Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy

  1. Peter M LoCoco
  2. April L Risinger
  3. Hudson R Smith
  4. Teresa S Chavera
  5. Kelly A Berg
  6. William P Clarke  Is a corresponding author
  1. University of Texas Health Science Center at San Antonio, United States

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) arises from collateral damage to peripheral afferent sensory neurons by anticancer pharmacotherapy, leading to debilitating neuropathic pain. No effective treatment for CIPN exists, short of dose-reduction which worsens cancer prognosis. Here we report that stimulation of nicotinamide phosphoribosyltransferase (NAMPT) produced robust neuroprotection in an aggressive CIPN model utilizing the frontline anticancer drug, paclitaxel (PTX). Daily treatment of rats with the first-in-class NAMPT stimulator, P7C3-A20, prevented behavioral and histologic indicators of peripheral neuropathy, stimulated tissue NAD recovery, improved general health, and abolished attrition produced by a near maximum-tolerated dose of PTX. Inhibition of NAMPT blocked P7C3-A20-mediated neuroprotection, whereas supplementation with the NAMPT substrate, nicotinamide, potentiated a subthreshold dose of P7C3-A20 to full efficacy. Importantly, P7C3-A20 blocked PTX-induced allodynia in tumored mice without reducing antitumoral efficacy. These findings identify enhancement of NAMPT activity as a promising new therapeutic strategy to protect against anticancer drug-induced peripheral neurotoxicity.

Article and author information

Author details

  1. Peter M LoCoco

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5678-791X
  2. April L Risinger

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4363-3268
  3. Hudson R Smith

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  4. Teresa S Chavera

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    No competing interests declared.
  5. Kelly A Berg

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    Kelly A Berg, Received funding to support some of this work by a grant from Calico Life Sciences LLC.
  6. William P Clarke

    Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, United States
    For correspondence
    clarkew@uthscsa.edu
    Competing interests
    William P Clarke, Received funding to support some of this work by a grant from Calico Life Sciences LLC..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8861-8256

Funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David D Ginty, Harvard Medical School, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animal study protocol (#20130051AR) was approved by the Institutional Animal Care and Use Committee of the University of Texas Health Science Center at San Antonio and conformed to International Association for the Study of Pain (IASP) and federal guidelines.

Version history

  1. Received: June 14, 2017
  2. Accepted: November 3, 2017
  3. Accepted Manuscript published: November 10, 2017 (version 1)
  4. Version of Record published: November 24, 2017 (version 2)

Copyright

© 2017, LoCoco et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,922
    Page views
  • 497
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter M LoCoco
  2. April L Risinger
  3. Hudson R Smith
  4. Teresa S Chavera
  5. Kelly A Berg
  6. William P Clarke
(2017)
Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy
eLife 6:e29626.
https://doi.org/10.7554/eLife.29626

Share this article

https://doi.org/10.7554/eLife.29626

Further reading

    1. Cancer Biology
    Wanyoung Lim, Inwoo Hwang ... Sungsu Park
    Research Article

    Chemoresistance is a major cause of treatment failure in many cancers. However, the life cycle of cancer cells as they respond to and survive environmental and therapeutic stress is understudied. In this study, we utilized a microfluidic device to induce the development of doxorubicin-resistant (DOXR) cells from triple negative breast cancer (TNBC) cells within 11 days by generating gradients of DOX and medium. In vivo chemoresistant xenograft models, an unbiased genome-wide transcriptome analysis, and a patient data/tissue analysis all showed that chemoresistance arose from failed epigenetic control of the nuclear protein-1 (NUPR1)/histone deacetylase 11 (HDAC11) axis, and high NUPR1 expression correlated with poor clinical outcomes. These results suggest that the chip can rapidly induce resistant cells that increase tumor heterogeneity and chemoresistance, highlighting the need for further studies on the epigenetic control of the NUPR1/HDAC11 axis in TNBC.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.