1. Neuroscience
Download icon

Action history influences subsequent movement via two distinct processes

  1. Welber Marinovic  Is a corresponding author
  2. Eugene Poh
  3. Aymar de Rugy
  4. Timothy J Carroll  Is a corresponding author
  1. Curtin University, Australia
  2. The University of Queensland, Australia
Research Article
  • Cited 13
  • Views 1,347
  • Annotations
Cite this article as: eLife 2017;6:e26713 doi: 10.7554/eLife.26713

Abstract

The characteristics of goal-directed actions tend to resemble those of previously executed actions, but it is unclear whether such effects depend strictly on action history, or also reflect context-dependent processes related to predictive motor planning. Here we manipulated the time available to initiate movements after a target was specified, and studied the effects of predictable movement sequences, to systematically dissociate effects of the most recently executed movement from the movement required next. We found that directional biases due to recent movement history strongly depend upon movement preparation time, suggesting an important contribution from predictive planning. However predictive biases co-exist with an independent source of bias that depends only on recent movement history. The results indicate that past experience influences movement execution through a combination of temporally-stable processes that are strictly use-dependent, and dynamically-evolving and context-dependent processes that reflect prediction of future actions.

Article and author information

Author details

  1. Welber Marinovic

    School of Psychology and Speech Pathology, Curtin University, Perth, Australia
    For correspondence
    welber.marinovic@curtin.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2472-7955
  2. Eugene Poh

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1719-000X
  3. Aymar de Rugy

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Timothy J Carroll

    School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia
    For correspondence
    timothy.carroll@uq.edu.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

Australian Research Council (DE120100653)

  • Welber Marinovic

Australian Research Council (FT120100391)

  • Timothy J Carroll

The authors declare that the Australian Research Council had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures were approved by the Human Medical Research Ethics Committee of the University of Queensland and written informed consent was obtained from the participants.

Reviewing Editor

  1. Sabine Kastner, Princeton University, United States

Publication history

  1. Received: March 10, 2017
  2. Accepted: October 22, 2017
  3. Accepted Manuscript published: October 23, 2017 (version 1)
  4. Version of Record published: October 30, 2017 (version 2)

Copyright

© 2017, Marinovic et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,347
    Page views
  • 232
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Cesar P Canales et al.
    Research Article

    In utero exposure to maternal immune activation (MIA) is an environmental risk factor for neurodevelopmental and neuropsychiatric disorders. Animal models provide an opportunity to identify mechanisms driving neuropathology associated with MIA. We performed time course transcriptional profiling of mouse cortical development following induced MIA via poly(I:C) injection at E12.5. MIA-driven transcriptional changes were validated via protein analysis, and parallel perturbations to cortical neuroanatomy were identified via imaging. MIA-induced acute upregulation of genes associated with hypoxia, immune signaling, and angiogenesis, by six hours following exposure. This acute response was followed by changes in proliferation, neuronal and glial specification, and cortical lamination that emerged at E14.5 and peaked at E17.5. Decreased numbers of proliferative cells in germinal zones and alterations in neuronal and glial populations were identified in the MIA-exposed cortex. Overall, paired transcriptomic and neuroanatomical characterization revealed a sequence of perturbations to corticogenesis driven by mid-gestational MIA.

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.