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Abstract Metagenomics and single-cell genomics have enabled genome discovery from

unknown branches of life. However, extracting novel genomes from complex mixtures of

metagenomic data can still be challenging and represents an ill-posed problem which is generally

approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method

which offers a statistically rigorous approach to extract novel microbial genomes while preserving

single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone

National Park and extracted 29 new genomes, including three deeply branching lineages. The

single-cell resolution enabled accurate quantification of genome function and abundance, down to

1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to

moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based

mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial

communities while effectively preserving the fundamental unit of biology, the single cell.

DOI: 10.7554/eLife.26580.001

Introduction
Advances in sequencing technologies have enabled the development of shotgun metagenomics and

single-cell approaches to investigate environmental microbial communities. These studies revealed

many previously uncharacterized genomes (Brown et al., 2015; Eloe-Fadrosh et al., 2016;

Kashtan et al., 2014; Rinke et al., 2013), increasing the total number of sequenced microbial

genomes to more than 50,000 (Joint Genome Institute’s Integrated Microbial Genomes database,

accessed December 1, 2016). However, the majority of environmental microbial diversity remains

uncharacterized due to limitations in current techniques. Conventional shotgun metagenomic

sequencing offers the ability to assemble genomes from a single heterogeneous sample, but is effec-

tive only if the complexity of the sample is not too great (Howe et al., 2014). Furthermore, it is often

difficult to separate contigs belonging to closely related organisms because techniques designed to

resolve these differences, such as tetranucleotide analysis, depend on ad hoc assumptions about

nucleotide usage (Dick et al., 2009). It is possible to perform rigorous assemblies from independent

single-cell genome amplifications but at the expense of lowering throughput (Rinke et al., 2014;

Blainey, 2013). In addition, when performed in plates, single-cell sequencing approaches are
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typically expensive and laborious, although microfluidic approaches have helped to alleviate that lim-

itation (Blainey et al., 2011).

We report here a new mini-metagenomics approach which combines the advantages of shotgun

and single-cell metagenomic analyses. This approach uses microfluidic parallelization to separate an

environmental sample into many small sub-samples containing 5–10 cells, significantly reducing com-

plexity of each sub-sample and allowing high quality assembly while enabling higher throughput

than typical single-cell methods. Although each sub-sample contains a limited mixture of several

genomes, single-cell resolution is regained through correlations of genome co-occurrence across

sub-samples, which in turn enables a rigorous statistical interpretation of confidence and genome

association.

We validated this approach using a synthetic mixture of defined microbial species and then

applied it to analyze two hot spring samples from Yellowstone National Park. Among 29 genomes

larger than 0.5 Mbps, most belong to known bacterial and archaeal phyla but represent novel line-

ages at lower taxonomic levels; three genomes represent deeply branching novel phylogenies. Func-

tional analysis revealed different metabolic pathways that cells may use to achieve the same

biochemical process such as nitrogen and sulfur reduction. Using information associated with

genome occurrence across sub-samples, we further assessed abundance and genome variations at

the single-cell level. Our analyses demonstrate the power of the mini-metagenomic approach in de-

convolving genomes from complex samples and assessing diversity in a mixed microbial population.

Results

Evaluating microfluidic-based mini-metagenomics using a mock
community reveals improved whole genome amplification
Microfluidic-based mini-metagenomics begins with microfluidic partitioning of each environmental

sample randomly into 96 sub-samples with 5–10 cells per sub-sample (Figure 1A). 96 lysis and MDA

(Multiple Displacement Amplification) reactions are performed in independent chambers of an auto-

mated and commercially available Fluidigm C1 Integrated Fluidic Circuit (IFC) (Figure 1B, Figure 1—

figure supplement 1), which significantly reduces the time and effort required to perform these

reactions. The C1 IFC has been used previously for mammalian single-cell RNA-seq and genome

analysis experiments (Wu et al., 2014; Pollen et al., 2014; Treutlein et al., 2014; Gawad et al.,

2014). The hardware, including the microfluidic circuit, was not altered for the mini-metagenomic

experiments, but we did adapt a new reagent kit and designed scripts and protocols for amplifying

genomic DNA from microbial cells. After whole-genome amplification, DNA from each sub-sample

is harvested into a 96 well plate, and all subsequent wet lab steps are performed on the bench top.

Sequencing libraries are prepared with distinct barcodes labeling DNA derived from each sub-sam-

ple and sequenced on the Illumina Nextseq platform (Figure 1C). Because of the small volumes

used for microfluidic reactions, precious microbial samples and/or low cell concentrations that may

not yield enough DNA for shotgun metagenomics can still be analyzed using this process. Another

advantage of using a microfluidic platform is the enclosed reaction environment that limits potential

contamination often observed with low input MDA reactions in well plates, a problem that, with

other approaches, requires sophisticated protocols for contamination prevention and removal

(Woyke et al., 2011). In addition, smaller MDA reaction volumes (~300 nL) are associated with lower

gain and less amplification bias, which effectively improves coverage uniformity of amplified

genomes (de Bourcy et al., 2014) (Materials and methods).

Sequence data is processed through a custom bioinformatics pipeline that takes advantage of

information encapsulated in distinct yet related sub-samples (Yu, 2017). Reads from each sub-sam-

ple are trimmed and assembled into sub-sample contigs (Figure 1D), creating genome subassem-

blies. Since cells representing the same genome may appear in multiple sub-samples, overlapping

genome subassemblies can be identified. Therefore, combined assembly of sub-sample reads and

contigs results in longer mini-metagenomic contigs from which more meaningful biological informa-

tion can be inferred (Figure 1E). With this mini-metagenomic approach, cells from the same phylo-

genetic groups are randomly partitioned into different sub-samples, providing a physically defined

approach to bin metagenomic contigs. Aligning reads from each sub-sample to mini-metagenomic

contigs enables us to determine the co-occurrence pattern of each contig (Figure 1F,G). Based on
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presence patterns across sub-samples, a p value for each pair of contigs is computed based on Fish-

er’s exact test (Materials and methods), where a small p is interpreted as an indicator that two con-

tigs belong to cells of the same genome. Finally, co-occurrence based p values are used as a

pairwise distance metric for sequence-independent contig clustering (Figure 1H; Materials and

methods).

Figure 1. Microfluidic-based mini-metagenomics pipeline. (A) An environmental microbial sample is loaded onto a Fluidigm C1 IFC at the appropriate

concentration so that cells are randomly dispersed into 96 microfluidic chambers at 5–10 cells per chamber. (B) Lysis and MDA are performed on the

microfluidic device to generate 1–100 ng genomic DNA per sub-sample. (C) Nextera libraries are prepared from the amplified DNA off-chip and

sequenced using 2 � 150 bp runs on the Illumina NextSeq platform. (D) Sequencing reads from each sub-sample are first assembled independently,

then (E) sub-sample contigs are combined to form longer mini-metagenomic contigs. Contigs longer than 10 kbp are processed in the following steps.

(F) Reads from each sub-sample are aligned to mini-metagenomic contigs > 10 kbp. (G) An occurrence map is generated, demonstrating the presence

pattern of each contig in all sub-samples based on coverage. (H) Finally, contigs are binned into genome clusters based on a pairwise p value

generated from co-occurrence information. Steps enclosed in the gray rectangle (A, B) are performed on the Fluidigm C1 IFC. Step C is carried out in

96 well plates. Steps D to H are performed in silico.

