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Abstract The existence of abnormal connectivity patterns between resting state networks in

neuropsychiatric disorders, including Autism Spectrum Disorder (ASD), has been well established.

Traditional treatment methods in ASD are limited, and do not address the aberrant network

structure. Using real-time fMRI neurofeedback, we directly trained three brain nodes in participants

with ASD, in which the aberrant connectivity has been shown to correlate with symptom severity.

Desired network connectivity patterns were reinforced in real-time, without participants’ awareness

of the training taking place. This training regimen produced large, significant long-term changes in

correlations at the network level, and whole brain analysis revealed that the greatest changes were

focused on the areas being trained. These changes were not found in the control group. Moreover,

changes in ASD resting state connectivity following the training were correlated to changes in

behavior, suggesting that neurofeedback can be used to directly alter complex, clinically relevant

network connectivity patterns.

DOI: https://doi.org/10.7554/eLife.28974.001

Introduction
Autism Spectrum Disorder (ASD) refers to a group of neurobiological disorders, which affect a grow-

ing proportion of the population. Patients with ASD suffer from a range of social and communication

impairments, along with other characteristic behaviours and deficits. Behavioural treatment options

are limited in their efficacy, and often do not generalize well beyond the specific training paradigm

(Otero et al., 2015; Williams White et al., 2007). Numerous studies have documented widespread

patterns of aberrant brain functional connectivity in patients with ASD, involving many cortical

regions including frontal, parietal, and temporal lobes (Müller et al., 2011; Picci et al., 2016;

Di Martino et al., 2014). Specifically, these studies show that multiple cortical areas are significantly

under-connected in patients with ASD compared to typically developing (TD) control subjects,

although over-connectivity has also been reported (Hahamy et al., 2015; Belmonte et al., 2004). At

the individual level, the degree of diminished connectivity as well as measures of cortical thickness

were found to be correlated with symptom severity (Gotts et al., 2012; Wallace et al., 2012;

Di Martino et al., 2009b; Assaf et al., 2010) and this measure of connectivity was even predictive

of future progression of autistic symptoms (Plitt et al., 2015). Together, these findings suggest a

causal link between connectivity and behavior, such that changing the connectivity might lead to a

change in behavior. Traditional, explicit training paradigms, activate these aberrant networks

(Kana et al., 2009; Di Martino et al., 2009a), thus potentially reinforcing the sub-optimal connectiv-

ity. An implicit training paradigm, which allows the direct reinforcement of the desired networks,
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bypassing the atypical activation induced by explicit tasks, might be a better candidate for potential

intervention in ASD.

Real-time fMRI neurofeedback (rt-fMRI-nf) is an emerging technique with great potential for clini-

cal applications (Stoeckel et al., 2014; Sulzer et al., 2013; Weiskopf, 2012; Birbaumer et al.,

2013). With this technique, network states can be monitored in real-time, and desired states can be

reinforced through positive feedback. Covert neurofeedback is a variant of neurofeedback, in which

participants are given no strategy with which to control the feedback, and might not even be cogni-

zant that the feedback is related to brain activity. This tool is therefore extremely flexible, as it does

not require the formulation of a specific strategy and is not limited by what we know about the net-

works or the ways in which they are typically activated. Instead, desired states are reinforced when

they occur spontaneously, allowing for implicit training of networks, such as those found to be

under-connected in ASD. We designed a covert neurofeedback experiment, to test whether it would

be possible to change connectivity between these aberrantly connected network nodes, through

direct reinforcement of spontaneously occurring network states. This decision is motivated by recent

work showing that positive and negative reinforcement of brain activity patterns are sufficient for

promoting small but widespread changes in network connectivity, even without any learning inten-

tion on the part of participants (Ramot et al., 2016).

Further evidence that covert neurofeedback can change networks, and that these changes can

have behavioral effects, comes from other recent work. A number of studies have been successful at

training complex patterns of activity within a given network using multi-voxel pattern analysis

(MVPA) techniques (deBettencourt et al., 2015; Amano et al., 2016; Shibata et al., 2011), with

feedback related changes corresponding to robust behavioural changes after only a few sessions,

eLife digest Even when we are at rest, our brains are always active. For example, areas of the

brain involved in vision remain active in complete darkness. Different brain regions that connect

together to perform a given task often show coordinated activity at rest. Past studies have shown

that these resting connections are different in people with conditions such as autism. Some brain

regions are more weakly connected while others are more strongly connected in people with autism

spectrum disorder compared to those without. Furthermore, people with more severe symptoms

seem to have more abnormal connections.

“Neurofeedback training” is a method of changing the resting connections between different

brain regions. Scientists measure a brain signal – the connection between different brain regions –

from a person in real time. They then provide positive feedback to the person if this signal improves.

For example, if a connection that is too weak becomes stronger, the scientists might reinforce this

by providing feedback on the success. Previous work has shown that neurofeedback training may

even change people’s behaviour. However, it has not yet been explored as a method of treating the

abnormal connections seen in people with autism when their brains are at rest.

To address this, Ramot et al. used a technique known as “functional magnetic resonance

imaging” (or fMRI for short) to measure brain activity in young men with autism. First, certain brain

regions were identified as having abnormal resting connections with each other. The participants

were then asked to look at a blank screen and to try to reveal a picture hidden underneath.

Whenever the connections between the chosen brain regions improved, part of the picture was

revealed on the screen, accompanied by an upbeat sound. The participants were unaware that it

was their brain signals causing this positive feedback.

This form of neurofeedback training successfully changed the abnormal brain connections in most

of the participants with autism, making their connections more similar to those seen in the wider

population. These effects lasted up to a year after training. Early results also suggest that these

changes were related to improvements in symptoms, although further work is needed to see if

doctors could reliably use this method as a therapy. These findings show that neurofeedback

training could potentially help treat not only autism spectrum disorder, but a range of other

disorders that involve abnormal brain connections, including depression and schizophrenia.

DOI: https://doi.org/10.7554/eLife.28974.002
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and significant change being detectable after as little as one training session. Feedback induced

behavioural changes have been shown to range from very local and low level, such as changes in

perception of line orientation after V1 training (Shibata et al., 2011), or inducing color association in

V1 in a somewhat less local paradigm (Amano et al., 2016), to changes in high level functions such

as attention (deBettencourt et al., 2015), and fear perception (Koizumi et al., 2016). Such changes

can even be bi-directional, both behaviourally and at the network level (Cortese et al., 2017). This

previous work sets up covert neurofeedback as a good candidate for a potential intervention in

ASD, though whether specific, long-ranging connectivity changes can be induced through neuro-

feedback, which regions/networks are amenable to such reinforcement, how such training will affect

wider brain networks, and how long these changes last, are all still open questions. In this study, we

lay out a proof of principle of the plausibility of such training, showing robust, long-lasting feedback

induced changes in these aberrant networks, coupled with preliminary results as to the behavioural

correlates of these changes. 17 ASD participants and 10 control participants were scanned over mul-

tiple sessions (123 sessions in total). These results reflect not only on the potential uses of such train-

ing in ASD, but also in other disorders with underlying aberrant connectivity at their core.

