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Abstract The Firmicutes are a phylum of bacteria that dominate numerous polymicrobial

habitats of importance to human health and industry. Although these communities are often

densely colonized, a broadly distributed contact-dependent mechanism of interbacterial

antagonism utilized by Firmicutes has not been elucidated. Here we show that proteins belonging

to the LXG polymorphic toxin family present in Streptococcus intermedius mediate cell contact-

and Esx secretion pathway-dependent growth inhibition of diverse Firmicute species. The structure

of one such toxin revealed a previously unobserved protein fold that we demonstrate directs the

degradation of a uniquely bacterial molecule required for cell wall biosynthesis, lipid II. Consistent

with our functional data linking LXG toxins to interbacterial interactions in S. intermedius, we show

that LXG genes are prevalent in the human gut microbiome, a polymicrobial community dominated

by Firmicutes. We speculate that interbacterial antagonism mediated by LXG toxins plays a critical

role in shaping Firmicute-rich bacterial communities.

DOI: 10.7554/eLife.26938.001

Introduction
Bacteria in polymicrobial environments must persist in the face of frequent physical encounters with

competing organisms. Studies have revealed Gram-negative bacterial species contend with this

threat by utilizing pathways that mediate antagonism toward contacting bacterial cells

(Konovalova and Søgaard-Andersen, 2011). For instance, Proteobacteria widely employ contact-

dependent inhibition (CDI) to intoxicate competitor cells that share a high degree of phylogenetic
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relatedness (Hayes et al., 2014). Additionally, both Proteobacteria and bacteria belonging to the

divergent phylum Bacteroidetes deliver toxins to competitor Gram-negative cells in an indiscriminate

fashion through the type VI secretion system (T6SS) (Russell et al., 2014a, 2014b). Although toxin

delivery by CDI and the T6SS is mechanistically distinct, cells harboring either pathway share the fea-

ture of prohibiting self-intoxication with immunity proteins that selectively inactivate cognate toxins

through direct binding.

Few mechanisms that mediate direct antagonism between Gram-positive bacteria have been

identified. In Bacillus subtilis, Sec-exported proteins belonging to the YD-repeat family have been

shown to potently inhibit the growth of contacting cells belonging to the same strain

(Koskiniemi et al., 2013); however, to our knowledge, a pathway that mediates interspecies antago-

nism between Gram-positive bacteria has not been identified. Given that Gram-positive and Gram-

negative bacteria inhabit many of the same densely populated polymicrobial environments (e.g. the

human gut), it stands to reason that the former should also possess mechanisms for more indiscrimi-

nate targeting of competing cells.

Contact-dependent toxin translocation between bacteria is primarily achieved using specialized

secretion systems. Gram-negative export machineries of secretion types IV, V, and VI have each

been implicated in this process (Aoki et al., 2005; Hood et al., 2010; Souza et al., 2015). A special-

ized secretion system widely distributed among Gram-positive bacteria is the Esx pathway (also

referred to as type VII secretion) (Abdallah et al., 2007). This pathway was first identified in Myco-

bacterium tuberculosis, where it plays a critical role in virulence (Stanley et al., 2003). Indeed, atten-

uation of the vaccine strain M. bovis BCG can be attributed to a deletion inactivating ESX-1

secretion system present in virulence strains (Lewis et al., 2003; Pym et al., 2003). Subsequent

genomic studies revealed that the Esx pathway is widely distributed in Actinobacteria, and that a

divergent form is present in Firmicutes (Gey Van Pittius et al., 2001; Pallen, 2002). Though they

share little genetic similarity, all Esx pathways studied to-date utilize a characteristic FtsK-like AAA+

ATPase referred to as EssC (or EccC) to catalyze the export of one or more substrates belonging to

eLife digest Most bacteria live in densely colonized environments, such as the human gut, in

which they must constantly compete with other microbes for space and nutrients. As a result,

bacteria have evolved a wide array of strategies to directly fight their neighbors. For example, some

bacteria release antimicrobial compounds into their surroundings, while others ‘inject’ protein toxins

directly into adjacent cells.

Bacteria can be classified into two groups known as Gram-positive and Gram-negative. Previous

studies found that Gram-negative bacteria inject toxins into neighboring cells, but no comparable

toxins in Gram-positive bacteria had been identified. Before a bacterium can inject molecules into an

adjacent cell, it needs to move the toxins from its interior to the cell surface. It had been suggested

that a transport system in Gram-positive bacteria called the Esx pathway may export toxins known

as LXG proteins. However, it was not clear whether these proteins help Gram-positive bacteria to

compete against other bacteria.

Whitney et al. studied the LXG proteins in Gram-positive bacteria known as Firmicutes. The

experiments reveal that Firmicutes found in the human gut possess LXG genes. A Firmicute known

as Streptococcus intermedius produces three LXG proteins that are all toxic to bacteria. To avoid

being harmed by its own LXG proteins, S. intermedius also produces matching antidote proteins.

Further experiments show that LXG proteins are exported out of S. intermedius cells and into

adjacent competitor bacteria by the Esx pathway. Examining one of these LXG proteins in more

detail showed that it can degrade a molecule that bacteria need to make their cell wall.

Together, these findings suggest that LXG proteins may influence the species living in many

important microbial communities, including the human gut. Changes in the communities of gut

microbes have been linked with many diseases. Therefore, understanding more about how the LXG

proteins work may help us to develop ways to manipulate these communities to improve human

health.

DOI: 10.7554/eLife.26938.002
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the WXG100 protein family (Ates et al., 2016). Proteins in this family, including ESAT-6 (EsxA) and

CFP10 (EsxB) from M. tuberculosis, heterodimerize in order to transit the secretion machinery.

The presence of the Esx secretion system in environmental bacteria as well as commensal and

pathogenic bacteria that specialize in colonizing non-sterile sites of their hosts, suggests that the

pathway may be functionally pliable. Supporting this notion, ESX-3 of M. tuberculosis is required for

mycobactin siderophore-based iron acquisition and the ESX-1 and ESX-4 systems of M. smegmatis

are linked to DNA transfer (Gray et al., 2016; Siegrist et al., 2009). In Firmicutes, a Staphylococcus

aureus Esx-exported DNase toxin termed EssD (or EsaD) has been linked to virulence and contact-

independent intraspecies antibacterial activity (Cao et al., 2016; Ohr et al., 2017).

Aravind and colleagues have noted that Esx secretion system genes are often linked to genes

encoding polymorphic toxins belonging to the LXG protein family (Zhang et al., 2012). Analogous

to characteristic antimicrobial polymorphic toxins of Gram-negative bacteria, the LXG proteins con-

sist of a conserved N-terminal domain (LXG), a middle domain of variable length, and a C-terminal

variable toxin domain. The LXG domain is predicted to adopt a structure resembling WXG100 pro-

teins, thus leading to speculation that these proteins are Esx secretion system substrates

(Zhang et al., 2011). Despite the association between LXG proteins and the Esx secretion system,

to-date there are no experimental data linking them functionally. However, an intriguing study per-

formed by Hayes and colleagues demonstrated antibacterial properties of B. subtilis LXG RNase tox-

ins via heterologous expression in E. coli (Holberger et al., 2012). This growth inhibition was

alleviated by co-expression of immunity determinants encoded adjacent to cognate LXG genes. We

show here that LXG proteins transit the Esx secretion system of Streptococcus intermedius (Si) and

function as antibacterial toxins that mediate contact-dependent interspecies antagonism.

Results

LXG proteins are Esx secretion system substrates
We initiated our investigation into the function of LXG proteins by characterizing the diversity and

distribution of genes encoding these proteins across all sequenced genomes from Firmicutes. As

noted previously, the C-terminal domains in the LXG family members we identified are highly diver-

gent, exhibiting a wide range of predicted activities (Figure 1a) (Zhang et al., 2012). LXG protein-

encoding genes are prevalent and broadly distributed in the classes Clostridiales, Bacillales and Lac-

tobacillales (Figure 1A). Notably, a significant proportion of organisms in these taxa are specifically

adapted to the mammalian gut environment. Indeed, we find that LXG genes derived from reference

genomes of many of these gut-adapted bacteria are abundant in metagenomic datasets from human

gut microbiome samples (Figure 1A and Figure 1—figure supplement 1). An LXG toxin that is pre-

dicted to possess ADP-ribosyltransferase activity – previously linked to interbacterial antagonism in

Gram-negative organisms – was particularly abundant in a subset of human gut metagenomes

(Zhang et al., 2012). Close homologs of this gene are found in Ruminococcus, a dominant taxa in

the human gut microbiome, potentially explaining the frequency of this gene (Wu et al., 2011).

