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Abstract Evolution can favor organisms that are more adaptable, provided that genetic

variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross

between diverged yeast strains. We measure the adaptability of each offspring genotype, defined

as its average rate of adaptation in a specific environmental condition, and analyze the heritability,

predictability, and genetic basis of this trait. We find that initial genotype strongly affects

adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the

pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation

in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of

declining adaptability with increasing initial fitness, but several individual QTLs also have a

significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are

complex traits, with extensive heritable differences arising from naturally occurring variation.

DOI: https://doi.org/10.7554/eLife.27167.001

Introduction
All organisms can evolve in the face of environmental perturbations. Yet even closely-related individ-

uals may differ in how quickly and effectively they adapt (Kirschner and Gerhart, 1998; Masel and

Trotter, 2010; Lauring et al., 2013). Genetic modifiers that create these differences in evolvability

are subject to natural selection, and the potential consequences of secondary selection on evolvabil-

ity has been the subject of extensive theoretical work (van Nimwegen et al., 1999; Wilke et al.,

2001; Masel and Bergman, 2003; Ciliberti et al., 2007; Cowperthwaite et al., 2008;

Draghi et al., 2010; Soyer and Pfeiffer, 2010). Only recently, however, have experiments begun to

identify these genetic modifiers and characterize their effects (Montville et al., 2005; Jarosz and

Lindquist, 2010; Woods et al., 2011; McDonald et al., 2012; Stern et al., 2014; McDonald et al.,

2016; Xiao et al., 2016).

Modifiers of evolvability act by changing parameters of the evolutionary process. For example,

mutator or antimutator alleles often spread through adapting laboratory populations

(Sniegowski et al., 1997; McDonald et al., 2012; Wielgoss et al., 2013). Other empirical work has

shown that alleles that modify recombination rates can speed the rate of adaptation or help purge

deleterious load (Zeyl and Bell, 1997; Colegrave, 2002; Goddard et al., 2005; Cooper, 2007;

Becks and Agrawal, 2012; Gray and Goddard, 2012; McDonald et al., 2016; Xiao et al., 2016).

Mutations can also affect evolvability in more subtle ways, through epistatic interactions that shape

the future directions that evolution can take. These epistatic effects create historical contingency:

Jerison et al. eLife 2017;6:e27167. DOI: https://doi.org/10.7554/eLife.27167 1 of 27

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.27167.001
https://doi.org/10.7554/eLife.27167
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


the presence of an initial mutation changes the fitness effects of other potential mutations, opening

up or closing off future adaptive trajectories (Blount et al., 2008; Woods et al., 2011;

Salverda et al., 2011; Blount et al., 2012).

The identification and characterization of epistasis among specific sets of mutations has been a

subject of intensive recent research. For example, several groups have analyzed combinations of

mutations within the same protein that fixed during evolution (Weinreich et al., 2006;

Bridgham et al., 2009; Gong et al., 2013; Weinreich et al., 2013; Palmer et al., 2015), or combi-

nations of multiple mutations in a region of a protein (Hietpas et al., 2011; Araya et al., 2012;

Jacquier et al., 2013; Harms and Thornton, 2014). These studies often find interesting intra-protein

patterns of epistasis, including sign epistasis (a mutation shifts from beneficial to deleterious or vice

versa depending on the background genotype) or higher-order epistasis (the combined effect of a

set of mutations is not fully explained by the effects of any subset of these mutations). Other studies

have measured pairwise epistasis among large collections of genome-wide mutations (e.g. all single

gene knockouts) (Jasnos and Korona, 2007; van Opijnen et al., 2009; Costanzo et al., 2010;

Szappanos et al., 2011; Babu et al., 2014; Costanzo et al., 2016). Still others have analyzed epista-

sis among all combinations of a few mutations that accumulated along the line of descent in a micro-

bial evolution experiment (Chou et al., 2011; Khan et al., 2011; Wünsche et al., 2017), measured

the fitness effects of individual mutations in divergent genetic backgrounds (Wang et al., 2016), or

identified examples where a single mutation opens up an opportunity to colonize a new metabolic

niche (Blount et al., 2008; Blount et al., 2012; Quandt et al., 2014; Quandt et al., 2015).

This body of work has extensively analyzed genetic interactions between individual mutations, a

phenomenon we call microscopic epistasis (Good and Desai, 2015). These interactions can lead to

historical contingency in the order and identities of mutations that spread in an adapting population

(Weinreich et al., 2005). However, to affect evolvability a mutation must change the entire distribu-

tion of fitness effects of future mutations. That is, it must lead to a region of the fitness landscape

which has statistically different properties, a phenomenon we refer to as macroscopic epistasis

(Good and Desai, 2015).

Microscopic and macroscopic epistasis are distinct but not mutually exclusive properties of the fit-

ness landscape. For example, a particular pattern of microscopic epistasis between individual muta-

tions might (or might not) change the overall shape of the distribution of fitness effects, and

therefore may (or may not) lead to macroscopic epistasis. Conversely, macroscopic epistasis can

reflect microscopic epistasis among specific loci, but could also arise in the absence of microscopic

epistasis if the pool of adaptive mutations is small and acquiring any individual mutation depletes

future opportunities for further adaptation.

Although it is clear that microscopic epistasis is widespread, much less is known about patterns of

macroscopic epistasis. Thus it is unclear how often and which mutations lead to differences in evolv-

ability. Several recent studies have addressed this question by analyzing variation in the rate of adap-

tation among closely related microbial strains (Couce and Tenaillon, 2015). These studies have

found that a few initial mutations can affect how quickly a strain adapts in the future (Barrick et al.,

2010; Perfeito et al., 2014; Kryazhimskiy et al., 2014; Szamecz et al., 2014). Much of this varia-

tion in adaptability can be explained by the fitness of the founder, with fitter founders adapting

more slowly (i.e. the rule of declining adaptability).

This work suggests that the rate at which a strain adapts is a heritable trait, influenced not just by

stochastic evolutionary factors, such as the random occurrence and fixation of mutations, but also by

genotype. However, little is known about variation in evolvability across larger genetic distances. In

other words, how different is the evolutionary process starting from very different points in genotype

space? Does a systematic pattern of declining adaptability with increasing fitness still apply among

more distantly related strains? Or are differences in evolvability caused primarily by specific interac-

tions between any of the initial genetic differences and the pool of potential future mutations? Addi-

tionally, previous studies have analyzed evolution in a single environmental condition, and thus could

not test how initial genotype might affect the pleiotropic consequences of evolution (i.e. how adap-

tation in one environment affects fitness in other conditions). Note that here we use the term ‘pleiot-

ropy’ in a sense that is common in experimental evolution but not in the genetics literature: it

reflects how mutations that affect one trait (fitness in one environment) also influence other traits (fit-

ness in different environments).
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In this study, we address these gaps by measuring genetic variation in adaptability among 230

haploid S. cerevisiae genotypes (‘founders’) derived from a cross between two substantially diverged

parental strains (Bloom et al., 2013). The parental strains (a laboratory strain, BY, and a wine strain,

RM) differ at ~50,000 loci. Thus our 230 founders differ by on average ~25,000 mutations that are to

some degree representative of natural variation in yeast. We evolve four replicate lines descended

from each founder for 500 generations in each of two different laboratory environments. As in earlier

studies, we can then measure variation in evolutionary outcomes that can be attributed to founder

identity, above and beyond inherent evolutionary stochasticity. However, because our founders are

chosen from a panel of strains designed for mapping the genetic basis of phenotypes of interest —

each founder contains a random subset of the genetic variation between RM and BY strains — we

can also use standard methods from quantitative genetics to identify specific loci that affect

adaptation.

We focus on quantifying two specific aspects of evolvability: the rate of adaptation of each

founder in each environment, and the pleiotropic consequences of adaptation in one environment

for fitness in the other. We also address the influence of founder genotype on the genetic basis of

future adaptation. Our results demonstrate that variation in both adaptability and pleiotropy is wide-

spread. Despite the fact that our founder genotypes span evolutionary distances that are several

orders of magnitude larger than tested in earlier work, the variation in their rates of adaptation still

follows an overall rule of declining adaptability. The variation in pleiotropic consequences of adapta-

tion between founders is also partly governed by founder fitness. Above and beyond these effects

of founder fitness, we also identified several specific quantitative trait loci (QTLs) that affect adapt-

ability and pleiotropy, including one which has a large influence on the genetic basis of future evolu-

tion. Thus both macroscopic and microscopic epistasis are important in our system, and lead to

systematic variation in the rate, genetic basis, and pleiotropic consequences of adaptation.