DOI: 10.7554/eLife.26580.002

The following figure supplements are available for figure 1:

Figure supplement 1. Details of the mini-metagenomic experimental steps performed on the Fluidigm C1 microfluidic IFC.

DOI: 10.7554/eLife.26580.003

Figure supplement 2. Performance of microfluidic-based mini-metagenomic amplification.

DOI: 10.7554/eLife.26580.004

Figure supplement 3. Mini-metagenomics performance on mock communities.

DOI: 10.7554/eLife.26580.005
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We tested performance of the mini-metagenomic amplification on the Fluidigm C1 IFC using a

mixture of five bacterial species with known genomes (E. vietnamensis, S. oneidensis, E. coli, M.

ruber, and P. putida) (Table 1; Materials and methods). We first used a dilution of the control sample

at ~10 cells per sub-sample. Then, we further diluted the control sample so that each sub-sample

contained 0.5 cells on average, effectively performing microfluidic single-cell MDA with the same

downstream steps (Materials and methods). Performing MDA from multiple cells in a 300 nL micro-

fluidic chamber improved genome coverage at similar sequencing depths because smaller MDA

reaction volumes tend to reduce amplification gain and bias (de Bourcy et al., 2014; Zong et al.,

2012).

Thirty mini-metagenomic and 36 single-cell limiting dilution sub-samples yielded 169 and 194 mil-

lion paired end reads, respectively. Initial trimming removed 14 ± 1.1% (s.d.) reads; 80 ± 1.5% (s.d.)

of the remaining reads mapped uniquely to reference genomes (Figure 1—figure supplement 2A).

Unmapped reads made up only 3% of all reads (Figure 1—figure supplement 2B). Improperly

mapped reads (3 ± 0.9% s.d.) were mostly short, low quality sequences, and chimeras repre-

sented <1% of the reads. Mini-metagenomic MDA reactions produced higher median coverage than

single-cell MDA reactions at all sequencing depths (Figure 1—figure supplement 3A). The propor-

tion of assembled genome as a function of aligned genome, however, did not differ significantly

between mini-metagenomic and single-cell methods (Figure 1—figure supplement 3B). Therefore,

data from mock bacterial communities demonstrate that with the mini-metagenomic method, less

sequencing cost is required to recover similar genome coverage as compared to single-cell experi-

ments, with the improvement mostly associated with the amplification rather than assembly steps.

Microfluidic-based mini-metagenomics enables contig binning based on
co-occurrence patterns
Next, we performed microfluidic mini-metagenomic sequencing on two hot spring samples from Yel-

lowstone National Park (Figure 2; Materials and methods). Sample #1 was collected from Bijah

Spring and sample #2 was collected from Mound Spring (Table 2). 121 and 133 million paired end

reads were obtained from the two samples respectively. We removed sub-samples with less than

800,000 paired end reads, yielding 49 and 93 sub-samples respectively. After quality filtering, >90%

reads from each sub-sample were incorporated into contigs during independent assemblies (Fig-

ure 2—figure supplement 1). Re-assembling combined sub-sample reads increased contig length

(Figure 2—figure supplement 2A). We obtained 643 and 1474 contigs longer than 10 kbp from the

two samples, respectively, and used these contigs for subsequent analyses (Figure 2—figure sup-

plement 2B; Table 3). To compare this performance to shotgun metagenomic assemblies, we

obtained 32.5 million and 51.4 million shotgun metagenomic reads from Bijah Spring and Mound

Spring samples and down sampled combined mini-metagenomic reads to match shotgun sequenc-

ing depths. After assembly (Materials and methods), we observed that for the Bijah Spring sample,

where 49 sub-samples were available, the shotgun metagenomic assembly produced more contigs

over 10 kbp (Figure 2—figure supplement 3A). However, for the Mound Spring sample, where 93

sub-samples were used, the mini-metagenomic assembly produced more contigs over 10 kbp. The

largest contig from the mini-metagenomic assembly was also longer for the Mound Spring sample

(Figure 2—figure supplement 3B). Therefore, it is likely that increasing the number of mini-metage-

nomic sub-samples improves assembly performance compared to shotgun metagenomics. It is also

possible that the observed assembly improvement is due to higher complexity of the Mound Spring

Table 1. Species used to construct mock bacterial communities.

Species name GC content (%) Culture source Growth medium Assession numbers

Echinicola vietnamensis KMM6221 44.7 DSM 17526 Marine broth NC_019904.1

Shewanella oneidensis MR1 45.9 JGI LB NC_004347.2

Escherichia coli MG1655 50.8 ATCC 700926 LB NC_000913.3

Pseudomonas putida F1 61.9 ATCC 700007 Nutrient medium NC_009512.1

Meiothermus ruber 63.4 DSM 1279 Termus ruber medium NC_013946.1

DOI: 10.7554/eLife.26580.006
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Figure 2. Genome bins extracted from microfluidic-based mini-metagenomic sequencing of Yellowstone National Park samples. Two samples from

Bijah Spring in Mammoth Norris Corridor (A, C) and Mound Spring in Lower Geyser Spring Basin (B, D) were collected from Yellowstone National Park

and analyzed using the microfluidic-based mini-metagenomic pipeline. (A, B) Heat maps of contig coverage across sub-samples are clustered

hierarchically to reveal contigs that appear in similar sets of sub-samples (left). Colors represent logarithm of coverage in terms of number of base pairs

in base 2. Pairwise p values generated using Fisher’s exact test based on co-occurrence pattern of contig pairs reveal contig clusters (right). Shading

here represents logarithm of p value in base 10 after correcting for multiple comparisons. (C, D) tSNE dimensionality reduction generated from pairwise

p values. Each point represents a 10 kbp or longer contig. Colors represent assignment of each contig to a particular phylum based on annotation of

genes on the contig. Black X’s represent contigs unable to be assigned to any phylum because too many genes have unknown annotation. Genome

Figure 2 continued on next page
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bacterial community, validating our hypothesis that the mini-metagenomic method benefits the anal-

ysis of complex microbial populations.

Another advantage of mini-metagenomics lies in the information from sub-samples. In order to

bin contigs into genomes, reads from each sub-sample were aligned back to mini-metagenomic con-

tigs and coverage was tabulated (Figure 2A,B, Figure 2—figure supplement 2C,D). Many contig

sets share similar coverage patterns across sub-samples, suggesting that they originate from the

same genome. Because MDA results in variable coverage profiles, we generated a binary occurrence

map by applying a coverage threshold (Materials and methods). Pairwise p values were computed

with Fisher’s exact test (Figure 2A,B, Figure 2—figure supplement 4). Finally, dimensionality reduc-

tion using pairwise p values as a distance metric generated clusters of contigs belonging to the

same genomes (Maaten and Hinton, 2008) (Figure 2—figure supplement 5).

To verify the validity of presence-based contig clusters, we annotated all predicted open reading

frames (ORFs) (Huntemann et al., 2016) (Materials and methods). The relationship between contig

length and the number of genes found is linear (Figure 2—figure supplement 6), consistent with

small non-coding regions in bacterial genomes. Annotations were found for ~50% of the genes, and

lineage assignment was performed using JGI’s IMG/ER pipeline for metagenome annotation based

on gene annotations from the same contig (Huntemann et al., 2016). If protein sequences of most

genes on a contig were distantly related to known sequences, the contig was designated as

unknown (Figure 2C,D) (Materials and methods). Approximately 70% of all contigs were assigned at

the phylum level. Contigs with known assignment and from the same cluster always belonged to the

Figure 2 continued

bins larger than 0.5 Mbp are numbered and those with substantial numbers of single-copy marker genes for incorporation into Figure 4 are labeled in

bold. Dotted circles outline genomes predominantly containing contigs unassigned at the phylum level.