We next sought to determine whether LXG proteins are secreted via the Esx pathway. The toxin

domain of several of the LXG proteins we identified shares homology and predicted catalytic resi-

dues with M. tuberculosis TNT, an NAD+-degrading (NADase) enzyme (Figure 2—figure supple-

ment 1A) (Sun et al., 2015). Si, a genetically tractable human commensal and opportunistic

pathogen, is among the bacteria we identified that harbor a gene predicted to encode an NADase

LXG protein (Claridge et al., 2001); we named this protein TelB (Toxin exported by Esx with LXG

domain B). Attempts to clone the C-terminal toxin domain of TelB (TelBtox) were initially unsuccess-

ful, suggesting the protein exhibits a high degree of toxicity. Guided by the TNT structure, we cir-

cumvented this by assembling an attenuated variant (H661A) that was tolerated under non-induced

conditions (TelBtox*) (Figure 2—figure supplement 1A) (Sun et al., 2015). Induced expression of

TelBtox* inhibited E. coli growth and reduced cellular NAD+ levels (Figure 2A, Figure 2—figure sup-

plement 1B). The extent of NAD+ depletion mirrored that catalyzed by expression of a previously

characterized interbacterial NADase toxin, Tse6, and importantly, intracellular NAD+ levels were

unaffected by an unrelated bacteriostatic toxin, Tse2 (Hood et al., 2010; Whitney et al., 2015). Fur-

thermore, substitution of a second predicted catalytic residue of TelB (R626A), abrogated toxicity of

TelBtox* and significantly restored NAD+ levels (Figure 2—figure supplement 1B–C).
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Determination of the biochemical activity of TelB provided a means to test our hypothesis that

LXG proteins are substrates of the ESX secretion pathway. Using an assay that exploits fluorescent

derivatives of NAD+ that form under strongly alkaline conditions, we found that concentrated cell-

free supernatant of an Si strain containing telB (SiB196) possesses elevated levels of NADase activity

relative to that of a strain lacking telB (Si27335) (Figure 2B) (Johnson and Morrison, 1970;

Olson et al., 2013; Whiley and Beighton, 1991). Furthermore, the NADase activity present in the

supernatant of SiB196 was abolished by telB inactivation. Export of Esx substrates relies on EssC, a

translocase with ATPase activity (Burts et al., 2005; Rosenberg et al., 2015). Inactivation of essC

also abolished NADase activity in the supernatant of SiB196, suggesting that TelB utilizes the Esx

pathway for export.

The genome of SiB196 encodes two additional LXG proteins, which we named TelA and TelC

(Figure 2C). To determine if these proteins are also secreted in an Esx-dependent fashion, we col-

lected cell-free supernatants from stationary phase cultures of wild-type and essC-deficient SiB196.

Extensive dialysis was used to reduce contamination from medium-derived peptides and the

Figure 1. The LXG protein family contains diverse toxins that are broadly distributed in Firmicutes and found in the human gut microbiome. (A)

Dendogram depicts LXG-containing genera within Firmicutes, clustered by class and order. Circle size indicates the number of sequenced genomes

searched within each genus and circle color represents percentage of those found to contain at least one LXG protein. For classes or orders in which

no LXG domain-containing proteins were found, the number of genera evaluated is indicated in parentheses; those consisting of Gram-negative

organisms are boxed with dashed lines. Grey boxes contain predicted domain structures for representative divergent LXG proteins. Depicted are LXG-

domains (pink), spacer regions (light grey) and C-terminal polymorphic toxin domains (NADase, purple; non-specific nuclease, orange; AHH family

nuclease, green; ADP-ribosyltransferase, blue; lipid II phosphatase based on orthology to TelC (defined biochemically herein), yellow; EndoU family

nuclease, brown; unknown activity, dark grey). (B) Heatmap depicting the relative abundance (using logarithmic scale) of selected LXG genes detected

in the Integrated Gene Catalog (IGC). A complete heatmap is provided in Figure 1—figure supplement 1. Columns represent individual human gut

metagenomes from the IGC database and rows correspond to LXG genes. Grey lines link representative LXG toxins in (A) to their corresponding (�95%

identity) IGC group in (B).

DOI: 10.7554/eLife.26938.003

The following figure supplement is available for figure 1:

Figure supplement 1. Complete list of LXG genes found in human gut metagenomes.

DOI: 10.7554/eLife.26938.004
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remaining extracellular proteins were precipitated and identified using semi-quantitative mass spec-

trometry (Liu et al., 2004). This technique revealed that each of the LXG proteins predicted by the

Si genome is exported in an Esx-dependent manner (Table 1). Western blot analysis of TelC secre-

tion by wild-type and the essC-lacking mutant further validated Esx-dependent export (Figure 2D).

Together, these data indicate that LXG proteins are substrates of the Esx secretion system.

Contact-dependent interspecies antagonism is mediated by LXG toxins
The export of LXG proteins by the Esx pathway motivated us to investigate their capacity for mediat-

ing interbacterial antagonism. The C-terminal domains of TelA (TelAtox) and TelC (TelCtox) bear no

homology to characterized proteins, so we first examined the ability of these domains to exhibit tox-

icity in bacteria. TelAtox and TelBtox* inhibited growth when expressed in the cytoplasm of E. coli,

whereas TelCtox did not exhibit toxicity in this cellular compartment (Figure 3A). Given the capacity
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Figure 2. LXG-domain proteins of S. intermedius are secreted by the Esx-pathway. (A) NAD+ levels in E. coli cells

expressing a non-NAD+ -degrading toxin (Tse2), the toxin domain of a known NADase (Tse6tox), an inducibly toxic

variant of the C-terminal toxin domain of TelB (TelBtox*), a variant of TelBtox* with significantly reduced toxicity

(TelBtox*
R626A) and TelBtox* co-expressed with its cognate immunity protein TipB. Cellular NAD+ levels were

assayed 60 min after induction of protein expression and were normalized to untreated cells. Mean values (n = 3) ±

SD are plotted. Asterisks indicate statistically significant differences in NAD+ levels compared to vector control

(p<0.05). (B) NAD+ consumption by culture supernatants from the indicated Si strains. Fluorescent images of

supernatant droplets supplemented with 2 mM NAD+ for 3 hr; brightness is proportional to NAD+ concentration

and was quantified using densitometry. Mean values ± SD (n = 3) are plotted. Asterisks indicate statistically

significant differences in NAD+ turnover compared to wild-type SiB196 (p<0.05). (C) Regions of the SiB196 genome

encoding Esx-exported substrates. Genes are colored according to functions encoded (secreted Esx structural

components, orange; secreted LXG toxins, dark purple; immunity determinants, light purple; WXG100-like

proteins, green; other, grey). (D) Western blot analysis of TelC secretion in supernatant (Sup) and cell fractions of

wild-type or essC-inactivated SiB196.

DOI: 10.7554/eLife.26938.005

The following figure supplement is available for figure 2:

Figure supplement 1. TelB resembles NADase toxins and inhibits the growth of bacteria.

DOI: 10.7554/eLife.26938.006

Whitney et al. eLife 2017;6:e26938. DOI: 10.7554/eLife.26938 5 of 24

Research article Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.26938.005
http://dx.doi.org/10.7554/eLife.26938.006
http://dx.doi.org/10.7554/eLife.26938


of some interbacterial toxins to act on extracellular structures, we assessed the viability of Si

cells expressing TelCtox targeted to the sec translocon. In contrast to TelCtox production, overex-

pression of a derivative bearing a signal peptide directing extracellular expression (ss-TelCtox) exhib-

ited significant toxicity (Figure 3B).

Table 1. The Esx-dependent extracellular proteome of S. intermedius B196.