Results
To measure genetic variation in adaptability in budding yeast, we selected 230 segregants (‘found-

ers’) from a cross between a wine strain, RM, and a laboratory strain, BY (Materials and methods).

The parental strains RM and BY differ by about 0.5% at the sequence level, so each founder differs

from its siblings at about 25,000 loci across the genome. We chose to analyze evolvability in two

environments: rich media at an optimal temperature of 30˚C (the OT environment), and synthetic

media at a high temperature of 37˚C (the HT environment). We measured the initial fitness of each

founder in each environment and found that the genetic differences between founders lead to sub-

stantial variation in starting fitness in both environments (Figure 1). This variation is strongly corre-

lated, implying that at least on average, alleles that are more beneficial in our OT environment also

tend to be more beneficial in our HT environment.

We established eight replicate lines from each founder (a total of 1840 populations), and evolved

half of these replicate populations in our OT environment and half in our HT environment. After 500

generations of evolution, we measured the fitness of each descendant population in both environ-

ments (Figure 1). The difference between the initial fitness of the founder, X, and the fitness of a

descendant population, X0, is a measure of the rate at which that population adapted.

The measured rate of adaptation includes contributions from experimental error (inaccuracies in

our fitness measurements lead to apparent differences in the rate of adaptation), from evolutionary

stochasticity (some populations are more lucky than others in accumulating beneficial mutations),

and from the inherent adaptability of the founder (some founders may tend to adapt faster than

others). We are primarily interested in understanding the third component: the effect of founder

genotype on adaptability. To disentangle this from evolutionary stochasticity, we can compare the

variation in the rate of adaptation between lines descended from the same founder with the varia-

tion between lines descended from different founders. Similarly, to disentangle the effects of mea-

surement error, we can compare the variation between lines descended from the same founder with

the variation between replicate fitness measurements of the same populations. We could in principle

compare these different sources of variation using an analysis of variance (ANOVA) framework, fol-

lowing the approach we used in previous work (Kryazhimskiy et al., 2014). Here, we instead

describe this analysis in the language of quantitative genetics. While some of the underlying
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methods are equivalent, this quantitative genetics framework provides a useful perspective, and

makes it possible to address additional questions about the genetic basis of variation in adaptability.

We begin by calculating the broad and narrow sense heritability of founder fitness and adaptabil-

ity. Here the broad-sense heritability of a phenotype, H2, is the fraction of the variance in that phe-

notype that can be explained by genotype. The narrow-sense heritability, h2, is the fraction of the

total variance in the phenotype which can be explained by an additive model of the individual loci.

We calculate both broad and narrow-sense heritability using standard methods (Yang et al., 2010;

Zuk et al., 2012; Visscher et al., 2006), which exploit the fact that in an additive model the covari-

ance between founder phenotypes is a linear function of their relatedness (Materials and methods).

Since our populations are all haploid, the gap between broad-sense and narrow-sense heritability

arises primarily from epistatic interactions between loci and any experimental error in our estimation

of these quantities, although it may also carry contributions from untagged rare variants, mitochon-

drial copy number variation, and any uncontrolled G� E effects (Bloom et al., 2015).
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Figure 1. Experimental design and fitness gains in evolved populations. (A) Schematic of the experimental design. (B) Fitness of all 230 founders at

both OT and HT. (C) Fitness of all evolved lines in both OT and HT environments, after 500 generations of adaptation in one of the environments. Each

point represents the fitness of one population; vertical lines connect populations descended from the same founder. Founders are ordered by the

fraction of their genome derived from the RM parent.
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We first consider the heritability of the founder fitness. We find that this has a broad-sense herita-

bility near 100% (Figure 2, Table 1), indicating that measurement errors are small compared to gen-

uine differences in fitness between founders. Consistent with previous work (Bloom et al., 2013), we

find a substantial gap between h2 and H2 (Figure 2, Table 1), indicating the importance of epistasis

in determining founder fitness.

We next consider the heritability of adaptability. The broad-sense heritability of adaptability, H2

DX ,

is the fraction of variance in DX ¼ X0 � X that can be attributed to founder genotype, rather than to

inherent evolutionary stochasticity or to measurement errors. In contrast to founder fitness, which

we expect to be a property of the genotype, there is no reason that the rate of adaptation must be

heritable. However, multiple previous studies have found that genotype does affect the rate of

adaptation in microbial populations (Burch and Chao, 2000; Barrick et al., 2010; Woods et al.,

2011; Perfeito et al., 2014; Kryazhimskiy et al., 2014). Consistent with this earlier work, we find

that adaptability is heritable, with H2

DX » 0:61 in the OT environment and 0:65 in the HT environment

(Figure 2, Table 1). The fact that the values of H2

DX are lower than those of H2

X is expected because,

in addition to measurement errors, our measure of adaptability is affected by the inherent random-

ness of the evolutionary process.

As before, we fit a linear model to estimate the narrow-sense heritability of adaptability h2
DX . We

find h2
DX ¼ 0:46 in the OT environment and h2

DX ¼ 0:44 at HT (Figure 2, Table 1). The difference

between H2

DX and h2
DX indicates that about two thirds of the heritable variation in adaptability can be

explained by an additive model of the underlying genotype, showing that epistasis is important to

this trait (Figure 2).

Predicting adaptability from genotype and founder fitness
We next sought to map the genetic basis of the observed variation in founder fitness and adaptabil-

ity. To do so, we applied a standard iterative procedure to identify QTLs that affect each of these

traits in each environment (see Materials and methods). We identified 6 QTLs that affect founder fit-

ness at OT, and 3 QTLs that affect founder fitness at HT. Consistent with the strong correlation

between these two phenotypes, 2/3 of the HT QTLs also appear as OT QTLs (Supplementary file
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Figure 2. Heritability of fitness and adaptability. Tan bars denote broad-sense and narrow sense heritability of (A) founder fitness and (B) fitness gain

after evolution in the indicated environment (i.e. adaptability). White bars denote the heritability explained by a linear model based on the QTLs

identified as affecting initial fitness or adaptability (Materials and methods). Green bars indicate the heritability of adaptability explained by initial

fitness in that condition. Error bars indicate 95% confidence intervals.

DOI: https://doi.org/10.7554/eLife.27167.003
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5). In both cases, these QTLs explain 76% of the trait variance. We also found 4 QTLs that signifi-

cantly affect adaptability, DX, at OT and 2 QTLs that affect adaptability at HT. Note that these 2 loci

are a subset of the OT adaptability loci (Supplementary file 5). Together these adaptability QTLs

explain 30% of the total variance in this trait in the OT environment, and 31% in the HT environment,

also consistent with our estimates of narrow-sense heritability (Figure 2 and Figure 3 and Table 1).

Due to the limited size of our study we may be missing some QTLs that affect fitness or adaptability.

However, the fact that the variance in these traits explained by detected QTLs is similar to our esti-

mates of narrow-sense heritability (Figure 2, Table 1) indicates that any missing QTLs are unlikely to

have large additive effects on the traits.

Interestingly, three of the four adaptability loci were also independently identified as QTLs for

founder fitness (Supplementary file 5), suggesting that loci that affect founder fitness also affect

adaptability. This is consistent with the conclusions of several recent studies, which show that much

of the variation in adaptability between closely related microbial strains can be explained by differ-

ences in their initial fitness, according to the rule of declining adaptability (Perfeito et al., 2014;

Kryazhimskiy et al., 2014; Couce and Tenaillon, 2015). Motivated by these results, we asked

whether a similar effect holds in our system as well, even though our founders are several orders of

magnitude more diverged than strains analyzed in earlier studies. We found that indeed founder fit-

ness explains much of the variation in adaptability, and follows the rule of declining adaptability (Fig-

ure 3). Specifically, a model where adaptability declines linearly with founder fitness explains 42% of

the total variance in adaptability in the OT environment, and 52% of the adaptability at HT, or about

68% and 80% of the heritable variance, respectively (Figure 2). This represents more of the variance

explained than the linear QTL models described above, despite the fact that the QTL models have

more free parameters. Interestingly, the variance explained by founder fitness is comparable to the

narrow-sense heritability, suggesting that founder fitness may be as good of a predictor of adapt-

ability as any linear genetic model.

Since founder fitness explains more variation in adaptability than additive QTL models, and since

three of the identified QTLs affect both fitness and adaptability, it is natural to ask whether there are

any genetic loci that explain some of the variation in adaptability above and beyond that explained

by fitness. Indeed, about 30% and 20% of heritable variation in adaptability remain unexplained by

founder fitness in the OT and in the HT environment, respectively (Figure 2, Table 1). Can we then

identify QTLs that explain any of this residual variation?

