Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release

  1. Zhao Xuan
  2. Laura Manning
  3. Jessica Nelson
  4. Janet E Richmond
  5. Daniel A Colón-Ramos
  6. Kang Shen
  7. Peri T Kurshan  Is a corresponding author
  1. Yale University, United States
  2. University of Illinois at Chicago, United States
  3. Stanford University, United States

Abstract

Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens we isolated a novel C. elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes 3 isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release.

Article and author information

Author details

  1. Zhao Xuan

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Laura Manning

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1597-0600
  3. Jessica Nelson

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Janet E Richmond

    Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  5. Daniel A Colón-Ramos

    Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Kang Shen

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    Kang Shen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4059-8249
  7. Peri T Kurshan

    Department of Biology, Stanford University, Stanford, United States
    For correspondence
    pkurshan@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6267-7103

Funding

National Institutes of Health (R01NS076558)

  • Zhao Xuan
  • Jessica Nelson
  • Daniel A Colón-Ramos

Howard Hughes Medical Institute (Investigator)

  • Kang Shen
  • Peri T Kurshan

National Institutes of Health (5R01NS048392)

  • Kang Shen
  • Peri T Kurshan

National Science Foundation (NSF IOS 1353845)

  • Zhao Xuan
  • Jessica Nelson
  • Daniel A Colón-Ramos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2017, Xuan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,139
    views
  • 657
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhao Xuan
  2. Laura Manning
  3. Jessica Nelson
  4. Janet E Richmond
  5. Daniel A Colón-Ramos
  6. Kang Shen
  7. Peri T Kurshan
(2017)
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
eLife 6:e29276.
https://doi.org/10.7554/eLife.29276

Share this article

https://doi.org/10.7554/eLife.29276

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.