DOI: 10.7554/eLife.26580.007

The following figure supplements are available for figure 2:

Figure supplement 1. Mapping rate of mini-metagenomic sequences.

DOI: 10.7554/eLife.26580.008

Figure supplement 2. Contig statistics of Yellowstone National Park samples.

DOI: 10.7554/eLife.26580.009

Figure supplement 3. Comparison between contig statistics of mini-metagenomic and shotgun metagenomic assemblies.

DOI: 10.7554/eLife.26580.010

Figure supplement 4. An example of computing p values using Fisher’s exact test and presence patterns of two contigs.

DOI: 10.7554/eLife.26580.011

Figure supplement 5. DBscan clustering of mini-metagenomic contigs.

DOI: 10.7554/eLife.26580.012

Figure supplement 6. Gene count as a function of contig length.

DOI: 10.7554/eLife.26580.013

Table 2. Information of hot spring samples from Yellowstone National Park.

Sample #1 Sample #2

NPS study number YELL_05788 YELL_05788

Sample area Mammoth Norris Corridor Lower Geyser Basin

Location name Bijah Spring Mound Spring

Sample type Sediment Sediment

Collection time September 11, 2009 5:00pm September 14, 2009 2:25pm

Location 44.761133 N, 110.730900 W 44.564833 N, 110.859933 W

Location type Hot spring Hot spring

Temperature (˚C) 65 55

pH 7.0 9.0

DOI: 10.7554/eLife.26580.014
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same phylum, demonstrating that the presence-based method can correctly bin metagenomic con-

tigs into genomes (Figure 2C,D). Some unassigned contigs are scattered among genome bins with

known phylum level assignments and likely represent novel genes. Genome bins containing predom-

inantly unassigned contigs are indicated by dotted circles (Figure 2C,D) and likely represent deeply

branching lineages.

We selected 29 partial genome bins from both hot spring samples with genome sizes over 0.5

Mbp for downstream analyses (Figure 3A). Assessment of genome bins demonstrated various levels

of completeness and <5% marker gene duplication (Figure 3B,C). Genome completeness was not

necessarily correlated with genome size because completeness was assessed through single-copy

marker genes using CheckM (Parks et al., 2015). Using lineage assignment based on gene annota-

tions, we identified eight genome bins with known phylum level assignments from the Bijah Spring

sample. Three genomes (Bijah #3, Bijah #5, and Bijah #14) had unknown assignments (Figure 2C). In

the Mound Spring sample, more reads and sub-samples resulted in 14 genomes with known phylum

level assignments and three unassigned genomes (Mound #3, Mound #4, and Mound #7) were

extracted (Figure 2D). A singleton contig 3.3 Mbp in length (#40) was also included as a separate

genome. In both environmental samples, the ability to separate distinct clusters of Bacteroidetes

contigs represents an advantage of our sequence-independent binning approach, where the pres-

ence of bacterial species across microfluidic chambers is determined only by Poisson distribution.

Hence, the likelihood that closely related bacterial cells were isolated into the same chambers was

small.

Since extracted genomes of known phyla often represented novel lineages at lower taxonomic

levels, we attempted to identify their phylogenetic placements. Seventeen genomes (shown in bold

in Figure 2C,D), including four unassigned genomes, were complete enough for phylogenetic tree

construction based on 56 single copy marker genes (Eloe-Fadrosh et al., 2016) (Figure 4; Materials

and methods). All marker gene based phylogenetic assignments were consistent with annotation

based assignments. We identified 13 genomes with short to medium branch length from known line-

ages (red), and four deeply branching lineages that may represent potentially novel phyla (red and

starred). In addition to bacterial lineages, we also extracted partial archaeal genomes belonging to

Euryarchaeota (Mound #16) and Bathyarchaeota (Mound #14) (Figure 4). The remaining two

genomes (Bijah #14 and Mound #3) with unassigned phylogeny that were also not complete enough

for incorporation into the final phylogenetic tree were examined independently. Phylogenetic trees

built from blast results of individual ribosomal protein sequences suggest that both genomes

belonged to the phylum Ignavibacteriae (Figure 4—figure supplement 1, Figure 4—figure supple-

ment 2).

Functional analyses reveal dominant energy metabolism in Yellowstone
hot spring samples
To understand more about the metabolism of these organisms, we performed BLAST of all ORFs

contained in each genome against the KEGG database and mapped results onto KEGG modules

(Materials and methods). Figure 5 illustrates the proportion of identified KEGG module genes from

each genome belonging to pathways associated with nitrogen, methane, and sulfur metabolism. At

the community level, the Mound Spring population displayed higher potential for methanogenesis

than the Bijah Spring population, and methanogenesis can be carried out by members of the Eur-

yarchaeota (Mound # 16) lineages involving mcr and hdr complex (Ferry, 2011). Formaldehyde

Table 3. Yellowstone sample sequencing and assembly statistics.

Sample #1 Sample #2

IMG genome ID 3300006068 3300006065

Number of molecules sequenced 120.5 M 133.1 M

Number of contigs (>10 kbp) 643 1474

Number of subsamples analyzed 49 93

DOI: 10.7554/eLife.26580.015

Yu et al. eLife 2017;6:e26580. DOI: 10.7554/eLife.26580 7 of 20

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.26580.015Table%203.Yellowstone%20sample%20sequencing%20and%20assembly%20statistics.%2010.7554/eLife.26580.015Sample%20#1Sample%20#2IMG%20genome%20ID33000060683300006065Number%20of%20molecules%20sequenced120.5%20M133.1%20MNumber%20of%20contigs%20(%3E10%20kbp)6431474Number%20of%20subsamples%20analyzed4993
http://dx.doi.org/10.7554/eLife.26580


assimilation, on the other hand, could be carried out in both communities. In nitrogen metabolism,

we identified five genomes including Ignavibacteriae (Mound #40), Bacteroidetes (Mound #2), Nitro-

spirae (Mound #19), Thermodesulfobacteria (Mound #21), and Ignavibacteriae (Bijah #2) carrying

nar, nrf, and nir genes, possibly participating in the conversion of nitrate to ammonia

Figure 3. Assembled size and completeness of Yellowstone hot spring genomes. Genomes of Bijah Spring and

Mound Spring samples are sorted by assembled genome size (A). Names represent phylum level assignment

based on annotated genes (Figure 2), concatenated marker gene phylogenetic tree (Figure 4), or individual

marker gene trees (Figure 4—figure supplement 1, Figure 4—figure supplement 2). (B) Genome completeness

is assessed through single-copy marker genes; those incorporated into Figure 4 have phyla names colored in blue

(for short branching lineages) or red (for deeply branching lineages). (C) Degree of marker gene duplication in

assembled genomes assessed using CheckM (Parks et al., 2015).

DOI: 10.7554/eLife.26580.016
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Figure 4. Phylogenetic distribution of selected Yellowstone hot spring genomes (red branches) across a representative set of bacterial and archaeal

lineages. Query genomes which potentially represent novel phyla are marked with a star, and those falling into known phyla are highlighted in yellow.

Bootstrap support values are displayed at the nodes as filled circles in the following categories: no support (black; <50), weak support (grey; 50–70),

moderate support (white; 70–90), while absence of circles indicates strong support (>90 bootstrap support). For details on taxon sampling and tree

inference, see Materials and methods.