Results

Selection of training targets
We used previously collected resting state data on large groups of ASD and TD participants (N = 56

ASD, 62 TD) to identify two target brain regions that showed large under-connectivity in ASD com-

pared with TD individuals, while also being physically distant from each other, and belonging to sep-

arate networks (Figure 1): target1 in superior temporal sulcus (STS) and target2 in somatosensory

cortex, both of which have been consistently implicated in social processing (Allison et al., 2000;

Frith and Frith, 2010; Adolphs, 2009; Damasio et al., 2000), and have previously been found to

be under-connected and atypically activated in ASD (Chen et al., 2015; Gotts et al., 2012;

Müller et al., 2001; Tuttle et al., 2016; Khan et al., 2015; Khan et al., 2013). This dataset is an

expansion of previously reported data (Gotts et al., 2012), which found very similar aberrant

Figure 1. Choosing ROIs. (A) Group differences between TD (N = 62) and ASD participants (N = 56), matched for motion, age and IQ. Difference

maps calculated on the average correlation of each voxel with all other grey matter voxels in the brain. Target1 was chosen as the region with the

greatest between-group difference, and Target2 was chosen as the region in which the difference in connectivity to Target1 was greatest between

groups, while also being in a physically distant, distinct network based on (Gotts et al., 2012). (B) Pairwise correlations for the dataset shown in (A),

between the two targets (top left), target1 and control (top right), target2 and control (bottom left), and the composite difference measure, based on

the difference in correlations between the two targets and the target-control pairs (see Materials and methods). Difference between the ASD and TD

groups is significant for target1-target2 correlations (p=4.3�10�5), and the composite difference measure (p=0.001). (C) Same as (B), but for the current

cohort of participants who took part in the neurofeedback study. Correlations are averaged across the first two rest scans of the first day, before

training. Between group difference is significant for target1-target2 correlations (p=0.002), target1-control correlations (p=0.04), and the composite

difference measure (p<1�10�4). Blue bars represent the subject mean, cyan error bars mark ± SEM. Red dots represent each individual subject.

DOI: https://doi.org/10.7554/eLife.28974.003
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connectivity patterns, matching results from other studies using large datasets (Cheng et al., 2015).

As in the previously published subset of the dataset, we found that under-connectivity between

these two networks (STS and somatosensory) in ASD was significant in both this large dataset

(p<4.3�10�5) and in the 17 participants recruited for the neurofeedback study (p=0.002), as well as

significantly correlated to social symptom severity, as measured by the Social Responsiveness Scale

(SRS) (r = �0.35 p<0.009 without regressors, r = �0.31, p<0.026, using age and motion as regres-

sors, r values represent Pearson’s correlation, p-values determined by permutation tests). The SRS is

a parent filled questionnaire, which is designed to be a continuous, cardinal measure of social symp-

tom severity in ASD, and has been shown to correlate with functional brain connectivity measures in

multiple studies (Anderson et al., 2011; Di Martino et al., 2009b). This result indicates that connec-

tivity between these two networks is clinically relevant, i.e. the lower the connectivity, the more

severe the social symptoms (higher score on the SRS). The first goal of the training was therefore to

increase the connectivity between target1 in STS, and target2 in somatosensory cortex.

In order to ascertain that we would only be reinforcing connectivity between our two targets,

rather than global changes that cause an overall increase in correlations across the entire brain in an

undifferentiated manner, we selected a third control region (in the inferior parietal lobule or IPL,

part of the default mode network), which was chosen for being uncorrelated to the two target

regions in our dataset of TD participants during resting state. IPL was significantly over-correlated to

STS target1 in the ASD cohort participating in this study (Figure 1C). This combination of under-con-

nectivity between STS and somatosensory with over-connectivity to the default mode network, is in

line with recent evidence of reduced within-network cohesion coupled with reduced between-net-

work differentiation (Hahamy et al., 2015; Keown et al., 2016). The goal of the neurofeedback

training was therefore to induce greater differentiation between these three regions of interest

(ROIs) in participants with ASD, so as to bring connectivity levels between those three networks

closer to those of TD individuals. This meant increasing connectivity between the two target regions,

while simultaneously decoupling the two target-control pairs. To this end, we came up with the com-

posite difference measure, combining the target-target and target-control correlations (see Materi-

als and methods). This measure was also significantly different between the ASD group and the TD

group in both the previous large dataset (p=0.001), and in our cohort (p<1�10�4), Figure 1B–C). All

p values were calculated through permutation tests, maintaining the original number of participants

for each group.

Training paradigm
For the initial part of the study, 17 patients with ASD participated in four training sessions, over the

course of 8 days (two sessions of two consecutive days each, a week apart). Each session consisted

of two rest scans, followed by four neurofeedback training scans, and finally two more rest scans

(Each scan was 9 min in duration. See Figure 2). During the neurofeedback scans, participants

started with a blank screen, and were instructed to attempt to reveal the picture hidden underneath

(see Figure 2—figure supplement 1 for an example). This was described to them as a puzzle task.

No further instructions were given. Parents filled out behavioral questionnaires before training

began, and two weeks after the last training session. An additional follow up study was then carried

out, in which 15 of the 17 original participants returned for a final, slightly shorter training session.

The interval between the original training and the follow up varied greatly between subjects, and

ranged from 5 to 56 weeks.

One of the barriers to carrying out connectivity-based rt-fMRI-nf has been the slow timescale of

fMRI recordings, making online calculations of correlations very limited. We therefore developed a

method that can approximate the correlations using only two time points: every two seconds, for

each TR (time to repetition), the signals from the three ROIs were analyzed in real-time (see Materi-

als and methods), and the trend in the signal compared to the previous TR was noted for each of

the three ROIs (increase/decrease). Positive feedback, in the form of revealing a part of the picture

accompanied by an upbeat sound, was given whenever the network was deemed to have reached

its desired state. As our goal was to increase correlation between the two target regions, and

decrease correlations between the target and the control regions, feedback (i.e. revealing a part of

the picture) was given whenever the signal trend in the two target ROIs was the same, and opposite

from the trend in the control ROI (Figure 2, Materials and methods). This ‘two-point’ method was

validated as being a good proxy for correlation analysis by comparing the results from this to
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Figure 2. Experimental paradigm. (A) Timeline. (B) Location of ROIs, and network being trained. (C) Feedback session. Data was collected and

analyzed in real-time, and a decision whether to present feedback (reveal a square of the picture +positive sound) was made based on the change in

signal from one time (t-1) to the next (t) in the three ROIs. Feedback was given if the direction of change in the two targets was the same, and opposite

from the direction of change in the control ROI. See.