Table 1. Heritability of fitness, adaptability, and pleiotropy, along with the fraction of variance explained by QTL, fitness, and

combined models.

Row 5 represents the median added variance explained by the fitness model over the QTL model under a jacknife over segregants

(Materials and methods); Row 7 similarly represents the added variance explained by the combined model over the fitness model.

Paired numbers in parentheses denote 95% confidence intervals; single numbers in parentheses denote lower bounds (5th percentile)

on added variances.

Fitness
at OT

Fitness
at HT

Adaptability
at OT

Adaptability
at HT

Pleiotropy
HT pops at OT

Pleiotropy
OT pops at HT

H
2 0.995

(0.992, 0.997)
0.992

(0.988, 0.994)
0.613

(0.541, 0.672)
0.654

(0.586, 0.716)
0.622

(0.552, 0.680)
0.291

(0.193, 0.394)

h2 0.837
(0.639, 0.964)

0.805
(0.555, 0.936)

0.460
(0.280, 0.582)

0.440
(0.173, 0.595)

0.477
(0.308, 0.636)

0.091
(0, 0.228)

r2, QTL models 0.760
(0.712, 0.820)

0.761
(0.707, 0.823)

0.303
(0.232, 0.388)

0.318
(0.242, 0.340)

NA NA

r2, founder fitness NA NA 0.417
(0.352, 0.478)

0.522
(0.451, 0.585)

0.425
(0.361, 0.492)

0.127
(0.082, 0.182)

Added variance
fitness vs. QTLs

NA NA 0.105
(0.047)

0.199
(0.143)

NA NA

r2, combined models NA NA 0.501
(0.442, 0.561)

0.577
(0.510, 0.641)

0.467
(0.411, 0.534)

0.171
(0.126, 0.235)

Added variance
combined vs. fitness

NA NA 0.087
(0.060)

0.057
(0.035)

0.047
(0.021)

0.044
(0.022)

DOI: https://doi.org/10.7554/eLife.27167.004
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To address this question, we first asked whether any of the previously identified QTLs (either for

founder fitness or for adaptability) can help explain variation in adaptability once we have taken fit-

ness into account by including it as a covariate in the QTL models (Materials and methods). We

found that indeed several of these QTLs had a modest effect on adaptability above and beyond fit-

ness (Supplementary file 5). The QTL with the largest effect was centered at position 376,315 on

chromosome XIV, and we refer to it as the ‘KRE33 locus.’ This QTL explains 2% percent of residual

residual variation in adaptability in the HT environment, and 0.4% percent in the OT environment

(Figure 3). We previously identified this locus as having the largest effect on founder fitness: segre-

gants with the BY allele at this locus are on average 9% more fit at OT and 19% more fit at HT com-

pared to segregants with the RM allele. After adding pairwise interaction terms between the KRE33

locus and other detected QTLs, the combined model explains 82% of the heritable variation in

adaptability in the HT environment and 88% in the OT environment (Table 1). Thus most of the heri-

table variation in adaptability in our system can be explained by founder fitness, with some addi-

tional contributions from genotype at a few adaptability QTL loci. Nonetheless, there remains some

residual variation due to further unidentified genotype effects.

To check for strong effect adaptability QTLs not previously identified, we repeated the QTL dis-

covery procedure described above, taking the trait to be the residual variation in adaptability about

the regression line in Figure 3. We recovered a subset of the already-identified adaptability QTLs,

without identifying any further loci.

A B C

D E F

Figure 3. Models to predict adaptability. Each point represents the average fitness change of four populations descended from the same founder

after 500 generations of evolution in the (A–C) OT environment or (D–F) HT environment. Error bars denote �1 s.e.m. Lines show the predictions of

different models; r2 indicates the fraction of the variance explained, which is similar to the fraction of the broad-sense heritability explained by the

model. (A,D) Linear QTL model, where the x-axis is the linear combination of identified QTLs that best predicts the fitness gains in each environment.

(B,E) Model where founder fitness is used as predictor for fitness gain. (C,F) Combined model, where the x-axis is the linear combination of initial fitness

and the identified QTLs that best predicts the fitness gains in each environment. Dark and light shades represent BY and RM alleles at the KRE33 locus

respectively. For model parameters, see Figure 3—source data 1.

DOI: https://doi.org/10.7554/eLife.27167.005

The following source data is available for figure 3:

Source data 1. Parameters for combined fitness and QTL models for adaptability.

DOI: https://doi.org/10.7554/eLife.27167.006
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Adaptability depends on initial fitness in the ‘home’ environment
We have seen that the rule of declining adaptability applies in both of our evolution conditions.

However, because the initial fitnesses of our founders in the two environments are correlated (Fig-

ure 1), it is possible that the two patterns of decline in adaptability are not independent. Instead,

they both could be driven by some factor common to both environments, but not by the initial fit-

nesses in those environments. If this were the case, then we would expect that the rate of adaptation

of all the strains would be controlled by this factor, and we would not expect a strain with particu-

larly disparate fitnesses in the two environments (i.e. lying away from the trend in Figure 1B) to

adapt faster in the environment where its fitness was lower. Alternatively, the rule of declining adapt-

ability could apply independently in each environment. In this case, we would expect that a strain

with low initial fitness at OT and high initial fitness at HT would adapt rapidly at HT and slowly at OT

(and vice versa).

To address this question, we first classify each founder according to how disparate its initial fit-

ness is in HT versus OT (Figure 4A). Note that this is the same data as in Figure 1B after an appro-

priate normalization (see Materials and methods), with color representing distance from the

diagonal. In Figure 4B, we show the average fitness gains of descendants of each of these founders

after evolution in each environment. Consistent with a rule of declining adaptability that holds inde-

pendently in each environment, we find that founders with particularly high initial fitness in HT

(green) tend to adapt particularly slowly in HT but not in OT, and vice versa for founders with partic-

ularly high initial fitness in OT (purple). In Figure 4C, we quantify this trend by plotting the difference

in the normalized fitness gains in the two environments as a function of the difference in initial fit-

nesses in the two environments (see Materials and methods for details). If a common factor drove

the patterns of declining adaptability in both environments, then the difference in a founder’s initial

fitnesses should be uncorrelated with the difference in its adaptabilities in the two environments. In

contrast, we see a negative correlation (r2 ¼ 0:28; p<10�4), again consistent with a rule of declining

A B C

Figure 4. Initial founder fitness and adaptability in both environments. (A) Normalized fitness of founders at OT and HT (Materials and methods). Each

point is colored according to its deviation from the overall correlation in initial fitnesses. Error bars are omitted for clarity. (B) Normalized fitness

increments for all founders (Materials and methods). Colors are the same as in (A); note that points above the diagonal in (A) tend to be found below

the diagonal in (B), and vice versa. (C) Difference in fitness increments after adaptation in each environment as a function of the difference in normalized

initial founder fitness in HT versus OT. Error bars denote �1 s.e.m.

DOI: https://doi.org/10.7554/eLife.27167.007

The following figure supplement is available for figure 4:

Figure supplement 1. The effect of fitness in the home environment on adaptability, controlling for the effect of the KRE33 allele.

DOI: https://doi.org/10.7554/eLife.27167.008
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adaptability holding independently in both environments. Thus initial fitness in the home environ-

ment is a predictor of its adaptability in that environment, above and beyond a possible common

factor that might be driving adaptability in both conditions. We note that these results also hold

after controlling for the KRE33 allele (Materials and methods, Figure 4—figure supplement 1).

The genetic basis of adaptation
Our observations of heritable variation in adaptability indicate that macroscopic epistasis is wide-

spread in our system, and can be largely explained by a model involving founder fitness and a small

number of QTLs. However, it is not clear whether this is accompanied by microscopic epistasis

between alleles in the founders and potential future mutations. In other words, do different founders

accumulate different sets of beneficial mutations as they adapt? And if so, can we identify QTLs or

other factors (e.g. founder fitness) that modify the spectrum of mutations that accumulate during

adaptation?

To address this question, we sequenced 273 whole-population samples from the final timepoint

of all independently evolved populations descended from each of 35 founders (Supplementary file

3). We discarded nineteen populations for technical reasons before calling mutations (see Materials

and methods), leaving us with a total of 254 sequenced lines (mean 23x depth). We identified SNPs

and small indels in this mixed-population sequence data (Materials and methods). We focus here

only on mutations that were fixed or estimated to be at high frequency (above 50%) within the popu-

lation at this final timepoint. We identified a total of 603 mutations (on average 1.3 per OT popula-

tion and 3.6 per HT population) meeting these criteria. Of these, 449 are nonsynonymous mutations

or indels in genes (293 from HT populations, 156 from OT populations).