DOI: 10.7554/eLife.26580.017

The following figure supplements are available for figure 4:

Figure supplement 1. Single gene trees based on multiple sequence alignment of 10 most similar protein sequences for Bijah Spring genome #14

based on NCBI protein blast.

DOI: 10.7554/eLife.26580.018

Figure supplement 2. Single gene trees based on multiple sequence alignment of 10 most similar protein sequences for Mound Spring genome #3

based on NCBI protein blast.

DOI: 10.7554/eLife.26580.019
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Figure 5. Functional analysis of Yellowstone hot spring genomes. Abundant genes involved in energy metabolism of (A) Bijah Spring and (B) Mound

Spring genomes. Each row represents description of a pathway based on KEGG energy metabolism modules. Each column represents one genome

bin. Shading of each square represents the ratio of genes in each KEGG module that are also present in a particular genome bin. Modules are labeled

as nitrogen metabolism, methane metabolism, or sulfur metabolism.

DOI: 10.7554/eLife.26580.020
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(Sodergren and DeMoss, 1988; Einsle et al., 1999; Cantera and Stein, 2007). Interestingly, the

archaeal genome belonging to Bathyarchaeota (Mound #14) carries nifD and nifH, capable of con-

verting nitrogen directly to ammonia (Fani et al., 2000) (Figure 5B). Although we did not identify

denitrification genes in the Mound Spring community, a genome extracted from Bijah Spring

belonging to Spirochaetes carried nirS, norBC, and nosZ genes, capable of reducing nitrite to nitro-

gen (Figure 5A).

Bacterial clades associated with thermophilic environments in the Yellowstone National Park are

known for their sulfur reduction (converting sulfate to sulfide) activities (Henry et al., 1994;

Inskeep et al., 2013). Two well characterized pathways are assimilatory and dissimilatory processes,

where sulfur is either incorporated into cellular materials or serves only as the terminal electron

acceptor (PeckPeck, 1961). We identified genes associated with the assimilatory sulfate reduction

pathway (cysNC, sat, cysC, cysH, and cysI) from three Mound Spring genomes including Ignavibac-

teriae (Mound #40), Bacteroidetes (Mound #2), Fervidibacteria (Mound #8) and one Bijah Spring

genome – Spirochaetes (Bijah #7). In the Mound Spring population, we also identified key genes

(dsrAB) responsible for dissimilatory sulfate reduction from Nitrospirae (Mound #19) and Termode-

sulfobacteria (Mound #21) genomes (Figure 5). These insights based on genes with known annota-

tions demonstrate the ability of mini-metagenomics to reveal different metabolic pathways

associated with individual genomes within and across environmental samples.

Microfluidic-based mini-metagenomics facilitates assessment of
genome abundance and population diversity with single-cell resolution
Unlike typical shotgun metagenomic methods that use coverage depth as a proxy for genome abun-

dance, mini-metagenomics uses occurrence of genomes across sub-samples to estimate abundance

through counting cells. Thresholding coverage depth into an occurrence profile can be seen as digi-

tizing an otherwise noisy analog signal, potentially reducing the effect of amplification bias, copy

number variation, and genome size across genomes. Because cells were well-mixed before loading

into the Fluidigm C1 IFC and that the microfluidic structures inside each chamber were much larger

than the size of a microbial cell, cells were distributed randomly into microfluidic chambers, with

occurrence profiles satisfying a Poisson distribution. We quantified the number of detected cells of

all genomes in both samples (Figure 6A,C,D; Materials and methods). Assembled genomes from

the Bijah sample covered one order of magnitude in abundance. Genomes #10 (Deferribacteres)

and #8 (Chlorobi) were most abundant, with 49 and 29 cells represented. On the lower end, Bijah #5

(S2R-29) was only represented in four sub-samples, most likely representing only four cells

(Figure 6C). In the Mound Spring sample, more sub-samples were sequenced, allowing the quantifi-

cation of a larger abundance range across two orders of magnitude (Figure 6D). Mound #40 (Ignavi-

bacteria) was the most abundant lineage, appearing in all but seven sub-samples. The abundance of

this genome was likely the reason for the successful assembly of its entire genome (Figure 6B).

Mound #7 (Chlorobi) and deeply branching Mound #15 were also abundant, allowing the capture of

36 and 65 cells respectively. For rare organisms, we detected Mound #11 (Bacteroidetes) and

Mound #14 (Bathyarchaeota), which were present at <1%. Comparing with relative abundance com-

puted from shotgun coverage, we observed general agreement in relative abundance profiles,

although a couple of genomes in Bijah Springs displayed large differences (Figure 6—figure supple-

ment 1A). Relative abundances were higher for less abundant genomes when the mini-metagenomic

method was use, demonstrating its sensitivity to extracting rare phylogenies (Figure 6—figure sup-

plement 1A). In total, examining genomes larger than 0.5 Mbp, we captured 192 and 509 cells from

Bijah and Mound Springs, respectively, corresponding to four to six cells per sub-sample. Even

though this number was smaller than our intended ten cells per chamber, the difference was likely

due to lysis inefficiency or smaller genomes excluded from our analysis.

In addition to quantifying abundance through counting single cells, genetic variation among indi-

vidual cells with the same genome can be assessed as well. An examination of species level lineage

assignment to contigs revealed that genomes had consistent species level assignments when such

assignments were present (Figure 6—figure supplement 1B). Therefore, even though genomes

were generated from a collection of cells across sub-samples, these cells represented genetic line-

ages at the species levels. We quantified observed single nucleotide polymorphisms (SNPs) in each

assembled genome normalized to the total assembled genome size (Figure 6B; Materials and meth-

ods). We found a wide distribution in SNP abundance among phylogenies. All Ignavibacteriae and
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Figure 6. Abundance and population variation of Yellowstone hot spring genomes. (A) Abundance is derived from the occurrence pattern of contig

clusters, where Poisson distribution is used to infer the number of cells processed. (B) SNPs are tabulated and normalized by the total size of

sequenced genome. Most SNPs are in coding regions of the genome, of which the majority are synonymous. (C, D) Map of genome occurrence

patterns across all sub-samples for (C) Bijah and (D) Mound Springs samples. White demonstrates the presence of at least one cell of a particular

genome in a sub-sample. The total number of cells can be inferred using Poisson statistics.

DOI: 10.7554/eLife.26580.021

The following figure supplements are available for figure 6:

Figure supplement 1. Genome relative abundance and taxonomic specificity.

DOI: 10.7554/eLife.26580.022

Figure supplement 2. Observed SNP rates compared to other variables.

DOI: 10.7554/eLife.26580.023
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three Bacteroidetes genomes have low SNP rates (<1%). In the Bijah Spring sample, members of

Spirochaetes, Microgenomates, and S2R-29 contain the most SNPs at 0.3–0.4% of the assembled

genome. In the Mound Spring sample, members of Thermodesulfobacteria have the most SNPs

(0.6%). Several other groups belonging to Bacteroidetes, Fervidibacteria, Euryarchaeota, and deeply

branching Mound #4 all have a 0.3–0.4% SNP rate. It is not the case that larger, more complete, or

more abundant genomes contain more SNPs in a population (Figure 6—figure supplement 2), indi-

cating that the observed SNP rate is a biological property of the particular genome. The ratio of

nonsynonymous to synonymous SNP rates (dN/dS) is typically a measure of the strength of environ-

mental selection (Holt et al., 2008), with one indicating no selection and zero indicating strong

selection. Among diverse genomes that allow more accurate assessment of SNP ratios, we found

dN/dS ranging from 0.4 to 0.9 in the hot spring genomes, illustrating that different phylogenies in

the same hot spring environment are subjected to different weak to moderate negative selection

pressures. Taken together, the microfluidic-base mini-metagenomic method creates the statistical

power from multiple sub-samples to more effectively bin contigs for functional analysis, quantify

abundance, and assess genomic variation.