Locus tag Wild-type DessC
Relative abundance
(Wild-type/DessC) Esx function Name

SIR_0169* 19.67† 0 Not detected in DessC LXG protein‡ TelA

SIR_0176 14.67 0 Not detected in DessC Structural component EsaA

SIR_1489 12.00 0 Not detected in DessC LXG protein TelC

SIR_1516 9.33 0 Not detected in DessC - Trigger Factor

SIR_0179 5.33 0 Not detected in DessC LXG protein TelB

SIR_0166 140.00 17.48 8.01 Structural component EsxA

SIR_0273 15.33 2.28 6.73 - -

SIR_1626 15.00 2.28 6.58 - GroEL

SIR_0832 12.33 8.36 1.48 - Enolase

SIR_1904 49.00 37.24 1.32 - Putative serine protease

SIR_1382 26.00 19.76 1.32 - Fructose-bisphosphate aldolase

SIR_0648 21.67 17.48 1.24 - 50S ribosomal protein L7/L12

SIR_0212 47.00 39.52 1.19 - Elongation Factor G

SIR_0081 8.67 7.60 1.14 - Putative outer membrane protein

SIR_1676 16.33 14.44 1.13 - phosphoglycerate kinase

SIR_1523 12.67 12.92 0.98 - DnaK

SIR_1154 10.33 10.64 0.97 - Putative bacteriocin accessory protein

SIR_1027 63.00 67.64 0.93 - Elongation Factor Tu

SIR_1455 14.00 15.96 0.88 - -

SIR_0758 13.00 15.20 0.86 - -

SIR_1387 9.33 11.40 0.82 - Putative extracellular solute-binding protein

SIR_0492 12.33 15.20 0.81 - Putative adhesion protein

SIR_1033 17.67 24.32 0.73 - -

SIR_1359 14.00 19.76 0.71 - Penicillin-binding protein 3

SIR_0011 12.33 17.48 0.71 - Beta-lactamase class A

SIR_1546 8.33 12.16 0.69 - -

SIR_0040 101.67 160.36 0.63 - Putative stress protein

SIR_1608 11.00 18.24 0.60 - Putative endopeptidase O

SIR_1549 7.33 12.16 0.60 - -

SIR_1675 79.00 132.24 0.60 - Putative cell-surface antigen I/II

SIR_1418 11.33 21.28 0.53 - Putative transcriptional regulator LytR

SIR_0080 11.00 21.28 0.52 - -

SIR_1025 28.33 63.84 0.44 - Lysozyme

SIR_0113 10.67 24.32 0.44 - -

SIR_0297 8.33 24.32 0.34 - -

*Rows highlighted in green correspond to proteins linked to the Esx pathway.
†Values correspond to average SC (spectral counts) of triplicate biological replicates for each strain.
‡Functional link of LXG proteins to Esx secretion pathway defined in the study.

DOI: 10.7554/eLife.26938.007
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Figure 3. S. intermedius LXG proteins inhibit bacterial growth and mediate contact-dependent interbacterial antagonism. (A) Viability of E. coli cells

grown on solid media harboring inducible plasmids expressing the C-terminal toxin domains of the three identified SiB196 LXG proteins or an empty

vector control. (B) SiB196 colonies recovered after transformation with equal concentrations of constitutive expression plasmids carrying genes encoding

the indicated proteins. ss-TelCtox is targeted to the sec translocon through the addition of the secretion signal sequence from S. pneumoniae LysM

(SP_0107). Error bars represent ± SD (n = 3). Asterisk indicates a statistically significant difference in Si transformation efficiency relative to TelCtox

(p<0.05). (C) Viability of E. coli cells grown on solid media harboring inducible plasmids co-expressing the indicated proteins. Empty vector controls are

indicated by a dash. Mean c.f.u. values ± SD (n = 3) are plotted. Asterisks indicate statistically significant differences in E. coli viability relative to vector

control (p<0.05) (D) Intra-species growth competition experiments between the indicated bacterial strains. Competing strains were mixed and

incubated in liquid medium or on solid medium for 30 hr and both initial and final populations of each strain were enumerated by plating on selective

media. The competitive index was determined by comparing final and initial ratios of the two strains. Asterisks indicate outcomes statistically different

between liquid and solid medium (n = 3, p<0.05). (E) Intra-species growth competition experiments performed as in (D) except for the presence of a

filter that inhibits cell-cell contact. No contact, filter placed between indicated donor and susceptible recipient (DtelB DtipB) strains; Contact, donor and

susceptible recipient strains mixed on same side of filter. Asterisks indicate statistically different outcomes (n = 3, p<0.05). Note that recipient cell

populations have an Esx-independent fitness advantage in these experiments by virtue of their relative proximity to the growth substrate. (F) Inter-

species growth competition experiments performed on solid or in liquid (E. faecalis) medium between Si wild-type and DessC donor strains and the

indicated recipient organisms. Si23775 lacks tipA and tipB and is therefore potentially susceptible to TelA and TelB delivered by SiB196. Asterisks indicate

outcomes where the competitive index of wild-type was significantly higher than an DessC donor strain (n = 3, p<0.05). Genetic complementation of the

mutant phenotypes presented in this figure was confounded by inherent plasmid fitness costs irrespective of the inserted sequence. As an alternative,

we performed whole genome sequencing on strains DessC, DtelB, DtelC, DtelB DtipB, and DtelC DtipC, which confirmed the respective desired

mutation as the only genetic difference between these strains. Sequences of these strains have been deposited to the NCBI Sequence Read Archive

(BioProject ID: PRJNA388094).

DOI: 10.7554/eLife.26938.008

The following figure supplements are available for figure 3:

Figure supplement 1. TelC directly interacts with its cognate immunity protein TipC.

DOI: 10.7554/eLife.26938.009

Figure supplement 2. TelC levels elevated by high cell density or addition of purified protein fail to yield cellular intoxication in liquid media.

DOI: 10.7554/eLife.26938.010
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We next evaluated whether the Tel proteins, like the substrates of interbacterial toxin delivery

systems in Gram-negative bacteria, are inactivated by genetically linked specialized cognate immu-

nity determinants. By co-expressing candidate open reading frames located downstream of each tel

gene, we identified a cognate tip (tel immunity protein) for each toxin (Figure 3B–C and Figure 3—

figure supplement 1). We then sought to inactivate each of these factors to generate SiB196 strains

sensitive to each of the Tel proteins. In SiB196, telA tipA loci are located immediately upstream of

conserved esx genes (Figure 2C). We were unable to generate non-polar telA tipA-inactivated

strains, and thus focused our efforts on the other two tel tip loci.

We reasoned that if LXG toxins target non-self cells, this process would occur either through dif-

fusion or by facilitated transfer, the latter of which would likely require cell contact. Since we detect

TelA-C secretion in liquid medium, we began our attempts to observe intercellular intoxication with

wild-type and toxin-sensitive target cell co-culture. These efforts yielded no evidence of target cell

killing or growth inhibition, including when co-incubations were performed at cell densities higher

than that achievable through growth (Figure 3D, Figure 3—figure supplement 2A). The application

of concentrated supernatants or purified TelC (to a final concentration of 0.1 mg/mL) to sensitive

strains also did not produce evidence of toxicity (Figure 3—figure supplement 2B–C). This result is

perhaps not surprising given the barrier presented by the Gram-positive cell wall (Forster and Mar-

quis, 2012).

Next, we tested conditions that enforce cell contact. In each of these experiments, donor and

recipient strains were grown in pure culture before they were mixed at defined ratios and cultured

on a solid surface for 30 hr to promote cell-cell interactions. We observed significant growth inhibi-

tion of TelB- or TelC-susceptible strains co-cultured with wild-type, but not when co-cultured with

strains lacking telB or telC, respectively (Figure 3D). A strain bearing inactivated essC was also

unable to intoxicate a sensitive recipient. In competition experiments performed in parallel wherein

the bacterial mixtures were grown in liquid culture, TelB and TelC-susceptible strains competed

equally with wild type, suggesting that Esx-mediated intoxication requires prolonged cell contact.

To further probe this requirement, we conducted related experiments in which wild-type donor cells

were segregated from sensitive recipients by a semi-permeable (0.2 mm pore size) membrane

(Figure 3E). This physical separation blocked intoxication, which taken together with the results of

our liquid co-culture experiments and our finding that purified TelC is not bactericidal, strongly sug-

gests that the mechanism of Esx-dependent intercellular LXG protein delivery requires immediate

cell-cell contact.

In Gram-negative bacteria, some antagonistic cell contact-dependent pathways display narrow

target range, whereas others act between species, or even between phyla (Hayes et al., 2014;

Russell et al., 2014a). To begin to determine the target range of Esx-based LXG protein delivery,

we measured its contribution to SiB196 fitness in interbacterial competition experiments with a panel

of Gram-positive and -negative bacteria. The Esx pathway conferred fitness to SiB196 in competition

with Si23775, S. pyogenes, and Enterococcus faecalis, an organism from a closely related

genus (Figure 3F). On the contrary, the pathway did not measurably affect the competitiveness of

SiB196 against Gram-negative species belonging to the phyla Proteobacteria (E. coli, Burkholderia

thailandensis, Pseudomonas aeruginosa) or Bacteroidetes (Bacteriodes fragilis). These results dem-

onstrate that the Esx pathway can act between species and suggest that its target range may be lim-

ited to Gram-positive bacteria.

TelC targets the bacterial cell wall biosynthetic precursor lipid II
The Esx pathway is best known for its role in mediating pathogen-host cell interactions

(Abdallah et al., 2007). Given this precedence, we considered the possibility that the antibacterial

activity we observed may not be relevant physiologically. TelB degrades NAD+, a molecule essential

for all cellular life, and therefore this toxin is not definitive in this regard. We next turned our atten-

tion to TelC, which elicits toxicity from outside of the bacterial cell (Figure 3B). This protein contains

a conserved aspartate-rich motif that we hypothesized constitutes its enzymatic active site (Fig-

ure 4—figure supplement 1A). To gain further insight into TelC function, we determined the crystal

structure of TelCtox to 2.0 Å resolution (Table 2). The structure of TelCtox represents a new fold; it is

comprised of distinct and largely a-helical N- and C-terminal lobes (Figure 4A). The single b element

of TelCtox is a hairpin that protrudes from the N-terminal lobe. Although TelCtox does not share sig-

nificant similarity to previously determined structures, we located its putative active site within a
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shallow groove that separates the N- and C-terminal lobes. This region contains a calcium ion bound

to several residues that comprise the conserved aspartate-rich motif. Site-specific mutagenesis of

these residues abrogated TelC-based toxicity (Figure 4B,C, Figure 4—figure supplement 1B).

