Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data

  1. Pengcheng Zhou  Is a corresponding author
  2. Shanna L Resendez
  3. Jose Rodriguez-Romaguera
  4. Jessica C Jimenez
  5. Shay Q Neufeld
  6. Andrea Giovannucci
  7. Johannes Friedrich
  8. Eftychios A Pnevmatikakis
  9. Garret D Stuber
  10. Rene Hen
  11. Mazen A Kheirbek
  12. Bernardo L Sabatini
  13. Robert E Kass
  14. Liam Paninski
  1. Carnegie Mellon University, United States
  2. University of North Carolina at Chapel Hill, United States
  3. Columbia University, United States
  4. Harvard Medical School, United States
  5. Flatiron Institute, Simons Foundation, United States
  6. University of California, San Francisco, United States

Abstract

In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Pengcheng Zhou

    Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    zhoupc1988@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1237-3931
  2. Shanna L Resendez

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose Rodriguez-Romaguera

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica C Jimenez

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shay Q Neufeld

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Giovannucci

    Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Friedrich

    Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1321-5866
  8. Eftychios A Pnevmatikakis

    Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Garret D Stuber

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1730-4855
  10. Rene Hen

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mazen A Kheirbek

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bernardo L Sabatini

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Robert E Kass

    Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Liam Paninski

    Department of Statistics, Columbia University, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health

  • Pengcheng Zhou
  • Jessica C Jimenez
  • Rene Hen
  • Mazen A Kheirbek
  • Robert E Kass

New York State Stem Cell Science

  • Jessica C Jimenez
  • Rene Hen

Hope for Depression Research Foundation

  • Jessica C Jimenez
  • Rene Hen

Canadian Institutes of Health Research

  • Shay Q Neufeld

Simons Foundation

  • Andrea Giovannucci
  • Johannes Friedrich
  • Eftychios A Pnevmatikakis
  • Garret D Stuber
  • Liam Paninski

International Mental Health Research Organization

  • Mazen A Kheirbek

National Institute of Neurological Disorders and Stroke

  • Bernardo L Sabatini

National Institute on Drug Abuse

  • Pengcheng Zhou
  • Jose Rodriguez-Romaguera
  • Garret D Stuber

Intelligence Advanced Research Projects Activity

  • Pengcheng Zhou
  • Liam Paninski

Defense Advanced Research Projects Agency

  • Liam Paninski

Army Research Office

  • Liam Paninski

National Institute of Biomedical Imaging and Bioengineering

  • Liam Paninski

Eunice Kennedy Shriver National Institute of Child Health and Human Development

  • Shanna L Resendez
  • Garret D Stuber

Howard Hughes Medical Institute

  • Jessica C Jimenez

National Institute on Aging

  • Jessica C Jimenez
  • Rene Hen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: These procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, as adopted by the NIH, and with approval from the Harvard Standing Committee on Animal Care (protocol number: IS00000571 ), or the University of North Carolina Institutional Animal Care and Use Committee (UNC IACUC, protocol number: 16-075.0), or the New York State Psychiatric Institutional Animal Care and Use Committee (protocol number: NYSPI-1412 ).

Copyright

© 2018, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 30,330
    views
  • 4,006
    downloads
  • 563
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengcheng Zhou
  2. Shanna L Resendez
  3. Jose Rodriguez-Romaguera
  4. Jessica C Jimenez
  5. Shay Q Neufeld
  6. Andrea Giovannucci
  7. Johannes Friedrich
  8. Eftychios A Pnevmatikakis
  9. Garret D Stuber
  10. Rene Hen
  11. Mazen A Kheirbek
  12. Bernardo L Sabatini
  13. Robert E Kass
  14. Liam Paninski
(2018)
Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data
eLife 7:e28728.
https://doi.org/10.7554/eLife.28728

Share this article

https://doi.org/10.7554/eLife.28728

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.