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Abstract Deletion of Sox2 from mouse embryonic stem cells (ESCs) causes trophectodermal

differentiation. While this can be prevented by enforced expression of the related SOXB1 proteins,

SOX1 or SOX3, the roles of SOXB1 proteins in epiblast stem cell (EpiSC) pluripotency are unknown.

Here, we show that Sox2 can be deleted from EpiSCs with impunity. This is due to a shift in the

balance of SoxB1 expression in EpiSCs, which have decreased Sox2 and increased Sox3 compared

to ESCs. Consistent with functional redundancy, Sox3 can also be deleted from EpiSCs without

eliminating self-renewal. However, deletion of both Sox2 and Sox3 prevents self-renewal. The

overall SOXB1 levels in ESCs affect differentiation choices: neural differentiation of Sox2

heterozygous ESCs is compromised, while increased SOXB1 levels divert the ESC to EpiSC

transition towards neural differentiation. Therefore, optimal SOXB1 levels are critical for each

pluripotent state and for cell fate decisions during exit from naı̈ve pluripotency.

DOI: https://doi.org/10.7554/eLife.27746.001

Introduction
Pluripotent cells have the unique ability to differentiate into every cell type of an adult organism

(Nichols and Smith, 2009). During mouse development, the embryo contains pluripotent cells in the

epiblast until the onset of somitogenesis (Osorno et al., 2012; Chambers and Tomlinson, 2009).

Distinct pluripotent cell types can be isolated in culture from the preimplantation and postimplanta-

tion epiblast. Embryonic stem cells (ESCs) (Evans and Kaufman, 1981; Martin, 1981) from preim-

plantation embryos are termed ‘naı̈ve’ pluripotent cells. Epiblast stem cells (EpiSCs) (Tesar et al.,

2007; Brons et al., 2007), commonly isolated from the post-implantation epiblast, are known as

‘primed’ pluripotent cells. Naı̈ve and primed cells differ dramatically in responses to extracellular sig-

nals (Nichols and Smith, 2009). ESCs self-renew in response to a combination of leukaemia inhibi-

tory factor (LIF) and either foetal calf serum (FCS), bone morphogenic protein (BMP) or Wnt

(Smith et al., 1988; Ying et al., 2003a; ten Berge et al., 2011) and differentiate in response to

fibroblast growth factor (FGF) (Kunath et al., 2007; Stavridis et al., 2007). In contrast, FGF

together with Nodal/Activin A are required for EpiSCs self-renewal (Vallier et al., 2009; Guo et al.,

2009).

Pluripotency is regulated by a pluripotency gene regulatory network (PGRN) (Chambers and

Tomlinson, 2009; Festuccia et al., 2013; Wong et al., 2016). While some transcription factors such

as Esrrb and T (Brachyury) are associated more closely with naı̈ve or primed pluripotent states

respectively (Festuccia et al., 2012; Osorno et al., 2012; Tsakiridis et al., 2014), the core TFs of

the PGRN, Nanog, Sox2 and Oct4 (the Pou5f1 gene product, also referred as Oct3/4) are expressed
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in both naı̈ve and primed pluripotent cells (Niwa et al., 2000; Masui et al., 2007; Avilion et al.,

2003; Chambers et al., 2003; Karwacki-Neisius et al., 2013; Osorno et al., 2012; Festuccia et al.,

2012; Brons et al., 2007; Tesar et al., 2007). While the role of Sox2 has been extensively character-

ised in naı̈ve cells (Wong et al., 2016), its role in primed pluripotency is less well known.

Sox2 is a member of a family of twenty Sox TFs (Pevny and Lovell-Badge, 1997; Kamachi and

Kondoh, 2013). All SOX proteins contain a High-Mobility-Group (HMG) box DNA-binding domain

closely related to the founding member of the Sox family, SRY (Kondoh and Lovell-Badge, 2016).

While some SOX proteins contain a transcriptional activation domain, others contain repression

domains (Uchikawa et al., 1999; Bowles et al., 2000; Ambrosetti et al., 2000). The paradigm of

action for SOX proteins is that they bind to target gene sequences through a DNA-mediated interac-

tion with a partner protein, to specify target gene selection (Kamachi et al., 1999; Reményi et al.,

2003; Williams et al., 2004; Kamachi and Kondoh, 2013). In pluripotent cells the principal interac-

tion of SOX2 with OCT4 (Ambrosetti et al., 1997, 2000) is considered to positively regulate expres-

sion of many pluripotency-specific genes including Nanog, Oct4 and Sox2 (Tomioka et al., 2002;

Chew et al., 2005; Okumura-Nakanishi et al., 2005; Rodda et al., 2005; Kuroda et al., 2005).

Loss of SOX2 in ESCs induces trophoblast differentiation, phenocopying OCT4 loss and supporting

the idea of a mutually dependent mode of action (Niwa et al., 2000; Masui et al., 2007).

Analysis of sequence conservation within the HMG box has divided the Sox family into eight

groups that can be further divided into subgroups based on homology outside the HMG box

(Kondoh and Lovell-Badge, 2015; Kamachi, 2016). SOX1, SOX2 and SOX3 belong to the SOXB1

group and also contain transcriptional activation domains (Uchikawa et al., 1999;

Ambrosetti et al., 2000; Bowles et al., 2000; Kondoh and Kamachi, 2010; Ng et al., 2012;

Kamachi and Kondoh, 2013). SOXB1 proteins bind the same DNA sequence in vitro

(Kamachi et al., 1999; Kamachi, 2016). Previous studies demonstrated that SOXB1 factors are co-

expressed during embryonic development and can substitute for each other in different biological

systems, both in vitro and in vivo (Wood and Episkopou, 1999; Niwa et al., 2016;

Adikusuma et al., 2017). Here, we investigate the requirements of naı̈ve and primed pluripotent

states for SOXB1 expression. Our results indicate that the essential requirement of SOXB1 function

for naı̈ve pluripotent cells extends to primed pluripotent cells. SOX3, which is highly expressed in

primed pluripotent cells, functions redundantly with SOX2, rendering SOX2 dispensable in these

cells. We further provide evidence that critical SOXB1 levels are required to specify the identity of

cells exiting the naı̈ve pluripotent state.

Results

A fluorescent reporter of SOX2 protein expression
To investigate the expression of Sox2 in pluripotent cells, a live cell reporter that retained Sox2 func-

tion was prepared by replacing the Sox2 stop codon with a T2A-H2B-tdTomato cassette (Figure 1A;

Figure 1—figure supplement 1A). Correctly targeted cells were identified by Southern analysis and

are referred to as E14Tg2a-Sox2-tdTomato (TST) cells (Figure 1—figure supplement 1B). Fluores-

cence microscopy of targeted cells showed a close correlation between SOX2 and tdTomato levels

(Figure 1—figure supplement 2). Moreover, tdTomato expression recapitulated the SOX2 expres-

sion pattern in chimeric embryos (Figure 1—figure supplement 3). Targeted cells also showed the

expected morphological differences when cultured in a combination of LIF plus inhibitors of MEK

and GSK3b (LIF/2i), in LIF/FCS, in LIF/BMP or after passaging in Activin/FGF (Figure 1A). These

results indicate that TST cells behave normally and provide a useful live cell report of Sox2 expres-

sion levels.

TST ESCs were next assessed by fluorescence microscopy and FACS. In LIF/2i, tdTomato expres-

sion was high and unimodal (Figure 1A). In LIF/FCS or LIF/BMP the same predominant high-express-

ing population was present but with a shoulder of reduced expression and a small number of

tdTomato-negative cells, which appeared to coincide with morphologically differentiated cells

(Figure 1A). In continuous culture in Activin/FGF, tdTomato expression was bimodal with the highest

expression levels overlapping the lower expression levels seen in ESCs cultured in LIF/FCS or LIF/

BMP (Figure 1A,B).
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Figure 1. Different roles of Sox2 in preimplantation and postimplantation pluripotency. (A) Expression of the Sox2-

T2A-H2b-tdTomato (Sox2::HT) reporter from the endogenous Sox2 allele in targeted TST18 cells. TST18 cells

cultured in LIF/FCS/GMEMb were replated in LIF/2i/N2B27 or LIF/BMP4/N2B27 for four passages or in Activin/

FGF/N2B27 (Activin/FGF) for nine passages, examined microscopically (top) and assessed by flow cytometry

Figure 1 continued on next page
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Gene expression in ESCs and EpiSCs expressing distinct Sox2 levels
ESCs and EpiSCs expressing distinct Sox2 levels were separated by FACS according to the tdTo-

mato level (Figure 1B). Microarray analysis was then used to compare gene expression in cells from

different culture conditions expressing similar Sox2 levels and in cells from the same cultures

expressing distinct Sox2 levels (Supplementary file 1). Cells expressing the highest tdTomato levels

in LIF/2i, LIF/FCS or LIF/BMP cultures were purified using gate C. The mid-level expression gate B

enabled purification of the Sox2-low fraction of ESCs cultured in LIF/FCS or LIF/BMP as well as the

highest Sox2-expressing EpiSCs. EpiSCs were also purified using the lower expression gate A. Re-

sorting confirmed effective purification prior to RNA extraction and analysis (Figure 1B). Compared

to the Sox2-high population, Sox2-low EpiSCs had upregulated differentiation markers. Transcripts

expressed by Sox2-low EpiSCs differed from those expressed by Sox2-low ESCs (Figure 1—figure

supplement 4; Supplementary file 1) suggesting that ESCs and EpiSCs have distinct differentiation

propensities. ESCs from both LIF/BMP and LIF/FCS cultures sorted for highest tdTomato expression

(gate C) were enriched for naı̈ve pluripotency transcripts with mRNAs common to both (including

Nr5a2, Tbx3 and Tcl1) positively correlating to Sox2 in all samples (Figure 1—figure supplement 5).

