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Warburg’s vision
Genetic tools help to dissect the relationship between aerobic glycolysis

and anabolic metabolism in the retinas of mice.

JAMES B HURLEY

R
od-shaped cells at the back of our eyes

allow us to see in dim light. Each day,

around dawn, these rod cells shed their

tips (LaVail, 1976), and the lost material is

replaced with newly built proteins and other

macromolecules made further down in the same

cell (Anderson et al., 1980; Young, 1967).

Cancer cells growing in a tumor also have a

high demand for newly built macromolecules. In

the early 1920s, the German physiologist Otto

Warburg reported on a specialized type of

metabolism that converts most of the glucose

taken up by a cell into lactate, rather than car-

bon dioxide and water as usually happens, even

when oxygen is abundant (Warburg et al.,

1924). Two of the tissues in which Warburg dis-

covered this type of metabolism, which is often

referred to as "aerobic glycolysis", were the very

same tissues introduced above, retinas and

tumors.

The building of complex macromolecules

from simpler building blocks is referred to as

anabolism. Recently studies into the metabolism

of cancer cells have begun to reveal biochemical

details that may link aerobic glycolysis and ana-

bolic activity (Vander Heiden and DeBerardinis,

2017). One of the remarkable features of cancer

cells discovered in these studies is that they

often produce specific versions (or isoforms) of

the enzymes that carry out glycolysis, namely

pyruvate kinase (PKM2) and lactate dehydroge-

nase (LDHA). Not surprisingly, these same iso-

forms are present in rod cells (Casson et al.,

2016; Lindsay et al., 2014; Rajala et al., 2016;

Rueda et al., 2016). Now, in eLife, Constance

Cepko and colleagues at Harvard Medical

School – including Yashodhan Chinchore as first

author – report how these two glycolytic

enzymes contribute to anabolic metabolism in

rod cells from mice (Chinchore et al., 2017).

First, Chinchore et al. inactivated LDHA and

PKM2 in mouse rod cells, either with inhibitors

or by reducing expression of the genes that

encode the enzymes. The resulting rod cells

were shorter than normal, as if they did not have

enough anabolic activity to counteract the shed-

ding of their tips (Figure 1). In support of this

idea, when the mice were kept in constant dark-

ness (which suppresses shedding and renewal of

the outer segments), inactivating LDHA or PKM2

had less of an effect. Chinchore et al. then engi-

neered mice in which some cells in the retina

made less LDHA or PKM2 while the others were

normal. In these ’mosaic’ retinas, the only rods

that were shorter were the ones with less LDHA

or PKM2. This suggests that the enzymes pro-

mote anabolism only in the cell in which they are

made.

Chinchore et al. were concerned that the

complete loss of PKM2 or LDHA might have

effects that were so devastating that even the

essential ’housekeeping’ roles of glycolysis in

the cell could be compromised. To address that

concern, they also used a more ’surgical’

approach that specifically slowed glycolysis with-

out eliminating the entire pathway. Fructose-2,6-

bisphosphate is an activator of glycolysis. To

decrease this chemical in rod cells, Chinchore

et al. overexpressed a protein specifically in rods
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that removes an essential phosphate group from

this activator. Slowing glycolysis by this strategy

made the rod cells shorter than normal, indicat-

ing that flux through the glycolysis pathway is

key.

So, what makes PKM2 and LDHA different

from other isoforms so that cells requiring rapid

growth use them and not the other isoforms?

Previous studies showed that these enzymes can

be regulated by tyrosine phosphorylation to pro-

mote aerobic glycolysis (Hitosugi et al., 2009;

Jin et al., 2017). Moreover, exposure to light –

which increases the need for anabolic activity –

enhances phosphorylation of PKM2 in the retinas

of mice (Rajala et al., 2016). Chinchore et al.

confirmed this result and then looked for signal-

ing pathways that, when blocked, reduced how

much PKM2 was phosphorylated in rod cells.

They found that the pathway that responds to

fibroblast growth factor (FGF) can control the

phosphorylation of PKM2 and LDHA in mouse

retinas. The tissue that normally is immediately

adjacent to the rod cells, the retinal pigment

epithelium, can influence the amount of FGF

that a retina is exposed to in an eye. Chinchore

et al. found that culturing mouse retinas with

this tissue, or with some FGF, boosts how much

lactate is produced.

By manipulating the expression of genes

involved in aerobic glycolysis in mouse retinas,

Chinchore et al. have further revealed how aero-

bic glycolysis relates to anabolic metabolism.

They also show that disrupting any of three dif-

ferent steps in glycolysis can diminish anabolic

capacity and cause the rod cells to become

shorter. Each of the disruptions tested would

have a different biochemical effect on the glyco-

lytic pathway, but what they have in common is

that they all cause less lactate to be produced. It

is not yet clear why this would compromise ana-

bolic activity, but the genetic tools developed

by Chinchore et al. to manipulate glycolysis in

rod cells provide new opportunities to answer

this question.
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