Systematic integration of biomedical knowledge prioritizes drugs for repurposing

Abstract

The ability to computationally predict whether a compound treats a disease would improve the economy and success rate of drug approval. This study describes Project Rephetio to systematically model drug efficacy based on 755 existing treatments. First, we constructed Hetionet (neo4j.het.io), an integrative network encoding knowledge from millions of biomedical studies. Hetionet v1.0 consists of 47,031 nodes of 11 types and 2,250,197 relationships of 24 types. Data was integrated from 29 public resources to connect compounds, diseases, genes, anatomies, pathways, biological processes, molecular functions, cellular components, pharmacologic classes, side effects, and symptoms. Next, we identified network patterns that distinguish treatments from non-treatments. Then we predicted the probability of treatment for 209,168 compound-disease pairs (het.io/repurpose). Our predictions validated on two external sets of treatment and provided pharmacological insights on epilepsy, suggesting they will help prioritize drug repurposing candidates. This study was entirely open and received realtime feedback from 40 community members.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Daniel Scott Himmelstein

    Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3012-7446
  2. Antoine Lizee

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christine Hessler

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Leo Brueggeman

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sabrina L Chen

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dexter Hadley

    Department of Pediatrics, Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ari Green

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Pouya Khankhanian

    Department of Neurology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sergio E Baranzini

    Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, United States
    For correspondence
    sergio.baranzini@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0067-194X

Funding

National Science Foundation (1144247)

  • Daniel Scott Himmelstein

Heidrich Family and Friends Foundation

  • Sergio E Baranzini

National Institutes of Health (5R01NS088155)

  • Sergio E Baranzini

National Cancer Institute (UH2CA203792)

  • Dexter Hadley

U.S. National Library of Medicine (1U01LM012675)

  • Dexter Hadley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alfonso Valencia, Barcelona Supercomputing Center - BSC, Spain

Publication history

  1. Received: March 11, 2017
  2. Accepted: September 11, 2017
  3. Accepted Manuscript published: September 22, 2017 (version 1)
  4. Version of Record published: October 13, 2017 (version 2)

Copyright

© 2017, Himmelstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,706
    Page views
  • 1,591
    Downloads
  • 147
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Scott Himmelstein
  2. Antoine Lizee
  3. Christine Hessler
  4. Leo Brueggeman
  5. Sabrina L Chen
  6. Dexter Hadley
  7. Ari Green
  8. Pouya Khankhanian
  9. Sergio E Baranzini
(2017)
Systematic integration of biomedical knowledge prioritizes drugs for repurposing
eLife 6:e26726.
https://doi.org/10.7554/eLife.26726

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Erika K Ramos, Chia-Feng Tsai ... Huiping Liu
    Research Article

    Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is co-expressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC.

    1. Cell Biology
    2. Computational and Systems Biology
    Julie Paxman, Zhen Zhou ... Nan Hao
    Research Article

    Chromatin instability and protein homeostasis (proteostasis) stress are two well-established hallmarks of aging, which have been considered largely independent of each other. Using microfluidics and single-cell imaging approaches, we observed that, during the replicative aging of S. cerevisiae, a challenge to proteostasis occurs specifically in the fraction of cells with decreased stability within the ribosomal DNA (rDNA). A screen of 170 yeast RNA-binding proteins identified ribosomal RNA (rRNA)-binding proteins as the most enriched group that aggregate upon a decrease in rDNA stability induced by inhibition of a conserved lysine deacetylase Sir2. Further, loss of rDNA stability induces age-dependent aggregation of rRNA-binding proteins through aberrant overproduction of rRNAs. These aggregates contribute to age-induced proteostasis decline and limit cellular lifespan. Our findings reveal a mechanism underlying the interconnection between chromatin instability and proteostasis stress and highlight the importance of cell-to-cell variability in aging processes.