Moreover, principal component analysis indicated that these Sox2-high ESCs cluster together and

separately from ESCs cultured in LIF/2i (Figure 1C) as seen by others (Boroviak et al., 2015). More

importantly, principal component analysis also showed that EpiSCs and ESCs expressing the same

Sox2 level (gate B) were transcriptionally distinct (Figure 1C) and shared no commonly enriched

mRNAs (Figure 1D). Thus, Sox2 levels alone do not dictate the distinction between ESC and EpiSC

states.

Microarray and quantitative transcript analyses highlighted changes in Sox gene expression levels

(Figure 1E, Figure 1—figure supplement 6). Although other Sox gene expression changes

occurred, the ability of SOXB1 proteins to function redundantly in ESC self-renewal (Niwa et al.,

2016) prompted us to assess the capacity of SOXB1-related proteins to function more widely in plu-

ripotent cells.

Figure 1 continued

(bottom); E14Tg2a cells were represented as a grey dashed line. (B) Three gates (A, B, C) were used to purify cells

for microarray analysis. Gate C captured the Sox2::HT level in LIF/2i cultured ESCs. Gate B captured the

overlapping Sox2::HT level in LIF/FCS, LIF/BMP and Activin/FGF cultured cells. Gate A captured the lower Sox2::

HT level in Activin/FGF. (C) Principal component analysis of cells in different culture conditions, either unsorted or

sorted using the gates indicated by brackets. (D) Despite similar Sox2::HT levels, no differentially expressed genes

(DEGs, FDR = 0.1) were common to LIF/FCS-low and Activin/FGF-high cell populations. (E) RT-qPCR analysis of

the indicated transcripts in ESCs (LIF/FCS, red bars) and EpiSCs (Activin/FGF, cultured for 16 passages, blue bars).

Transcript levels were normalized to Tbp and plotted relative to ESCs. Error bars represent standard error of the

mean (n = 3 to 4).

DOI: https://doi.org/10.7554/eLife.27746.002

The following figure supplements are available for figure 1:

Figure supplement 1. (A) Targeting T2A-H2b-tdTomato to the Sox2 locus stop codon yields the Sox2::HT

fluorescent reporter allele.

DOI: https://doi.org/10.7554/eLife.27746.003

Figure supplement 2. Imaging of E14Tg2a and TST18 ESCs for SOX2 by immunofluorescence (green) and of

Sox2::HT fluorescence (red); DAPI is grey.

DOI: https://doi.org/10.7554/eLife.27746.004

Figure supplement 3. TST18 cells transfected with a CAG-GFP constitutive reporter were aggregated with

isolated morulae and chimeric embryos assessed at the indicated stages for contribution of TST18 cells.

DOI: https://doi.org/10.7554/eLife.27746.005

Figure supplement 4. Differentially expressed genes common to LIF/FCS-low and Activin/FGF-low were not

associated with any gene ontology (GO) terms using high-stringency GO term clustering analysis.

DOI: https://doi.org/10.7554/eLife.27746.006

Figure supplement 5. Common differentially expressed genes (DEGs, FDR = 0.1) enriched in LIF/FCS-high, LIF/

BMP-high and DEGs positively correlated to Sox2 (r2 �0.9).

DOI: https://doi.org/10.7554/eLife.27746.007

Figure supplement 6. Microarray signal intensity of Sox family members in all sorted populations.

DOI: https://doi.org/10.7554/eLife.27746.008
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A subset of SOX family proteins can functionally replace Sox2 in ESC
self-renewal
Recently, Niwa et al. (2016) reported that ESC self-renewal could be maintained in the absence of

SOX2 by expression of other SOXB1 and SOXG proteins (Niwa et al., 2016). We addressed the

question of functional redundancy with Sox2 in ESCs using an independent Sox2 conditional knock-

out (SCKO) ESC line (Favaro et al., 2009; Gagliardi et al., 2013). SCKO ESCs have one Sox2 allele

replaced by b-geo, the second allele flanked by loxP sites and constitutively express a tamoxifen-

inducible Cre recombinase (CreERT2) (Figure 2A). SCKO ESCs were transfected with a plasmid in

which constitutive Sox cDNA expression was linked to hygromycin B resistance and were either left

untreated or were simultaneously treated with tamoxifen to excise Sox2 (Figure 2A). ESC self-

renewal was assessed after 8–10 days of hygromycin selection. Transfection of plasmids encoding

transcriptional activator proteins of the SOXB1 family (SOX1, SOX2 or SOX3) enabled similar levels

of ESC colony formation in the absence of Sox2 (Figure 2B,C). In contrast, the SOXB2 proteins

(SOX14 and SOX21), in which the SOXB DNA-binding domain is linked to transcriptional repression

domains, did not direct undifferentiated ESC colony formation (Figure 2C). Of the other SOX pro-

teins tested, only SOX15 showed any capacity to direct undifferentiated ESC colony formation

(Figure 2C), as previously described (Niwa et al., 2016), possibly because it has the most similar

DNA-binding domain to SOXB proteins (Kamachi and Kondoh, 2013). These results indicate that

ESC self-renewal requires the function of a SOX protein with a SOXB-like DNA-binding domain cou-

pled to a transcriptional activating function.

To further assess the ability of SOX proteins to sustain ESC self-renewal, we attempted to expand

transfected cell populations. PCR analysis confirmed deletion of the Sox2 conditional allele (400 bp)

from expanded cell populations expressing SOX1, SOX2 or SOX3 (Figure 2—figure supplement 1).

Furthermore, SoxB1-rescued (S1R and S3R) SKO ESCs retained OCT4 and NANOG expression, simi-

lar to SCKO and Sox2-rescued SKO (S2R) ESCs (Figure 2—figure supplement 2). The transgene

expression levels in ESC populations rescued by Sox1, 2 or 3 were assessed by quantitative tran-

script analysis using common primers across the CAG intron. This demonstrated that the Sox3 trans-

gene mRNA was expressed at a higher level than the Sox1 or Sox2 transgenes (Figure 2D). These

results confirm the findings of Niwa et al. in an independent cell line (Niwa et al., 2016).

Sox3 is dispensable for both naı̈ve and primed pluripotency
Sox3 transcripts are present in ESCs at lower levels than Sox2 (Figure 3—figure supplement 1) and

a previous report has suggested that Sox3 is dispensable for ESC self-renewal (Rizzoti et al.,

2004; Rizzoti and Lovell-Badge, 2007). To directly assess this possibility, and as a first step to

determining whether Sox3 is required in EpiSCs, CRISPR/Cas9 was used to delete the Sox3 gene

from male E14Tg2a ESCs (Hooper et al., 1987; Doetschman et al., 1987) using two small guide

RNAs (sgRNA1 and sgRNA2) (Figure 3A). After targeting, E14Tg2a ESCs were plated at low density

and single clones were isolated. PCR genotyping using primers flanking the predicted Cas9 cut sites

(Figure 3A) identified two clones (S3KO8 and S3KO35) in which Sox3 had been deleted (Figure 3B).

Replating at clonal density indicated that both clones retained an efficient self-renewal ability

(Figure 3C). Moreover, both clones had unchanged levels of Nanog, Oct4 and Sox2 mRNAs

(Figure 3D). These findings indicate that Sox3 is dispensable for ESC self-renewal, confirming previ-

ously unpublished data (Rizzoti et al., 2004).

Next, the requirement of SOX3 for primed pluripotency was determined by examining the ability

of the above Sox3 knockout ESC clones, together with parental E14Tg2a ESCs, to be converted to

EpiSCs by serial passaging in Activin and FGF (Guo et al., 2009). Quantitative transcript analysis at

passage 12 indicated similar levels of Sox2, Oct4 and Nanog mRNA expression in wild-type and

Sox3 knockout EpiSCs (Figure 3E). In contrast, Sox1 mRNA levels were reduced in both Sox3 knock-

out clones (Figure 3E) and T (Brachyury) was more variably expressed (Figure 3E). The ability of

EpiSCs to self-renew in the absence of SOX3 was maintained over 25 passages without affecting

SOX2 and OCT4 protein expression or EpiSC morphology (Figure 3F,G). These data demonstrate

that both naı̈ve and primed pluripotent cells can self-renew in the absence of Sox3.
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Sox2 is dispensable for the maintenance of primed pluripotency
To investigate whether primed pluripotency can be maintained in the absence of SOX2, SCKO

EpiSCs were derived by in vitro culture of SCKO ESCs (Guo et al., 2009). SCKO EpiSCs were then

transfected with a plasmid encoding both Cre recombinase and tdTomato (Figure 4A), since the

Figure 2. The ESC function of Sox2 can be substituted by SOXB1 and SOXG proteins. (A) Strategy for testing the ability of candidate Sox cDNAs to

rescue ESC self-renewal upon Sox2 deletion. Sox2fl/- (SCKO) ESCs were treated with 4-hydroxy-tamoxifen (4OHT) to induce nuclear localisation of

CreERT2 and consequent loxP-mediated Sox2 excision. Simultaneous transfection of test cDNAs linked to hygromycin phosphotransferase via an IRES (i)

were tested for Sox2 complementation activity. (B) SCKO ESCs transfected with the indicated cDNAs were cultured in the presence of hygromycin B

and in the absence (�4OHT) or presence (+4 OHT) of 4-hydroxyl-tamoxifen for 8 days before being fixed and stained for alkaline phosphatase (AP)

activity. (C) Stained colonies were scored based on AP+ (undifferentiated), mixed or AP� (differentiated) morphology. Error bars represent standard

error mean (n = 3). (D) RT-qPCR analysis of the rescuing transgenes in Sox1-, Sox2- and Sox3-rescued (S1R, S2R, S3R) ESC populations grown in the

presence of 4-hydroxyl-tamoxifen as described in Figure 2A,B. RT-qPCR was performed using common primers designed across the CAG intron

upstream of the rescuing transgene. Values were normalised over Tbp and expressed relative to S2R cells. Error bars represent the standard error of

the mean (n = 3).