Figure 2 continued on next page
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standard Pearson’s correlation offline (r = 0.61, p<1�10�4 permutation test, Figure 2—figure sup-

plement 2). We carried out simulations using more time points (2–6 TRs) to evaluate if longer time

scales would lead to connectivity estimates for neurofeedback that better resemble actual correla-

tions computed offline. We did not find any significant increase in the correlation of these extended

measures to the whole series Pearson’s correlations, which were our ‘gold standard’. We therefore

chose to provide feedback on just two time points, to minimize the timescale of the feedback.

At the end of each neurofeedback scan, participants were presented with their score, i.e. how

many picture squares they had managed to reveal. They were then given a chance to attempt to

beat their score on the next run, to win an additional bonus on top of the normal study compensa-

tion. The pictures were chosen to be neutral, depicting mostly scenes devoid of people and text, or

abstract art/objects. Random pictures were chosen for each run, from a large set of such pictures.

Participants completed 2–3 puzzles per scan on average, and there was no significant change in

number of puzzles completed between day1 and day4.

Participants were blind to the purpose of the study, as well as to the mechanism of the neuro-

feedback, and even to the fact that it was neurofeedback. This was ascertained by exit question-

naires at the end of the last day of scanning, in which participants were interviewed regarding their

thoughts on the study, their motivation, and their strategies during the training (see Table 1 for

responses). Responses as to the perceived nature of the ‘puzzle task’ varied widely, as did reported

strategies, but none held any resemblance to the neurofeedback algorithm. Strategies mostly

revolved around different ways of looking at the picture, as it was being revealed. Despite not know-

ing what they were supposed to do, most participants were highly motivated to solve the puzzles,

with only 3 of the 11 participants for which responses are available reporting a motivation score of

less than 5 (on a scale of 1–10, see Table 1).

Control group
An additional control group of 10 TD participants completed the same initial 4 day training regimen,

following the same protocol as the above. This group received feedback on the same three nodes,

but in a different network configuration: target1 in the STS remained the same, but somatosensory

target2 and the IPL control region switched roles, so that feedback was given whenever STS (tar-

get1) and IPL (now target2) were co-modulated, and were opposite to somatosensory cortex (now

control), see Figure 2—figure supplement 3. This provided feedback orthogonal to that given to

the ASD group. Another key difference is that this feedback was antithetical to the normal connectiv-

ity patterns found in the typically developing brain, as STS and somatosensory are well correlated in

the typically developing brain, whereas the IPL region used in this study was explicitly chosen to be

as uncorrelated as possible with STS in TDs during rest (Figure 1B–C). This control therefore served

a dual purpose: in terms of the network that the ASD participants were being trained on, which

rewarded increased connectivity between STS and somatosensory and decoupling of these from IPL,

this was random feedback. That is to say, the feedback given to the TD participants was uncorre-

lated with the feedback they would have received had they been trained on the same network con-

figuration as the ASD participants. This served as a control for any changes in connectivity in that

direction being driven by something other than the feedback. At the same time, this control also

examined whether it is possible to modulate any network, regardless of the native connectivity.

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.28974.004

The following figure supplements are available for figure 2:

Figure supplement 1. Puzzle task examples.

DOI: https://doi.org/10.7554/eLife.28974.005

Figure supplement 2. Validating the feedback method.

DOI: https://doi.org/10.7554/eLife.28974.006

Figure supplement 3. TD control group training.

DOI: https://doi.org/10.7554/eLife.28974.007
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Learning
To assess whether any learning took place over the course of these initial four training days, we

examined the correlations between the two target regions (which had been trained to increase con-

nectivity), the two target-control pairs (which were trained to decrease connectivity), as well as the

composite difference measure. Figure 3 shows the results of this analysis for the ASD group. As can

be seen, over the course of the four training days, correlations between the two target regions

steadily increased (with a significant difference between most days, p=4�10�4 between day1 and

day4, mean change in correlation = 0.11, Figure 3A), while correlations between target1 and control

decreased (significant difference between day1 and all other days, p=8�10�4 between day1 and

day4 mean change = �0.13, Figure 3B). Though there is an overall decrease between target2 and

control, this does not reach significance and the mean change is small (Figure 3C). This is in line with

the lack of differentiation between the ASD group and the TD group in target2-control correlations

(Figure 1C), suggesting neurotypical network connectivity is more resilient to change. Figure 3D

shows the overall composite difference measure, taking into account all three correlation pairs,

where there is a strong and consistent increase between day1 and day4 (p<2�10�4, mean

change = 0.19). 15 of the 17 participants showed a positive change in this measure (14/17 had a pos-

itive change in target1-target2 correlations, as well as a negative change in target1-control correla-

tions). The TD control group on the other hand, showed no significant changes between days in any

of the three pairwise combinations, or in the composite difference measure. Only 4/10 participants

in this group showed a change in the trained direction in the composite measure, within the range

of chance, and the magnitude of change was minimal relative to the change seen in the ASD partici-

pants. Figure 4A shows these data for all the individual ASD participants, while Figure 4B shows the

individual TD participants. The full results for all individual participants, for all days, are displayed in

Table 1. Exit questionnaires

1. what did you think the study was about?
2. what were you doing during the scans? (Ask about
each day if applicable)

3. how hard were you trying to
solve the puzzles, on a scale of
1–10, for each day?

1 Really don’t know. Figure out how long it takes my
brain to figure out where all the pieces go.

Laying back, relaxing, thinking about random things. Same
all days.

5, 5, 5, 5

2 MRIs, puzzle study Day1: just think, Day 2: just think, Day 3: stay awake, Day4:
stay awake

9, 9, 9, 9

3 Pictures and the emotional responses they elicit.
Definitely tied to emotions. Thought he had to be
less excited for pieces to come up

Thinking about memories, things to pass the time 10, 10, 9, 8

4 Measuring the thought processes of where certain
processes take place in the game. Stress test

Day1: eye movement, control heart rate, close eyes; Day2:
nothing, relaxed; day3: relax, day4: nothing

5, 1, 1, 2

5 About focus Trying to focus on certain areas of the screen 5, 8, 10, 2

6 What exactly is autism and how the brain is related to
it? The puzzles can show how fast different people’s
brains work.

Nothing different really. Today was thinking about an
English assignment. Was really just looking at them,
wanted to see the picture. Didn’t think ‘oh I have to do this
now’. Wasn’t trying hard to solve at all. Either it comes or it
doesn’t. You can’t really rush your brain

1, 1, 1, 1

7 I don’t know Breathing in patterns, blinking, gave up 7, 4, 5, 10

8 About first level visual processing? Most math, computation 5, 2, 2, 2

9 Multitasking, and being able to keep still and look in
the same place for a consistent period.

Tried different ways to solve more pieces. Today, for
example, tried to keep still and look at a similar spot
consistently. Yesterday, tried multitasking, breathing and
blinking on different rhythmic scales (helped the most).
Last week, kept looking around in various directions,
mostly at squares that werent filled in yet.

