Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data

  1. Pengcheng Zhou  Is a corresponding author
  2. Shanna L Resendez
  3. Jose Rodriguez-Romaguera
  4. Jessica C Jimenez
  5. Shay Q Neufeld
  6. Andrea Giovannucci
  7. Johannes Friedrich
  8. Eftychios A Pnevmatikakis
  9. Garret D Stuber
  10. Rene Hen
  11. Mazen A Kheirbek
  12. Bernardo L Sabatini
  13. Robert E Kass
  14. Liam Paninski
  1. Carnegie Mellon University, United States
  2. University of North Carolina at Chapel Hill, United States
  3. Columbia University, United States
  4. Harvard Medical School, United States
  5. Flatiron Institute, Simons Foundation, United States
  6. University of California, San Francisco, United States

Abstract

In vivo calcium imaging through microendoscopic lenses enables imaging of previously inaccessible neuronal populations deep within the brains of freely moving animals. However, it is computationally challenging to extract single-neuronal activity from microendoscopic data, because of the very large background fluctuations and high spatial overlaps intrinsic to this recording modality. Here, we describe a new constrained matrix factorization approach to accurately separate the background and then demix and denoise the neuronal signals of interest. We compared the proposed method against previous independent components analysis and constrained nonnegative matrix factorization approaches. On both simulated and experimental data recorded from mice, our method substantially improved the quality of extracted cellular signals and detected more well-isolated neural signals, especially in noisy data regimes. These advances can in turn significantly enhance the statistical power of downstream analyses, and ultimately improve scientific conclusions derived from microendoscopic data.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Pengcheng Zhou

    Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States
    For correspondence
    zhoupc1988@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1237-3931
  2. Shanna L Resendez

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jose Rodriguez-Romaguera

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jessica C Jimenez

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shay Q Neufeld

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrea Giovannucci

    Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Johannes Friedrich

    Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1321-5866
  8. Eftychios A Pnevmatikakis

    Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Garret D Stuber

    Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1730-4855
  10. Rene Hen

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mazen A Kheirbek

    Department of Psychiatry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Bernardo L Sabatini

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Robert E Kass

    Center for the Neural Basis of Cognition and Machine Learning Department, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Liam Paninski

    Department of Statistics, Columbia University, Columbia, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute of Mental Health

  • Pengcheng Zhou
  • Jessica C Jimenez
  • Rene Hen
  • Mazen A Kheirbek
  • Robert E Kass

New York State Stem Cell Science

  • Jessica C Jimenez
  • Rene Hen

Hope for Depression Research Foundation

  • Jessica C Jimenez
  • Rene Hen

Canadian Institutes of Health Research

  • Shay Q Neufeld

Simons Foundation

  • Andrea Giovannucci
  • Johannes Friedrich
  • Eftychios A Pnevmatikakis
  • Garret D Stuber
  • Liam Paninski

International Mental Health Research Organization

  • Mazen A Kheirbek

National Institute of Neurological Disorders and Stroke

  • Bernardo L Sabatini

National Institute on Drug Abuse

  • Pengcheng Zhou
  • Jose Rodriguez-Romaguera
  • Garret D Stuber

Intelligence Advanced Research Projects Activity

  • Pengcheng Zhou
  • Liam Paninski

Defense Advanced Research Projects Agency

  • Liam Paninski

Army Research Office

  • Liam Paninski

National Institute of Biomedical Imaging and Bioengineering

  • Liam Paninski

Eunice Kennedy Shriver National Institute of Child Health and Human Development

  • Shanna L Resendez
  • Garret D Stuber

Howard Hughes Medical Institute

  • Jessica C Jimenez

National Institute on Aging

  • Jessica C Jimenez
  • Rene Hen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: These procedures were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, as adopted by the NIH, and with approval from the Harvard Standing Committee on Animal Care (protocol number: IS00000571 ), or the University of North Carolina Institutional Animal Care and Use Committee (UNC IACUC, protocol number: 16-075.0), or the New York State Psychiatric Institutional Animal Care and Use Committee (protocol number: NYSPI-1412 ).

Copyright

© 2018, Zhou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 30,082
    views
  • 3,982
    downloads
  • 563
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pengcheng Zhou
  2. Shanna L Resendez
  3. Jose Rodriguez-Romaguera
  4. Jessica C Jimenez
  5. Shay Q Neufeld
  6. Andrea Giovannucci
  7. Johannes Friedrich
  8. Eftychios A Pnevmatikakis
  9. Garret D Stuber
  10. Rene Hen
  11. Mazen A Kheirbek
  12. Bernardo L Sabatini
  13. Robert E Kass
  14. Liam Paninski
(2018)
Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data
eLife 7:e28728.
https://doi.org/10.7554/eLife.28728

Share this article

https://doi.org/10.7554/eLife.28728

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Choongheon Lee, Mohammad Shokrian ... Jong-Hoon Nam
    Research Article

    We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.