DOI: https://doi.org/10.7554/eLife.27746.009

The following figure supplements are available for figure 2:

Figure supplement 1. (TOP) Strategy for genotyping the Sox2 deletion by PCR.

DOI: https://doi.org/10.7554/eLife.27746.010

Figure supplement 2. Immunofluorescence staining of SOX2, NANOG and OCT4 in SCKO, S1R, S2R and S3R ESCs.

DOI: https://doi.org/10.7554/eLife.27746.011
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Figure 3. Sox3 is dispensable for pluripotent cell maintenance. (A) Schematic representation of the Sox3 locus on the mouse X chromosome showing

the CRISPR/Cas9 strategy for the generation and genotyping of Sox3 knockout ESCs. The positions of sgRNA1 and sgRNA2 used for the deletion of

the Sox3 locus are indicated alongside the positions of PCR primers used for genotyping. (B) PCR genotyping of parental ESCs (E14Tg2a), a wild-type

clone (37) and two Sox3 knockout clones (S3KO8, S3KO35) after CRISPR/Cas9 targeting of the Sox3 locus. Band sizes for the WT (~2 kb) and targeted

Figure 3 continued on next page
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CAG CreERT2 transgene (Figure 2A) had been silenced during the EpiSC transition. After 12–24 hr,

tdTomato-positive EpiSCs were sorted by FACS and re-plated at low cell density to allow expansion

of single clones. PCR genotyping of expanded EpiSC clones revealed that the loxP-flanked Sox2

allele had been excised generating Sox2-/- (SKO) clones (Figure 4A). Immunoblot analysis confirmed

that these SKO clones did not express SOX2 protein and that Sox2fl/- EpiSCs expressed SOX2 at

50% the level of Sox2+/+ EpiSCs (Figure 4B). Moreover, NANOG protein levels were similar to

parental SCKO EpiSCs or wild-type E14Tg2a EpiSCs (Figure 4B). Sox2-/- EpiSCs retained an undiffer-

entiated morphology (Figure 4C) and immunostaining confirmed the absence of SOX2 and contin-

ued OCT4 expression compared to parental SCKO EpiSCs (Figure 4D). Quantitative transcript

analysis of Oct4, Nanog and Sox2 , indicated that, while Sox2 mRNA was absent from Sox2-/-

EpiSCs, both Oct4 and Nanog mRNA levels were unaffected (Figure 4E). This suggests that the

core pluripotency gene regulatory network remains active even in the absence of SOX2 and that, in

contrast to the situation with naı̈ve pluripotency, primed pluripotency is not critically dependent

upon Sox2.

The ability of SOXB1 proteins to substitute for one another in ESCs raised the hypothesis that

functional redundancy between SOX2 and SOX3 may be responsible for the maintenance of pluripo-

tency in primed EpiSCs. Expression of both Sox1 and Sox3 mRNAs was increased in EpiSCs com-

pared to ESCs (Figure 1E). Examination of Sox2-/- EpiSCs showed that while Sox1 mRNA expression

was reduced, Sox3 mRNA levels were elevated compared to control cells (Figure 4E). This suggests

that Sox3 expression might functionally compensate for the lack of Sox2 in Sox2-/- EpiSCs, as is the

case in Sox2-null E14.5 forebrain, where a 2-fold increase in Sox3 mRNA was detected

(Miyagi et al., 2008). Alternatively, SOXB1 proteins may be irrelevant for EpiSC self-renewal. To dis-

tinguish between these possibilities we developed an approach to gene disruption using CRISPR/

Cas9.

Testing the functional effects of Sox ORF disruption using CRISPR/Cas9
To examine the functional dependence of cells on Sox genes, a CRISPR/Cas9 approach was devel-

oped and tested initially using Sox2. Insertions or deletions (indels) into the Sox2 open reading

frame (ORF) were introduced immediately upstream of the sequence encoding the SOX2 HMG

domain (Figure 5—figure supplement 1A). Out-of-frame indels in this position are expected to

abolish the DNA-binding ability of any aberrant protein that might still be produced. The frequency

and length of indels induced by CRISPR/Cas9-mediated targeting of the endogenous Sox2 locus

were investigated by TIDE (Tracking of Indels by Decomposition) analysis (Brinkman et al., 2014).

Sox2fl/- SCKO ESCs that constitutively express Sox1, Sox3 or GFP (generated in Figure 2B in the

absence of tamoxifen) were analysed. If, as expected, Sox1 or Sox3 can rescue self-renewal, then

such cells would carry both in-frame and out-of-frame (deleterious) indels (Figure 5—figure supple-

ment 1B). In contrast, if ESC self-renewal relies on the remaining Sox2 allele, as anticipated in the

case of SCKO ESCs constitutively expressing GFP, then cells carrying deleterious indels should be

eliminated from the population. In this case, the only modifications present would be non-deleteri-

ous in-frame indels (Figure 5—figure supplement 1B). SCKO ESCs expressing Sox1, Sox3 or GFP

were transfected with a plasmid encoding the sgRNA and eCas9. Cells were selected, genomic DNA

isolated, PCR amplified, sequenced and analysed by TIDE. The population of SCKO ESCs expressing

GFP contained Sox2 loci with no out-of-frame indels detected (Figure 5—figure supplement 2). In

contrast, SCKO ESCs constitutively expressing Sox1 or Sox3 tolerated out-of-frame, deleterious

indels at Sox2 (size +1,–10, �13) (Figure 5—figure supplement 2). These results show that indel

Figure 3 continued

(~600 bp) alleles are shown. (C) Alkaline phosphatase staining in S3KO8, S3KO35 and WT (Clone 37 and E14Tg2a) ESCs grown at clonal density for 7

days. (D–E) RT-qPCR analysis of the indicated transcripts in wild-type E14Tg2a and Sox3-/Y (S3KO8, S3KO35) ESCs (D) and EpiSCs (E) derived by serial

passaging (>10 passages) in Activin/FGF conditions. Error bars represent standard error of the mean (n = 3). (F-G) Immunofluorescence staining of

SOX2 (F), SOX3 (G) and OCT4 proteins in E14Tg2a and Sox3-/Y EpiSCs (S3KO8, S3KO35). Scale bar, 100 mm.

DOI: https://doi.org/10.7554/eLife.27746.012

The following figure supplement is available for figure 3:

Figure supplement 1. RT-qPCR analysis of the indicated transcripts in E14Tg2a and SCKO ESCs.

DOI: https://doi.org/10.7554/eLife.27746.013
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Figure 4. Sox2 is dispensable for the maintenance of EpiSCs. (A) Strategy for Sox2 deletion in EpiSCs. Sox2fl/- (SCKO) EpiSCs were transfected with

pCMV-tdTomato-T2A-Cre. After 12–24 hours, cells were sorted for tdTomato expression and re-plated in the presence of ROCK inhibitor. Clones were

picked and expanded before genotyping by PCR as indicated in Figure 2—figure supplement 1 . SCKO EpiSCs were also transfected with pCMV-

tdTomato (lacking Cre). Expanded clones were numbered as indicated. (B) Immunoblot analysis of E14Tg2a, Sox2fl/- (SCKO) and Sox2-/- (SKO) EpiSCs

Figure 4 continued on next page
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analysis can be applied to study functional redundancy between SOXB1 group members in the main-

tenance of pluripotent cells.

Sox2 and Sox3 are functionally redundant for the maintenance of
EpiSCs
Having established the utility of CRISPR/Cas9-mediated indel induction for gene function analysis, a

similar strategy was applied to Sox2-/- EpiSCs to determine whether SOXB1 proteins operate in a

functionally redundant way to maintain EpiSCs. Since Sox2-/- EpiSCs showed an increase in Sox3

mRNA expression upon deletion of the second Sox2 allele, we focussed on Sox3, which is X-linked

and thus present in only one copy in these male EpiSCs (Sox3+/Y). Two sgRNAs (sgRNA1 and 2)

were designed to independently target the Sox3 ORF immediately upstream of the sequence encod-

ing the HMG DNA-binding domain and tested individually (Figure 5A). TIDE analysis (Figure 5B)

showed that in control EpiSCs expressing endogenous Sox2 (E14Tg2a and SCKO) both in frame and

out of frame indels within Sox3 were detected using either sgRNA (Figure 5C). In contrast, two inde-

pendent Sox2-/- EpiSC lines (SKO1, SKO6) retained only in frame deletions that did not disrupt the

SOX3 HMG box (Figure 5C). Together with earlier results on Sox2-/- EpiSCs (Figure 4) and Sox3-/Y

EpiSCs (Figure 3), these data indicate that EpiSCs lacking either Sox2 or Sox3 alone can be main-

tained, while cells lacking both SOX2 and SOX3 proteins are lost. Therefore, EpiSC self-renewal

requires SOXB1 function, and this can be provided by the expression of either endogenous Sox2 or

Sox3.