6, 6, 7, 8

10 How humans see stuff and how the brain reacts. Ie
sight

Staring at whatever space he could to put the puzzle
together

Same each day

11 Don’t know, detecting how hard my brain works on
puzzles

Trial and error, look at different parts of screen, try different
techniques

9, 7, 9, 8

DOI: https://doi.org/10.7554/eLife.28974.008
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Figure 3. Learning across days, ASD group. (A) Correlations between the two target regions per day, averaged across all four neurofeedback scans

per day. Blue bars represent the subject mean, cyan error bars mark ± SEM. Red dots represent each individual subject. The difference in correlations

between day1 and days 3 and 4 and the follow up is significant (p=0.05, p=4�10�4, p=0.05 respectively), as is the difference between day2 and day4

(p=0.016). (B) Correlations between Target1 and Control. There is a significant change between day1 and all other days (p=0.005, p=5�10�4, p=8�10�4

for days 2, 3 and 4, p=0.015 for the follow up). (C) Correlations between Target2 and Control. (D) Composite difference measure, showing the

difference between target-target and target-control correlation pairs (see Materials and methods). Day1 correlations are significantly different from all

other days (p=0.003, p=0.01, and p=2�10�4, p=0.007 respectively), and day2 is significant different from day4 (p=0.0017). In all panels N = 17 for days

1–4, N = 15 for the follow up. All p-values for differences between days were determined by permutation tests.

DOI: https://doi.org/10.7554/eLife.28974.009

The following figure supplements are available for figure 3:

Figure supplement 1. Retention of learning.

DOI: https://doi.org/10.7554/eLife.28974.010

Figure supplement 2. Data from first two neurofeedback scans only.

DOI: https://doi.org/10.7554/eLife.28974.011

Ramot et al. eLife 2017;6:e28974. DOI: https://doi.org/10.7554/eLife.28974 8 of 23

Research article Neuroscience

https://doi.org/10.7554/eLife.28974.009
https://doi.org/10.7554/eLife.28974.010
https://doi.org/10.7554/eLife.28974.011
https://doi.org/10.7554/eLife.28974


Figure 4—figure supplement 1. To further ensure that the null result in the TD group was truly dif-

ferent from the significant result in the ASD group, and not simply due to lower statistical power

because of the smaller sample size, we re-calculated the change in correlations for each of the possi-

ble subsets of 10 participants from our ASD group, and found that the significant difference

between day1 and day4 was maintained for all subsets in the target-target correlations (range of

mean change 0.03–0.17, p-value range 0.046 to 1 � 10�4), for 83% of possible subsets in the tar-

get1-control correlations range of mean change �0.02 to �0.19, 0.22 < p < ,1 � 10�4 and for all

possible subsets in the composite correlation difference measure (range of mean change 0.1–0.23,

p<0.007 for all subsets). To test for interaction between the TD and ASD groups, we carried out a

two sample t-test (without assuming equal variance to control for different sample size) between the

change in composite correlations in the ASD group vs. the change in composite correlations in the

TD group. A significant difference (p=9.2�10�4) was found between the learning seen in the TD and

ASD groups in this analysis. This significant difference between the groups was maintained even

when we chose the ASD subset of 10 participants with the smallest change (p=0.013).

We next set out to test how long this learning would be maintained. To address this question, we

called back the participants for a follow up study, in which they returned for another, shorter round

of training. To get a good indication of the persistence of the training effect, participants were called

back in a staggered manner, from as little as 5 weeks and up to 56 weeks from their original training.

Figure 4. Individual participant data. (A) Difference in the composite difference correlation from day1 to day4, for each of the 17 individual ASD

participants averaged across all four neurofeedback scans per day, presented chronologically in order of scanning. (B) Same analysis for each of the 10

TD participants, presented chronologically. Note that the composite difference measure is comprised of target-target correlations minus the target-

control pairs, and that the definition of targets and control differed between the two groups.

DOI: https://doi.org/10.7554/eLife.28974.012

The following figure supplement is available for figure 4:

Figure supplement 1. Individual participants.

DOI: https://doi.org/10.7554/eLife.28974.013
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Our results indicate that the learning was mostly, though not fully, preserved, even after such an

extended time period (Figure 3A–D, follow up). In fact, although there was variation between sub-

jects in the degree of retention, there was no correlation between the time that had elapsed and the

rate of retention (see Figure 3—figure supplement 1). Since there were only two feedback runs in

this follow up scan, we also compared them to just the first two feedback runs for the first four days,

in order to account for any differences arising from the different number of runs. The results using

just the first two runs for the first four days were not in any way different from the results using the

full data (see Figure 3—figure supplement 2).

Whole brain analysis
So far we had only considered what happens in the regions that were trained. In order to get a more

comprehensive picture of the effects of the training on the brain, we conducted a whole brain analy-

sis, which looked for changes during the training period (i.e. from day1 to day4). We calculated three

maps, one for target1, one for target2, and one for the control region, with each map showing the

change from day1 to day4 in the correlation of each voxel in the brain to the corresponding region.

We then carried out a t-test across all participants for each of these three analyses, and the resulting

maps for the ASD group are displayed in Figure 5. The changes were exactly as predicted by the

training: the strongest positive change in correlation to target1 over the training period was in the

somatosensory cortex (with a peak at target2), and the strongest negative change was in the control

region. Changes to correlations with target2 were seen in the STS with a peak in target1, and

negative changes in correlation to control were seen in bilateral STS (Figure 5A). Since we were

training a network of three nodes, rather than a simple connection between two regions, we next

calculated the composite change: for each voxel, the change between day1 and day4 in its correla-

tion to target1 minus its correlation to control (Figure 5B), and the same change in its correlation to

target2 minus control (Figure 5C). This analysis yielded similar but far stronger results. The maps of

the composite correlations were corrected at a very conservative cluster threshold determined by

random permutation testing, in accordance with recent statistical recommendations for analyses uti-

lizing cluster size (Eklund et al., 2016) (see Materials and methods). These results support a causa-

tive role for the feedback itself, as the specific relationship that was trained between the two targets

and the control came up in completely independent, whole-brain analysis. That is, using target1 rela-

tive to the control seed, the largest change in the whole brain was found in target2, even though

that region was not pre-selected and the analyses did not constrain this to happen, and vice-versa

using target2 and control. Note that we do not expect to find changes between day1 and day4 in

either target1 or control in the target1-control map, as these regions did not change in relation to

themselves. Rather, this analysis highlights all the other areas, outside of those two regions, which

changed their correlation over the course of training in relation to target1 (increasing) and to control

(decreasing), finding the peak of this change in target2. The same is true for the target2-control

map, which shows an even greater effect focused on target1, consistent with the ROI analysis results

showing a greater decoupling of target1 from control than target2 from control. Note that Figure 5

shows results only for the ASD group, as no significant peaks were identified in any of the target or

control regions for the TD control group, and no voxels survived the cluster correction threshold.