More fit founders can adapt more slowly because they have access to fewer beneficial mutations,

or to beneficial mutations of weaker effect, or both. In any of these cases, we expect that mutations

accumulate more slowly over time in populations descended from fitter founders. Consistent with

this expectation, we found that the number of mutations identified in a population declines weakly

but significantly with the initial founder fitness (Figure 5).

A B

Figure 5. Number of fixed nonsynonymous mutations. Each point represents the number of fixed nonsynonymous mutations in a population evolved

at (A) OT or (B) HT. Populations descended from the same founder are connected by vertical lines for visual convenience, with founders ordered

according to their fitness in the corresponding environment. Dark and light shades represent BY and RM alleles at the KRE33 locus respectively.

DOI: https://doi.org/10.7554/eLife.27167.009
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Beyond variation in the number of mutations, did founder genotype affect the spectrum of muta-

tions available to future adaptation? To address this question we focused on genes that were

mutated in multiple populations (genes mutated in a single population are uninformative for this pur-

pose). We found 27 genes in which missense or putative loss of function mutations were called in

two or more independent populations (Figure 6); these ‘multi-hit’ genes are expected to be

enriched for targets of selection.

The gene with the second-largest number of identified de novo mutations was KRE33: 31 inde-

pendent sequenced populations acquired a mutation in this gene (a total of 12% of our 254

sequenced lines; Figure 6). All 31 of these populations are descended from founders that had the

less-fit RM allele at the QTL containing the KRE33 gene (i.e. the same QTL that we identified above

as affecting adaptability; Figure 6). This observation suggests that genetic variation in the KRE33

gene itself might have caused the observed variation in adaptability. Since the Kre33 protein is a

member of the 90 s preribosomal pathway, we reasoned that the deleterious effect of the RM allele

could potentially be compensated not only by mutations in KRE33 itself, but also by mutations in

genes that code for other members of the ribosome biogenesis pathway. Consistent with this

hypothesis, we found 108 putatively functional mutations in our sequenced lines in 10 genes (includ-

ing KRE33) that were categorized as belonging to this pathway, all of which arose in descendants of

founders that carry the RM allele at the KRE33 locus (Figure 6). Thus, compensation for the deleteri-

ous effect of the RM allele in the KRE33 gene is likely one of the strongest targets of selection in our

Figure 6. Distribution of mutations in multi-hit genes across evolved populations. The number of sequenced populations with a de novo mutation in

each multi-hit gene, for each environment and founder KRE33 identity. Genes are organized by functional groups. For mutual information metrics, see

Figure 6—source data 1.

DOI: https://doi.org/10.7554/eLife.27167.010

The following source data is available for figure 6:

Source data 1. Mutual information between de novo mutations and the KRE33 allele, the evolution environment, and the genotype.

DOI: https://doi.org/10.7554/eLife.27167.011
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experiment, and it likely contributes to the increased adaptability of the founders which carry the

RM version of KRE33.

Of the remaining 101 mutations in multi-hit genes, 14 out of 15 mutations in GPB1, GPB2 and

PDE2 — genes involved in cAMP regulation — occurred exclusively in populations descended from

founders that carry the more-fit BY allele at the KRE33 locus. This suggests a potential genetic inter-

action between KRE33 and this pathway, such that mutations in GPB1, GPB2, and PDE2 are more

beneficial in the BY KRE33 background. However, it is also possible that these mutations are always

beneficial, but are less likely to fix in the KRE33-RM background where they can be lost to clonal

interference with more strongly beneficial mutations (e.g. those in the ribosome biogenesis

pathway).

The effect of the KRE33 allele on the genetic basis of future adaptation suggests that other loci

that contribute to fitness or adaptability differences between RM and BY strains might also be tar-

gets for adaptive de novo mutations. To test this hypothesis, we asked whether multi-hit genes are

preferentially found within the 8 QTLs that we identified as influencing founder fitness or adaptabil-

ity. We found two additional examples of multi-hit genes that lie within the confidence interval for

one of these 8 QTLs: IRA2 and BFR2 (Supplementary file 5). These 2 genes, along with KRE33, rep-

resent an enrichment over the expected number of genes in common between the set of multi-hit

genes and those within QTL confidence intervals (Materials and methods). Additionally, RAS2, an

essential gene which acts as a master regulator in the cAMP pathway that includes 5 multi-hit genes

(including IRA2 Figure 6), is found within one of the QTLs affecting fitness. These results suggest

that some loci that underlie variation in fitness among founders are also targets of selection during

subsequent evolution. They also suggest that the cAMP pathway, which has been implicated as a

target of adaptive de novo mutations in several other experimental evolution studies

(Venkataram et al., 2016; Kvitek and Sherlock, 2013; Lang et al., 2013), may also explain some of

the fitness differences caused by natural genetic variation in this cross, at least in the specific experi-

mental conditions we analyze here.

With the exception of the cases noted above, which all involve QTLs previously identified as

affecting fitness or adaptability, we lack power to identify individual loci in the founder genotype

that affect the genetic basis of future adaptation. That is, we cannot find specific QTLs that affect

whether mutations in any of the 27 multi-hit genes will be observed in the descendants of a given

founder. However, we can still ask whether the mutations that occur during adaptation show a non-

random association with the founder genotype. We can also ask whether the mutations that occur

during adaptation depend on the environment in which evolution was conducted. To do so, we cal-

culated the mutual information IðG;E;MÞ provided by the founder genotype G and evolution envi-

ronment E about the set of mutations M that accumulate during adaptation (see Materials and

methods for details; note in particular that we control for the identity of the KRE33 allele throughout

this analysis). Intuitively, the mutual information IðG;E;MÞ measures the amount of information (in

bits) that we gain about M by knowing G and E. Higher values of I indicate that G and E more

strongly predict M.

We used IðG;E;MÞ as a test statistic to determine whether there were nonrandom associations

between founder genotype, evolution environment, and the mutations that underlie adaptation.

Controlling for the number of mutations acquired by each population, we detected a significant

association between the evolution condition and the mutations that accumulate during adaptation.

For example, we found putatively functional mutations in SIR3 and SIR4 in 34 different populations,

30 of which evolved at HT. However, the overall magnitude of this effect of E on M is small, on the

order of 0.1 bits. In addition to this effect of environment, we also find that the genotype G affects

M. Specifically, controlling for the number of mutations, the KRE33 allele, and the evolution environ-

ment, there is a small additional effect of founder on the identities of de novo mutations. This sug-

gests that while founders with the same allele at the KRE33 locus draw many common adaptive

mutations from the same pool, there are additional founder-specific epistatic interactions.

The pleiotropic consequences of adaptation
Adaptation to one environment can lead to concomitant fitness gains or losses in other environ-

ments, an effect we refer to as pleiotropy for fitness. To characterize these pleiotropic effects in our

system, we analyzed how evolution in our OT environment affects fitness in the HT environment, and
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vice versa. We can describe the founder fitnesses in both environments as ~W ¼ ðX; YÞ, where X is the

initial fitness at OT and Y is the initial fitness at HT. As noted above, the founder fitnesses in the two

environments were strongly correlated, especially within each of the two KRE33 allele groups

(Figure 7A), suggesting that the alleles that distinguish RM and BY have correlated effects in our

environments.

We next calculated the fitness gains for populations adapted to each environment. After evolu-

tion in a given environment, a founder with fitness ~W ¼ ðX; YÞ will have adapted, yielding a descen-

dant line with fitness ~W 0 ¼ ðX0; Y 0Þ. We denote the fitness increments of this population as

D

~W � ðDX;DYÞ ¼ ðX0 � X; Y 0 � YÞ; this vector represents the increase or decrease in fitness of the

descendant population in both environments, after evolution in one of the two environments. For

clarity, we will use the notation DOT to refer to the fitness increments of descendant populations after

evolution in the OT environment, and DHT to refer to the fitness increments after evolution in the HT

environment. We refer to the environment in which a given population evolves as its ‘home’
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Figure 7. Pleiotropic consequences of adaptation. (A) The fitness of each founder in the OT environment (X) and HT environment (Y ). Error bars

represent �1 s.e.m. over technical replicates. Dark and light points represent strains carrying the BY and RM alleles at the KRE33 locus respectively. (B,

C) Average fitness of all populations descended from each founder. Error bars represent �1 s.e.m. over replicate populations. Orange and blue colors

represent strains evolved at HT and OT, respectively; dark and light shades represent BY and RM alleles at the KRE33 locus respectively. (D) Average

fitness increment of all populations descended from each founder; error bars omitted for clarity. Arrows point to the centroids of the respective point

clouds.