We next assessed the morphology of cells undergoing intoxication by TelCtox. Due to the potent

toxicity of TelCtox in Si, we employed an inducible expression system in S. aureus as an alternative.

S. aureus cells expressing extracellularly-targeted TelCtox exhibited significantly reduced viability

(Figure 4D), and when examined microscopically, displayed a cessation of cell growth followed by

lysis that was not observed in control cells (Figure 4E, Videos 1–2). Despite eliciting effects consis-

tent with cell wall peptidoglycan disruption, isolated cell walls treated with TelCtox and peptidogly-

can recovered from cells undergoing TelC-based intoxication showed no evidence of enzymatic

digestion (Figure 4—figure supplement 2A–D). These data prompted us to consider that TelC cor-

rupts peptidoglycan biosynthesis, which could also lead to the lytic phenotype observed

(Harkness and Braun, 1989).

The immediate precursor of peptidoglycan is lipid II, which consists of the oligopeptide disaccha-

ride repeat unit linked via pyrophosphate to a lipid carrier (Vollmer and Bertsche, 2008). Likely due

to its distinctive and conserved structure, lipid II is the target of diverse antibacterial molecules

Table 2. X-ray data collection and refinement statistics.

TelC202-CT (Semet)

Data Collection

Wavelength (Å) 0.979

Space group C2221

Cell dimensions

a, b, c (Å) 127.4, 132.7, 58.3

a, b, g (˚) 90.0, 90.0, 90.0

Resolution (Å) 49.20–1.98 (2.03–1.98)*

Total observations 891817

Unique observations 34824

Rpim (%) 6.6 (138.5)

I/sI 11.4 (0.8)

Completeness (%) 100.0 (99.9)

Redundancy 25.6 (23.4)

Refinement

Rwork / Rfree (%) 22.4/24.6

Average B-factors (Å2) 53.8

No. atoms

Protein 2539

Ligands 3

Water 145

Rms deviations

Bond lengths (Å) 0.008

Bond angles (˚) 0.884

Ramachandran plot (%)

Total favored 96.9

Total allowed 99.7

Coordinate error (Å) 0.28

PDB code 5UKH

*Values in parentheses correspond to the highest resolution shell.

DOI: 10.7554/eLife.26938.015
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Figure 4. TelC is a calcium-dependent lipid II phosphatase. (A) Space-filling representation of the 2.0 Å resolution TelCtox X-ray crystal structure.

Protein lobes (red and blue), active site cleft (white) and Ca2+ (green) are indicated. (B) TelCtox structure rotated as indicated relative to (A) with

transparent surface revealing secondary structure. (C) Magnification of the TelC active site showing Ca2+ coordination by conserved aspartate residues

and water molecules. (D) Viability of S. aureus cells harboring inducible plasmids expressing the indicated proteins or a vector control. ss-TelCtox is

targeted for secretion through the addition of the signal sequence encoded by the 5’ end of the hla gene from S. aureus. Mean c.f.u. values ± SD

(n = 3) are plotted. Asterisk indicates a statistically significant difference in S. aureus viability relative to vector control (p<0.05) (E) Representative

micrographs of S. aureus expressing ss-TelCtox or a vector control. Frames were acquired eight and 12 hr after spotting cells on inducing growth media.

(F) Thin-layer chromotography (TLC) analysis of reaction products from incubation of synthetic Lys-type lipid II with buffer (Ctrl), TelCtox, or TelCtox and

its cognate immunity protein TipC. (G) Partial HPLC chromatograms of radiolabeled peptidoglycan (PG) fragments released upon incubation of Lys-

type lipid II with the indicated purified proteins. Schematics depict PG fragment structures (pentapeptide, orange; N-acetylmuramic acid, dark green;

N-acetylglucosamine, light green; phosphate, black). Known fragment patterns generated by PBP1B + LpoB and colicin M serve as controls. (H) TLC

analysis of reaction products generated from incubation of buffer (Ctrl), TelCtox or TelCtox and TipC with undecaprenyl phosphate (C55–P) (left) or

undecaprenyl pyrophosphate (C55–PP) (right).

DOI: 10.7554/eLife.26938.011

The following figure supplements are available for figure 4:

Figure supplement 1. TelC contains an aspartate-rich motif required for toxicity.

DOI: 10.7554/eLife.26938.012

Figure supplement 2. TelC does not degrade intact Gram-positive sacculi.

DOI: 10.7554/eLife.26938.013

Figure supplement 3. TelC degrades lipid II, contributes to interbacterial antagonism and is not toxic to yeast cells.

DOI: 10.7554/eLife.26938.014
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(Breukink and de Kruijff, 2006; Oppedijk et al.,

2016). To test activity against lipid II, we incu-

bated the molecule with purified TelCtox. Analysis

of the reaction products showed that TelCtox

cleaves lipid II – severing the molecule at the

phosphoester linkage to undecaprenyl

(Figure 4F–G, Figure 4—figure supplement

3A). Reaction products were confirmed by mass

spectrometry and inclusion of TipC inhibited their

formation. Consumption of lipid II for peptidogly-

can assembly generates undecaprenyl pyrophos-

phate (UPP), which is converted to undecaprenyl

phosphate (UP), and transported inside the cell.

The UP molecule then reenters peptidoglycan

biosynthesis or is utilized as a carrier for another

essential cell wall constituent, wall teichoic acid

(WTA). Our experiments showed that TelCtox is

capable of hydrolyzing cleaved undecaprenyl

derivatives but displays a strict requirement for

the pyrophosphate group (Figure 4H), indicating

the potential for TelC to simultaneously disrupt

two critical Gram-positive cell wall polymers.

Consistent with its ability to inhibit a conserved

step in peptidoglycan biosynthesis, TelC exhibited toxicity towards diverse Gram-positive species

including Si (Figure 2B), S. aureus (Figure 4D) and E. faecalis (Figure 4—figure supplement 3B).

These data do not explain our observation that cytoplasmic TelC is non-toxic, as the substrates we

defined are present in this compartment. The substrates may be inaccessible or TelC could be inac-

tive in the cytoplasm. It is worth noting that TelC contains a calcium ion bound at the interface of its

N- and C-terminal lobes. Many secreted proteins that bind calcium utilize the abundance of the free

ion in the milieu to catalyze folding. Taken together, our biochemical and phenotypic data strongly

suggest that TelC is a toxin directed specifically against bacteria. While we cannot rule out that TelC

may have other targets, we find that its expression in the cytoplasm or secretory pathway of yeast

does not impact the viability of this model eukaryotic cell (Figure 4—figure supplement 3C–D).

WXG100-like proteins bind
cognate LXG proteins and
promote toxin export
The majority of Esx substrates identified to-date

belong to the WXG100 protein family. These

proteins typically display secretion co-depen-

dency and are essential for apparatus function.

M. tuberculosis ESX-1 exports two WXG100 pro-

teins, ESAT-6 and CFP10, and the removal of

either inhibits the export of other substrates

(Ates et al., 2016; Renshaw et al., 2002). LXG

proteins do not belong to the WXG100 family;

thus, we sought to determine how the Tel pro-

teins influence Esx function in Si. Using Western

blot analysis to measure TelC secretion and

extracellular NADase activity as a proxy for TelB

secretion, we found that telB- and telC-inacti-

vated strains of Si retain the capacity to secrete

TelC and TelB, respectively (Figure 5A–B). These

data indicate that TelB and TelC are not

required for core apparatus function and do not

display secretion co-dependency.

Video 1. Time-lapse series of S. aureus USA300

pEPSA5 growth. Cells were imaged every 10 min.

DOI: 10.7554/eLife.26938.016

Video 2. Time-lapse series of S. aureus USA300

pEPSA5::ss-telCtox growth. Cells were imaged every 10

min.

DOI: 10.7554/eLife.26938.017
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Interestingly, we noted genes encoding WXG100-like proteins upstream of telA-C (wxgA-C)

(Figure 2C); however, these proteins were not identified in the extracellular proteome of Si (Table 1).

Given the propensity for Esx substrates to function as heterodimers, we hypothesized that the Tel

proteins specifically interact with cognate Wxg partners. In support of this, we found that WxgC, but

not WxgB co-purified with TelC (Figure 5C). Moreover, using bacterial two-hybrid assays, we deter-

mined that this interaction is mediated by the LXG domain of TelC (Figure 5D). To investigate the

generality of these findings, we next examined all pairwise interactions between the three Wxg pro-

teins and the LXG domains of the three Tel proteins (TelA-CLXG) (Figure 5—figure supplement 1).