Transfer to resting state following training
The training-related changes we have demonstrated to this point were during the neurofeedback

scans themselves. To be of any potential clinical value, these changes must also generalize beyond

the training sessions, to the resting state scans, which reflect the baseline connectivity of the brain

when not engaged in a specific task. In order to obtain as accurate an estimate of baseline as possi-

ble and to avoid any contamination by the task, only the two rest scans prior to the neurofeedback

were used for this analysis. Changes were overall smaller than those seen during the training, but

significant changes were found between day1 and day4 (target1-target2 correlations mean

change = 0.07, p<0.038, composite correlations measure mean change = 0.1, p<2�10�4), and

between day1 and the follow up (target1-target2 mean change = 0.09, p<0.011, composite correla-

tions measure mean change = 0.11, p<2�10�4). Change in rest was significantly correlated to

change during the neurofeedback scans (r = 0.42, p<0.04, permutation test). Moreover, 14/15 par-

ticipants who came in for the follow up showed an increase in the composite correlation measure
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Figure 5. Whole-brain analysis during neurofeedback, ASD group. (A) Top left: change in correlations to target1, between day1 and day4, t-test across

participants. High values represent voxels that showed a consistent change between day1 and day4, such that on day4 they were more correlated to

target1 than they were on day1. Note the positive peak in target2, and the negative peak in the control region. Top right: change in correlations to

target2, between day1 and day4, t-test across participants. Note the positive peak in target1. Bottom: change in correlations to the control region,

Figure 5 continued on next page
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(Figure 6A). To assess whether the changes seen in the follow up could simply be a function of the

elapsed time, we examined data from all participants in the previous study (used to define the train-

ing regions) which had at least two resting state scans from two different time points, and evaluated

the change in connectivity seen between the sessions. 19 participants had two such data points, and

the average time between the sessions was 13.2 months. The change however was not significant

for any of the pairwise correlations, or the composite correlation measure (Figure 6A). We next

looked at the composite measure for the 10 participants from our study who had also participated in

the previous resting state experiment (and in the follow up), and compared change from the previ-

ous experiment to the first rest sessions on day1, before any training, and in this subset also the

change from day1 of the training to day4 and to the follow up (Figure 6B). While there was no sig-

nificant change from the previous experiment to day1 (mean time interval = 38.3 months, mean

change = �0.04), there was significant change to day4 (mean change = 0.1, p<0.019) and to the fol-

low up (mean change = 0.11, p<0.003). Taken together, these analyses provide strong evidence that

Figure 5 continued

between day1 and day4, t-test across participants. Note the negative peak in target1 and bilateral STS. (B) Change in differential correlation to the

target1 and control ROIs, between day1 and day4, t-test across participants. High values represent voxels that showed a consistent change between

day1 and day4, such that on day4 they were more correlated to target1 and less correlated to control than they were on day1. Inset shows the same

analysis at a higher threshold. (C) Same as (B), for target2 and control. Note that for both maps, the other target, which was not included in the analysis,

emerges as the area of greatest change across training days. Maps corrected through permutation tests (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.28974.014

Figure 6. Changes in resting state correlations. (A) Left panel shows the changes in resting state composite difference correlations for the 19

participants for which two previous data points were available from a previous study, prior to neurofeedback (average time between sessions 13.2

months). The right panel shows the change in resting state composite difference correlations from the very first pre-training rest sessions on the first

day of neurofeedback, to the rest sessions collected in the follow up session (also before the neurofeedback training sessions that day), for the 15

participants who took part in the follow up session. Average time between sessions for this group was 6.2 months. (B) Changes in resting state

composite difference correlations for the 10 participants who had data from both the previous study, and the follow up session. Change between

neurofeedback day1 and neurofeedback day4 as well as neurofeedback follow up, are significant (p=0.019, p=0.003 respectively). All correlations are

taken from the resting state scans at the beginning of the relevant session. NF = neurofeedback.

DOI: https://doi.org/10.7554/eLife.28974.015
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the changes we observed were not a function of elapsed time but rather occurred as a direct result

of our neurofeedback regime.

Behavioral relevance
Finally, we asked whether the changes we see as a result of the training are in any way correlated to

behavior. To this end, we looked at changes in behavior as measured by the behavioral question-

naires filled out by the parents prior to training, and two weeks after the end of the initial training

set. These behavioral results included two statistical outliers who were removed from the analysis

(definition of outliers was based on change scores greater than 3 standard deviation from that seen

in an independent data set, see Materials and methods). We compared the change in these behav-

ioral questionnaires to the change in correlations between the final resting state scans on the last

day (following neurofeedback), and the resting state scans on the first day. There were two measures

of behavior: the first, the Social Responsiveness Scale (SRS), has previously been found to correlate

with functional connectivity in this network (see section on target selection), and therefore the

change in this rating was expected to correlate with the change in the network. The second, the

Behavior Rating Inventory of Executive Function (BRIEF), measures executive function rather than

social abilities, and though patients with ASD show deficits on this measure (Baron et al., 2000), it is

expected to reflect prefrontal functioning, and we expected that changes on this measure would not

correlate to changes in the social network being trained (Anderson et al., 2002; Anderson et al.,

2005; Mahone et al., 2009). Indeed, although there was no significant change in the mean SRS

score across participants, with the mean score actually slightly (though not significnatly) increasing

instead of decreasing as predicted (mean SRS before training = 69.8, mean SRS after training =

71.6, p=0.11), there was a significant correlation between changes in the resting state network and

the change in SRS (pre training minus post training, so that a positive change corresponds to a

reduction in symptoms, r = 0.56, p=0.016, Figure 7). There was no significant correlation between

the baseline SRS score and the change in SRS seen during training (r = 0.14, p=0.29), or the baseline

rest and the change in rest (r = �0.22, p=0.2). The partial correlation between change in rest vs.

change in SRS, after controlling for baseline SRS and baseline rest, was higher (r = 0.62 p=0.014).

No such correlation was found with the BRIEF (change in SRS vs. change in resting state correla-

tions: r = 0.56, p=0.016; change in BRIEF vs. change in resting state correlations: r = 0.09, p=0.39).

We further tested for the correlation between the change in SRS vs. change in the resting state cor-

relations, after partialing out the contribution of the BRIEF. After removing the variance explained

by the BRIEF, the correlation between the rest and SRS was even higher (r = 0.6, p=0.02), indicating

that change in resting state correlations was captured by the change in SRS scores, but not the

BRIEF. Note that the SRS was chosen as our behavioral measure because it has consistently been

shown to correlate with aberrations in network structure in ASD (Gotts et al., 2012; Wallace et al.,

2012; Di Martino et al., 2009b; Anderson et al., 2011). Nevertheless, it was not designed to be

used with such a short test-retest interval (3 weeks), and has only been validated for intervals of 6

months or more (Hus et al., 2013; Constantino et al., 2003; Bölte et al., 2008). We can therefore

make no claims regarding the absolute values of the change in scores.