DOI: https://doi.org/10.7554/eLife.27167.012
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environment, and the other environment as its ‘away’ environment. Thus DOTX and DHTY are fitness

increments in the home environments, and DOTY and DHTX are fitness increments in the away

environments.

We find that, on average, populations adapting to either of our two environments also gained fit-

ness in the other environment (Table 2), consistent with our observation that the sets of multi-hit

genes in the two environments were highly overlapping. Thus as populations adapt, their fitnesses at

OT and HT remain positively correlated (Figure 7B,C). Despite this overall pattern of correlated

adaptation, we find that the average fitness gain at HT was significantly higher after evolution at HT

than after evolution at OT (Table 2), as we might expect. However, the converse was not true: popu-

lations increased in fitness at OT by about the same amount after evolving at HT as they did after

evolving at OT. Because populations evolved at HT and those evolved at OT made almost identical

fitness gains at OT, but different gains at HT, evolution in these two conditions must involve different

sets of adaptive mutations, despite the overlap in the targets of selection between the two environ-

ments. This is consistent with our mutual information analysis above.

Predicting pleiotropic effects from genotype and founder fitness
We next used the framework of quantitative genetics to analyze the effects of founder genotype on

pleiotropy. We find that the pleiotropic consequences of adaptation to our HT environment are

highly heritable, with broad-sense heritability H2 of the fitness increases in the away environment,

DHTX » 0:62. This is similar to the heritability of adaptability we found above. In contrast, the pleiotro-

pic consequences of adaptation to our OT environment are much less heritable, with broad-sense

heritability of DOTY » 0:29, indicating that in this case stochastic evolutionary forces are more impor-

tant to the outcome than genotype.

As with the adaptability traits analyzed above, we find that the narrow-sense heritability of pleiot-

ropy is substantially lower than the broad-sense heritability (Figure 8). Specifically, we find h2 » 0:48

for DHTX and h2 » 0:09 for DOTY. Thus most of the heritable variation in this trait cannot be explained

using an additive QTL model of the underlying founder genotype.

We next sought to understand which factors best explain the heritable variation in pleiotropy.

Analogous to our analysis of adaptability, we consider the potential effects of specific QTL loci as

well as of founder fitness (now in both home and away environments). We begin by fitting a model

in which the fitness increments in the away environment decline linearly with the founder fitness in

both the home and the away environments. We find that founder fitness does explain much of the

heritable variation in pleiotropy (68% of the heritable variation in DHTX and 43% for DOTY). However,

we find that it is only the initial fitness in the away environment that is important: once founder fit-

ness in the away environment is included in the model, founder fitness in the home environment

adds no further explanatory power, while the converse is not true.

To assess the dependence of pleiotropic outcomes on specific parental alleles, we next looked

for QTLs that influence fitness increments in the away environment, over and above founder fitness

in that environment. Specifically, we asked whether any of the eight previously-identified QTLs could

help predict pleiotropic outcomes over and above founder fitness in the away condition. We find

that 6 of these loci, including KRE33, do have a significant effect on pleiotropic outcomes

(Supplementary file 5). Together with founder fitness in the away condition, they explain 75% and

58% of the heritable variation in pleiotropy at OT and HT, respectively (Figure 8). To check for

strong effect pleiotropy QTLs not previously identified, we also repeated the QTL discovery

Table 2. Average fitness increments of populations in home and away environments, in percent.

Numbers in parentheses denote 95% confidence intervals.

Kre33 -RM Kre33 -BY

Evolved at OT Evolved at HT Evolved at OT Evolved at HT

Fitness
at OT, %

8.33
(8.27, 8.38)

8.86
(8.81, 8.92)

5.01
(4.94, 5.07)

4.83
4.76, 4.90

Fitness
at HT, %

9.57
(9.42, 9.77)

20.33
(20.18, 20.53)

6.25
(6.12, 6.38)

11.51
(11.38, 11.64)

DOI: https://doi.org/10.7554/eLife.27167.013
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procedure described above, taking the trait to be the residual variation in fitness increments in the

away environment after regression against founder fitness in that environment. We recovered a sub-

set of the previously identified QTLs, without identifying any further loci.
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Figure 8. Heritability and predictability of pleiotropic fitness gains. (A) Heritability of the fitness gains in the HT environment after evolution at OT,

DOTY , and the variance explained by fitness and combined fitness/QTL models. The final (grey) bar indicates the median difference in variance

explained between the combined fitness/QTL model and the fitness model under jackknife resampling (Materials and methods). (B) Heritability of DHTX

and the variance explained by fitness and combined fitness/QTL models. The final (grey) bar is as in A. (C) Predicted and actual values of DOTY based

on initial fitness at HT and QTL loci (Supplementary file 5, column 9). Each point shows the mean over populations descended from the same founder.

Error bars denote �1 s.e.m. over technical replicates (x-axis) or over replicate evolved populations (y-axis). Dark and light points represent strains

carrying the BY and RM alleles at the KRE33 locus respectively. (D) Predicted and actual values of DHTX based on initial fitness at OT and QTL loci

(Supplementary file 5, column 10). For model parameters, see Figure 8—source data 1.

DOI: https://doi.org/10.7554/eLife.27167.014

The following source data is available for figure 8:

Source data 1. Parameters for combined fitness and QTL models for pleiotropy.

DOI: https://doi.org/10.7554/eLife.27167.015
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Discussion
In order for evolution to increase or decrease adaptability, there must be genetic variation in this

trait that natural selection can act on. Here, we analyzed the extent and genetic basis of variation in

adaptability among 230 segregants from a cross between two divergent yeast strains (Bloom et al.,

2013). By exploiting the structure of the cross, we mapped QTLs that explain observed differences

in adaptability. We then compared the predictive power of these additive genetic models with an

alternative model where adaptability depends on founder fitness.

Consistent with earlier work, we find that the rate of adaptation is a heritable trait: different

founders consistently adapt at different rates. This means that some of the ~50,000 alleles that dis-

tinguish BY from RM alter future adaptive trajectories. In principle, these effects could involve just a

few founder alleles whose effects on adaptability are independent of each other (e.g., if particular

alleles that distinguish RM and BY create opportunities for improvement of independent biological

processes). If this were the case, an additive model involving these variants would explain the

observed heritable variation in adaptability between founders. However, we find that the best addi-

tive QTL model explains at most about half of the observed heritable genetic variation in

adaptability.

Instead, we find that a model based on founder fitness explains more of the heritable variation in

adaptability, despite having fewer free parameters. This is broadly consistent with earlier work show-

ing that initial fitness explains variation in adaptability among founders that differ only by a few

mutations (Barrick et al., 2010; Perfeito et al., 2014; Kryazhimskiy et al., 2014; Wang et al.,

2016). However, over the larger genetic distances we study here, a substantial fraction of heritable

variation in adaptability is not explained by founder fitness. About half of the remaining variation can

be explained by including KRE33 and a small number of other loci as predictors in addition to

founder fitness, leaving about 20 percent of the heritable variation unexplained.

We next investigated the pleiotropic consequences of adaptation in one (‘home’) environment on

fitness in another (‘away’) environment. We found that in the two conditions we considered, adapta-

tion to the home environment leads on average to a fitness gain in the away environment. As with

adaptability, these fitness increments in the away environment were heritable. To some extent this is

expected: since founder genotype affects adaptability, we expect the founder genotype to affect

pleiotropy as well, simply because fitness gains in the home environment are correlated with fitness

gains in the away environment. Consistent with this, we find that founder fitness does explain much

of the heritable variation in pleiotropy. Surprisingly, however, only initial fitness in the away environ-

ment is important. These results are consistent with a simple model in which the fitness effects of

mutations in any environment are modulated by the fitness of the genetic background in that envi-

ronment, regardless of how these mutations were acquired. Thus the effects in environment B of

mutations accumulated through evolution in environment A are determined primarily by the fitness

of the genetic background in environment B.

We also found that the broad-sense heritability of fitness changes in the away environment is

asymmetric. For populations evolved at HT, fitness gains in the OT environment were highly herita-

ble, and predicted well by founder fitness in the OT (away) environment. This suggests that the HT

populations acquired a set of mutations whose effects at OT are predictable based on the fitness of

the genetic background in this condition. Conversely, the populations evolved at OT saw much

more variable gains at HT. This implies that the mutations accumulated at OT have effects at HT that

are less predictable from founder fitness or genotype.

