Action history influences subsequent movement via two distinct processes

  1. Welber Marinovic  Is a corresponding author
  2. Eugene Poh
  3. Aymar de Rugy
  4. Timothy J Carroll  Is a corresponding author
  1. Curtin University, Australia
  2. The University of Queensland, Australia

Abstract

The characteristics of goal-directed actions tend to resemble those of previously executed actions, but it is unclear whether such effects depend strictly on action history, or also reflect context-dependent processes related to predictive motor planning. Here we manipulated the time available to initiate movements after a target was specified, and studied the effects of predictable movement sequences, to systematically dissociate effects of the most recently executed movement from the movement required next. We found that directional biases due to recent movement history strongly depend upon movement preparation time, suggesting an important contribution from predictive planning. However predictive biases co-exist with an independent source of bias that depends only on recent movement history. The results indicate that past experience influences movement execution through a combination of temporally-stable processes that are strictly use-dependent, and dynamically-evolving and context-dependent processes that reflect prediction of future actions.

Article and author information

Author details

  1. Welber Marinovic

    School of Psychology and Speech Pathology, Curtin University, Perth, Australia
    For correspondence
    welber.marinovic@curtin.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2472-7955
  2. Eugene Poh

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1719-000X
  3. Aymar de Rugy

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Timothy J Carroll

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    For correspondence
    timothy.carroll@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (DE120100653)

  • Welber Marinovic

Australian Research Council (FT120100391)

  • Timothy J Carroll

The authors declare that the Australian Research Council had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures were approved by the Human Medical Research Ethics Committee of the University of Queensland and written informed consent was obtained from the participants.

Copyright

© 2017, Marinovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,657
    views
  • 277
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Welber Marinovic
  2. Eugene Poh
  3. Aymar de Rugy
  4. Timothy J Carroll
(2017)
Action history influences subsequent movement via two distinct processes
eLife 6:e26713.
https://doi.org/10.7554/eLife.26713

Share this article

https://doi.org/10.7554/eLife.26713

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Nicolas Langer, Maurice Weber ... Ce Zhang
    Tools and Resources

    Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.