We found that WxgA-C interact specifically with the LXG domain of their cognate toxins

(Figure 5D). The functional relevance of the LXG–WXG100 interaction was tested by examining sub-

strate secretion in a strain lacking wxgC. We found that wxgC inactivation abrogates TelC secretion,

but not that of TelB (Figure 5A–B). In summary, these data suggest that cognate Tel–Wxg interac-

tion facilitates secretion through the Esx pathway of Si (Figure 5E).

Discussion
We present multiple lines of evidence that Esx-mediated delivery of LXG toxins serves as a physio-

logical mechanism for interbacterial antagonism between Gram-positive bacteria. Our results sug-

gest that like the T6S pathway of Gram-negative bacteria, the Esx system may mediate antagonism

against diverse targets, ranging from related strains to species belonging to other genera

Figure 5. LXG domain proteins are independently secreted and require interaction with cognate WXG100-like

partners for export. (A) NAD+ consumption assay of culture supernatants of the indicated SiB196 strains. Mean

densitometry values ± SD (n = 3) are plotted. Asterisk indicates statistically significant difference in NAD+ turnover

compared to wild-type SiB196 (p<0.05). (B) Western blot analysis of TelC secretion in supernatant (Sup) and cell

fractions. (C) Western blot and coomassie stain analysis of CoIP assays of TelC-his6 co-expressed with either

WxgB-V or WxgC-V proteins. (D) Bacterial two-hybrid assay for interaction between Tel and WXG100-like proteins.

Adenylate cyclase subunit T25 fusions (WXG100-like proteins) and T18 fusions (Tel proteins and fragments thereof)

were co-expressed in the indicated combinations. Bait-prey interaction results in blue color production. (E) Model

depicting Esx-dependent cell-cell delivery of LXG toxins between bacteria. The schematic shows an Si donor cell

containing cognate TelA-C (light shades) and WxgA-C (dark shades) pairs intoxicating a susceptible recipient cell.

Molecular targets of LXG toxins identified in this study are depicted in the recipient cell.

DOI: 10.7554/eLife.26938.018

The following figure supplement is available for figure 5:

Figure supplement 1. Domain architecture of the Tel proteins.

DOI: 10.7554/eLife.26938.019
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(Schwarz et al., 2010). This feature of Esx secretion, in conjunction with the frequency by which we

detect LXG genes in human gut metagenomes, suggests that the system could have significant rami-

fications for the composition of human-associated polymicrobial communities. Bacteria harboring

LXG toxin genes are also components or pathogenic invaders of polymicrobial communities impor-

tant in agriculture and food processing. For instance, LXG toxins may assist Listeria in colonizing fer-

mented food communities dominated by Lactobacillus and Lactococcus (Farber and Peterkin,

1991). Of note, the latter genera also possess LXG toxins, which may augment their known antimi-

crobial properties. Our findings thus provide insights into the forces influencing the formation of

diverse communities relevant to human health and industry.

Palmer and colleagues recently reported that the Esx system of Staphylococcus aureus exports

EssD, a nuclease capable of inhibiting the growth of target bacteria in co-culture (Cao et al., 2016).

The relationship between these findings and those we report herein is currently unclear. S. aureus

EssD does not possess an LXG domain and was reported to be active against susceptible bacteria

during co-incubation in liquid media, a condition we found not conducive to LXG toxin delivery

(Figure 3D). It is evident that the Esx pathway is functionally pliable (Burts et al., 2005;

Conrad et al., 2017; Gray et al., 2016; Gröschel et al., 2016; Manzanillo et al., 2012;

Siegrist et al., 2009); therefore, it is conceivable that it targets toxins to bacteria through multiple

mechanisms. The capacity of EssD to act against bacteria in liquid media could be the result of its

over-expression from a plasmid, although we found that the exogenous administration of quantities

of TelC far exceeding those likely achievable physiologically had no impact on sensitive recipient

cells (Figure 3—figure supplement 2C). A later study of EssD function found no evidence of inter-

bacterial targeting and instead reported that its nuclease activity affects IL-12 accumulation in

infected mice (Ohr et al., 2017).

Our data suggest that, like a subset of substrates of the Esx systems of M. tuberculosis, LXG fam-

ily members require hetero-dimerization with specific WXG100-like partners to be secreted

(Ates et al., 2016). Hetero-dimerization is thought to facilitate secretion of these substrates due to

the requirement for a bipartite secretion signal consisting of a YxxxD/E motif in the C-terminus of

one partner in proximity to the WXG motif present in the turn between helices in the second protein

(Champion et al., 2006; Daleke et al., 2012a; Poulsen et al., 2014; Sysoeva et al., 2014). While

the canonical secretion signals found in other Esx substrates appear to be lacking in the LXG pro-

teins and their interaction partners, structure prediction algorithms suggest they adopt similar helical

hairpin structures, which could facilitate formation of an alternative form of the bipartite signal.

Unlike previously characterized Esx substrates, we found that the LXG proteins are not co-depen-

dent for secretion, and we failed to detect secretion of their WXG100-like interaction partners. This

suggests that WxgA-C could function analogously to the EspG proteins of M. tuberculosis, which

serve as intracellular chaperones facilitating delivery of specific substrates to the secretion machinery

(Daleke et al., 2012b; Ekiert and Cox, 2014). Alternatively, Wxg–Lxg complexes could be secreted

as heterodimers, but for technical reasons the Wxg member was undetected in our experiments.

The paradigm of Lxg-Wxg interaction likely extends beyond S. intermedius, as we observe that LXG

proteins from other species are commonly encoded within the same operon as Wxg homologs.

Our study leaves open the question of how Esx-exported LXG proteins reach their targets. In the

case of TelC, the target resides on the extracellular face of the plasma membrane, and in the case of

TelA and TelB, they are cytoplasmic. Crossing the thick Gram-positive cell wall is the first hurdle that

must be overcome to deliver of each of these toxins. The size of LXG toxins exceeds that of mole-

cules capable of free diffusion across the peptidoglycan sacculus (Forster and Marquis, 2012).

Donor cell-derived cell wall hydrolytic enzymes may facilitate entry or the LXG proteins could exploit

cell surface proteins present on recipient cells. Whether the entry of LXG toxins is directly coordi-

nated by the Esx pathway is not known; our experiments do not rule-out that the requirement for

donor-recipient cell contact reflects a step subsequent to secretion by the Esx pathway. Once

beyond the sacculus, TelA and TelB must translocate across the plasma membrane. Our study has

identified roles for the N- and C-terminal domains of LXG proteins; however, the function of the

region between these two domains remains undefined and may participate in entry. Intriguingly, the

central domains of TelA and TelB are each over 150 residues, whereas the LXG and toxin domains of

TelC, which does not require access to the cytoplasm, appear to directly fuse (Figure 5—figure sup-

plement 1). Based on the entry mechanisms employed by other interbacterial toxins, this central

domain – or another part of the protein – could facilitate direct translocation, proteolytic release of
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the toxin domain, interaction with a recipient membrane protein, or a combination of these activities

(Kleanthous, 2010; Willett et al., 2015).

We discovered that TelC, a protein lacking characterized homologs, adopts a previously unob-

served fold and catalyzes degradation of the cell wall precursor molecule lipid II. This molecule is the

target of the food preservative nisin, as well as the last-line antibiotic vancomycin, which is used to

treat a variety of Gram-positive infections (Ng and Chan, 2016). Lipid II is also the target of the

recently discovered antibiotic teixobactin, synthesized by the soil bacterium Eleftheria terrae

(Ling et al., 2015). A particularly interesting property of this potential therapeutic is the low rate at

which resistance is evolved. The apparent challenge of structurally modifying lipid II in order to sub-

vert antimicrobials may explain why interbacterial toxins targeting this molecule have evolved inde-

pendently in Gram-negative (colicin M) and -positive (TelC) bacteria (El Ghachi et al., 2006). We

anticipate that biochemical characterization of additional LXG toxins of unknown function will reveal

further Gram-positive cell vulnerabilities that could likewise be exploited in the design of new

antibiotics.