Discussion
Previous work has implemented similar concepts of sequencing multiple bacterial cells together in

order to increase throughput. However, the authors treated each sub-sample as an independent

entity throughout their bioinformatic analysis (McLean et al., 2013). The novelty of our analysis

derives from treating information from sub-samples as different but overlapping sections of a more

complex metagenome. Such an approach echoes recent work that uses coverage from many shot-

gun metagenomic samples containing a similar set of microbial phylogenies but with different abun-

dances in order to aid bioinformatic genome binning (Alneberg et al., 2014; Nielsen et al., 2014).

Our approach differs with these methods in several aspects. First, our approach generates sub-sam-

ples from one, possibly low volume, microbial sample, eliminating the need to collect multiple spa-

tial or temporal metagenomic samples. In addition, because of low complexity, each sub-sample

does not need to be sequenced as deeply as using shotgun metagenomic methods, significantly sav-

ing sequencing cost. Although each sub-sample queries only a small subset of the true diversity,

summation of all sub-samples approximates the original environment. Because of MDA bias, we do

not use coverage depth directly for contig binning. Instead, as noted previously, thresholding cover-

age depth into an occurrence profile digitizes a possibly noisy analog signal. Such digitization

reduces sensitivity to amplification and other bias associated with analog coverage signals.

Microfluidic-based mini-metagenomics provides researchers with two independent experimental

design parameters in order to optimize the protocol for microbial samples of different complexities:

the average number of cells per microfluidic chamber and the number of chambers to sequence.

The statistical power of the presence based binning technique benefits from both the presence and

absence of genomes across sub-samples. Therefore, for less complex samples, reducing the number

of cells per microfluidic chamber ensures that cells of the same lineage do not appear in all sub-sam-

ples. For more complex samples, the number of cells per chamber can be increased to capture

higher diversity. One can even carry out multiple runs with different loading densities to tackle both

abundant and rare species. Mini-metagenomics uses a commercially available instrument, thereby

facilitating its adoption by groups without expertise in microfluidic technologies. More importantly,

because microfluidic-based mini-metagenomics provides orthogonal information to tetranucleotide

or coverage information derived from traditional metagenomic sequencing, combining these

approaches represents an exciting future direction for deriving a more comprehensive picture of the

microbial world.

Materials and methods

Mock sample construction
The artificial bacterial community used to test the mini-metagenomic approach was constructed

using five model species with different GC content provided by the Joint Genome Institute (Table 1).

Each species was cultured in test tubes independently in their respective media until saturation

Yu et al. eLife 2017;6:e26580. DOI: 10.7554/eLife.26580 13 of 20

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.26580


(Table 1). Then, each culture was re-suspended in 1% NaCl. A rough cell count was performed on a

hemocytometer under an inverted bright field microscope (Leica DMI 6000). Approximately equal

number of cells were combined to create an artificial mixed population. Ultrapure glycerol (Invitro-

gen) was immediately added to the mixture at 30% and stored at �80˚C. At the same time, cultures

were serially diluted and plated on 2% agar pad containing respective media for each species. After

culturing, colonies were counted to get a more accurate quantification of species abundance in the

mixed mock community.

Environmental sample collection and storage
The environmental samples used in this study were collected from two separate hot springs in Yel-

lowstone National Park under permit number YELL-2009-SCI-5788 (Table 2). Sample #1 was col-

lected from sediments of the Bijah Spring in the Mammoth Norris Corridor area. Sample #2 was

collected from sediment near Mound Spring in the Lower Geyser Basin region. Samples were placed

in 2 mL tubes without any filtering and soaked in 50% ethanol onsite. After mixing with ethanol, sam-

ples were kept frozen until returning from Yellowstone to Stanford, at which time tubes containing

the samples were transferred to �80˚C for long term storage.

Sample preparation and dilution for mini-metagenomic pipeline
Each mock sample was thawed on ice and centrifuged at 5000 x g for 10 min at room temperature.

Supernatant was removed and cells were re-suspended in 1% NaCl. Each sample from Yellowstone

was also thawed on ice. The tube was vortexed briefly to suspend cells but not large particles and

debris. 1 mL of sample from the top of the tube was removed, placed in a new 1.5 mL tube, and

spun down at 5000 x g for 10 min to pellet the cells. Supernatant was removed and cells were re-sus-

pended in 1% NaCl. After resuspension, cell concentration was quantified using a hemocytometer

under bright field and phase microscopy (Leica DMI 6000). Each sample was then diluted in 1% NaCl

or PBS to a final concentration of ~2�106 cell/mL, corresponding to ~10 cells per chamber on the

Fluidigm C1 microfluidic IFC (Integrated Fluidic Circuit).

Microfluidic genomic DNA amplification on Fluidigm C1 auto prep
system
Because of the small amount of DNA associated with 5–10 cells, DNA contamination was a concern

for MDA reactions. To reduce DNA contamination, we treated the C1 microfluidic chip, all tubes,

and buffers under UV (Strategene) irradiation for 30 min following suggestions of Woyke et al

(Woyke et al., 2011). Reagents containing enzymes, DNA oligonucleotides, or dNTPs were not

treated. After UV treatment, the C1 IFC was primed following standard protocol (https://www.fluid-

igm.com/binaries/content/documents/fluidigm/resources/c1-dna-seq-pr-100-7135/c1-dna-seq-pr-

100-7135/fluidigm%3Afile). Priming the C1 IFC involved filling all microfluidic control channels with

C1 Harvest Reagent, all capture sites with C1 Blocking Reagent, and the input multiplexer with C1

Preloading Reagent. These reagents were available in all C1 Single-Cell Reagent Kits. The diluted

environmental sample was loaded onto the chip using a modified version of the loading protocol

where washing was not performed, as the capture sites were too large for microbial cells. Hence,

they acted essentially as chambers into which cells were randomly dispersed (Figure 1—figure sup-

plement 1B). Following cell loading, whole genome amplification via MDA was performed on-chip

in 96 independent reactions. A lysozyme (Epicenter) digestion step was added before alkaline dena-

turation of DNA. After alkaline denaturation of DNA, neutralization and MDA were performed (Qia-

gen REPLI-g single cell kit) (Figure 1—figure supplement 1C). Concentrations of all reagents were

adjusted to match the 384 well plate-based protocol developed by the single-cell group at DOE’s

Joint Genome Institute but adapted for volumes of the Fluidigm C1 IFC (Rodrigue et al., 2009).