Modulating SOXB1 levels affects differentiation and can prevent
capture of primed pluripotency
Since Sox2 and Sox3 transcript levels change during ESC to EpiSC differentiation, this raised the

question of their importance for attainment of a primed pluripotent state. ESCs that delete Sox2 dif-

ferentiate to trophectoderm (Masui et al., 2007), while ESCs that continue expressing high SOX2

protein levels during differentiation are biased towards neural fates (Zhao et al., 2004). To assess

the effect of increasing the SOXB1 concentration upon differentiation, we examined three clones

overexpressing either SOX2 (Figure 6) or SOX3 (Figure 6—figure supplement 1), generated using

the approach outlined in Figure 2A. When placed in an EpiSC differentiation protocol, both SOX2-

and SOX3-overexpressing clones showed reduced expression of Oct4, Nanog and Nr5a2 transcripts

as well as increased expression of Sox1, Mash1 (the Ascl1 gene product) and Pax6 transcripts

(Figure 6A; Figure 6—figure supplement 1). Examination of SOX2-overexpressing clones in Acti-

vin/FGF showed neural-like cellular morphology (Figure 6B) and bIII-tubulin-positive axonal pro-

cesses (Figure 6C). These findings indicate that while high SOXB1 levels are tolerated by ESCs, a

decreased dosage of SOXB1 is essential for ESCs to transit effectively to an EpiSC state and avoid

ectopic neural differentiation.

The SoxB1 requirements during neural differentiation of ESCs were next assessed. Initially, we

compared Sox2+/+ ESCs previously cultured in LIF/FCS or LIF/2i during neural differentiation induced

by culture in N2B27 medium (Ying and Smith, 2003; Ying et al., 2003a). Our results indicate a

more rapid induction of a Sox1-GFP reporter (Aubert et al., 2003) and Sox1 mRNA from LIF/FCS

cultures than from LIF/2i cultures (Figure 7A). The Sox1-GFP kinetics from 2i/LIF cultures observed

here agree with those reported (Marks et al., 2012), although this study noted a slower induction of

Sox1-GFP from FCS/LIF cultures. However, as the timing of Sox1-GFP induction from FCS/LIF cul-

tures in previous studies from the same group (Ying et al., 2003a) was consistent with the timings

reported here, further differentiation experiments were initiated from LIF/FCS. Expression of

Figure 4 continued

showing that SOX2 protein (red) is reduced in SCKO and absent in SKO EpiSCs. NANOG protein levels (green) were unaffected. Protein levels

(normalized to the bactin level) are graphed below. (C) Bright-field morphology of E14Tg2a and SKO4 EpiSCs after 2 weeks (8 passages) in culture.

Scale bar, 100 mm. (D) Immunofluorescence staining of SOX2 and OCT4 in SCKO and SKO6 EpiSCs. Scale bar, 100 mm. (E) RT-qPCR analysis of the

indicated transcripts in E14Tg2a, Sox2fl/- (SCKO) and Sox2-/- (SKO) EpiSCs. Clone numbers are indicated. Error bars represent the standard error of the

mean (n = 2 to 3).

DOI: https://doi.org/10.7554/eLife.27746.014
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pluripotency markers Nanog and Nr5a2 was decreased in the neural differentiation protocol,

although with lower efficiency in Sox2fl/- ESCs than in control Sox2+/+ cells, while Fgf5 was

induced in both (Figure 7B). Strikingly, Sox1, Mash1 and Pax6 mRNAs were induced in Sox2+/+ but

not Sox2fl/- cells (Figure 7B), and an increase in Sox3 was not sustained. These data indicate that a

SOXB1 level above that present in Sox2fl/- cells is required to enable ESCs to undergo neural differ-

entiation in vitro. Furthermore, the expression of Fgf5 suggests that Sox2fl/- cells attain some aspects

of an early post-implantation identity (Figure 7B). This contrasts with the neural differentiation

observed in Sox2+/- mouse embryos (Avilion et al., 2003; Rizzoti and Lovell-Badge, 2007;

Favaro et al., 2009), suggesting that compensatory mechanisms other than SOXB1 redundancy

exist in the embryo.

To eliminate the possibility that the neural differentiation defect in SCKO cells resulted from a

defect unrelated to Sox2, CRISPR/Cas9 was used to introduce indels in the Sox2 ORF in E14Tg2a

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

0

5

10

15
70
80
90

%
 o

f 
s
e
q
u
e
n
c
e
s

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

0

5

10

15
60

70

80

%
 o

f 
s
e
q
u
e
n
c
e
s

Sox3 ORF

HMG

sgRNA1

sgRNA2

ATG Stop144 212

A

Lipofection with
sgRNA and

eCas9-2A-mCherry

Sorting of 
mCherry 
+ve cells

gDNA extraction, 
PCR and

TIDE analysis

2 days 3 days

B

C

out of frame indel (p < 0.001)in frame indel (p < 0.001)

<deletion  insertion>

E
1

4
T

g
2

a

(S
o

x
2

+
/+

; 
S

o
x
3

+
/Y

)

S
C

K
O

(S
o

x
2

; 
S

o
x
3

+
/Y

)

<deletion  insertion>

Sox3 sgRNA2Sox3 sgRNA1

S
K

O
6

(S
o

x
2

; 
S

o
x
3

+
/Y

)

S
K

O
1

(S
o

x
2

; 
S

o
x
3

+
/Y

)

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

0

5

10

15
60
70
80

%
 o

f 
s
e
q
u
e
n
c
e
s

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

0

5

10

15
60
70
80

%
 o

f 
s
e
q
u
e
n
c
e
s

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

0

5

10

15
60
70
80

%
 o

f 
s
e
q
u
e
n
c
e
s

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

0

5

10

15
60
70
80

%
 o

f 
s
e
q
u
e
n
c
e
s

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

0

5

10

15
70
80
90

%
 o

f 
s
e
q
u
e
n
c
e
s

-3
0

-2
7

-2
4

-2
1

-1
8

-1
5

-1
2 -9 -6 -3 0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

0

5

10

15
80

90

%
 o

f 
s
e
q
u
e
n
c
e
s

Figure 5. Sox3 indel analysis in Sox2-/- EpiSCs. (A) Schematic representation of the Sox3 ORF with the HMG box highlighted in dark blue. The amino-

acid positions of the HMG box relative to the start (ATG) codon of the ORF are shown. The positions of the sgRNAs 1 and 2 used are represented as

black bars. (B) Experimental design for Sox3 indel analysis in Sox2-/- EpiSCs. (C) Indel analysis performed using the TIDE tool (https://tide-calculator.nki.

nl/) in two Sox2-/- EpiSC lines (SKO1 and SKO6), in the parental Sox2fl/- (SCKO) EpiSCs and in control E14Tg2a EpiSCs using Sox3 sgRNAs 1 and 2.

Histograms represent indel frequency and size. Black bars indicate the frequency of unmodified (WT) alleles; grey bars indicate significant in frame

indels and red bars indicate significant out of frame indels (p<0.001). Non-significant (n/s, p�0.001) indels are not shown.

DOI: https://doi.org/10.7554/eLife.27746.015

The following figure supplements are available for figure 5:

Figure supplement 1.

DOI: https://doi.org/10.7554/eLife.27746.016

Figure supplement 2. Indel analysis performed using the TIDE tool (https://tide-calculator.nki.nl/) in SCKO ESCs expressing either Sox1, Sox3 or GFP

transgenes.

DOI: https://doi.org/10.7554/eLife.27746.017
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ESCs. Using independent sgRNAs, two Sox2+/- clones were isolated. Clone H2.1 carried an 8 bp

deletion on one Sox2 allele; clone BH1.21 carried a 10 bp deletion on one allele and a 3 bp deletion

on the other allele (Figure 7—figure supplement 1A). Two additional clones in which the Sox2

alleles were not modified (H2.14, H2.17) were used as controls. The �8 and �10 deletions cause

frame-shifts introducing stop codons, while the �3 bp deletion is likely to be functionally neutral as

it occurs N-terminal to the HMG domain (Figure 7—figure supplement 1B). Placing Sox2+/+ ESCs

(H2.14, H2.17 and E14Tg2a) in a neural differentiation protocol produced bIII-tubulin positive

neurons (Figure 7C). In contrast, no bIII-tubulin positive cells were detected from parallel treatments

of H2.1, BH1.21 and SCKO Sox2+/- (Figure 7C). This establishes that the lack of a functional Sox2

allele impairs effective neural differentiation of ESCs.

Neural differentiation of pluripotent cells is stimulated by FGF (Ying et al., 2003a; Ying and

Smith, 2003) and inhibited by both BMP and Nodal/Activin (Ying et al., 2003b; Vallier et al., 2004;

2009; Guo et al., 2009). To determine whether perturbations in these pathways could overcome

Figure 6. Increased SOXB1 levels skew ESC differentiation towards the neural lineage. (A) Schematic diagram showing the experimental plan. RT-qPCR

analysis of the indicated transcripts in SCKO cells stably transfected and rescued with a Sox2 transgene (12–24 hr prior to a 24 hr treatment with 4OHT)

(termed Sox2-rescued, S2R cells). Cells were grown in LIF/FCS conditions or differentiated in Activin/FGF conditions for 13 days (P2). Transcript levels

were normalized to Tbp and plotted relative to SCKO ESCs. Error bars represent standard error of the mean (n = 3 to 5). (B) Bright field images of the

indicated cells maintained in LIF/FCS or differentiated in Activin/FGF conditions (P2) . Scale bar, 100 mm. (C) Immunofluorescence staining of the neural

marker bIII-tubulin (cyan) in cells differentiated in Activin/FGF conditions (P2); DAPI represented in grey. Scale bar, 100 mm.