In addition to founder fitness, we find that the KRE33 allele and a few other smaller-effect QTLs

significantly affect evolutionary outcomes. To some extent, these QTLs affect evolution through their

impact on founder fitness. However, five QTLs, including KRE33, affect adaptability and in some

cases pleiotropy above and beyond their effects on founder fitness. The founder allele at the KRE33

locus also strongly affects the spectrum of mutations that accumulate during adaptation: founders

that start with the less-fit RM allele at KRE33 accumulate mutations in KRE33 and in other genes

involved in the 90 s preribosomal pathway. These genes are all essential, so these mutations likely

involve gain or attenuation rather than loss of function. Surprisingly, despite this effect, KRE33 still

has only a modest impact on adaptability and pleiotropy above and beyond the founder fitness. For

example, populations descended from founders with the BY and RM alleles of KRE33 had similar
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patterns of fitness gains in the two environments, despite acquiring different sets of mutations

(Figure 7D). This suggests that the pleiotropic effects of these two classes of mutations are similar.

Together, these observations suggest the following simple phenomenological picture of adapta-

tion in this system. The average fitness of an adapting yeast population in its home environment is

statistically predictable based on the fitness of its founding genotype, as well as the allele at the

KRE33 locus and a few other loci, even for highly divergent strains. Mutations accumulated during

adaptation tend to lead to pleiotropic fitness gains in other, related, environments. Our ability to

predict these pleiotropic fitness gains depends on the environment: it is strong in one case but weak

in the other. This points to the possibility that fitness trade-offs between environments, and other

complicating factors, disrupt our ability to predict pleiotropic fitness gains.

We note that our experimental approach has several important limitations. First, we define adapt-

ability as the expected increase in fitness of a line descended from a given founder after 500 genera-

tions of evolution in one of two specific and artificial laboratory environments. The effects of founder

fitness and genotype on adaptability and pleiotropy might change over different timescales or in a

different set of environmental conditions. In particular, the heritability of pleiotropic effects of adap-

tation may be a consequence of the similarity of the environments we chose, and might be lower

across other conditions. Our results also depend on our choice of this specific yeast cross as our

source of founder genotypes. In addition, due to the relatively small number of segregants we are

able to analyze and the intrinsic noisiness of measurements of adaptability and pleiotropy, our power

to identify the genetic basis of these traits is limited. As a result, we have likely missed some QTLs

affecting adaptability and pleiotropy (though our estimates of narrow-sense heritability do suggest

that any potentially missing QTLs have minor additive effects on these traits). Further work across

other environments and with other strains and organisms will be needed to test the generality of our

conclusions. However, despite these important caveats, our results provide additional support to a

growing body of evidence that a rule of declining adaptability may be general feature of microbial

evolution.

Our results are consistent with earlier studies showing that microscopic epistasis is common

among mutations that accumulate along the line of descent in laboratory microbial evolution experi-

ments. However, it has been unclear whether this microscopic epistasis leads to macroscopic epista-

sis, in which related genotypes have different distributions of fitness effects of new mutations. In

principle, many patterns of microscopic epistasis could be consistent with the same pattern of mac-

roscopic epistasis, or with no macroscopic epistasis at all. In turn, many types of macroscopic epista-

sis could be consistent with the same pattern of variation in adaptability, since the expected rate of

adaptation depends in a complex way on the entire distribution of fitness effects of new mutations

and on population parameters. For example, it is possible to have extensive macroscopic epistasis

without any variation in adaptability.

One way to study differences in adaptability would be to take a bottom-up approach, measuring

patterns of microscopic epistasis and using these to characterize macroscopic epistasis and then

adaptability. We have instead taken the opposite approach, by directly measuring genetic variation

in adaptability. We have shown that even across large genetic distances, less-fit initial genotypes

adapt more rapidly than more-fit initial genotypes. Our results cannot explain what type of micro-

scopic epistasis, if any, underlies this pattern of declining adaptability. Previous work indicates that

some adaptive mutations exhibit negative (‘diminishing returns’) epistasis, which is implicated in driv-

ing the pattern of declining adaptability (Chou et al., 2011; Khan et al., 2011; Kryazhimskiy et al.,

2014; Wünsche et al., 2017), but we do not have direct evidence for or against this type of micro-

scopic epistasis in the present experiment. However, we do find at least one significant microscopic

epistatic interaction that affects adaptability at both fitness and genotype levels in our HT environ-

ment, which involves the allele at the KRE33 locus. This microscopic epistasis also exists in our OT

environment, as evidenced by its effect on the genetic basis of adaptation, and on the pleiotropic

consequences in the HT condition. Surprisingly, however, this microscopic epistasis has a very weak

effect on the rate of adaptation in the OT environment, above the effect we expect from lower

founder fitness. This is an example of a case where idiosyncratic microscopic epistasis does not lead

to differences in adaptability, either because the microscopic epistasis does not lead to macroscopic

epistasis, or because it leads to macroscopic epistasis which does not significantly affect

adaptability.
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Materials and methods

Founders of evolving populations
We selected the founders of our evolving populations from a panel of haploid segregants con-

structed by Bloom et al. (2013). Briefly, Bloom et al. mated strains derived from RM11-1a and

BY4716, sporulated the resulting diploids, and then isolated and sequenced 1000 haploid offspring

(Bloom et al., 2013). We used the first 230 MATa segregants from this cross as our founder strains

(Supplementary file 1).

Experimental evolution
We established eight populations from each founder. To avoid artifacts arising from shared standing

variation, we founded each population from an independent colony. We propagated each of the

resulting 1840 lines for 500 generations in batch culture in unshaken flat bottom polypropylene 96-

well plates. We maintained half of the lines (four descended from each founder) in 128 �L of rich lab-

oratory media, YPD (1% Bacto yeast extract (VWR #90000–722), 2% Bacto peptone (VWR #90000–

368), 2% dextrose (VWR #90000–904)) at 30˚C with daily 1 : 210 dilutions (the OT environment). We

maintained the other half of the lines in 128 �L of synthetic complete media (0.67% YNB with nitro-

gen (Sunrise Science #1501–250), 0.2% SC (Sunrise Science # 1300–030), 2% dextrose) at 37˚C with

daily 1 : 29 dilutions (the HT environment). All liquid handling was conducted using a BiomekFX robot

(Beckman Coulter). Prior to dilution, cultures were resuspended by shaking at 1200 rpm for 2 min on

a Titramax 100 plate shaker.

As previously described by Lang et al. (2011), this protocol results in approximately ten genera-

tions per day (for the OT environment) or nine generations per day (for the HT environment) at an

effective population size of Ne » 10
5. Every 7 days, aliquots from each population were mixed with

glycerol to 25% and kept at -80˚C for long-term storage. To check for cross-contamination, each

plate contained a unique pattern of blank wells. No cross contamination events were observed dur-

ing the evolution. However, some wells were lost due to pipetting artifacts. These wells were

excluded from all analysis, leaving a total of 910 evolved lines in the OT environment and 839 in the

HT environment.

Fitness assays
We conducted fitness assays as described previously (Kryazhimskiy et al., 2014). Briefly, we mea-

sured fitness by competing founding clones and evolved populations against a common reference

strain. To construct the reference, we selected a segregant with intermediate fitness from the initial

RMxBY cross (segregant LK3-B08; see Supplementary file 1 for the genotype). We integrated an

mCitrine-KanMX cassette at the ho locus of this segregant. The marker was obtained via a digest of

plasmid pEJ03-mCitrine-KanMX-HO (Supplementary file 4) with pMEI and transformed using stan-

dard yeast genetic techniques (Adams et al., 1998). Transformants were selected based on growth

on G418, and the Citrine + phenotype was confirmed via flow cytometry.

For each fitness assay, we first allowed both the evolved and reference strains to acclimatize in

the relevant environment for 24 hr. We then mixed these strains in approximately equal proportions

and propagated them for two days using the same protocol as for evolution. We used Fortessa and

LSRII flow cytometers (BD Biosciences) to count the ratio of evolved and reference strains 1 and 2

days (approximately 10 generations and 20 generations respectively, or 9 and 18 in the HT environ-

ment), counting approximately 30,000 cells in each measurement. We estimated the fitness of the

evolved strain relative to the reference as s ¼ 1

t

lnðne;f
nr;f

nr;i
ne;i
Þ, where t is the time between measurements

in generations, ne;i; ne;f are the initial and final counts of the evolved strain, and nr;i; nr;f are the initial

and final counts for the reference. In the HT environment (synthetic medium), we found that in a

sample of pure reference cells, 98.5% were fluorescent. To account for this, we adjusted the fitness

estimates for this environment slightly: s ¼ 1

t

lnðne;f�pnr;f
nr;f

nr;i
ne;i�pnr;i

Þ, where p ¼ 0:015 is the non-fluorescent

proportion of reference cells. To estimate the error on the founder fitnesses, we measured the fit-

nesses of the eight founder clones picked from each segregant in their home environment (i.e. four

at OT and four at HT). We measured the fitnesses of each final evolved population at both OT and

HT. To obtain estimates of the technical error for these measurements, we chose 24 final populations
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at random and made 8 technical replicate measurements of each in each of the two measurement

conditions.