Lysozyme digest was performed at 37˚C for 30 min, alkaline denaturation for 10 min at 65˚C, and
MDA for 2 hr and 45 min at 30˚C. The detailed custom C1 scripts for cell loading, DNA amplification,

and associated protocols including reagent compositions are available through Fluidigm’s ScriptHub

at the following link https://www.fluidigm.com/c1openapp/scripthub/script/2017-02/mini-metage-

nomics-qiagen-repli-1487066131753-8.
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DNA quantification, library preparation and sequencing
Amplified genomic DNA from all sub-samples was harvested into a 96 well plate. The concentration

of each sub-sample was quantified in independent wells using the 96 capillary version of the Frag-

ment Analyzer from Advanced Analytical Technologies Inc. (AATI). Because of the size of recovered

DNA, we used the high sensitivity large fragment analysis kit (AATI) and followed its standard proto-

col. The instrument effectively runs 96 independent gel electrophoresis assays, producing an electro-

pherogram for each sub-sample. Using a DNA ladder with known concentrations as reference, the

instrument’s software quantifies DNA concentration for each sub-sample by performing smear analy-

sis between user specified ranges. For MDA amplified microbial genomic DNA harvested from Fluid-

igm’s C1 IFC, one large smear was often present between 1.5 kbp and 30 kbp. Following

quantification, DNA from each sub-sample was diluted to 0.1–0.3 ng/mL, the input range of the Nex-

tera XT library prep pipeline. Nextera XT V2 libraries (Illumina) were made with dual sequencing indi-

ces, pooled, and purified with 0.75 volumes of AMpure beads (Agencourt). Illumina Nextseq

(Illumina) 2 � 150 bp sequencing runs were performed on each library pool.

Contig construction
A custom bioinformatic pipeline was used to generate combined biosample contigs (Yu, 2017).

Sequencing reads were filtered with Trimmomatic V0.30 in paired end mode with options ‘ILLUMI-

NACLIP:adapters.fa:3:30:10:3:TRUE SLIDINGWINDOW:10:25 MAXINFO:120:0.3 LEADING:30

TRAILING:30 MINLEN:30’ to remove possible occurrences of Nextera indices and low quality bases

(Bolger et al., 2014). Filtered reads from each sub-sample were clustered using DNACLUST, with

k = 5 and a similarity threshold of 0.98, in order to remove reads from highly covered regions

(Ghodsi et al., 2011). Then, assembly was performed using SPAdes V3.5.0 with the sc and careful

flags asserted (Bankevich et al., 2012). From all sub-sample assembly output, corrected reads were

extracted and combined. The combined corrected reads from all sub-samples were assembled again

via SPAdes V3.5.0 with kmer values of 33,55,77,99. Finally contigs longer than 10 kbp were retained

for downstream analyses.

Gene annotation
Contigs were uploaded to JGI’s Integrated Microbial Genomes’s Expert Review online database

(IMG/ER). Annotated was performed via IMG/ER (Huntemann et al., 2016). Briefly, structural anno-

tations were performed to identify CRISPRs (pilercr), tRNA (tRNAscan), and rRNA (hmmsearch). Pro-

tein coding genes were identified with a set of four ab initio gene prediction tools: GeneMark,

Prodigal, MetaGeneAnnotator, and FragGeneScan. Finally, functional annotation was achieved by

associating protein coding genes with COGs, Pfams, KO terms, EC numbers. Phylogenetic lineage

was assigned to each contig based on gene assignment.

Contig co-occurrence distance score and binning
Corrected reads from each sub-sample were aligned back to assembled contigs over 10 kbp using

Bowtie2 V2.2.6 with options ‘–very-sensitive-local -I 0 -X 1000’ (Langmead and Salzberg, 2012).

Total coverage in terms of number of base pairs covered for every contig from every sub-sample

was tabulated and subjected to a log transform in base two (Figure 2A,B). A threshold value of 211

was used to determine if a contig had significant presence in a sub-sample. The sensitivity of the

contig binning results to this threshold was low, with threshold values of 29–213 producing similar

results. After thresholding contig coverage, the occurrence pattern of all contigs across sub-samples

was obtained. Based on co-occurrence patterns, a confidence score for each pair of contigs was

computed based on Fisher’s exact test (Figure 2A,B). This score represented the probability of

incorrectly rejecting the null hypothesis that two contigs displayed a particular co-occurrence pattern

by chance and can be interpreted as the likelihood of two contigs belonging to cells of the same

genome, with lower values increasing this likelihood. Below, we demonstrate an example of how to

calculate a similarity p value based on co-occurrence pattern of two contigs across a set of sub-sam-

ples in Figure 2—figure supplement 4. For every pair of contigs X and Y, the null hypothesis states

that their co-occurrence patterns are not correlated with each other. Then, we tabulate four values

A, B, C, D as shown below.

A = number of sub-samples where X is present and Y is present.
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B = number of sub-samples where X is absent and Y is present.

C = number of sub-samples where X is present and Y is absent.

D = number of sub-samples where X is absent and Y is absent.

To test the null hypothesis, we compute a p value according to the following equation

p¼

aþ b

a

� �

cþ d

c

� �

aþ bþ cþ d

aþ c

� � ¼
ðaþ bÞ! ðcþ dÞ! ðaþ cÞ! ðbþ dÞ!

a! b! c! d! ðaþ bþ cþ dÞ!

From the simplified example, we see that X1 and Y1 are both present in eight sub-samples, hence

A = 8. In addition, B = 1, C = 2, D = 6, yielding p=0.013 (Figure 2—figure supplement 4A). Since p

is small, we reject the null hypothesis and conclude that X1 and Y1 are correlated. On the other

hand, co-occurrence patterns of X2 and Y2 produces p=0.363, which is not small enough to reject

the null hypothesis (Figure 2—figure supplement 4B).

Tabulating all pairwise p values, we created a similarity matrix containing values between 0 and 1,

which also acted as a pairwise distance metric. Using this pairwise distance metric, we performed

dimensionality reduction of all contigs using tSNE (Maaten and Hinton, 2008) (Figure 2C,D, Fig-

ure 2—figure supplement 4).

Phylogenetic lineage construction
A set of 56 universal single copy marker proteins (Supplementary file 1) was used to place novel

genomes into a phylogenetic tree together with a representative set of bacterial and archaeal refer-

ence genomes. Marker proteins were identified with hmmsearch (version 3.1b2, hmmer.org) using a

specific hmm for each of the markers. For every protein, alignments were built with MAFFT

(Katoh and Standley, 2013) (v7.294b) using the local pair option (mafft-linsi) and subsequently

trimmed with trimAl 1.4 (Capella-Gutiérrez et al., 2009), removing sites for which more than 90 per-

cent of taxa contained a gap. Query genomes lacking a substantial proportion of marker proteins

(less than 28) or which had additional copies of more than one single-copy marker were removed

from the data set. In total 17 of 29 Yellowstone hot spring genomes contained sufficient number of

marker genes to be included in the tree. Single protein alignments were then concatenated resulting

in an alignment of 51,239 sites. Maximum likelihood phylogenies were inferred with ExaML

(Kozlov et al., 2015) (version 3.0) using the GAMMA model for rate heterogeneity among sites and

the LG substitution matrix (Le and Gascuel, 2008) and 300 non-parametric bootstraps. The resulting

phylogenetic tree was visualized in ete3 (Huerta-Cepas et al., 2016).

Comparison to shotgun metagenomics
Bulk genomic DNA were extracted from Yellowstone National Park hot spring samples using Qia-

gen’s blood and tissue kit using the protocol for DNA extraction from gram positive bacteria. Nex-

tera V2 libraries were constructed and sequenced on Illumina’s Nextseq platform. 32.5 million and

51.4 million reads were obtained from Bijah Spring and Mound Spring samples and trimmed using

the same parameters as the mini-metagenomic sequencing reads. Finally, assembly is performed

using Megahit (Li et al., 2015), with default options and kmer values of 21, 31, 41, 51, 61, 71. At the

same time, we combined all mini-metagenomic reads from sub-samples and down sampled to the

same depth randomly as the shotgun metagenomic sequencing experiments and performed re-

assembly using SPAdes.