DOI: https://doi.org/10.7554/eLife.27746.018

The following figure supplement is available for figure 6:

Figure supplement 1. RT-qPCR analysis of the indicated transcripts in E14Tg2a cells, Sox2fl/- cells (SCKO), and Sox2-/- Sox3-rescued (S3R) cells

maintained in LIF/FCS or differentiated in Activin/FGF conditions (P2) .

DOI: https://doi.org/10.7554/eLife.27746.019
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Figure 7. Decreased SOX2 levels prevent ESC differentiation into neurons. (A) (TOP) Schematic diagram showing experimental plan for neural

differentiation. (MIDDLE) Sox1-GFP (Aubert et al., 2003) expression in 46C cells cultured in LIF/FCS (green) or LIF/2i (purple) and for the indicated

number of hours in N2B27 neural differentiation medium were assessed by flow cytometry. The positive (+) gate was set above the GFP expression

level observed in 46C ESCs. The error bars indicate the standard error of the mean (n = 4). (BOTTOM) RT-qPCR analysis of Sox1 mRNA level in 46C

Figure 7 continued on next page
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the neural differentiation defect of Sox2+/- ESCs, H2.1 and SCKO cells were placed in the neural dif-

ferentiation protocol supplemented with either recombinant bFGF or inhibitors of BMP or Nodal.

Additional FGF, or inhibition of Nodal alone, was without effect, while BMP inhibition resulted in

only a few bIII-tubulin-positive cells (Figure 7D). However, simultaneous BMP and Nodal inhibition

enabled Sox2+/- ESCs to form bIII-tubulin-positive cells (Figure 7D). These results indicate that a

reduction in SOX2 levels in ESCs enhances the response of cells to endogenous BMP and Nodal sig-

nalling, preventing effective neural differentiation.

To further investigate the effects of modulating SoxB1 gene dosage upon ESC differentiation,

Sox3-/Y ESCs were generated by CRISPR/Cas9 mediated gene deletion from heterozygous Sox2fl/-

ESCs (SCKO). PCR genotyping identified two Sox2fl/-; Sox3-/Y ESC clones (#36 and #37) (Figure 8A).

Quantitative transcript analysis showed that while Sox2fl/- ESCs had an expected reduction in Sox2

mRNA and unchanged levels of Sox1 and Sox3 mRNAs compared to E14Tg2a ESCs, deletion of

Sox3 from Sox2fl/- ESCs increased Sox1 and surprisingly, also Sox2 mRNA to a level similar to that

present in E14Tg2a ESCs (Figure 8B). These data suggest cross-regulatory interactions between

SoxB1 members in which SOX3 protein represses Sox1 and Sox2, either directly or indirectly, in

ESCs (Figure 8B). However, as Sox3 deletion in Sox2+/+ ESCs did not increase Sox1 and Sox2

mRNA levels (Figure 3D) this suggests that the repressive effect of SOX3 on Sox2 is sensitive to the

SOX2 protein concentration.

Next, the ability of Sox2fl/-; Sox3-/Y ESCs to transition to primed pluripotency was assessed by

passaging in Activin/FGF. Whereas Sox2fl/- EpiSCs could be successfully established and maintained

(Figure 4), Sox2fl/-; Sox3-/Y cells displayed a differentiated morphology within two passages. Quanti-

tative transcript analysis showed that in comparison to Sox2fl/- cells, Sox2fl/-; Sox3-/Y cells induced

less Fgf5 but more Mash1 and Pax6 (Figure 8C). These data suggest that while primed pluripotency

can be maintained in the absence of either Sox2 or Sox3, the transition from a naı̈ve ESC state to a

primed EpiSC state does not occur effectively when Sox3 is absent and the Sox2 gene dosage is

halved. Notably, compared to Sox2fl/- ESCs, Sox2fl/-; Sox3-/Y ESCs have the same Sox2 mRNA level

as Sox2+/+ ESCs and Sox1 mRNA is increased >10 fold (Figure 8B). Such an increase in Sox1 mRNA

expression is sufficient to enforce neural differentiation following LIF withdrawal (Zhao et al., 2004).

The increased levels of Sox1 and Sox2 mRNAs in LIF/FCS (Figure 8B), together with the

increased levels of neural differentiation markers during EpiSC induction of Sox2fl/-; Sox3-/Y ESCs

(Figure 8C), prompted us to examine the behaviour of Sox2fl/-; Sox3-/Y ESCs during neural differenti-

ation. While Sox2+/- ESCs did not effectively undergo neural differentiation (Figure 7), deletion of

Sox3 from Sox2fl/- ESCs was sufficient to rescue neural differentiation as judged by induction of

Sox1, Mash1 and Pax6 mRNAs and of the bIII-tubulin protein (Figure 8D, Figure 8—figure supple-

ment 1). This is likely a secondary consequence of the increase in Sox2/Sox1 mRNA expression

in Sox2fl/- ESCs resulting from Sox3 deletion (Figure 8B). The two Sox2+/+; Sox3-/Y ESC clones

(Figure 3A) were able to differentiate into neural cells with similar efficiency to parental cells as

shown by induction of Sox1, Mash1 and Pax6 mRNAs (Figure 8—figure supplement 2) and appear-

ance of bIII-tubulin-positive cells (Figure 8—figure supplement 1).

These data demonstrate that altering the SoxB1 genetic composition by deletion of Sox3 and

elimination of one functional Sox2 allele induces a transcriptional de-regulation of the remaining

Figure 7 continued

cells during neural differentiation. Error bars indicate the standard error of the mean (n = 2). (B) RT-qPCR analysis of the indicated transcripts in

differentiating E14Tg2a (E14, Sox2+/+) and SCKO (Sox2fl/�) cells. Transcript levels were normalized to Tbp. Error bars represent standard error of the

mean (n = 3). (C) Immunofluorescence staining of the neural marker bIII-tubulin (green) in Sox2+/+ E14Tg2a (E14), H2.14 and H2.17 ESCs, and in Sox2+/-

SCKO, H2.1 and BH1.21 ESCs differentiated in N2B27 medium for 4 days; DAPI represented in blue. Scale bar, 100 mm. (D) Immunofluorescence

staining of the neural marker bIII-tubulin (green) in Sox2+/-and H2.1 ESCs differentiated in N2B27 medium for 4 days in the presence or in the absence

of the LDN-193189 BMP inhibitor (BMPi), of the SB-431542 Nodal inhibitor (NODi) and of recombinant bFGF; DAPI represented in blue. Scale bar, 100

mm.

DOI: https://doi.org/10.7554/eLife.27746.020

The following figure supplement is available for figure 7:

Figure supplement 1. Genotyping analysis of four ESC clones generated after transfection of CRISPR/Cas9 reagents to induce indels within the Sox2

ORF in E14Tg2a ESCs.

DOI: https://doi.org/10.7554/eLife.27746.021
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Figure 8. Sox2/Sox3 requirements during EpiSCs differentiation. (A) Genotyping analysis of the Sox3 locus in E14Tg2a (E14, Sox2+/+), SCKO (Sox2fl/-)

ESCs (~2 kb band) and in two Sox2fl/-; Sox3-/Y ESC clones (#36 and #37) derived after deletion of the Sox3 locus (~600 bp band). Gene targeting was

performed following the strategy depicted in Figure 3A. (B) RT-qPCR analysis of the indicated transcripts in E14Tg2a ESCs (E14, Sox2+/+), SCKO ESCs

(Sox2fl/-) and in two Sox2fl/-; Sox3-/Y ESC clones (#36 and #37). mRNA levels were normalised over Tbp and plotted relative to E14Tg2a. Error bars

indicate the standard error of the mean (n = 3). (C) RT-qPCR analysis of the indicated transcripts in SCKO cells (Sox2fl/-) and in two Sox2fl/-; Sox3-/Y;

Sox2fl/- clones (#36 and #37) grown in LIF/FCS condition and in Activin/FGF conditions for 2 passages (P2). mRNA levels were normalised to Tbp and

plotted relative to ESCs (LIF/FCS). Error bars indicate the standard error of the mean (n = 3). (D) RT-qPCR analysis of the indicated transcripts in SCKO

cells (Sox2fl/-) and in two Sox2fl/-; Sox3-/Y clones (#36 and #37) grown in LIF/FCS condition and in neural differentiation medium (N2B27) for the

Figure 8 continued on next page
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SoxB1 alleles. The increased mRNA levels of Sox1 and Sox2 are then sufficient to rescue neural dif-

ferentiation of Sox2fl/- ESCs but also impair the ability of Sox2fl/-; Sox3-/Y ESCs to be captured as

primed EpiSCs.