Sequencing and mutation calling
We sequenced all 273 populations descended from 35 founders in both environments (this excludes

7 populations descended from these founders that were lost due to pipetting artifacts during evolu-

tion, as described above). The founders selected for this sequencing were chosen to ensure approxi-

mately equal representation of each parental KRE33 allele (see below), but were otherwise random.

To focus on common mutations within each population, we sequenced mixed whole-population sam-

ples. We prepared libraries for sequencing as described previously (Baym et al., 2015), and per-

formed whole-genome sequencing on an Illumina HiSeq 2500 in rapid run mode. Fastq files have

been deposited with the NIH SRA (Sequence Read Archive), under accession number SRP102877.

To process the whole-population sequence data, we first trimmed reads using Trimmomatic func-

tion ‘Illuminaclip’, with options Leading:20, Trailing:20 (Bolger et al., 2014). We merged overlap-

ping paired-end reads using the bbmerge function of bbtools (v36.77). We then used Breseq v0.27.1

(Deatherage and Barrick, 2014) with option ‘-p’ (polymorphic mode) to align reads to the S288c

public reference genome (version R64-2-1, downloaded 13 January 2015 (Engel et al., 2014)). We

did not directly use the SNP and indel calls made by Breseq. Instead, we used the Samtools mpileup

function and a custom python script to create an unfiltered list of the calls in each population at

each base pair. To call de novo mutations, we first filtered out fixed differences between the parents

by removing all sites where the alternate allele is in the majority in at least 6 lines. We then filter

error-prone sites by removing sites where the alternate allele is above 10% frequency in 5 or more

populations. These errors typically arise from alignment artifacts. We called a mutation in a popula-

tion when it occurred in more than 50% of the reads, with support for the alternate allele in at least

4 reads. Although we are sequencing mixed-population samples, 57% of the mutations that we

called were supported by 100% of the reads for that population, and 68% were at �90% frequency.

We discarded 12 sequenced populations due to insufficient coverage and/or library prep failure.

We also checked the genotypes of our founding clones at loci where the RM and BY parents differ,

to verify that they matched the genotypes reported by Bloom et al. (2013). We found that 254/261

(97%) of genotypes matched those reported by Bloom et al., (2013), but 7 (3%) were incorrect. We

attribute this to errors in picking clones to set up the founders for evolution. We discarded these 7

populations from the sequence data analysis.

We detected 3 SNVs that were shared among multiple descendant populations of the same

founder (7 populations in total). For two of these cases, the SNV appears in one OT population and

one HT population; in the third case, it appears in one OT population and two HT populations.

These mutations likely arose prior to picking clones to found populations, and we discarded them

from the analysis.

Broad-sense heritability
Broad-sense heritability H2 is the fraction of observed variance in a phenotype that can be attributed

to genetic differences between founders. We find the broad-sense heritability of founder fitness, H2

X ,

by partitioning the total observed variance in fitness, s2

X;t, into the component s2

X;� arising from mea-

surement error and the component s2

X;f arising from founder genotype. The broad-sense heritability

of initial fitness is then

H2

X ¼
s2

X;f

s2
X;t

:

We estimate the components of variance according to the formulas

s2

X;t ¼
1

ng

X

ng

i¼1

Xi�X��
� �2

; s2

X;� ¼
1

ng

X

ng

i¼1

s2

X;�;i; s2

X;f ¼ s2

X;t�s2

X;�: (1)

Here ng ¼ 230 is the number of founders and we denote the replicate fitness measurement k of

founder i by Xik. We have also defined Xi � Xi� ¼ 1

nr;i

Pnr;i
k¼1

Xik as the estimate of fitness of founder i is
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the unbiased estimate of error variance in the fitness measurement of founder i is the number of

technical replicate measurements for founder i; and X�� ¼ 1

ng

Png
i¼1

Xi is the mean fitness across all

founders. We calculate confidence intervals for H2 using a leave-n
2
-out jackknife on genotypes.

Similarly, to estimate the broad-sense heritability of the fitness increment after evolution, H2

DX , we

partition the total observed variance in fitness increment, s2

DX;t, into the component due to measure-

ment error plus evolutionary stochasticity (which arises due to random variation in fitness gains

between populations descended from the same founder), s2

DX;p, and the component s2

DX;f due to sys-

tematically different fitness gains in populations descended from different founders. The broad-

sense heritability in fitness increment is then

H2

DX ¼
s2

DX;f

s2

DX;t

:

We estimate the variance components as follows. The estimate of the fitness increment of popu-

lation j descended from founder i is DXij ¼ X0
ij�Xi, where Xi is the estimate of fitness of founder i

given above and X0
ij is estimate of final fitness of the focal population. We estimate the variance

s2

DX;p due to measurement error and evolutionary stochasticity as

s2

DX;p ¼
1

n

X

ng

i¼1

np;i

np;i� 1

X

np;i

j¼1

ðDXij�DXi�Þ2;

where DXi� ¼ 1

np;i

Pnp;i
j¼1

DXij is the mean fitness increment in populations descended from founder i,

and n is the total number of descendant populations. We estimate the total variance in fitness incre-

ment as

s2

DX;t ¼
1

n

X

ng

i¼1

X

np;i

j¼1

ðDXij�DX��Þ2;

where DX�� ¼ 1

n

Png
i¼1

Pnp;i
j¼1

DXij is the mean fitness increment across all populations. Finally, the vari-

ance due to founder genotype is

s2

DX;f ¼ s2

DX;t�s2

DX;p:

As above, we calculate confidence intervals on the estimate of H2

DX using a leave-n
2
-out jackknife

on genotypes.

Data analysis for this and subsequent sections was performed in Python v. 2.7 using custom

scripts, available at: https://github.com/erjerison/adaptability (Jerison and Kryazhimskiy, 2017; a

copy is archived at https://github.com/elifesciences-publications/adaptability ).

Narrow-sense heritability
We estimate the narrow-sense heritability of two types of traits: the fitness of founding genotypes,

Xi, and the fitness increment of population ij, DXij. Let the trait value of a particular individual be Yi.

Without perfect knowledge of which loci affect the trait, we can still estimate the narrow-sense heri-

tability based on how the covariance in trait values between individuals depends on their genetic

relatednesses (Yang et al., 2010; Zuk et al., 2012).

Supposing the trait Yi was a linear combination of contributions from all loci, we have

Yi ¼ aþ
X

m

k¼1

gik ak þ �i; (2)

where gik ¼� p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mpð1�pÞ
p if individual i carries the RM allele at locus k or gik ¼ 1�p

ffiffiffiffiffiffiffiffiffiffiffiffiffi

mpð1�pÞ
p if it carries the BY

allele at locus k, p is the frequency of the BY allele at locus k, and m is the total number of loci. We

denote the contribution of allele k to the trait as ak. If we take this to be a random effects model,

with a~Nð0;s2

aÞ and �~Nð0;s2

eÞ, then the variance-covariance matrix V of Yi is

V¼Rs2

a þ Is2

� (Yang et al., 2010), where Rij ¼
P

k gik gjk is the relatedness between two segregants.
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The narrow-sense heritability is then h2 ¼ s2

a

VarðYÞ, the ratio of the additive variance to the total pheno-

typic variance.

We fit s2

a using standard REML optimization, and estimated ĥ2 ¼ ŝ2

a

VarðYÞ. To maintain consistency,

we calculated confidence intervals using a leave-n
2
-out jacknife on segregants.

Mapping QTLs
Following Bloom et al. (2013), we took an iterative approach to identify QTLs for a trait. As before,

let Yi be the phenotypic trait value for founder i. At each iteration we detect one QTL, so that after

completing iteration k, we will have identified k QTLs. At iteration k þ 1, we first fit the linear model

Yi ¼ aðkÞþ
X

k

‘¼1

gi‘a
ðkÞ
‘ þ �

ðkÞ
i : (3)

Here aðkÞ and all a
ðkÞ
‘ are fitting parameters and �

ðkÞ
i are noise terms, which are normally distributed

random variables with mean 0 and variance s2

�;k. As before, gi‘ denotes the genotype of founder i at

locus ‘. Note that, at the first iteration, the second term in equation (3) is absent. We then calculate

the residuals y
ðkþ1Þ
i ¼ Yi � âðkÞþPk

‘¼1
gi‘â

ðkÞ
‘

� �

, where the hat symbol denotes the fitted parameters.