In the interest of completeness, we also ran the analysis with the outliers (marked in red in Fig-

ure 7). Without removing outliers, the correlation with SRS fell below significance, though the trend

was still in the same direction (r = 0.26, r = 0.31 after controlling for baseline SRS and baseline rest,

p=0.09). A possible confound in using test-retest reliability on other data to calculate outliers (as

was done here) is that our neurofeedback data could include large, training induced changes, which

would not be present in other datasets, skewing the variance. Note however that the two outliers

reported here had a large negative behavioral change, which is not the predicted direction of

change due to neurofeedback based training. This is more likely due to the short assessment interval

used here (two weeks), which would give a lot of weight to negative incidents which occurred during

this time. For instance, one of the participants whose data was determined to be an outlier, had

moved to a new house during this time period.

Discussion
The study of rt-fMRI covert neurofeedback – feedback given on pre-specified brain activity, but with-

out providing participants with further information regarding the nature of the task or an explicit
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strategy through which to control the feedback – is still in its infancy (for a review see

[Sitaram et al., 2017]). These results not only help solidify the existing evidence that reward-medi-

ated learning through covert neurofeedback is possible (Shibata et al., 2011; Ramot et al., 2016;

Amano et al., 2016), but also expand our knowledge in important ways. In this study, we have dem-

onstrated that covert neurofeedback can be used to modulate correlations between distinct, physi-

cally distant networks (Figure 3), in the great majority of participants (15 of17, Figure 4, Figure 4—

figure supplement 1). We have further shown that this modulation is possible even in cases of aber-

rant network structure, in clinical populations, and is sustainable for extended periods of time (some

of our follow up sessions were a year after the original training, and we saw no evidence for an effect

of time as a modulator of retention, Figure 3—figure supplement 1). This kind of connectivity-

based neurofeedback has previously been carried out in only a handful of studies

(Scharnowski et al., 2014; Megumi et al., 2015; Koush et al., 2017), though the network approach

Figure 7. Behavioral changes. Correlation between the change in the behavioral measure (SRS) score before and

after training, and the change in resting state connectivity from the post-training rest scans on day4 to the rest

scans on day1 (day4 correlations minus day1 correlations, positive change corresponds to higher correlations on

day4). Behavioral change on the y-axis calculated as pre-training overall SRS t-score minus post-training SRS

t-score. Positive behavioral change corresponds to a reduction in SRS score after training. Statistical outliers

marked in red. (A) Behavioral change vs. change in Target1-Target2 correlations. (B) Behavior vs. Target1-Control.

(C) Behavior vs. Target2-Control. (D) Behavior vs. composite difference corr. R values represent Pearson’s

correlation. Regression lines and R values do not include the outliers. Correlations between Target1-Target2 and

Target1-Control changes and behavior are in the expected direction but are not significant (p=0.07, p=0.08).

Behavior vs. composite difference change is significant (p=0.016).

DOI: https://doi.org/10.7554/eLife.28974.016
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to neurofeedback is gaining traction and shows not only good preliminary findings but also has a

sound theoretical basis (Bassett and Khambhati, 2017).

It could be argued that the changes in functional connectivity that we found were not a result of

the feedback, but rather of the multiple fMRI visits, or were somehow precipitated by the nature of

the puzzle task. Though imperfect because of the different population, the control using the TD

group, which received feedback largely orthogonal to the network trained in the ASD group, pro-

vided further evidence for the necessity of the feedback itself in inducing these changes. The TD

group, which went through the exact same protocol as the ASD group but received feedback on a

different network, did not demonstrate the changes in connectivity seen in the ASD group (Figure 4,

Figure 4—figure supplement 1). Moreover, the extraordinary specificity of the changes revealed by

the whole brain analysis (Figure 5), peaking exactly at the small ROIs that were chosen for the train-

ing, would also seem to preclude an alternative explanation. The further significance of the whole-

brain analysis is that this learning is spatially specific even when training disparate networks, meaning

that it is possible to target specific regions of the brain. However, it is important to note in this

regard that though the peaks were centered on the regions we were training, the changes spread to

entire networks, as would be expected from the architecture of the brain, which is composed of

large-scale networks of multiple brain regions, making it difficult to induce changes to just one

region in isolation.

In a larger context, the failure to induce change in the direction of training in the control subjects,

suggests that while it is possible to train networks that are fundamentally connected, it is much more

difficult to train networks that are uncorrelated or weakly correlated in the typically developing brain.

This conclusion is also bolstered by the failure of the training to induce change in the ASD group

between target2 and control, regions which did not differ in their connectivity from that of the TDs.

It is also possible that some networks may be more difficult to train than others, as has previously

been suggested (Harmelech et al., 2015). Future studies will be needed to better understand the

basic constraints in modifying these relationships.

The prohibitive cost of rt-fMRI, or fMRI scans in general, limits the number of training sessions in

these paradigms. Moreover, the under-connectivity between the target regions chosen here explains

only some of the behavioral deficits, and is clearly not the sole underlying cause of autism. This study

was therefore designed as a proof of principle that aberrant connectivity can be addressed through

neurofeedback, rather than as a clinical intervention, and whatever behavioral effects we found were

expected to be modest. Once such a causal relationship is established, future potential clinical appli-

cations might pursue more cost effective options, such as identifying EEG signatures that corre-

spond to activity from these areas, as several groups have already begun to develop (Zotev et al.,

2014; Meir-Hasson et al., 2014).

From a clinical perspective, the most important result in this study is the successful transfer of the

change in correlations to the resting state. By itself, change during training does not guarantee gen-

eralization of the learning, or in this case of the change in the network structure. Though the change

in the baseline resting state (before neurofeedback training each day) was somewhat more modest

than the change seen during training, it was reliable and consistent, and could not be explained sim-

ply by the passage of time (Figure 6). Note that the correlation seen with behavior (Figure 7) is with

the change from rest on day1, to the resting state data collected immediately after the last training

session on day4. This resting state change was overall smaller than the change seen with the pre-

training baseline rest on day4 shown in Figure 6, but the day4 pre-training baseline did not show a

correlation with behavior. The behavioral results, though they did not show an overall mean change,

are preliminary in their scope and limited by the timescale on which they were measured, demon-

strate that change in behaviorally relevant networks correlates with change in behavior, which is a

crucial and entirely non-trivial point in terms of the potential clinical applications of neurofeedback.