Discussion
Our examination of SoxB1 function in pluripotent cells extends previous findings that SOXB1 pro-

teins can act redundantly in ESCs (Niwa et al., 2016) and during somatic cell reprogramming

(Nakagawa et al., 2008) by showing that in EpiSCs, SOX2 and SOX3 proteins are functionally redun-

dant within an altered PGRN. Functional redundancy implies that we can consider the total SOXB1

complement as a key factor in the outcomes selected by cells genetically engineered to express

varying combinations of functional SoxB1 alleles. In particular, a broad range of SOXB1 levels are tol-

erated by ESCs. However, upon exit from naı̈ve pluripotency, low SOXB1 levels permit entry to the

EpiSC state, while high levels enforce neural differentiation (Figure 9). We have also uncovered

cross-regulatory relationships between Sox3 and the other SoxB1 members, that we hypothesise act

to maintain an adequate SOXB1 level.

SOXB1 function in primed pluripotent cells is provided by SOX2 and
SOX3
In ESCs Sox2 mRNA is expressed at much higher levels than either Sox1 or Sox3, and thus, in spite

of redundancy, Sox2 can be considered to provide the dominant SOXB1 function in ESC pluripo-

tency. However, even though Sox2 is also the most abundant SoxB1 transcript in EpiSCs, functional

properties of the PGRN have changed. While Sox2 mRNA levels in EpiSCs are lower than in ESCs,

Sox3 levels are increased, and SoxB1 function is provided redundantly by Sox2 and Sox3. Sox1

mRNA levels are also increased in these cells. The ability of Sox1 or Sox3 to substitute functionally

for Sox2 in ESCs might suggest that Sox1 could also function redundantly with Sox2 to maintain

EpiSCs. However, Sox1 may be less relevant to pluripotency as, unlike Sox2 and Sox3, which are

widely expressed in the pluripotent postimplantation epiblast, Sox1 expression is uniquely associ-

ated with neural fate in the epiblast (Wood and Episkopou, 1999; Uchikawa et al., 2011;

Cajal et al., 2012; Figure 9). Indeed, Sox1 expression in EpiSC populations is associated with neural

committed cells (Tsakiridis et al., 2014).

SOXB1 redundancy in vivo
In the seminal Sox2 deletion study (Avilion et al., 2003), Sox2-/- embryos fail to develop a postim-

plantation epiblast. This was hypothesised to be due to the fact that neither Sox1 nor Sox3 were

expressed sufficiently at the time of embryonic failure and therefore no redundantly acting SOXB1

protein could compensate for the SOX2 absence. Additional instances of potential SoxB1 redun-

dancy have been reported in vivo. Replacement of an endogenous Sox2 allele with a Sox1 ORF pro-

duced no phenotype, suggestive of functional interchangeability (Ekonomou et al., 2005). SOXB1

redundancy is likely to be evolutionarily conserved since in the chick, Sox2 and Sox3 both promote

development of ectoderm and neurectoderm at gastrulation, although interestingly, in this case

Sox3 expression occurs before Sox2 (Acloque et al., 2011). Moreover, while genetic knock-ins have

shown that placement of Sox2 ORF at the Sox3 locus can rescue pituitary and testes phenotypes

Figure 8 continued

indicated number of hours. mRNA levels were normalised to Tbp and plotted relative to ESC (LIF/FCS). Error bars indicate the standard error of the

mean (n = 3).

DOI: https://doi.org/10.7554/eLife.27746.022

The following figure supplements are available for figure 8:

Figure supplement 1. Immunofluorescence staining of the neural marker bIII-tubulin (TUJ1, green) in the indicated cells grown for 96 hr in neural

differentiation medium (N2B27); DAPI staining represented in blue. Scale bar, 100 mm.

DOI: https://doi.org/10.7554/eLife.27746.023

Figure supplement 2. RT-qPCR analysis of the indicated transcripts in wild type E14Tg2a cells (Sox2+/+; Sox3+/Y) and in two Sox2+/+; Sox3-/Y clones

(S3KO8 and S3KO35) (see Figure 3) grown in LIF/FCS conditions and neural differentiation medium (N2B27) for the indicated number of hours.

DOI: https://doi.org/10.7554/eLife.27746.024
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Figure 9. Dependence of cell fate potential of ESCs on the total SOXB1 concentration. The overall SOXB1 concentration inferred from SoxB1 transcript

levels in different SoxB1 mutant cell lines. Naı̈ve ESCs self-renew in a wide range of SOXB1 concentrations. However, only ESCs with approximately

wild-type SOXB1 levels can differentiate towards both primed EpiSCs and neural cells. ESCs with increased SOXB1 concentrations are poised towards

neural differentiation, preventing their capture as primed EpiSCs in FGF/ActivinA. Decreased SOXB1 concentrations are insufficient to enable neural

Figure 9 continued on next page
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caused by Sox3 deletion (Adikusuma et al., 2017), the effects on pluripotent cells were not

assessed. It is therefore interesting that while Sox3-/Y mice can be viable, on a 129 genetic back-

ground they exhibit gastrulation-stage lethality (Rizzoti and Lovell-Badge, 2007; Adikusuma et al.,

2017). This suggests that aspects of the regulation of SoxB1 expression that we show here to be

important in vitro could also contribute to strain-specific differences in the timing or regulation of

SOXB1 activity in vivo. Further studies will be required to establish the extent to which SOXB1 pro-

teins can substitute genetically for one another in pluripotent cells in vivo.

Low SOXB1 levels permit entry to the EpiSC state
Our results indicate that the total SoxB1 transcript level in ESCs needs to be reduced to enable entry

into the EpiSC state rather than neural differentiation (Figure 9). Sox2+/- ESCs placed in a neural dif-

ferentiation protocol showed a reduced down-regulation of pluripotency markers (Nanog and

Nr5a2) and failed to induce markers of neural differentiation. Surprisingly however, deletion of Sox3

from SCKO cells to produce Sox2fl/-; Sox3-/Y ESCs restored neural differentiation capacity

(Figure 8D). Moreover, placement of Sox2fl/-; Sox3-/Y ESCs in an EpiSC differentiation protocol

resulted in a skewing of differentiation towards a neural identity as indicated by loss of Nanog,

Nr5a2 and Fgf5 transcripts, and increase in mRNAs for neural differentiation markers (Figure 8C).

This paradoxical behaviour may be explained by the fact that both Sox1 and Sox2 mRNAs increase

upon elimination of Sox3 from Sox2fl/- ESCs (Figure 8B). Interestingly, reciprocal repression of Sox3

by SOX2 also occurs in EpiSCs (Figure 4E). Unravelling the regulatory relationships between SoxB1

genes is a relevant point for future studies.

High SOXB1 levels enforce neural differentiation
Previous results have shown that elevating SOX1 or SOX2 expression in differentiating ESCs pro-

motes neural differentiation (Zhao et al., 2004). In the present study, we showed that ESCs with

either elevated SOX2 or SOX3 self-renew efficiently. However, when these cells were placed in an

EpiSC differentiation protocol, differentiation was skewed towards a neural identity despite the pres-

ence of FGF and neural-antagonising Activin signals (Vallier et al., 2004, 2009). This indicates that

enforced expression of SOXB1 proteins overrides the signalling system that captures primed pluripo-

tent cells in vitro.

Parallels between SOXB1 function during in vitro and in vivo
neurogenesis
The dynamics of ESC differentiation in vitro towards neural and EpiSC states show interesting paral-

lels with early development in vivo (Figure 9). While ESCs and pre-implantation embryos express

only Sox2, early post-implantation embryos, and differentiating ESCs, express Sox2 and Sox3 but

not Sox1 (Wood and Episkopou, 1999; Uchikawa et al., 2011; Cajal et al., 2012). At gastrulation

stages, which are transcriptomically similar to EpiSCs (Kojima et al., 2014), Sox2 and Sox3 are

expressed widely in the epiblast. As noted above, Sox1 expression is restricted to a subdomain

within the Sox2/Sox3-positive epiblast that overlaps extensively with the prospective brain

(Wood and Episkopou, 1999; Cajal et al., 2012), where early neural differentiation occurs in vivo.

Thus, the region expressing all three SOXB1 members might undergo neural induction as a conse-

quence of expressing high levels of SOXB1 proteins, while the rest of the epiblast experiences lower

SOXB1 levels, enabling pluripotency to extend through gastrulation (Osorno et al., 2012).

Figure 9 continued

differentiation due to increased activity of neural antagonists (BMP and Nodal). A further reduction in SOXB1 is tolerated in the primed state due to

SOX2/SOX3 functional redundancy but complete loss of the predominant SoxB1 forms is incompatible with self-renewal of both naı̈ve and primed

pluripotent cells. Depicted below are diagrams of pre- (E3.5) and postimplantation (E5.5 and E7.5) mouse embryos indicating the published expression

patterns of SoxB1 mRNAs (Wood and Episkopou, 1999; Uchikawa et al., 2011; Avilion et al., 2003; Cajal et al., 2012), and the areas of BMP/Nodal

signalling and inhibition during gastrulation (Constam and Robertson, 2000; Bachiller et al., 2000; Kinder et al., 2001; Levine et al., 2006;

Pereira et al., 2012; Norris et al., 2002; Lawson et al., 1999; Perea-Gomez et al., 2002).

