Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release

  1. Zhao Xuan
  2. Laura Manning
  3. Jessica Nelson
  4. Janet E Richmond
  5. Daniel A Colón-Ramos
  6. Kang Shen
  7. Peri T Kurshan  Is a corresponding author
  1. Yale University, United States
  2. University of Illinois at Chicago, United States
  3. Stanford University, United States

Abstract

Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens we isolated a novel C. elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes 3 isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release.

Article and author information

Author details

  1. Zhao Xuan

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Laura Manning

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1597-0600
  3. Jessica Nelson

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Janet E Richmond

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Daniel A Colón-Ramos

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Kang Shen

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    Kang Shen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4059-8249
  7. Peri T Kurshan

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    pkurshan@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6267-7103

Funding

National Institutes of Health (R01NS076558)

  • Zhao Xuan
  • Jessica Nelson
  • Daniel A Colón-Ramos

Howard Hughes Medical Institute (Investigator)

  • Kang Shen
  • Peri T Kurshan

National Institutes of Health (5R01NS048392)

  • Kang Shen
  • Peri T Kurshan

National Science Foundation (NSF IOS 1353845)

  • Zhao Xuan
  • Jessica Nelson
  • Daniel A Colón-Ramos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Xuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,307
    views
  • 662
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhao Xuan
  2. Laura Manning
  3. Jessica Nelson
  4. Janet E Richmond
  5. Daniel A Colón-Ramos
  6. Kang Shen
  7. Peri T Kurshan
(2017)
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
eLife 6:e29276.
https://doi.org/10.7554/eLife.29276

Share this article

https://doi.org/10.7554/eLife.29276

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.