Investigating molecular crowding within nuclear pores using polarization-PALM

  1. Guo Fu
  2. Li-Chun Tu
  3. Anton Zilman
  4. Siegfried M Musser  Is a corresponding author
  1. The Texas A&M University Health Science Center, United States
  2. University of Toronto, Canada

Abstract

The key component of the nuclear pore complex (NPC) controlling permeability, selectivity, and the speed of nucleocytoplasmic transport is an assembly of natively unfolded polypeptides, which contain phenylalanine-glycine (FG) binding sites for nuclear transport receptors. The architecture and dynamics of the FG-network have been refractory to characterization due to the paucity of experimental methods able to probe the mobility and density of the FG-polypeptides and embedded macromolecules within intact NPCs. Combining fluorescence polarization, super-resolution microscopy, and mathematical analyses, we examined the rotational mobility of fluorescent probes at various locations within the FG-network under different conditions. We demonstrate that polarization PALM (p-PALM) provides a rich source of information about low rotational mobilities that are inaccessible with bulk fluorescence anisotropy approaches, and anticipate that p-PALM is well-suited to explore numerous crowded cellular environments. In total, our findings indicate that the NPC's internal organization consists of multiple dynamic environments with different local properties.

Article and author information

Author details

  1. Guo Fu

    Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M University Health Science Center, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Li-Chun Tu

    Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M University Health Science Center, College Station, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anton Zilman

    Department of Physics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8523-6703
  4. Siegfried M Musser

    Department of Molecular and Cellular Medicine, College of Medicine, The Texas A&M University Health Science Center, College Station, United States
    For correspondence
    smusser@tamhsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7793-2557

Funding

National Institutes of Health (GM084062)

  • Siegfried M Musser

Welch Foundation (BE-1541)

  • Siegfried M Musser

Canadian National Science and Engineering Research Council (RGPIN-2016-06591)

  • Anton Zilman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karsten Weis, ETH Zurich, Switzerland

Version history

  1. Received: May 18, 2017
  2. Accepted: September 25, 2017
  3. Accepted Manuscript published: September 26, 2017 (version 1)
  4. Version of Record published: November 17, 2017 (version 2)

Copyright

© 2017, Fu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,652
    views
  • 502
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guo Fu
  2. Li-Chun Tu
  3. Anton Zilman
  4. Siegfried M Musser
(2017)
Investigating molecular crowding within nuclear pores using polarization-PALM
eLife 6:e28716.
https://doi.org/10.7554/eLife.28716

Share this article

https://doi.org/10.7554/eLife.28716

Further reading

    1. Structural Biology and Molecular Biophysics
    Hitendra Negi, Aravind Ravichandran ... Ranabir Das
    Research Article

    The proteasome controls levels of most cellular proteins, and its activity is regulated under stress, quiescence, and inflammation. However, factors determining the proteasomal degradation rate remain poorly understood. Proteasome substrates are conjugated with small proteins (tags) like ubiquitin and Fat10 to target them to the proteasome. It is unclear if the structural plasticity of proteasome-targeting tags can influence substrate degradation. Fat10 is upregulated during inflammation, and its substrates undergo rapid proteasomal degradation. We report that the degradation rate of Fat10 substrates critically depends on the structural plasticity of Fat10. While the ubiquitin tag is recycled at the proteasome, Fat10 is degraded with the substrate. Our results suggest significantly lower thermodynamic stability and faster mechanical unfolding in Fat10 compared to ubiquitin. Long-range salt bridges are absent in the Fat10 structure, creating a plastic protein with partially unstructured regions suitable for proteasome engagement. Fat10 plasticity destabilizes substrates significantly and creates partially unstructured regions in the substrate to enhance degradation. NMR-relaxation-derived order parameters and temperature dependence of chemical shifts identify the Fat10-induced partially unstructured regions in the substrate, which correlated excellently to Fat10-substrate contacts, suggesting that the tag-substrate collision destabilizes the substrate. These results highlight a strong dependence of proteasomal degradation on the structural plasticity and thermodynamic properties of the proteasome-targeting tags.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.