TY - JOUR TI - Pirating conserved phage mechanisms promotes promiscuous staphylococcal pathogenicity island transfer AU - Bowring, Janine AU - Neamah, Maan M AU - Donderis, Jorge AU - Mir-Sanchis, Ignacio AU - Alite, Christian AU - Ciges-Tomas, J Rafael AU - Maiques, Elisa AU - Medmedov, Iltyar AU - Marina, Alberto AU - Penadés, José R A2 - Storz, Gisela VL - 6 PY - 2017 DA - 2017/08/08 SP - e26487 C1 - eLife 2017;6:e26487 DO - 10.7554/eLife.26487 UR - https://doi.org/10.7554/eLife.26487 AB - Targeting conserved and essential processes is a successful strategy to combat enemies. Remarkably, the clinically important Staphylococcus aureus pathogenicity islands (SaPIs) use this tactic to spread in nature. SaPIs reside passively in the host chromosome, under the control of the SaPI-encoded master repressor, Stl. It has been assumed that SaPI de-repression is effected by specific phage proteins that bind to Stl, initiating the SaPI cycle. Different SaPIs encode different Stl repressors, so each targets a specific phage protein for its de-repression. Broadening this narrow vision, we report here that SaPIs ensure their promiscuous transfer by targeting conserved phage mechanisms. This is accomplished because the SaPI Stl repressors have acquired different domains to interact with unrelated proteins, encoded by different phages, but in all cases performing the same conserved function. This elegant strategy allows intra- and inter-generic SaPI transfer, highlighting these elements as one of nature’s most fascinating subcellular parasites. KW - Staphylococcus aureus KW - pathogenicity island KW - SaPIs KW - bacteriophage KW - gene transfer KW - PICIs JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -