussian kernel of 7 mm was then

used after the normalisation to MNI space, resulting in a smoothed, normalised image equivalent to

a more standard 8 mm smoothed normalised image.

We estimated three first-level models, in order to address the different goals of the study. GLM 1

was set to study how value anticipation is represented in the brain and how this representation dif-

fers between age groups and relate to task performance and DA D1 receptor density. GLM 2 and 3

were set to investigate the differences in the expression of the RPE signal at the time of the outcome

in the old and young sample and its relation to task performance and DA D1 receptor density as

measured by PET. Note that our winning computational model does not use RPEs. However,

because our Bayesian observer model generates value expectations, we may expect the brain to,

nonetheless, track RPEs as the discrepancy between observed outcomes and outcomes predicted

by the model. All GLMs (described in detail below) included a regressor specifying the time of

choice and one specifying the time of outcome. These were parametrically modulated by various

regressors that were calculated based on the winning computational model and the group posterior

parameter means. These regressors are mean-centered by default (Mumford et al., 2015). The SPM

motion regressors were also added to the design matrix as regressors of no interest, as well as 18

parameters correcting for physiological noise as recorded by a heartbeat detector and breathing

belt during the scanning sessions. These were calculated using the PhysiO toolbox version r671

(https://www.tnu.ethz.ch/en/software/tapas.html).

GLM 1: Because the choice and outcome are close in time in each trial (maximum 3 s apart),

including Q as a parametric modulator at both time points would result in highly correlated regres-

sors. Therefore, to investigate brain activity reflecting value anticipation, we estimated a model that

included Q at the time of the choice. R was included at the time of the outcome as a regressor of no

interest. For each participant, we calculated a contrast image weighting the parametric modulators

of interest (Q at choice) by 1. At the second level, we used this contrast image to perform a one-

sample t-test across age groups. The second-level map was produced with a family-wise error (FWE)

corrected threshold at p<0.05 and parameter estimates for Q were extracted from relevant surviving

clusters to investigate the relationship between the signal, task performance and DA.

GLM 2 (putative RPE): When investigating RPE signals, a common approach is to identify regions

in which activity is correlated with the RPE, defined as R(t)-Qa(t), included as a single regressor in the

GLM (Eppinger et al., 2013; Schönberg et al., 2007; McClure et al., 2003). Because R and RPE are

correlated (Behrens et al., 2008; Niv et al., 2012; Li and Daw, 2011), when using this approach the

amount of variance attributed to RPE may be overestimated and the identified signals can be seen

as putative RPEs. For this reason, it has been suggested that the effects of R and Q need to be esti-

mated separately and only regions showing both signals can be considered as conveying a canonical

RPE signal. In order to identify regions potentially conveying a canonical RPE signal, we first identi-

fied regions conveying a putative RPE signal, by setting up a first-level GLM including the putative
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RPE regressor (R(t)-Qa(t)) as a single parametric modulator at the time of outcome presentation. For

each participant, we calculated a contrast image weighting this parametric modulator by 1. At the

second level, we used these contrast images to perform a one-sample t-test across age groups. All

second-level maps were produced with a family-wise error (FWE) corrected threshold at p<0.05. The

bilateral NAcc, commonly reported to respond to RPEs, was identified in this analysis and used as

functional ROIs for further analysis. To constrain these ROIs, we used the conjunction of the func-

tional ROIs and the anatomical NAcc masks found in the PickAtlas (https://www.nitrc.org/projects/

wfu_pickatlas/).

GLM 3: To quantify the separate RPE components, we performed another first-level analysis in

which R and Q were included as two independent parametric modulators at the time of the outcome

in the design matrix. For each participant, we calculated a contrast image weighting these two inde-

pendent parametric modulators by 1. Parameter estimates for R and Q were extracted from these

contrast maps using the ROIs defined in the second-level analysis described in GLM 2 and were fur-

ther analysed to look for a canonical RPE signal.

Time course extraction
The aim of this analysis was to visualise the effect of variables of interest on the BOLD signal, at the

time of the choice and at the time of the outcome. Time courses of BOLD data from specified ROIs

were extracted from the preprocessed, normalised EPI images. This BOLD signal was upsampled to

one measurement every 200 ms. This time series resampled into chunks of 15 s, corresponding to

individual trials. Stimulus onset occurred at 0 s, choice between 0 and 2 s, and outcome at 3 s. A

general linear model including the regressors of interest was estimated at each time point in each

trial for each participant. In these models, the regressors of interest were allowed to compete for

variance. At each time point, group mean effect sizes and standard errors were calculated and plot-

ted separately for young and old.