Materials and methods

Bacterial strains and growth conditions
S. intermedius strains used in this study were derived from the sequenced strains ATCC 27335 and

B196 (Supplementary file 1). S. intermedius strains were grown at 37˚C in the presence of 5% CO2

in Todd Hewitt broth (THYB) or agar (THYA) supplemented with 0.5% yeast extract. When needed,

media contained spectinomycin (75 mg/mL) or kanamycin (250 mg/mL). S. aureus USA300 derived

strains were grown at 37˚C in tryptic soy broth (TSB) or agar (TSA) supplemented with chlorampheni-

col (10 mg/mL) and xylose (2% w/v) when needed. E. faecalis OG1RF and S. pyogenes 5005 were

grown at 37˚C on Brain Heart Infusion (BHI) media. P. aeruginosa PAO1 and B. thailandensis E264

were grown at 37˚C on THYA. B. fragilis NCTC9343 was grown anaerobically at 37˚C on Brain Heart

Infusion-supplemented (BHIS) media. E. coli strains used in this study included DH5a for plasmid

maintenance, BL21 for protein expression and toxicity assays and MG1655 for competition experi-

ments. E. coli strains were grown on LB medium supplemented with 150 mg/mL carbenicillin, 50 mg/

mL kanamycin, 200 mg/mL trimethoprim, 75 mg/mL spectinomycin, 200 mM IPTG or 0.1% (w/v) rham-

nose as needed. For co-culture experiments with S. intermedius strains, E. coli, B. thailandensis, P.

aeruginosa, S. aureus, E. faecalis, S. pyogenes were grown on THYA. BHIS agar supplemented with

sheep’s blood was used when B. fragilis was grown in co-culture with S. intermedius. S. cerevisiae

BY4742 was grown on Synthetic Complete -uracil (SC-ura) medium at 30˚C.
S. intermedius mutants were generated by replacing the gene to be deleted with a cassette con-

ferring resistance to spectinomycin (derived from pDL277) or kanamycin (derived from pBAV1K-T5),

as previously described (Tomoyasu et al., 2010). Briefly, the antibiotic resistance cassette was

cloned between ~800 bp of sequence homologous to the regions flanking the gene to be deleted.

The DNA fragment containing the cassette and flanking sequences was then linearized by restriction

digest, gel purified, and ~250 ng of the purified fragment was added to 2 mL of log-phase culture

pre-treated for two hours with competence peptide (200 ng/ml) to stimulate natural transformation.

Cultures were further grown for four hours before plating on the appropriate antibiotic. All deletions

were confirmed by PCR.

DNA manipulation and plasmid construction
All DNA manipulation procedures followed standard molecular biology protocols. Primers were syn-

thesized and purified by Integrated DNA Technologies (IDT). Phusion polymerase, restriction

enzymes and T4 DNA ligase were obtained from New England Biolabs (NEB). DNA sequencing was

performed by Genewiz Incorporated.

Informatic analysis of LXG protein distribution
A comprehensive list of all clade names in the Firmicutes phylum was obtained from the List of Pro-

karyotic names with Standing in Nomenclature (http://www.bacterio.net/; updated 2017-02-02), a

database that compiles comprehensive journal citations for every characterized prokaryotic species

(Euzéby, 1997). This list was then compared with results obtained from a manually curated
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Jackhmmer search and LXG-containing Firmicutes were tabulated at the order, family, and genus

levels (Finn et al., 2015; Mitchell et al., 2015). These results were binned into three categories

based on the number of sequenced species and then further differentiated by the number of LXG-

positive species within each genus. For species belonging to orders containing no predicted LXG

encoding genes, the number of genera examined was tabulated and included in the dendogram.

Identification of LXG genes in human gut metagenomes
The 240 nucleotide tags from the toxin domains were mapped using blastn to the Integrated Gene

Catalog (Li et al., 2014) – a large dataset of previously identified microbiome genes and their abun-

dances in several extensive microbiome studies (including HMP [Human Microbiome Project Con-

sortium, 2012], MetaHiT [Qin et al., 2010], and a T2D Chinese cohort [Qin et al., 2012]). Genes to

which at least one tag was mapped with >95% identity and >50% overlap were labeled as LXG

genes. This set of LXG genes was further manually curated to filter out genes that lack the LXG tar-

geting domain. In analyzing the relative abundance of the LXG genes across samples, relative abun-

dances < 10�7 were assumed to represent noise and were set to 0. LXG genes that were not

present above this threshold in any sample and samples with no LXG genes were excluded from the

analysis.

Determination of cellular NAD+ levels
Measurement of cellular NAD+ levels was performed as reported previously (Whitney et al., 2015).

Briefly, E. coli strains harboring expression plasmids for Tse2, Tse6tox, TelBtox*, TelBtox
R626A, TelB-

tox*–TipB and a vector control were grown in LB media at 37˚C to mid-log phase prior to induction

of protein expression with 0.1% (w/v) rhamnose. 1 hr post-induction, cultures were diluted to

OD600 = 0.5 and 500 mL of cells were harvested by microcentrifugation. Cells were then lysed in 0.2

M NaOH, 1% (w/v) cetyltrimethylammonium bromide (CTAB) followed by treatment with 0.4 M HCl

at 60˚C for 15 min. After neutralization with 0.5 M Tris base, samples were then mixed with an equal

volume of NAD/NADH-Glo Detection Reagent (Promega) prepared immediately before use as per

the instructions of the manufacturer. Luciferin bioluminescence was measured continuously using a

Synergy H1 plate reader. The slope of the luciferin signal from the linear range of the assay was

used to determine relative NAD+ concentration compared to a vector control strain.

NADase assay
S. intermedius strains were grown to late-log phase before cells were removed by centrifugation at

3000 g for 15 min. Residual particulates were removed by vacuum filtration through a 0.2 um mem-

brane and the resulting supernatants were concentrated 100-fold by spin filtration (30 kDa MWCO).

NADase assays were carried out by mixing 50 mL of concentrated supernatant with 50 mL of PBS con-

taining 2 mM NAD+ followed by incubation at room temperature for 2 hr. Reactions were termi-

nated by the addition of 50 mL of 6M NaOH and incubated in the dark at room temperature for 15

min. Samples were analyzed by UV light at a wavelength of 254 nm and imaged using a FluorChemQ

(ProteinSimple). Relative NAD+ consumption was determined using densitometry analysis of each of

the indicated strain supernatants using the ImageJ software program (https://imagej.nih.gov/ij/).

Bacterial toxicity experiments
To assess TelA and TelB toxicity in bacteria, stationary phase cultures of E. coli BL21 pLysS harboring

the appropriate plasmids were diluted 106 and each 10-fold dilution was spotted onto 3% LB agar

plates containing the appropriate antibiotics. 0.1% (w/v) L-rhamnose and 100 mM IPTG were added

to the media to induce expression of toxin and immunity genes, respectively. For TelB, plasmids

containing the wild-type toxin domain (under non-inducing conditions) were not tolerated. To cir-

cumvent this, SOE pcr was used to assemble a variant (H661A) that was tolerated under non-induced

conditions. Based on the similarity of TelBtox to M. tuberculosis TNT toxin, this mutation likely

reduces the binding affinity of TelB to NAD+ (Sun et al., 2015). To generate a TelB variant that

exhibited significantly reduced toxicity under inducing conditions, a second mutation (R626A) was

introduced in the toxin domain of TelB. For examination of TelC toxicity in S. intermedius, the gene

fragment encoding TelCtox was fused to the constitutive P96 promoter followed by a start codon

and cloned into pDL277 (Lo Sapio et al., 2012). For extracellular targeting of TelCtox in S.
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intermedius, the gene fragment encoding the sec-secretion signal (residues 1–30) of S. pneumoniae

LysM (SP_0107) was fused to the 5’ end of telCtox, each of the telCtox site-specific variants and the

telCtox–tipC bicistron. 500 ng of each plasmid was transformed in S. intermedius B196 and toxicity

was assessed by counting the number of transformants. For examination of TelC toxicity S. aureus,

the gene fragment encoding TelCtox was cloned into the xylose-inducible expression vector pEPSA5.

For extracellular targeting, the gene fragment encoding the sec-secretion signal for hla was fused to

the 5’ end of telCtox and telCtox
D401A. TelC-based toxicity was assessed in the same manner as was

done for the above E. coli toxicity experiments except that xylose (2% w/v) was included in the

media to induce protein expression. Detailed plasmid information can be found

in Supplementary file 2.

Time-lapse microscopy
S. aureus USA300 pEPSA5::ss-telC202-CT and S. aureus USA300 pEPSA5 were resuspended in TSB

and 1–2 mL of each suspension was spotted onto an 1% (w/v) agarose pad containing typtic soy

medium supplemented with 2% (w/v) xylose and sealed.

Microscopy data were acquired using NIS Elements (Nikon) acquisition software on a Nikon Ti-E

inverted microscope with a 60� oil objective, automated focusing (Perfect Focus System, Nikon), a

xenon light source (Sutter Instruments), and a CCD camera (Clara series, Andor). Time-lapse sequen-

ces were acquired at 10 min intervals over 12 hr at room temperature. Movie files included are rep-

resentative of three biological replicates for each experiment.