The lack of overall mean change together with the correlation with connectivity changes makes it

unlikely that this result is driven by a placebo effect, and on debriefing after all data were collected,

it was clear that the patients and their families did not conceive of this as an intervention, and had

no expectation of behavioral change following the study. This finding also adds to the debate

regarding the nature of the functional and structural hypoconnectivity found in ASD, whether it plays

a causative role in ASD or is simply a downstream effect (Vasa et al., 2016). A change in behavior

following a change in connectivity suggests the former, bolstering the mechanistic approach to func-

tional connectivity in ASD. However, it should be noted that underconnectivity is not the full story in
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ASD, and there is growing evidence for hyper cortico-thalamic connectivity, alongside the cortico-

cortico hypoconnectivity (Picci et al., 2016). It should also be noted that the under-connectivity seen

in cortico-cortico correlations in ASD is dampened connectivity (closer to 0), and not anti-connectiv-

ity (negative correlation). The nature of the feedback given here is that positive correlations between

the two targets are rewarded, thus boosting connectivity that already exists at baseline (as baseline

connectivity is positive, just small). Future studies will have to replicate and expand on the behavioral

findings, but this method of testing behavioral changes following connectivity changes could be a

promising tool for assessing different models of autism as well as other neuropsychiatric disorders.

The targets used in this paradigm were derived from a group analysis, and were not individually

localized. As the variance within groups suggests, this is likely not the optimal method for ROI selec-

tion, especially if the focus is on behavioral change. These results are therefore probably an under

estimation of what this tool can do, with individually tailored ROIs. It is not clear what the best

method for individual ROI selection would be, or which localizer would best identify target regions,

but it is another direction that should be pursued in future studies.

Since the lack of an explicit strategy allows covert neurofeedback to be used to directly target all

manner of abstract, behaviorally relevant networks, potential applications could be far ranging,

encompassing many clinical disorders with underlying aberrant connectivity at their core. Moreover,

this is a promising technique to be used in more basic science questions, as a tool to investigate

questions of causality.

Materials and methods

Participants
19 Males aged 15–25 (mean age = 20.93) who met the DSM-IV criteria for autistic disorder, an

autism cut-off score for social symptoms on the Autism Diagnostic Review (ADR) and/or an ASD cut-

off score from social +communication symptoms on the Autism Diagnostic Observation Schedule

(ADOS), all administered by a trained, research-reliable clinician, were recruited for this experiment.

Additionaly, 11 age matched typically developing males were recruited for the control group. All

participants had normal to corrected to normal vision. IQ scores were obtained for all participants,

and all full-scale IQ scores were �85 as measured by the Wechsler Abbreviated Scale of Intelligence,

the Wechsler Adult Intelligence Scale-III, or the Wechsler Intelligence Scale for Children-IV. Partici-

pant groups did not differ in terms of full-scale IQ.

one ASD participant was removed due to discomfort in scanner on day1, and another ASD partic-

ipant was removed on day two due to anxiety. 1 TD participant was removed after day1 for exces-

sive motion. 17 ASD and 10 TD participants completed all four days of neurofeedback training. 15

ASD participants returned for the follow up experiment. The experiment was approved by the NIMH

Institutional Review Board (protocol 10_M-0027). Written informed consent was obtained from all

participants.

Definition of ROIs
Three Regions of Interest (ROIs) were selected for training: two targets and one control. The targets

were chosen according to previous research as those with a large degree of reduced connectivity in

Autism Spectrum Disorder compared with typically developing (TD) controls, based on between

group analysis as explained in (Gotts et al., 2012). For this analysis, we used an expansion of the

dataset published in (Gotts et al., 2012), N = 56 ASD, 62 TD. Of the 56 ASDs in this dataset, 11 par-

ticipated in the neurofeedback study. Additional constraints placed on the choice of ROIs was for

them to be physically distant from each other, and in different networks (see (Gotts et al., 2012) for

details). All ROIs were defined as spheres of 4 mm radius surrounding the focal points: Target1 - left

Superior Temporal Sulcus (Talairach coordinates: �49,–29, 0), Target2 - left somatosensory cortex

(Talairach coordinates: �54, 14, 39), and Control - right Inferior Parietal Lobe (chosen to be as uncor-

related with these two targets as possible in the TD dataset, Talairach coordinates: 49,–50, 42). Fig-

ure 1 shows the between group difference in the correlations between the ROIs.
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Imaging data collection and MRI parameters
All scans were collected at the Functional Magnetic Resonance Imaging Core Facility on an 8 channel

coil GE 3T (GE Signa HDxT 3.0T) magnet and receive-only head coil, with online slice time correction

and motion correction. The scans included a 5 min structural scan (MPRAGE) for anatomical co-regis-

tration, which had the following parameters: TE = 2.7, Flip Angle = 12, Bandwidth = 244.141,

FOV = 30 (256 � 256), Slice Thickness = 1.2, axial slices. EPI was conducted with the following

parameters: TR = 2 s, Voxel size 3.2*3.2*3.2, Flip Angle: 60, TE = 30 ms, Matrix = 72�72, Total

TRs = 270, Slices: 37. All scans used an accelerated acquisition (GE’s ASSET) with a factor of 2 in

order to prevent gradient overheating.

Neurofeedback experiment
The initial neurofeedback experiment consisted of 4 training sessions over 8 days. There were 2 con-

secutive training days, a 6 day delay, then a final set of 2 consecutive training days. Each training

day had 2 initial rest scans, 4 neurofeedback sessions, and 2 final rest scans. All scans were 9 min

long. Participants were instructed to maintain an eyes-open rest and look at the blank screen. Neu-

ropsychological tests were administered at two timepoints: on the first training day before scanning,

and two weeks following the last training day.

Follow-Up experiment
Follow up scans were conducted 5–56 weeks after the final training day and consisted of a single,

abbreviated neurofeedback session with two rest scans followed by two neurofeedback sessions.

Online real-time data collection
Regions of Interest (ROIs) were defined in Talairach space as described above. The standard Talair-

ach brain was then co-registered to the structural scan collected that day, which was in turn co-regis-

tered to a short (10 TRs) functional echo-planar imaging scan (setup EPI) collected for that purpose

each day before the first resting state session, to bring the ROIs into the native space during neuro-

feedback processing. All coregistration was carried out with the AFNI (Analysis of Functional Neuro-

Images) software package (Cox, 1996).

Real-time fMRI algorithm
During online processing of the data, 3D motion correction and slice time correction were carried

out on all functional images. BOLD signal was extracted from each voxel in the ROIs and the mean

signal was calculated for each ROI.

Feedback decisions were determined by a difference measure, taking into account both the

changes in the trend between the two target ROIs and the control ROI. This difference measure was

calculated for each TR and for each of the three ROIs. Our rt-fMRI algorithm calculated the differ-

ence between the mean signal in the current TR minus the signal in the preceding TR, giving the sig-

nal trend in each ROI (increasing or decreasing). If the trend in the two targets was the same, and

opposite from the trend in the control ROI, then feedback was given, meaning both conditions had

to be fulfilled for feedback to be given:

ms Target1 TR¼ tð Þð Þ�ms Target1 TR¼ t� 1ð Þð Þ

ms Target2 TR¼ tð Þð Þ�ms Target2 TR¼ t� 1ð Þð Þ
>0&

ms Target1 TR¼ tð Þð Þ�ms Target1 TR¼ t� 1ð Þð Þ

ms Control TR¼ tð Þð Þ�ms Control TR¼ t� 1ð Þð Þ
<0

(ms = mean signal)

Neurofeedback procedure
Each training session had four neurofeedback training scans. The scans started out with a uniformly

grey screen. Participants were told that there is a picture hidden underneath, and were instructed to

try to unveil the image during what was described as the puzzle task. Importantly, no further cogni-

tive strategies or suggestions were given to the participant for the duration of the experiment. Par-

ticipants were not informed that their performance on the puzzle task was determined by brain

activation.
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Neurofeedback stimuli
Participants received two forms of positive reinforcement whenever the real-time algorithm deter-

mined that the network requirements had been met: a ‘puzzle piece’, i.e. a square of the hidden pic-

ture, would become visible on the screen with a concomitant sound of positive valence. This

feedback was chosen to maximize engagement with the paradigm during the scan by providing a

complex and interesting visual stimulus in a game-like setting, and the auditory stimulus was paired

to ensure that participants would be aware of positive feedback independent of their visual

attendance.