PET image acquisition
PET images were acquired in 3D mode using a Discovery 690 PET/CT (General Electric, WI, US), at

the Department of Nuclear Medicine, Norrland’s University Hospital. A low-dose helical CT scan (20

mA, 120 kV, 0.8 s/revolution), provided data for PET attenuation correction. Participants were

injected with a bolus of 200 MBq [11C]SCH 23390. A 55-min dynamic acquisition commenced at

time of injection (9 frames x 2 min, 3 frames x 3 min, 3 frames x 4,20 min, 3 frames x 5 min). Attenua-

tion- and decay-corrected 256 � 256 pixel transaxial PET images were reconstructed to a 25 cm

field-of-view employing the Sharp IR algorithm (6 iterations, 24 subsets, 3.0 mm Gaussian post filter).

Sharp IR is an advanced version of the OSEM method for improving spatial resolution, in which

detector system responses are included (Ross and Stearns, 2010). The Full- Width Half-Maximum

(FWHM) resolution is below 3 mm. The protocol resulted in 47 tomographic slices per time frame,

yielding 0.977 � 0.977 � 3.27 mm3 voxels. Images were decay-corrected to the start of the scan.

Images were de-identified using dicom2usb (http://dicom-port.com/). To minimise head movement

during the imaging session, the patient’s head was fixated with an individually fitted thermoplastic

mask (Positocasts Thermoplastic; CIVCO medical solutions, IA, USA).

PET analysis
PET data were analysed in a standard ROI-based protocol. This type of analysis requires a priori

hypotheses about the regional specificity of dopaminergic modulation of observed behavioural or

neuronal effects. All analyses were done with the use of in-house developed software (imlook4d ver-

sion 3.5, https://dicom-port.com/product/imlook4d/).

Regions of interest for the ROI analysis were dorsolateral PFC (dlPFC), ventrolateral PFC (vlPFC),

orbitofrontal cortex (OFC), and vmPFC in cortex, and putamen, caudate and NAcc in striatum across

hemispheres. These regions were chosen based on their relevance to our task: dlPFC has previously

been demonstrated to be involved in executive processes and working memory (WM) and cognitive

flexibility (Barch et al., 2003; D’Esposito et al., 1995; Petrides, 2000; Plakke and Romanski,

2016), whereas vlPFC is thought to be important for goal-directed action and attention (Levy and

Wagner, 2011). vmPFC has been shown to be responsive to reward magnitude and reward proba-

bility in an overwhelming number of studies (Rushworth et al., 2008). In addition, vmPFC and OFC
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are active during anticipation of rewards (Kim et al., 2011). Many connections exist between these

regions and ventral striatum (VS), an important node in the mesolimbic dopamine system

(Rushworth et al., 2011; Haber and Knutson, 2010; Salamone and Correa, 2012). VS consists of

NAcc, and parts of the medial caudate nucleus and rostral putamen. Because of its connections with

prefrontal areas relevant to this task, and because striatum is densely innervated by dopaminergic

neurons, we segmented the different parts of striatum to use as separate ROIs. The cerebellum was

segmented to be used as reference tissue because it is devoid of DA D1 receptors (Hall et al.,

1994). Freesurfer’s recon-all function (Desikan et al., 2006) was used to segment the brain into cor-

tical ROIs, FSL’s FIRST algorithm (Patenaude et al., 2011) was used to segment subcortical

structures.

In order to obtain ROI BP values, the PET time series were first coregistered to the individual T1-

weighted images and ROI images. The average time activity curves (TAC) were extracted across all

voxels within each ROI and calculated binding potential (BP) by applying the Logan method

(Logan et al., 1990) as implemented in imlook4d. This method was applied to each ROI using the

cerebellum as reference tissue. BP values for all ROIs were averaged across hemispheres. We then

investigated the relationship between DA D1 BP in the different ROIs and the Q signal in NAcc and

vmPFC while controlling for age and model fit.
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