DOI: https://doi.org/10.7554/eLife.27746.025
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An interplay between SOXB1 function and anti-neural signals
Inhibition of both BMP and Nodal signalling rescues the neural differentiation ability of Sox2+/-

ESCs. These results suggest that Sox2+/- ESCs can initiate exit from naı̈ve pluripotency but cannot

complete neural differentiation due to enhanced responses of cells to endogenous anti-neuralising

signalling by BMP and Nodal. The viability of Sox2+/- mice (Avilion et al., 2003; Rizzoti and Lovell-

Badge, 2007; Favaro et al., 2009) indicates that the in vivo environment is able to overcome these

anti-neural signals. In wild-type embryos, the prospective brain is shielded from Nodal and BMP sig-

nalling by secreted inhibitors of these pathways, including Cer1, Lefty1/2 (Perea-Gomez et al.,

2002), Chrd and Nog (Bachiller et al., 2000) (Figure 9). Removal of either Nodal or BMP inhibition

leads to absence of anterior neural tissue. Interestingly, the cells that express these inhibitors (includ-

ing the anterior visceral endoderm and node) do not express SOXB1 proteins and are therefore

likely to be functionally unaltered in Sox2+/- embryos. The observation that the reduced SOXB1 con-

centration in Sox2+/- pluripotent cells is compatible with neural differentiation, provided that endog-

enous anti-neuralising signals are blocked, indicates that to fully understand how the choice

between neural and primed pluripotency is made, it will be necessary to elucidate how the signalling

environment connects to the SOXB1-driven transcriptional programme.

Materials and methods

Cell culture
For a complete list of cell lines, their name, their genotypes and their original characterisation, see

Supplementary file 2. All the cell lines used in this study were regularly tested for contaminations

and were mycoplasma negative.

ESCs grown in LIF/FCS conditions were cultured on dishes coated with 1% gelatin (Sigma-

Aldrich, St. Louis, USA) and in GMEM medium (Sigma-Aldrich, St. Louis, USA) supplemented with 1x

non-essential aminoacids (Life Technologies, Waltham, USA), 1 mM sodium pyruvate (Life

Technologies, Waltham, USA), 2 mM glutamine (Life Technologies, Waltham, USA), 100 U/ml human

LIF (Nichols et al., 1990), 10% ESC-grade FCS (APS, UK) and 100 mM b-mercaptoethanol (Life

Technologies, Waltham, USA). G418 (200 mg/mL, Sigma-Aldrich, St. Louis, USA) was supplemented

to maintain SCKO ESCs.

To adapt ESCs into LIF/2i/N2B27 (Ying et al., 2008) (LIF/2i) or LIF/BMP4/N2B27 (Ying et al.,

2003b) (LIF/BMP) conditions, ESCs were replated in LIF/FCS on gelatin-coated plates for 24 hr

before changing the culture media to N2B27 medium (Ying and Smith, 2003) supplemented with

100 U/ml LIF, 1 mM PD0325901 (Stemgent, Cambridge, USA) and 3 mM CHIR99021

(Stemgent, Cambridge, USA) (LIF/2i) or 10 ng/ml BMP4 (Life Technologies, Waltham, USA) (LIF/

BMP). Cells were passaged for at least four passages before using for analysis.

EpiSCs were derived from LIF/FCS-cultured ESCs as described previously (Guo et al., 2009;

Osorno et al., 2012) and cultured on dishes pre-coated with 7.5 mg/ml fibronectin (Sigma-Aldrich,

St. Louis, USA) without feeders in N2B27 medium (Ying and Smith, 2003) ActivinA (20 ng/ml,

Peprotech, UK), bFGF (10 ng/ml, Peprotech, UK). In brief, ESCs were plated at a density of 3 � 103

cells/cm2; the equivalent of 30 � 103 cells per well of a six well plate. Medium was changed to Acti-

vin/FGF conditions 24 hr after replating. Cells were passaged after 4–5 days in a 1:20 dilution for the

first 8–10 passages. Stable EpiSC lines were propagated by passaging in a 1:10-1:20 dilution.

For neural differentiation, ESCs were cultured with minor modifications as previously described

(Ying et al., 2003a; Ying and Smith, 2003). Briefly, ESCs were replated in LIF/FCS on gelatin-coated

plates for 24 hr before changing the culture media to N2B27 medium (Ying and Smith, 2003) only

and allowed to grow for the indicated amount of time. When indicated, cells were differentiated in

the presence of bFGF (10 ng/ml, Peprotech, UK), LDN-193189 (100 nM,

Stemgent, Cambridge, USA) and/or SB-431542 (10 mM, Merck, Germany).

Sox2 deletion in ESCs and EpiSCs
Sox2 deletion in SCKO ESCs was performed similarly to previously described (Gagliardi et al.,

2013; Favaro et al., 2009). In brief, 107 SCKO ESCs grown in LIF/FCS conditions were transfected

using Lipofectamine 3000 (Life Technologies, Waltham, USA) with 6–15 mg of transgene-expressing

plasmid the indicated test cDNA before replated in LIF/FCS at a density of 1.5 � 106 per 10 cm dish
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cultured overnight in the presence or in the absence of 4-hydroxytamoxifen (1 mM, Sigma-

Aldrich, St. Louis, USA). Medium was changed 12 to 24 hr later to LIF/FCS medium supplemented

with Hygromycin B (150 mg/mL, Roche, Switzerland). Transfected cells were cultured for 8 to 10 days

before they were stained for alkaline phosphatase (AP) activity (Sigma-Aldrich, St. Louis, USA).

Stained colonies were scored based on the presence of AP-positive cells within the colony. In paral-

lel, unstained populations were expanded to generate cell lines before genotyping by PCR.

SCKO EpiSCs were transfected with ptdTomato-T2A-Cre by lipofection (Lipofectamine 2000, Life

Technologies, Waltham, USA). After 12–24 hours cells were sorted for tdTomato expression and

replated in the presence of ROCK inhibitor (Y-27632, Merck, Germany) for 24 hr before medium was

changed to remove ROCK inhibitor. Clones were expanded before genotyping by PCR.

CRISPR/Cas9 deletion of the Sox3 gene
Two sgRNAs were designed upstream of the ATG (sgRNA1) and downstream of the stop codon

(sgRNA2) using an online CRISPR Design Tool (http://crispr.mit.edu/) and subsequently cloned in the

BbsI-linearised pSpCas9(BB)�2A-GFP plasmid (Addgene 48138) as previously described (Ran et al.,

2013). sgRNA sequences used in this study are listed in Supplementary file 3. 106 E14Tg2a ESCs

were co-transfected with 1 mg of sgRNA1-encoding plasmid and 1 mg of sgRNA2-encoding plasmid

using Lipofectamine 3000 (Life Technologies, Waltham, USA) following the manufacturer’s instruc-

tions. 24 hr after transfection, GFP-positive cells were sorted by FACS and replated at clonal density

to allow the isolation of single colonies. After 8–10 days, single ESC colonies were expanded and

the Sox3 locus was genotyped by PCR.

Indel induction and TIDE analysis
SgRNAs targeting the Sox2 or Sox3 ORF immediately upstream of the sequence encoding for the

HMG box were designed using an online CRISPR Design Tool (http://crispr.mit.edu/). The Sox2

sgRNA was subsequently cloned in the BbsI-linearised pSpCas9(BB)�2A-Puro (PX459) V2.0 plasmid

(Addgene 62988) as previously described (Ran et al., 2013). The resulting plasmid, or the empty

vector control, were then transfected using Lipofectamine 3000 (Life Technologies, Waltham, USA)

into SCKO ESCs constitutively expressing either SOX1, SOX3 or GFP. After 24 hr, ESCs were

selected with 1.5 mg/ml of puromycin (Life Technologies, Waltham, USA) for 24 hr to enrich for trans-

fected cells, and then expanded for 72 hr. For Sox3 indel analysis, two individual sgRNAs were

cloned in BbsI-linearised pSpCas9(BB)�2A-mCherry that was obtained by fusing a 2A-mCherry cas-

sette to the Cas9 CDS of the eSpCas9(1.1) plasmid (Addgene 71814). 106 E14Tg2a (Sox2+/+), SCKO

(Sox2fl/-), SKO1 (Sox2-/-) and SKO6 (Sox2-/-) EpiSCs were then transfected with 1 mg of sgRNA-con-

taining plasmids or empty vector using Lipofectamine 3000 (Life Technologies, Waltham, USA). 48 hr

after transfection, mCherry-positive cells were FACS sorted, replated and expanded for 72 hr. Geno-

mic DNA (gDNA) was extracted using the DNeasy Blood and Tissue kit (Qiagen, Germany) following

the manufacturer’s instructions. gDNA was PCR amplified using the Q5 HotStart Polymerase

(NEB, Ipswich, USA) and primers flanking either the Sox2 sgRNA or Sox3 sgRNAs recognition sites.

Primers and sgRNAs used in this study are listed in Supplementary file 3. PCR amplicons were puri-

fied and submitted for Sanger sequencing using the same forward primer that they had been gener-

ated with. Sanger sequencing electropherograms were then submitted for indel analysis with the

TIDE tool (https://tide-calculator.nki.nl/, [Brinkman et al., 2014]) using amplicons obtained from

cells transfected with empty vector as reference sequences. Indel analysis was performed using the

default TIDE settings and a window of 27 bp for SCKO ESCs and Sox2 indel induction, and a window

of 30 bp for EpiSCs and Sox3 indel induction. Indels with p value >0.001 were scored as statistically

significant.