Next, for each locus ‘, we calculate the log of the odds (LOD) score as �ng=2 log10ð1� r2k;‘Þ, where
r2k;‘ is the Pearson correlation coefficient between the allele at locus ‘ and y

ðkþ1Þ
i , and ng is the number

of founders. For this correlation analysis, we weigh observations by the square root of the number of

technical replicate measurements. Next, we perform a permutation test (by permuting y
ðkþ1Þ
i values)

to determine whether the QTL with the largest value of the test statistic is significant at the 0:05

level. If it is, it becomes the kþ 1th QTL, and we proceed to the next iteration. If it is not, QTL detec-

tion is terminated. At each round, we calculate a confidence interval for the location of the QTL

based on an LOD decline of 1.5.

We carry out this QTL detection procedure separately for two traits, initial fitness X and fitness

increment DX, in each of the two environments, OT and HT.

Fitness models for adaptability
We model the dependence of adaptability on fitness using the standard linear regression,

DXi ¼ aþbXi þ �i; (4)

where DXi ¼ 1

ni

Pni
j¼1

X0
ij�Xi is the mean fitness increment of founder i, and Xi is the fitness of founder

i.

Our null model is that the true fitness gains are independent of the founder fitnesses. However,

our estimates of DXi also include measurement error, and these errors are not independent of the

measurement errors in Xi. These errors could generate spurious correlations between DXi and Xi.

Note that we expect this effect to be small, because the error variance in Xi is 0.5% of the total vari-

ance in Xi at OT and 0.8% at HT. To assess the influence that these spurious correlations could have

had on our results, we also fit the model

DXi ¼ aþb~Xi þ �i; (5)

where ~Xi ¼ Xiþ di, di ~Nðs2

X;�;i;0Þ, where s2

X;�;i is the error variance in founder fitness i, as defined

above. This additional error lowers the correlation from 0:522 to 0:518 at HT and 0:417 to 0:415 at

OT.

To assess the extent to which fitness in either environment predicts fitness changes in the other

condition, we fit the model

DXi;a ¼ aþbXi þgYiþ �i; (6)

where DXi;a is the fitness increment of population ij in the ‘away’ environment, in which it did not
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evolve, Xi is the founder fitness in the away environment, and Yi is the founder fitness in the home

environment. As above, to control for spurious correlations due to experimental noise, we also fit

DXij;a ¼ aþb~Xi þgYiþ �i: (7)

We assessed the significance of each coefficient in both models.

Combined QTL and fitness model
To determine whether any loci influence adaptability over and above fitness, we created a master

list of all distinct QTLs detected for the initial fitness or fitness increment as traits. We tested

whether each of these loci significantly improved predictions of delta fitness in both environments.

We also included terms for potential pairwise interactions between the largest-effect QTL (KRE33)

and the others. Specifically, we fit the model

DXi ¼ aþbXi þgg� þ
X

k

‘¼1

gi‘a‘þ
X

k

‘¼1

g�gi‘b‘ þ �i; (8)

where g� is an indicator variable on the KRE33 allele, taking values 0:5 or �0:5; the gi‘ are indicator

variables on the previously identified QTLs, also taking values 0:5 or �0:5, and a, b, g, a‘, and b‘ are

coefficients.

We fit this model for fitness increment in each environment separately. In each case, we evaluated

the significance of the coefficients using a Bonferroni-corrected F-test. We refit the model including

only terms with significant coefficients to determine the best predictor of delta fitness in each envi-

ronment (Figure 3, Figure 3—source data 1).

To check for additional loci that influenced adaptability over and above fitness, we repeated the

QTL detection procedure described in the previous section, taking the trait to be residual differen-

ces in adaptability beyond those explained by initial fitness. We did not find any additional QTLs

beyond those previously identified.

We repeated this analysis for fitness increment in the alternative condition (Figure 8, Figure 8—

source data 1).

Testing the effect of fitness in the home environment on adaptability
To establish whether the pattern of declining adaptability in our two environments is entirely driven

by a common factor, or whether the fitness in the home environment adds additional predictive

power, we tested whether the difference in initial fitness between environments of a particular

founder was predictive of the difference in fitness increments after adaptation to each environment.

To do so, we define the normalized fitness of founder i at OT as

~Xi ¼
Xi�X

StdðXÞ ; (9)

where Xi is the fitness of founder i at OT, X is the average fitness of all founders at OT, and StdðXÞ is
the standard deviation of all founder fitnesses at OT. We analogously define ~Yi to be the normalized

fitness of founder i at HT. We define the normalized fitness increment of founder i at OT as

D

~Xi ¼
DXi �DX

StdðDXÞ ; (10)

where DXi is the average fitness increment of populations descended from founder i at OT, DX is the

average fitness increment at OT over all founders, and StdðDXÞ is the standard deviation of the fit-

ness increment of all founders at OT. We analogously define D

~Yi to be the normalized fitness incre-

ment of founder i at HT. Note that the normalization by the standard deviation is necessary to

meaningfully subtract these quantities, because fitnesses in OT and HT are on different scales (as

seen in Figure 1B, fitness differences between a typical pair of segregants are almost twice as large

in HT as in OT).

In Figure 4A, we plot ~Xi versus ~Yi, and the line y ¼ x. The points are colored by ~Xi � ~Yi, which is

proportional to the distance to the diagonal. In Figure 4B, we plot D~Xi versus D~Yi, and the line y ¼ x,
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with the colors as in Figure 4A. In Figure 4C, we plot ~Xi � ~Yi versus D

~Xi � D

~Yi. We calculated the

Pearson correlation coefficient for ~Xi � ~Yi versus D

~Xi � D

~Yi, and tested significance by bootstrapping

over segregants. We also repeated this analysis controlling for the effect of the KRE33 allele. Specifi-

cally, we defined the same quantities as above, with means and standard deviations taken over seg-

regants with the RM and BY KRE33 alleles separately (Figure 4—figure supplement 1).

Mutual information analysis
To detect associations between the properties of a population and the de novo mutations that occur

during adaptation, we used a test statistic based on mutual information. For clarity, we will first

define the mutual information between a property and mutations in one gene, and then describe

how we combine the information from all the genes. Let W be the property, with groups W1; :::Wn

(for example, if the property is the evolution condition, then we have W1 ¼ HT, W2 ¼ OT). Let our

gene of interest be gl, and let m be an indicator variable with value 1 when a de novo mutation was

called in a population in this gene, 0 otherwise. Then the mutual information between the property

W and gene gl is

IðW ;glÞ ¼
X

W¼ðW1;:::WnÞ
pðWÞ

X

m¼ð0;1Þ
pðmjWÞ log2

pðmjWÞ
pðmÞ ; (11)

where we estimate the probabilities based on observed counts: pðmÞ is the frequency of observing a

mutation in gl across all populations, pðmjW ¼WjÞ is the frequency of observing the mutation among

populations with property Wj, and pðW ¼WjÞ is the proportion of populations with property Wj.

We will also often be interested in the mutual information conditional on a second property Z.

This will allow us to determine whether a property carries additional information after we have

already taken a known predictor into account. This can be calculated as

IðW ;gljZÞ ¼
X

Z¼ðZ1;::ZqÞ
pðZÞ

X

W¼ðW1;:::WnÞ
pðW jZÞ

X

m¼ð0;1Þ
pðmjW ;ZÞ log2

pðmjW ;ZÞ
pðmjZÞ : (12)

As our test statistic, we take the sum of the mutual information across all of the genes

MðW jZÞ ¼
X

gl

IðW ;gljZÞ; (13)

where for generality we have included the possibility of conditioning on one or more factors. Let

W ¼Kr be a population’s KRE33 allele, which can be either RM or BY. Let W ¼ E be the evolution

environment, and let W ¼ F be the population’s founding genotype. Then we calculate MðKreÞ,
MðEjKreÞ, and MðFjKre;EÞ.

We calculate the null distributions of these statistics by permuting mutations among populations,

holding the number of mutations per population fixed. We report the mutual information as

MðKreÞ � �MpðKreÞ, where �MpðKreÞ is the mean of the null distribution; MðEjKreÞ � �MpðEjKreÞ, and

MðFjKre;EÞ � �MpðFjKre;EÞ, with 95% confidence intervals calculated from the null distributions (Fig-

ure 6—source data 1).

Comparing QTL locations and de novo mutations
To ask whether we see multi-hit mutations near QTL loci more often than we would expect, we

determined whether there was an enrichment of common members between the list of 27 multi-hit

genes and the list of 99 genes within QTL confidence intervals. Because we excluded dubious ORFs

from both lists, we took the number of genes in the yeast genome to be 5858. We computed the

expected number of common members to be 0:95.
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