Visual stimuli
During rest scans participants were shown a uniformly grey screen.

During Neurofeedback training participants would begin with a uniformly grey screen. Then the

image would become visible in small rectangular blocks, described to the participants as ‘puzzle

pieces.’ There were 25 ‘puzzle pieces’ per board, which would be displayed piece by piece until a

whole image was unveiled. After a full board was completed, the screen would become blank and a

new image would begin to appear. The images were randomly selected from a set of 100 non-social

images devoid of people or text, like a landscape or an abstract painting.

At the end of each 9 min training round, participants viewed a scoreboard which told them how

many individual pieces they had unveiled that round, as well as the top score that they had received

that day. Participants were financially incentivized to beat their best score for that day. fMRI offline

data preprocessing:

Post-hoc signal preprocessing was conducted in AFNI. The first four EPI volumes from each run

were removed to ensure remaining volumes were at magnetization steady state, and remaining large

transients were removed through a squashing function (AFNI’s 3dDespike). Volumes were slice-time

corrected and motion parameters were estimated with rigid body transformations. Volumes were

coregistered to the anatomical scan. Volumes were smoothed with 6 mm blurring and normalized by

the mean signal intensity of each voxel. The AFNI ANATICOR procedure was then applied to

remove nuisance physiological and nonphysiological artifacts from the data (Jo et al., 2010). The

anatomical scan was segmented into tissue compartments with Freesurfer (Fischl et al., 2002), Ven-

tricle and white-matter masks were created and applied to the volume-registered EPI. Prior to

smoothing, these masks gave pure nuisance times series for the ventricles and local estimates of the

BOLD signal in white matter, averaged within a 15 mm radius. The measured respiration and heart

rate signals were used to create Retroicor (Glover et al., 2000) and respiration volume per time

(RVT) regressors (Birn et al., 2008). All nuisance time series in every run (average ventricle time

series, average local white matter time series, 6 parameter estimates for head motion, and thirteen

RVT and Retroicor regressors) were detrended with fourth-order polynomials before least-squares

model fit to each voxel time series. No other filtering of the data was done. All participant data was

aligned by affine registration to AFNI’s TT-N27 template in standardized Talairach and Tournoux

(Talairach and Tournoux, 1988) space.

Neuropsychological tests
Baseline neuropsychological tests were conducted before the initial training session, and post-exper-

iment surveys were collected two weeks after the final neurofeedback session. Parents filled out the

Social Behavior Scale (SRS) to identify common social behaviors in autism, as well as the Behavioral

Rating Inventory of Executive Function (BRIEF). The ‘informant’ report (filled in by a parent) was

used as it has been shown to be more accurate (McMahon and Solomon, 2015). An independent

dataset of ASD subjects who did not participate in this experiment but had SRS test-retest data was

used to determine change reliability. Data points that were beyond three standard deviations from

the mean as determined by this analysis were excluded as outliers.

Cognitive strategy questionnaire
We developed a cognitive strategy questionnaire that was completed by 11 of the 17 participants.

Following their final scan session on day4 of the training, each of these participants was asked what

they thought the experiment was about. Participants were then asked what they were doing during

the scans, and if they used a particular cognitive strategy.
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Finally, participants were asked to rate on a scale of 1–10 how hard they had been trying to solve

the puzzles each day, how satisfied they felt when a new puzzle piece came up, and if there were dif-

ferences between days. The first six participants did not complete this questionnaire, but were inter-

viewed after the final scan and reported no knowledge of the objective of the task, and similar

cognitive strategies to those later reported in the questionnaire. See Table 1 for the data from these

questionnaires.

Data analysis
All data were analyzed with in-house software written in Matlab, as well as the AFNI software pack-

age. Data on the cortical surface were visualized with SUMA (SUrface MApping) (Saad et al., 2004).

The composite difference measure was computed by subtracting the average correlation of the two

target/control pairs, from the target/target correlation:

corr Target1;Target2ð Þ�
1

2
corr Target1;Controlð Þþ corr Target2;Controlð Þð Þ

All p-values for the changes in correlation between days were computed through permutation

tests, randomly permuting the days for 5000 iterations.

Whole-brain analysis
For each participant, for each neurofeedback scan on day1 and day4, we first transformed the corre-

lation values with Fisher’s z-transform to improve normality, then calculated a difference measure

per voxel: corr(voxel time series, avg. Target1 time series) - corr(voxel time series, avg. Control time

series). The resulting maps held information regarding each voxel’s differential correlation to the Tar-

get1 vs. Control ROIs. We then averaged the maps for each participant across all four neurofeed-

back scans for each of the two days, and subtracted the average day1 map from the average day4

map. Each voxel in the resulting map now signified the change in correlation from day1 to day4, in

the differential correlation to the Target1 ROI vs. the Control ROI, where a positive value means that

this voxel was differentially more correlated to Target1 than to Control on day4 compared with

day1. Normality of these data were ascertained using Lilliefor’s goodness of fit test. We then carried

out a t-test across the 17 participants, to identify voxels with a consistent change across subjects.

Maps were corrected using a permutation test to determine significant cluster size, with day1 and

day4 randomly permuted for each participant across 5000 permutations (as suggested by

[Eklund et al., 2016]). These permutations were carried out at p-value thresholds of 0.05, 0.01,

0.005, 0.001 and 0.0005, and a mask was created of voxels that survived any of these corrections.

The mask was then applied to the map shown in Figure 5A, which was set at a p-value threshold of

0.05.

The same procedure was carried out for the Target2 minus Control differential correlation, and

the resulting map is shown in Figure 5B.

Data availability
Data is available via the XNAT platform https://central.xnat.org/app/template/Index.vm (dataset title

’Direct modulation of aberrant brain network connectivity through real-time neurofeedback’ with ID

number ASD_NF). As some of the participants in the experiment signed an older version of the con-

sent form, which does not explicitly allow for data sharing, we are currently working on re-consent-

ing all the participants with a new version. Hence for now, users will need to request access through

the system. This can be done by creating a XNAT user account and pressing the request access link.
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