Extracellular proteome
200 mL cultures of S. intermedius B196 wild-type and DessC strains were grown to stationary phase

in THYB before being pelleted by centrifugation at 2500 � g for 20 min at 4˚C. Supernatant fractions
containing secreted proteins were collected and spun at 2500 � g for an additional 20 min at 4˚C
and subsequently filtered through a 0.2 mm pore size membrane to remove residual cells and cell

debris. Protease inhibitors (1 mM AEBSF, 10 mM leupeptin, and 1 mM pepstatin) were added to the

filtered supernatants prior to dialysis in 4L of PBS using 10 kDa molecular weight cut off tubing at

4˚C. After four dialysis buffer changes, the retained proteins were TCA precipitated, pelleted,

washed in acetone, dried and resuspended in 1 mL of 100 mM ammonium bicarbonate containing 8

M urea. The denatured protein mixture was then desalted over a PD10 column prior to reduction,

alkylation and trypsin digestion as described previously (Eshraghi et al., 2016). The resulting tryptic

peptides were desalted and purified using C18 spin columns (Pierce) following the protocol of the

manufacturer before being vacuum dried and resuspended in 10 mL of acetonitrile/H2O/formic acid

(5/94.9/0.1, v/v/v) for LC-MS/MS analysis.

Peptides were analyzed by LC-MS/MS using a Dionex UltiMate 3000 Rapid Separation nanoLC

and a linear ion trap – Orbitrap hybrid mass spectrometer (ThermoFisher Scientific). Peptide samples

were loaded onto the trap column, which was 150 mm x 3 cm in-house packed with 3 mm C18 beads,

at flow rate of 5 mL/min for 5 min using a loading buffer of acetonitrile/H2O/formic acid (5/94.9/0.1,

v/v/v). The analytical column was a 75 mm x 10.5 cm PicoChip column packed with 1.9 mm C18 beads

(New Objectives). The flow rate was kept at 300 nL/min. Solvent A was 0.1% formic acid in water

and Solvent B was 0.1% formic acid in acetonitrile. The peptide was separated on a 90 min analytical

gradient from 5% acetonitrile/0.1% formic acid to 40% acetonitrile/0.1% formic acid.

The mass spectrometer was operated in data-dependent mode. The source voltage was 2.10 kV

and the capillary temperature was 275˚C. MS1 scans were acquired from 400 to 2000 m/z at 60,000

resolving power and automatic gain control (AGC) set to 1 � 106. The top ten most abundant pre-

cursor ions in each MS1 scan were selected for fragmentation. Precursors were selected with an iso-

lation width of 1 Da and fragmented by collision-induced dissociation (CID) at 35% normalized

collision energy in the ion trap. Previously selected ions were dynamically excluded from re-selection

for 60 s. The MS2 AGC was set to 3 � 105.

Proteins were identified from the MS raw files using Mascot search engine (Matrix Science). MS/

MS spectra were searched against the UniprotKB database of S. intermedius B196 (UniProt and Uni-

Prot Consortium, 2015). All searches included carbamidomethyl cysteine as a fixed modification

and oxidized Met, deamidated Asn and Gln, acetylated N-terminus as variable modifications. Three

missed tryptic cleavages were allowed. The MS1 precursor mass tolerance was set to 10 ppm and
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the MS2 tolerance was set to 0.6 Da. A 1% false discovery rate cutoff was applied at the peptide

level. Only proteins with a minimum of two unique peptides above the cutoff were considered for

further study. MS/MS spectral counts were extracted by Scaffold 4 (Proteome Software Inc.) and

used for statistical analysis of differential expression. Three biological replicates were performed and

proteins identified in all three wild-type replicates were included in further analysis. After replicate

averaging, low abundance proteins (less than five spectral counts in wild-type) were excluded from

the final dataset.

Secretion assay
Overnight cultures of S. intermedius strains were used to inoculate 2 ml of THYB at a ratio of 1:200.

Cultures were grown statically at 37˚C, 5% CO2 to mid-log phase, and cell and supernatant fractions

were prepared as described previously (Hood et al., 2010).

Antibody generation and western blot analyses
Full-length TelC protein was expressed and purified as described below (see protein expression and

purification) except that PBS buffer was used instead of Tris-HCl for all stages of purification. Ten

milligrams of purified TelC protein was sent to GenScript for polyclonal antisera production.

Western blot analyses of protein samples were performed using rabbit a-TelC (diluted 1:2000) or

rabbit a-VSV-G (diluted 1:5000, Sigma) and detected with a-rabbit horseradish peroxidase-conju-

gated secondary antibodies (diluted 1:5000, Sigma). Western blots were developed using chemilu-

minescent substrate (SuperSignal West Pico Substrate, Thermo Scientific) and imaged with a

FluorChemQ (ProteinSimple).

Bacterial competition experiments
For intraspecific competition experiments donor and recipient strains were diluted in THYB to a

starting OD600 of 0.5 and 0.05, respectively. Cell suspensions were then mixed together in a 1:1 ratio

and 10 mL of the mixture was spotted on THYA and grown at 37˚C, 5% CO2 for 30 hr. The starting

ratio of each competition was determined by enumerating donor and recipient c.f.u. Competitions

were harvested by excising the agar surrounding the spot of cell growth followed by resuspension of

cells in 0.5 mL of THYB. The final donor and recipient ratio was determined by enumerating c.f.u.

For all intraspecific experiments, counts of donor and recipient c.f.u. were obtained by dilution plat-

ing on THYA containing appropriate antibiotics. To facilitate c.f.u. enumeration of wild-type S. inter-

medius B196, a spectinomycin resistance cassette was inserted into the intergenic region between

SIR_0114 and SIR_0115.

For interspecies competition experiments, donor and recipient strains were diluted in THYB to a

starting OD600 of 0.75 and 0.00075, respectively. Cell suspensions were then mixed together in a 1:1

ratio and 10 mL of the mixture was spotted on THYA and grown at 37˚C, 5% CO2 for 30 hr. The start-

ing ratio of each competition was determined by enumerating donor and recipient c.f.u. Competi-

tions were harvested by excising the agar surrounding the spot of cell growth followed by

resuspension of cells in 0.5 mL of THYB. The final donor and recipient ratio was determined by enu-

merating c.f.u. Counts of donor and recipient c.f.u. were obtained by dilution plating on THYA con-

taining appropriate antibiotics (S. intermedius), BHI under standard atmospheric conditions (E. coli,

E. faecalis and S. pyogenes), LB under standard atmospheric conditions (P. aeruginosa and B. thai-

landensis) or BHIS supplemented with 60 mg/mL gentamicin under anaerobic conditions (B. fragilis).

Statistically significance was assessed for bacterial competition experiments through pairwise

t-tests of competitive index values (n = 3 for each condition).

Protein expression and purification
Stationary phase overnight cultures of E. coli BL21 pETDuet-1::telC, E. coli BL21 pETDuet-1::telC202-

CT (encoding TelCtox) and E. coli BL21 pETDuet-1::tipCDss were used to inoculate 4L of 2 x YT broth

and cultures were grown to mid-log phase in a shaking incubator at 37˚C. Upon reaching an OD600

of approximately 0.6, protein expression was induced by the addition of 1 mM IPTG followed by

incubation at 18˚C for 16 hr. Cells were harvested by centrifugation at 6000 g for 15 min, followed

by resuspension in 35 mL of buffer A (50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM imidazole).

Resuspended cells were then ruptured by sonication (3 pulses, 50 s each) and cellular debris was
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removed by centrifugation at 30,000 g for 45 min. Cleared cell lysates were then purified by nickel

affinity chromatography using 2 mL of Ni-NTA agarose resin loaded onto a gravity flow column.

Lysate was loaded onto the column and unbound proteins were removed using 50 mL of buffer A.

Bound proteins were then eluted using 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 400 mM imidazole.

The purity of each protein sample was assessed by SDS-PAGE followed by Coomassie Brilliant Blue

staining. All protein samples were dialyzed into 20 mM Tris-HCl, 150 mM NaCl.

Selenomethionine-incorporated TelC202-CT was obtained by growing E. coli BL21 pETDuet-1::

telC202-CT in SelenoMethionine Medium Complete (Molecular Dimensions) using the expression con-

ditions described above. Cell lysis and nickel affinity purification were also performed as described

above except that all buffers contained 1 mM tris(2-carboxyethyl)phosphine.

Crystallization and structure determination
Purified selenomethionine-incorporated TelC202-CT was concentrated to 12 mg/mL by spin filtration

(10 kDa cutoff, Millipore) and screened against commercially available crystallization screens (MCSG

screens 1–4, Microlytic). Diffraction quality crystals appeared after 4 days in a solution containing 0.1

M Sodium Acetate pH 4.6, 0.1 M CaCl2, 30% PEG400. X-ray diffraction data were collected using

beamline 5.0.2 at the Advanced Light Source (ALS). A single dataset (720 images, 1.0˚ Dj oscillation,

1.0 s exposure) was collected on an ADSC Q315r CCD detector with a 200 mm crystal-to-detector

distance. Data were indexed and integrated using XDS (Kabsch, 2010) and scaled using AIMLESS

(Evans and Murshudov, 2013) (table S2).

