USP5/Leon deubiquitinase confines postsynaptic growth by maintaining ubiquitin homeostasis through Ubiquilin

  1. Chien-Hsiang Wang
  2. Yi-Chun Huang
  3. Pei-Yi Chen
  4. Ying-Ju Cheng
  5. Hsiu-Hua Kao
  6. Haiwei Pi
  7. Cheng-Ting Chien  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. Chang Gung University, Taiwan, Republic of China

Abstract

Synapse formation and growth are tightly controlled processes. How synaptic growth is terminated after reaching proper size remains unclear. Here, we show that Leon, the Drosophila USP5 deubiquitinase, controls postsynaptic growth. In leon mutants, postsynaptic specializations of neuromuscular junctions are dramatically expanded, including the subsynaptic reticulum, the postsynaptic density, and the glutamate receptor cluster. Expansion of these postsynaptic features is caused by a disruption of ubiquitin homeostasis with accumulation of free ubiquitin chains and ubiquitinated substrates in the leon mutant. Accumulation of Ubiquilin (Ubqn), the ubiquitin receptor whose human homolog ubiquilin 2 is associated with familial amyotrophic lateral sclerosis, also contributes to defects in postsynaptic growth and ubiquitin homeostasis. Importantly, accumulations of postsynaptic proteins cause different aspects of postsynaptic overgrowth in leon mutants. Thus, the deubiquitinase Leon maintains ubiquitin homeostasis and proper Ubqn levels, preventing postsynaptic proteins from accumulation to confine postsynaptic growth.

Article and author information

Author details

  1. Chien-Hsiang Wang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Yi-Chun Huang

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  3. Pei-Yi Chen

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Ying-Ju Cheng

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Hsiu-Hua Kao

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. Haiwei Pi

    Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Cheng-Ting Chien

    Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    ctchien@gate.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7906-7173

Funding

Academia Sinica

  • Chien-Hsiang Wang
  • Yi-Chun Huang
  • Pei-Yi Chen
  • Ying-Ju Cheng
  • Cheng-Ting Chien

Ministry of Science and Technology, Taiwan

  • Chien-Hsiang Wang
  • Yi-Chun Huang
  • Pei-Yi Chen
  • Ying-Ju Cheng
  • Cheng-Ting Chien

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,398
    views
  • 304
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chien-Hsiang Wang
  2. Yi-Chun Huang
  3. Pei-Yi Chen
  4. Ying-Ju Cheng
  5. Hsiu-Hua Kao
  6. Haiwei Pi
  7. Cheng-Ting Chien
(2017)
USP5/Leon deubiquitinase confines postsynaptic growth by maintaining ubiquitin homeostasis through Ubiquilin
eLife 6:e26886.
https://doi.org/10.7554/eLife.26886

Share this article

https://doi.org/10.7554/eLife.26886