PCR genotyping
Genomic DNA (gDNA) was extracted from cells using DNeasy kits (Qiagen, Germany) according to

the manufacturer’s recommended protocol. 100 ng of gDNA was used per PCR reaction. Primers

used in this study are listed in Supplementary file 3.
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Plasmid constructs
A mouse genomic BAC containing 5 kb on either side of the Sox2 stop codon (Source bioscience

bMQ314D22) was shredded by pSC101-BAD-gbaA mediated recombineering using the pACYC177

backbone comprising the p15-origin and b-lactamase gene to produce pSox2-10kb. To construct

the Sox2-T2A-H2B-tdTomato-IRES-Neo cassette, 89 bp and 168 bp immediately upstream and

downstream of, and excluding the Sox2 stop codon were PCR amplified to serve as homology arms

for recombineering. The 89 bp upstream fragment has a 5’ Xho I site and a GSG-T2A sequence at

the 3’ end containing an in-frame Fse I site that preserves the T2A Gly-Pro residues and is followed

by Not I, Pac I, Asc I, San DI, Bam HI, Afl II, Nhe I, Cla I and Xho I sites. The sequence of this fusion

is shown below:

GGCTCCGGAGAGGGCAGAGGAAGTCTGCTAACATGCGGTGACGTCGAGGAGAATCC

TGGGCCGGCCGCGGCCGCTTAATTAAGGCGCGCCGGGACCCGGATCCGCTTAAGGCTAGCA

TCGATTCTCGAG

The 89 bp fragment was cloned into a PCR amplified, pUC19-derived 2 kb minimal vector com-

prising b-lactamase gene and Col E1 origin with 150nt flanking sequences and a single Xho I site

(pL). Individual features were PCR-amplified, flanked with unique sites and cloned as follows: H2B-

tdTomato was cloned in-frame between Fse I and Not I, using TAA stop codon from Pac I; Gtx-IRES

was cloned between Pac I and Asc I; neomycin phosphotransferase (Npt) was cloned between San

DI and Bam HI, using the TAA stop codon from Afl II. The 168 bp downstream fragment is flanked

with Nhe I at the 5’ side and Cla I at the 3’ end and was cloned between Nhe I and Cla I (pL-Sx-

5HTiN3).

To insert a selection cassette for use in recombineering and targeting, a linker was made by

annealing the following two oligonucleotides:

TCGAGCTTAAGGTCGACAGATCTCGATCGGCTAGCC

TCGAGGCTAGCCGATCGAGATCTGTCGACCTTAAGC

The linker was cloned into the Xho I site of a pTOPO-BluntII-derived, Zeocin-resistant version of

pL (pZ-Linker). A 3.6 kb Bam HI fragment containing PGK-EM7-Npt-pA and MC1-HSVtk-pA flanked

by FRT sites (FNF) was subcloned from pBS-M179 (a kind gift from Dr. Andrew Smith) into the Bgl II

site of pZ-Linker (pZ-FNF), destroying the Bam HI and Bgl II sites. This places an Afl II site on one

side and Nhe I site on the other side of the FNF cassette and these are used to subclone into pL-Sx-

5HTiN3 to make pL-Sx-5HTiNFNF3.

To make the targeting vector, a 7.1 kb Xho I-Cla I fragment from pL-Sx-5HTiNFNF3 was trans-

fected into E. coli containing pSox2-10kb and pSC101-BAD-gbaA to replace the Sox2 stop codon

by recombineering. Successful kanamycin-resistant recombinants carrying a 20 kb targeting vector

(pSox2AHTiN-FNF-10kb) were amplified at 37˚C to restrict pSC101-BAD-gbaA replication and iden-

tified by diagnostic Bam HI digest.

The targeting construct was linearised, electroporated into E14Tg2a ESCs and G418 resistant col-

onies expanded and genotyped by southern blot analysis as described below. The FRT-flanked cas-

sette was removed by transiently transfecting pPGK-FlpO into verified E14TG2a-derived Sox2-

tdTomato ESC clone 18 (TST18).

Overexpression constructs were generated by cloning open reading frames (ORFs) of indicated

Sox genes, preceeded upstream by the Kozak consensus sequence (GCCGCCACC), into pPyCAG-

IRES-Hyg vector between the XhoI and NotI sites (Chambers et al., 2003).

Southern blot analysis
40 mg of genomic DNA were digested with Eco RI (5’ probe analysis) or with Hind III (3’ and internal

probe analysis) and assessed by Southern blot analysis using probes synthesised by PCR from the oli-

gonucleotides indicated in Supplementary file 3.

RNA level quantification
Total RNA was purified from cells using RNeasy mini kits (Qiagen, Germany) following the manufac-

turer’s protocol. cDNA was prepared from 1 mg of total RNA using SuperScript III reverse transcrip-

tion kits (Life Technologies, Waltham, USA) according to the recommended protocol and the final

cDNA solution was diluted 1:10 prior to use. 2 ml of cDNA solution was used per reaction with the
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Takyon Sybr Assay (Eurogentec, Belgium). Primers used in this study are listed in

Supplementary file 3.

Microarray gene expression analysis
Total RNA (127 ng/sample) from three independently replicated experiments was converted into

biotin-labelled cRNA using the Illumina TotalPrep RNA amplification kit (Ambion, Cambridge, USA).

Microarray hybridization reactions were performed on a Mouse WG-6v2 BeadChip (Illumina). Raw

data were normalised in R using the beadarray (Dunning et al., 2007), limma (Smyth, 2005) and sva

(Leek and Storey, 2007) packages from the Bioconductor suite (Gentleman et al., 2004). Briefly,

low-quality probes were removed from the input and data were then quantile-normalized. ComBat

was used to account for batch effects (Leek and Storey, 2007) between microarrays run at different

dates. Differential expression in the log2-transformed data was assessed with the limma algorithms

(Smyth, 2005). Probes were considered differentially expressed if they showed a FDR-adjusted

p-value of � 0.1 and an absolute log2 fold change � log2(1.5). Primary analysis results were

uploaded to GeneProf (Halbritter et al., 2011) and mapped to Ensembl-based reference genes, col-

lapsing multiple probes for the same gene by picking the most responsive probe (i.e., the probe

with the highest absolute fold change across all pair-wise comparisons). Data are available in

Supplementary file 1. Microarray data have been submitted to the Gene Expression Omnibus

(GEO) under accession code GSE99185.

Immunofluorescence staining
Cells were fixed with 4% PFA (10 mins, RT) and permeabilised using PBS/0.1% (v/v) Triton-X100

(PBSTr) for 10 mins, before quenching with 0.5M Glycine/PBSTr (15 mins). Non-specific antigens

were blocked using 3% (v/v) donkey serum/1% (v/v) BSA/PBSTr (1 hr, RT) before incubating with pri-

mary antibody in blocking solution (4˚C, overnight). Cells were washed with PBSTr before incubating

with donkey-raised secondary antibodies conjugated with Alexa-488,–568 or �647 in blocking solu-

tion (1–2 hr, RT). DAPI (1–2 mg/mL, Molecular Probes) in PBS was added to cells for at least 30 mins

before imaged using the Olympus IX51 inverted fluorescent microscope. Primary antibodies used

were: a-SOX2 (1:400; Abcam ab92494, UK ), a-NANOG (1:500; eBioscience 14–5761,

Cambridge, USA) and a-OCT4 (1:400; Santa Cruz Biotechnology sc8628, Santa Cruz, USA), a-SOX3

antibody (1:400; Abcam ab42471, UK ), a-bIII-tubulin (1:1500; Covance MMS-435P, Princeton, USA ).

Immunoblotting analysis
Cells were lysed with lysis buffer comprising 50 mM Tris pH 8.0, 150 mM NaCl supplemented with

fresh 0.5% NP-40, 0.5 mM DTT, 1 � protease inhibitors cocktail (Roche, Switzerland) and 1.3 ml of

Benzonase (Novagen, Germany) (1 hr, 4˚C). Samples were prepared by boiling 40 mg of total protein

extract with Laemmli buffer (Life Technologies, Cambridge, USA) . Samples were analysed using Bolt

10% Bis-Tris +SDS PAGE (Life Technologies, Cambridge, USA) and electroblotted onto 0.2 mm pore

Whatman-Protran nitrocellulose membranes (Capitol Scientific, Austin, USA) in transfer buffer com-

prising 25 mM Tris/0.21M glycine/20% methanol. Membranes were blocked using 5% (w/v) low-fat

milk in 0.01% (v/v) Tween-20/PBS (PBSTw) before incubating with primary antibody in blocking solu-

tion . Membranes were washed with PBSTw before incubating with donkey-raised secondary anti-

bodies conjugated with IRDye 800CW (1:10000; LI-COR 926–32213, Lincoln, USA) and HRP-

conjugated a-bActin (1:10000; Abcam ab20272, UK) antibody. HRP-staining was developed using a

Super-signal West Pico kit (Pierce, Cambridge, USA) before imaging the membranes using LI-COR

Odyssey Fc imager. The primary antibodies used were: a-Sox2 (1:1000; Abcam ab92494, UK) and a-

Nanog (1:2000; Bethyl Laboratories A300-397A, Montgomery, USA).

Embryo manipulation
Mice were maintained on a 12 hr light/dark cycle. All animals were maintained and treated in accor-

dance with guidance from the UK Home Office. Embryonic day (E)0.5 was designated as noon on

the day of finding a vaginal plug. Morula aggregations, blastocyst injections and embryo transfer

were performed using standard procedures. Chimeric, gastrulation-stage embryos were collected at

E7.5 and imaged using an inverted fluorescence microscopy. Chimeric E9.5 embryos were fixed with
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4% PFA at 4˚C for 3 hr and cryosectioned as described before (Wymeersch et al., 2016). Sections

were stained for GFP as described above.
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