The structure of TelC202-CT was solved by Se-SAD using the AutoSol wizard in the Phenix GUI

(Adams et al., 2010). Model building was performed using the AutoBuild wizard in the Phenix GUI.

The electron density allowed for near-complete building of the model except for N-terminal residues

202–211, two C-terminal residues and an internal segment spanning residues 417–434. Minor model

adjustments were made manually in COOT between iterative rounds of refinement, which was car-

ried out using Phenix.refine (Afonine et al., 2012; Emsley et al., 2010). The progress of the refine-

ment was monitored by the reduction of Rwork and Rfree (Table 2).

Peptidoglycan hydrolase assay
Purified TelCtox was dialyzed against 20 mM sodium acetate pH 4.6, 150 mM NaCl, 10 mM CaCl2.

Cross-linked peptidoglycan sacculi and lysostaphin endopeptidase pre-treated (non-cross-linked)

sacculi from S. aureus were then incubated with 5 mM TelCtox, 2.5 mg of cellosyl muramidase or

buffer at 37˚C for 18 hr. Digests were then boiled for 5 min at 100˚C and precipitated protein was

removed by centrifugation. The resulting muropeptides were reduced by the addition of sodium

borohydride and analyzed by HPLC as described previously (de Jonge et al., 1992).

For the analysis of cell walls isolated from TelC-intoxicated cells, 1L of S. aureus USA300

pEPSA5::ss-telCtox and S. aureus USA300 pEPSA5::ss-telCtox
D401A cells were grown to mid-log phase

prior to induction of protein expression by the addition of 2% (w/v) xylose. 90 min post-induction,

cultures were rapidly cooled in an ice-water bath and cells were harvested by centrifugation. After

removal of supernatants, cell pellets were resuspended in 40 mL of ice-cold 50 mM Tris-HCl pH 7.0

and subsequently added dropwise to 120 mL boiling solutions of 5% SDS. PG was isolated as

described (de Jonge et al., 1992) and digested with either cellosyl muramidase or lysostaphin endo-

peptidase and cellosyl, reduced with sodium borohydride and analyzed by HPLC as described

above.

Lipid II phosphatase assay
Purified TelCtox and TelCtox–TipCDss complex were dialyzed against 20 mM sodium acetate pH 4.6,

150 mM NaCl, 10 mM CaCl2. C
14-labelled Lys-type lipid II was solubilized in 5 mL of Triton X-100

before being added to 95 mL of reaction buffer containing 15 mM HEPES pH 7.5, 0.4 mM CaCl2
(excluded from the PBP1B-LpoB reaction), 150 mM NaCl, 0.023% Triton X-100 and either PBP1B–

LpoB complex, TelCtox, TelCtox–TipCDss complex or Colicin M followed by incubation for 1 hr at

37˚C. The reaction with PBP1B-LpoB was boiled and reduced with sodium borohydride. All the reac-

tions were quenched by the addition of 1% (v/v) phosphoric acid and analyzed by HPLC as described

(Bertsche et al., 2005). Three biological replicates were performed for each reaction. The lipid II
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degradation products of TelCtox digestion were confirmed by mass spectrometry. Lipid II was kindly

provided by Ute Bertsche and was generated as described previously (Bertsche et al., 2005).

For thin-layer chromatography (TLC) analysis of Lys-type lipid II degradation by TelC, TelCtox or

TelCtox–TipCDss, 40 mM lipid II was solubilized in 30 mM HEPES/KOH pH 7.5, 150 mM KCl and 0.1%

Triton X-100 before adding either 2 mM TelCtox, 2 mM TelCtox–TipCDss complex or protein buffer, fol-

lowed by incubation for 90 min at 37˚C. Samples were extracted with n-butanol/pyridine acetate

(2:1) pH 4.2 and resolved on silica gel (HPTLC silica gel 60, Millipore) in chloroform/methanol/ammo-

nia/water (88:48:1:10). For the undecaprenyl phosphate reactions 100 mM undecaprenyl phosphate

(Larodan) was solubilized in 20 mM HEPES/KOH pH 7.5, 150 mM KCl, 1 mM CaCl2 and 0.1% Triton

X-100 before adding 2 mM TelCtox (final concentration), 2 mM TelCtox–TipCDss or protein buffer, fol-

lowed by incubation for 5 hr at 25˚C and 90 min at 37˚C. Samples were extracted and separated by

TLC as indicated above. For the undecaprenyl pyrophosphate synthesis reactions coupled to the

degradation by TelCtox0.04 mM Farnesyl pyrophosphate and 0.4 mM isopentenyl pyrophosphate

were solubilized in 20 mM HEPES/KOH pH 7.5, 50 mM KCl, 0.5 mM MgCl2, 1 mM CaCl2, 0.1% Tri-

ton X-100 and incubated with 10 mM UppS and 2 mM TelCtox (final concentrations) or protein buffer

for 5 hr at 25˚C and 90 min at 37˚C. Samples were extracted and separated by TLC as indicated

above.

Yeast toxicity assay
To target TelC to the yeast secretory pathway, telCtox was fused to the gene fragment encoding the

leader peptide of Kluyveromyces lactis killer toxin (Baldari et al., 1987), generating ss-telCtox. S. cer-

evisiae was transformed with pCM190 containing telCtox, ss-telCtox, a known toxin of yeast or empty

vector and grown o/n SC-ura +1 ug/mL doxycycline. Cultures were resuspended to OD600 = 1.5 with

water and serially diluted 5-fold onto SC-ura agar. Plates were incubated at 30˚C for 2 days before

being imaged using a Pentax WG-3 digital camera. Images presented are representative of three

independent replicate experiments. Proteolytic processing of the leader peptide of ss-TelCtox was

confirmed by western blot.

Isothermal titration calorimetry
Solutions of 25 mM TelC202-CT and 250 mM TipCDss were degassed prior to experimentation. ITC

measurements were performed with a VP-ITC microcalorimeter (MicroCal Inc., Northampton, MA).

Titrations consisted of 25 10 mL injections with 180 s intervals between each injection. The ITC data

were analyzed using the Origin software package (version 5.0, MicroCal, Inc.) and fit using a single-

site binding model.

Bacterial two-hybrid analyses
E. coli BTH101 cells were co-transformed with plasmids encoding the T18 and T25 fragments of Bor-

detella pertussis adenylate cyclase fused to the proteins of interest. Stationary phase cells were then

plated on LB agar containing 40 mg/mL X-gal, 0.5 mM IPTG, 50 mg/mL kanamycin and 150 mg/mL

carbenicillin and grown for 24 hr at 30˚C. Plates were imaged using a Pentax WG-3 digital camera.

Images representative of at least three independent replicate experiments are presented.

Immunoprecipitation assay
E. coli BL21 (DE3) pLysS cells were co-transformed with plasmids encoding TelC-his6 and WxgB-V or

TelC-his6 and WxgC-V. Cells were grown to an OD600 of 0.6 prior to induction of protein expression

with 0.5 mM IPTG for 6 hr at 30˚C. Cultures were harvested by centrifugation and cell pellets were

resuspended in Buffer A prior to lysis by sonication. Clarified lysates were then incubated with Ni-

NTA resin and incubated at 4˚C with rotation for 90 min. Ni-NTA resin was then washed four times

with Buffer A followed by elution of bound proteins with Buffer B. After the addition of Laemmli

sample buffer, proteins were separated by SDS-PAGE using an 8–16% gradient TGX Stain-Free gel

(Bio-Rad). TelC-his6 was visualized by UV activation the trihalo compound present in Stain-Free gels

whereas WxgB-V and WxgC-V were detected by western blotting.
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Gröschel MI, Sayes F, Simeone R, Majlessi L, Brosch R. 2016. ESX secretion systems: mycobacterial evolution to
counter host immunity. Nature Reviews Microbiology 14:677–691. doi: 10.1038/nrmicro.2016.131,
PMID: 27665717

Harkness RE, Braun V. 1989. Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier
recycling. The Journal of Biological Chemistry 264:6177–6182. PMID: 2649496

Hayes CS, Koskiniemi S, Ruhe ZC, Poole SJ, Low DA. 2014. Mechanisms and biological roles of contact-
dependent growth inhibition systems. Cold Spring Harbor Perspectives in Medicine 4:a010025. doi: 10.1101/
cshperspect.a010025, PMID: 24492845

Holberger LE, Garza-Sánchez F, Lamoureux J, Low DA, Hayes CS. 2012. A novel family of toxin/antitoxin
proteins in Bacillus species. FEBS Letters 586:132–136. doi: 10.1016/j.febslet.2011.12.020, PMID: 22200572
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