1. Cancer Biology
  2. Neuroscience
Download icon

Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy

  1. Peter M LoCoco
  2. April L Risinger
  3. Hudson R Smith
  4. Teresa S Chavera
  5. Kelly A Berg
  6. William P Clarke  Is a corresponding author
  1. University of Texas Health Science Center at San Antonio, United States
Research Article
  • Cited 19
  • Views 2,434
  • Annotations
Cite this article as: eLife 2017;6:e29626 doi: 10.7554/eLife.29626

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.

Article and author information

Author details

  1. Peter M LoCoco

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5678-791X
  2. April L Risinger

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4363-3268
  3. Hudson R Smith

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  4. Teresa S Chavera

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  5. Kelly A Berg

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    Kelly A Berg, Received funding to support some of this work by a grant from Calico Life Sciences LLC.
  6. William P Clarke

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    For correspondence
    clarkew@uthscsa.edu
    Competing interests
    William P Clarke, Received funding to support some of this work by a grant from Calico Life Sciences LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8861-8256

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal study protocol (#20130051AR) was approved by the Institutional Animal Care and Use Committee of the University of Texas Health Science Center at San Antonio and conformed to International Association for the Study of Pain (IASP) and federal guidelines.

Reviewing Editor

  1. David D Ginty, Harvard Medical School, United States

Publication history

  1. Received: June 14, 2017
  2. Accepted: November 3, 2017
  3. Accepted Manuscript published: November 10, 2017 (version 1)
  4. Version of Record published: November 24, 2017 (version 2)

Copyright

© 2017, LoCoco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,434
    Page views
  • 434
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Neuroscience
    Susu Pan et al.
    Research Article

    Emerging evidence suggests that the nervous system is involved in tumor development in the periphery, however, the role of central nervous system remains largely unknown. Here, by combining genetic, chemogenetic, pharmacological and electrophysiological approaches, we show that hypothalamic oxytocin (Oxt)-producing neurons modulate colitis-associated cancer (CAC) progression in mice. Depletion or activation of Oxt neurons could augment or suppress CAC progression. Importantly, brain treatment with celastrol, a pentacyclic triterpenoid, excites Oxt neurons and inhibits CAC progression, and this anti-tumor effect was significantly attenuated in Oxt neuron-lesioned mice. Furthermore, brain treatment with celastrol suppresses sympathetic neuronal activity in the celiac-superior mesenteric ganglion (CG-SMG), and activation of β2 adrenergic receptor abolishes the anti-tumor effect of Oxt neuron activation or centrally administered celastrol. Taken together, these findings demonstrate that hypothalamic Oxt neurons regulate CAC progression by modulating the neuronal activity in the CG-SMG. Stimulation of Oxt neurons using chemicals, eg. celastrol, might be a novel strategy for colorectal cancer treatment.

    1. Cancer Biology
    2. Cell Biology
    Lauren K Williams et al.
    Research Article Updated

    The abscission checkpoint regulates the ESCRT membrane fission machinery and thereby delays cytokinetic abscission to protect genomic integrity in response to residual mitotic errors. The checkpoint is maintained by Aurora B kinase, which phosphorylates multiple targets, including CHMP4C, a regulatory ESCRT-III subunit necessary for this checkpoint. We now report the discovery that cytoplasmic abscission checkpoint bodies (ACBs) containing phospho-Aurora B and tri-phospho-CHMP4C develop during an active checkpoint. ACBs are derived from mitotic interchromatin granules, transient mitotic structures whose components are housed in splicing-related nuclear speckles during interphase. ACB formation requires CHMP4C, and the ESCRT factor ALIX also contributes. ACB formation is conserved across cell types and under multiple circumstances that activate the checkpoint. Finally, ACBs retain a population of ALIX, and their presence correlates with delayed abscission and delayed recruitment of ALIX to the midbody where it would normally promote abscission. Thus, a cytoplasmic mechanism helps regulate midbody machinery to delay abscission.