Analysis of genes involved in energy metabolism
From each genomic bin, ORFs assigned KO terms during the annotation process were mapped to

all KEGG module involved in energy metabolism. For each KEGG module, we counted the number

of KO terms extracted from a particular genome as a ratio of all KO terms present in the module.

We did not normalize for genome size or completeness because doing so would artificially increase

the importance of genes identified from smaller genomes.
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Assessment of genome completeness and abundance
Genome completeness and marker gene duplication (incorporation of contigs that may not belong

to the genome) were quantified via CheckM (Parks et al., 2015). Genome abundance was quantified

using contig presence patterns. If more than 50% of the contigs from a particular genome bin were

supported by at least one read in a sub-sample, we concluded that there was at least 1 cell in that

sub-sample. Otherwise, zero cells were present in that sub-sample. Because a well-mixed cell sus-

pension was originally loaded into the C1 IFC, cells were distributed into these microfluidic cham-

bers (which we call sub-samples) randomly and independently. Hence, the problem of quantifying

genome abundance can be simplified into the problem of inferring the total number of randomly

distributed cells in all n sub-samples given that k sub-samples contained zero cells. This problem

calls for the use of the Poisson distribution. Based on Poisson distribution, assuming we know X, the

total number of cells with a particular genome contained in all n sub-samples, the expected number

of sub-samples k without cells of that genome is denoted by

k

n
¼ e�

X
n

Then for each genome, the total number of cells X contained in all n sub-samples can be com-

puted with the following expression.

X ¼�n� ln
k

n

In our experiment, for each genome, the number of sub-samples containing zero cells represent-

ing that particular genome was tabulated and the most probable number of cells sampled in the

microfluidic device was computed via the equation below.

Cell Number¼� Number of subsamplesð Þ� ln
Number of subsamples with zero cells

Number of subsamples

� �

Assessment of genome variation
SNPs (Single Nucleotide Polymorphism) were tabulated for all genomes from cells observed across

all sub-samples by first aligning all reads to contigs in genome bins using samtools version 1.3 mpi-

leup functionality with the –g flag (Li, 2011). Then, bcftools was used to call SNPs. We used several

criteria to ensure confidence of observed SNPs. First, a SNP must have a quality score larger than

180 based on reads from all sub-samples. The results were not affected if we increase the threshold

to higher numbers. Second, we required five reads to support each SNP location from a sub-sample

in order to determine if the genome recovered from that sub-sample contains the dominant or alter-

nate allele. Finally, we required that the alternate allele appear as the only allele in at least one sub-

sample. If a sub-sample was determined to be heterozygous for a particular allele with high confi-

dence, it was counted as one dominant and one alternate allele because it likely resulted from multi-

ple cells from the same microfluidic chamber. Based on ORF predications, we then classified each

SNP as noncoding, synonymous, or nonsynonymous.

Data availability
Fluidigm C1 IFC script and associated protocols for running the IFC and library preparation are avail-

able at https://www.fluidigm.com/c1openapp/scripthub/script/2017-02/mini-metagenomics-qiagen-

repli-1487066131753-8

Raw sequencing reads are available from NCBI SRA Run Selector under BioProject

PRJNA378813.

Assembled and annotated contigs are available at https://img.jgi.doe.gov/mer/ under IMG

Genome IDs 3300006068 and 3300006065. Annotations for the genome Mound #40 (Ignavibacteria)

can also be found under Genome ID 2630969008.

Analysis scripts for contig assembly are available on Github at the following link https://github.

com/brianyu2010/Mini-Metagenomic_Analyses (Yu, 2017). A copy is archived at https://github.com/

elifesciences-publications/Mini-Metagenomic_Analyses.
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Inskeep WP, Jay ZJ, Tringe SG, Herrgård MJ, Rusch DB, YNP Metagenome Project Steering Committee and
Working Group Members. 2013. The YNP Metagenome Project: environmental Parameters responsible for
Microbial distribution in the Yellowstone Geothermal Ecosystem. Frontiers in Microbiology 4:67. doi: 10.3389/
fmicb.2013.00067, PMID: 23653623

Yu et al. eLife 2017;6:e26580. DOI: 10.7554/eLife.26580 19 of 20

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://dx.doi.org/10.1038/nmeth.3103
http://dx.doi.org/10.1038/nmeth.3103
http://www.ncbi.nlm.nih.gov/pubmed/25218180
http://dx.doi.org/10.1089/cmb.2012.0021
http://www.ncbi.nlm.nih.gov/pubmed/22506599
http://dx.doi.org/10.1371/journal.pone.0016626
http://dx.doi.org/10.1371/journal.pone.0016626
http://www.ncbi.nlm.nih.gov/pubmed/21364937
http://dx.doi.org/10.1111/1574-6976.12015
http://www.ncbi.nlm.nih.gov/pubmed/23298390
http://dx.doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
http://dx.doi.org/10.1038/nature14486
http://www.ncbi.nlm.nih.gov/pubmed/26083755
http://dx.doi.org/10.1111/j.1462-2920.2006.01198.x
http://www.ncbi.nlm.nih.gov/pubmed/17298375
http://dx.doi.org/10.1093/bioinformatics/btp348
http://www.ncbi.nlm.nih.gov/pubmed/19505945
http://www.ncbi.nlm.nih.gov/pubmed/19505945
http://dx.doi.org/10.1371/journal.pone.0105585
http://www.ncbi.nlm.nih.gov/pubmed/25136831
http://dx.doi.org/10.1186/gb-2009-10-8-r85
http://www.ncbi.nlm.nih.gov/pubmed/19698104
http://dx.doi.org/10.1038/22802
http://www.ncbi.nlm.nih.gov/pubmed/10440380
http://dx.doi.org/10.1038/ncomms10476
http://www.ncbi.nlm.nih.gov/pubmed/26814032
http://dx.doi.org/10.1007/s002390010061
http://www.ncbi.nlm.nih.gov/pubmed/10903367
http://dx.doi.org/10.1016/j.copbio.2011.04.011
http://www.ncbi.nlm.nih.gov/pubmed/21555213
http://dx.doi.org/10.1073/pnas.1420822111
http://www.ncbi.nlm.nih.gov/pubmed/25425670
http://dx.doi.org/10.1186/1471-2105-12-271
http://www.ncbi.nlm.nih.gov/pubmed/21718538
http://dx.doi.org/10.1093/bioinformatics/btt086
http://www.ncbi.nlm.nih.gov/pubmed/23422339
http://dx.doi.org/10.1007/s002030050022
http://www.ncbi.nlm.nih.gov/pubmed/11541228
http://dx.doi.org/10.1038/ng.195
http://www.ncbi.nlm.nih.gov/pubmed/18660809
http://dx.doi.org/10.1073/pnas.1402564111
http://www.ncbi.nlm.nih.gov/pubmed/24632729
http://dx.doi.org/10.1093/molbev/msw046
http://www.ncbi.nlm.nih.gov/pubmed/26921390
http://dx.doi.org/10.1186/s40793-016-0138-x
http://dx.doi.org/10.1186/s40793-016-0138-x
http://www.ncbi.nlm.nih.gov/pubmed/26918089
http://dx.doi.org/10.3389/fmicb.2013.00067
http://dx.doi.org/10.3389/fmicb.2013.00067
http://www.ncbi.nlm.nih.gov/pubmed/23653623
http://dx.doi.org/10.7554/eLife.26580


Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR,
Stocker R, Follows MJ, Stepanauskas R, Chisholm SW. 2014. Single-cell genomics reveals hundreds of
coexisting subpopulations in Wild Prochlorococcus. Science 344:416–420. doi: 10.1126/science.1248575,
PMID: 24763590

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in
performance and usability. Molecular Biology and Evolution 30:772–780. doi: 10.1093/molbev/mst010,
PMID: 23329690

Kozlov AM, Aberer AJ, Stamatakis A. 2015. ExaML version 3: a tool for phylogenomic analyses on
supercomputers. Bioinformatics 31:2577–2579. doi: 10.1093/bioinformatics/btv184, PMID: 25819675

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9:357–359.
doi: 10.1038/nmeth.1923, PMID: 22388286

Le SQ, Gascuel O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution
25:1307–1320. doi: 10.1093/molbev/msn067, PMID: 18367465

Li D, Liu CM, Luo R, Sadakane K, Lam TW. 2015. MEGAHIT: an ultra-fast single-node solution for large and
complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. doi: 10.1093/
bioinformatics/btv033, PMID: 25609793

Li H. 2011. A statistical framework for SNP calling, mutation discovery, association mapping and population
genetical parameter estimation from sequencing data. Bioinformatics 27:2987–2993. doi: 10.1093/
bioinformatics/btr509, PMID: 21903627

Maaten L, Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9:2579–2605.
McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y,
Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA, Friedman RM, Nealson KH,
Venter JC, Lasken RS. 2013. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides
genomic insights into this uncultivated phylum. PNAS 110:E2390–E2399. doi: 10.1073/pnas.1219809110,
PMID: 23754396

Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, Plichta DR, Gautier L, Pedersen AG, Le
Chatelier E, Pelletier E, Bonde I, Nielsen T, Manichanh C, Arumugam M, Batto JM, Quintanilha Dos Santos MB,
Blom N, Borruel N, Burgdorf KS, et al. 2014. Identification and assembly of genomes and genetic elements in
complex metagenomic samples without using reference genomes. Nature Biotechnology 32:822–828. doi: 10.
1038/nbt.2939, PMID: 24997787

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of
microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research 25:1043–1055.
doi: 10.1101/gr.186072.114, PMID: 25977477

Peck HD. 1961. Enzymatic basis for assimilatory and dissimilatory sulfate reduction. Journal of Bacteriology 82:
933–939. PMID: 14484818

Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P,
Ramalingam N, Sun G, Thu M, Norris M, Lebofsky R, Toppani D, Kemp DW, Wong M, Clerkson B, Jones BN,
et al. 2014. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling
pathways in developing cerebral cortex. Nature Biotechnology 32:1053–1058. doi: 10.1038/nbt.2967,
PMID: 25086649

Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, Malmstrom R, Stepanauskas R, Woyke
T. 2014. Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell
genomics. Nature Protocols 9:1038–1048. doi: 10.1038/nprot.2014.067, PMID: 24722403

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA,
Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu WT, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R,
Rubin EM, et al. 2013. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:
431–437. doi: 10.1038/nature12352, PMID: 23851394

Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW, Rodrigue S. 2009. Whole genome
amplification and de novo assembly of single bacterial cells. PLoS One 4:e6864. doi: 10.1371/journal.pone.
0006864, PMID: 19724646

Sodergren EJ, DeMoss JA. 1988. narI region of the Escherichia coli nitrate reductase (nar) operon contains two
genes. Journal of Bacteriology 170:1721–1729. doi: 10.1128/jb.170.4.1721-1729.1988, PMID: 2832376

Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR.
2014. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:
371–375. doi: 10.1038/nature13173, PMID: 24739965

Woyke T, Sczyrba A, Lee J, Rinke C, Tighe D, Clingenpeel S, Malmstrom R, Stepanauskas R, Cheng JF. 2011.
Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6:e26161. doi: 10.
1371/journal.pone.0026161, PMID: 22028825

Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF,
Quake SR. 2014. Quantitative assessment of single-cell RNA-sequencing methods. Nature Methods 11:41–46.
doi: 10.1038/nmeth.2694, PMID: 24141493

Yu FB. 2017. Mini-metagenomic analyses. f950244809746aadd92248f56422274d35681f48. Github.https://github.
com/brianyu2010/Mini-Metagenomic_Analyses

Zong C, Lu S, Chapman AR, Xie XS. 2012. Genome-wide detection of single-nucleotide and copy-number
variations of a single human cell. Science 338:1622–1626. doi: 10.1126/science.1229164, PMID: 23258894

Yu et al. eLife 2017;6:e26580. DOI: 10.7554/eLife.26580 20 of 20

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://dx.doi.org/10.1126/science.1248575
http://www.ncbi.nlm.nih.gov/pubmed/24763590
http://dx.doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://dx.doi.org/10.1093/bioinformatics/btv184
http://www.ncbi.nlm.nih.gov/pubmed/25819675
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1093/molbev/msn067
http://www.ncbi.nlm.nih.gov/pubmed/18367465
http://dx.doi.org/10.1093/bioinformatics/btv033
http://dx.doi.org/10.1093/bioinformatics/btv033
http://www.ncbi.nlm.nih.gov/pubmed/25609793
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1093/bioinformatics/btr509
http://www.ncbi.nlm.nih.gov/pubmed/21903627
http://dx.doi.org/10.1073/pnas.1219809110
http://www.ncbi.nlm.nih.gov/pubmed/23754396
http://dx.doi.org/10.1038/nbt.2939
http://dx.doi.org/10.1038/nbt.2939
http://www.ncbi.nlm.nih.gov/pubmed/24997787
http://dx.doi.org/10.1101/gr.186072.114
http://www.ncbi.nlm.nih.gov/pubmed/25977477
http://www.ncbi.nlm.nih.gov/pubmed/14484818
http://dx.doi.org/10.1038/nbt.2967
http://www.ncbi.nlm.nih.gov/pubmed/25086649
http://dx.doi.org/10.1038/nprot.2014.067
http://www.ncbi.nlm.nih.gov/pubmed/24722403
http://dx.doi.org/10.1038/nature12352
http://www.ncbi.nlm.nih.gov/pubmed/23851394
http://dx.doi.org/10.1371/journal.pone.0006864
http://dx.doi.org/10.1371/journal.pone.0006864
http://www.ncbi.nlm.nih.gov/pubmed/19724646
http://dx.doi.org/10.1128/jb.170.4.1721-1729.1988
http://www.ncbi.nlm.nih.gov/pubmed/2832376
http://dx.doi.org/10.1038/nature13173
http://www.ncbi.nlm.nih.gov/pubmed/24739965
http://dx.doi.org/10.1371/journal.pone.0026161
http://dx.doi.org/10.1371/journal.pone.0026161
http://www.ncbi.nlm.nih.gov/pubmed/22028825
http://dx.doi.org/10.1038/nmeth.2694
http://www.ncbi.nlm.nih.gov/pubmed/24141493
https://github.com/brianyu2010/Mini-Metagenomic_Analyses
https://github.com/brianyu2010/Mini-Metagenomic_Analyses
http://dx.doi.org/10.1126/science.1229164
http://www.ncbi.nlm.nih.gov/pubmed/23258894
http://dx.doi.org/10.7554/eLife.26580

