Action history influences subsequent movement via two distinct processes

  1. Welber Marinovic  Is a corresponding author
  2. Eugene Poh
  3. Aymar de Rugy
  4. Timothy J Carroll  Is a corresponding author
  1. Curtin University, Australia
  2. The University of Queensland, Australia

Abstract

The characteristics of goal-directed actions tend to resemble those of previously executed actions, but it is unclear whether such effects depend strictly on action history, or also reflect context-dependent processes related to predictive motor planning. Here we manipulated the time available to initiate movements after a target was specified, and studied the effects of predictable movement sequences, to systematically dissociate effects of the most recently executed movement from the movement required next. We found that directional biases due to recent movement history strongly depend upon movement preparation time, suggesting an important contribution from predictive planning. However predictive biases co-exist with an independent source of bias that depends only on recent movement history. The results indicate that past experience influences movement execution through a combination of temporally-stable processes that are strictly use-dependent, and dynamically-evolving and context-dependent processes that reflect prediction of future actions.

Article and author information

Author details

  1. Welber Marinovic

    School of Psychology and Speech Pathology, Curtin University, Perth, Australia
    For correspondence
    welber.marinovic@curtin.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2472-7955
  2. Eugene Poh

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1719-000X
  3. Aymar de Rugy

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Timothy J Carroll

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    For correspondence
    timothy.carroll@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (DE120100653)

  • Welber Marinovic

Australian Research Council (FT120100391)

  • Timothy J Carroll

The authors declare that the Australian Research Council had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sabine Kastner, Princeton University, United States

Ethics

Human subjects: All procedures were approved by the Human Medical Research Ethics Committee of the University of Queensland and written informed consent was obtained from the participants.

Version history

  1. Received: March 10, 2017
  2. Accepted: October 22, 2017
  3. Accepted Manuscript published: October 23, 2017 (version 1)
  4. Version of Record published: October 30, 2017 (version 2)

Copyright

© 2017, Marinovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,636
    views
  • 276
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Welber Marinovic
  2. Eugene Poh
  3. Aymar de Rugy
  4. Timothy J Carroll
(2017)
Action history influences subsequent movement via two distinct processes
eLife 6:e26713.
https://doi.org/10.7554/eLife.26713

Share this article

https://doi.org/10.7554/eLife.26713

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Nicolas Aubert, Madeleine Purcarea ... Gilles Marodon
    Research Article

    CD4+CD25+Foxp3+ regulatory T cells (Treg) have been implicated in pain modulation in various inflammatory conditions. However, whether Treg cells hamper pain at steady state and by which mechanism is still unclear. From a meta-analysis of the transcriptomes of murine Treg and conventional T cells (Tconv), we observe that the proenkephalin gene (Penk), encoding the precursor of analgesic opioid peptides, ranks among the top 25 genes most enriched in Treg cells. We then present various evidence suggesting that Penk is regulated in part by members of the Tumor Necrosis Factor Receptor (TNFR) family and the transcription factor Basic leucine zipper transcription faatf-like (BATF). Using mice in which the promoter activity of Penk can be tracked with a fluorescent reporter, we also show that Penk expression is mostly detected in Treg and activated Tconv in non-inflammatory conditions in the colon and skin. Functionally, Treg cells proficient or deficient for Penk suppress equally well the proliferation of effector T cells in vitro and autoimmune colitis in vivo. In contrast, inducible ablation of Penk in Treg leads to heat hyperalgesia in both male and female mice. Overall, our results indicate that Treg might play a key role at modulating basal somatic sensitivity in mice through the production of analgesic opioid peptides.

    1. Neuroscience
    James Malkin, Cian O'Donnell ... Laurence Aitchison
    Research Article

    Biological synaptic transmission is unreliable, and this unreliability likely degrades neural circuit performance. While there are biophysical mechanisms that can increase reliability, for instance by increasing vesicle release probability, these mechanisms cost energy. We examined four such mechanisms along with the associated scaling of the energetic costs. We then embedded these energetic costs for reliability in artificial neural networks (ANNs) with trainable stochastic synapses, and trained these networks on standard image classification tasks. The resulting networks revealed a tradeoff between circuit performance and the energetic cost of synaptic reliability. Additionally, the optimised networks exhibited two testable predictions consistent with pre-existing experimental data. Specifically, synapses with lower variability tended to have (1) higher input firing rates and (2) lower learning rates. Surprisingly, these predictions also arise when synapse statistics are inferred through Bayesian inference. Indeed, we were able to find a formal, theoretical link between the performance-reliability cost tradeoff and Bayesian inference. This connection suggests two incompatible possibilities: evolution may have chanced upon a scheme for implementing Bayesian inference by optimising energy efficiency, or alternatively, energy-efficient synapses may display signatures of Bayesian inference without actually using Bayes to reason about uncertainty.