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Abstract Human speech is one of the few examples of vocal learning among mammals yet ~half
of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared
requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area
X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during
a critical period for song development. We delineate, for the first time, unique contributions of
each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data
revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to
singing was found in juvenile and adult Area X whereas coexpression correlated to learning was
unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may
underscore molecular processes that drive vocal learning in young zebra finches and, by analogy,
humans.

DOI: https://doi.org/10.7554/eLife.30649.001

Introduction

The ability to learn new vocalizations is a key subcomponent of language. Complex behaviors such
as human speech and birdsong are rarely monogenic in origin, making the attribution of their direct
molecular underpinnings a challenge (Marcus and Fisher, 2003). While language is unique to
humans, learned vocal behavior is present in a number of animal taxa. Among laboratory animals,
the zebra finch songbird (Taeniopygia guttata) is the primary genetic model for vocal learning, and
song learning in this species shares numerous parallels with human speech development. For exam-
ple, both species share corticostriatal loops for producing vocalizations and have direct projections
from cortical neurons onto brainstem motor neurons that control the vocal organs, a connection that
is lacking or reduced in non-vocal learners (Lemon, 2008; Jiirgens, 2002; Arriaga et al., 2012;
Doupe and Kuhl, 1999; Petkov et al., 2012). The brains of avian vocal learners contain a distributed
corticostriatal network of clustered cells devoted to vocal production learning, commonly referred to
as the song control circuit, offering tractable targets for experimental manipulation. Despite their
evolutionary distance, humans and zebra finches exhibit shared transcriptional profiles in key brain
regions for vocal learning that are unique from surrounding brain areas and from the brains of non-
vocal learning species (Pfenning et al., 2014).

Burkett et al. eLife 2018;7:€30649. DOI: https://doi.org/10.7554/eLife.30649

10of 35


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.30649.001
https://doi.org/10.7554/eLife.30649
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access

LI FE Research article Computational and Systems Biology | Neuroscience

elLife digest Songbirds, much like in humans, have a critical period in youth when they are best
at learning vocal communication skills. In birds, this is when they learn a song they will use later in
life as a courtship song. In humans, this is when language skills are most easily learned. After this
critical period ends, it is much harder for people to learn languages, and for certain bird species to
learn their song.

When birds sing every morning, the activity of a gene called FoxP2 drops, which causes a
coordinated change in the activity of thousands of other genes. It is suspected that FoxP2 — and the
changes it causes — could be a part of the molecular basis for vocal learning. FoxP2 is also known to
play a role in speech in humans, and both birds and humans have a long and a short version of this
gene. Previous research has shown that when the long version of the gene was altered so its activity
would no longer decrease when birds were singing, the birds failed to learn their song. Moreover,
humans with a mutation in the long version have problems with their speech. However, until now, it
was not known if modifications to the short version had the same effect.

Burkett et al. investigated whether there was a noticeable pattern in the effects of FoxP2 before
and after the critical period in a songbird. The analysis found that during the critical period, a set of
genes changed together as young birds learned to sing. This particular pattern disappeared as the
birds aged and the critical period ended. Burkett et al. confirmed that when birds had the long
version of FoxP2 altered, they were less able to learn. However, changing the short version of FoxP2
had little effect on learning but led to changes in the birds’ song.

The genetic pathways identified in the experiments are known to be present in many different
species, including humans. Related pathways have also been found to play a role in non-vocal
learning in organisms as distantly related as rats and snails. This suggests that they could be acting
as a blueprint for learning new skills. Few treatments for language impairments have been
developed so far due to poor understanding of the molecular basis for vocal communication. The
findings of this study could help to create new treatments for speech problems in people, such as
children with autism or people with mutated versions of FoxP2.

DOI: https://doi.org/10.7554/eLife.30649.002

The forkhead box P2 (FOXP2) transcription factor was the first gene shown to be important for
vocal learning in both humans and songbirds. Forkhead box proteins are characterized by the pres-
ence of DNA-binding FOX domains (Clark et al., 1993) and FOXP subfamily members form homo-
or heterodimers at zinc finger and leucine zipper domains in order to bind DNA. In humans, a het-
erozygous mutation in the FOX domain of FOXP2 causes a rare heritable speech and language dis-
order in a cohort known as the KE family (Vargha-Khadem et al., 1998; Lai et al., 2001), potentially
by altering the subcellular localization of the molecule (Vernes et al., 2006). While the mutation dis-
rupts vocal learning (Marcus and Fisher, 2003) and also vocalization in vocal non-learners
(Chabout et al., 2016; Castellucci et al., 2016), multiple FOXP2 isoforms are endogenous to both
songbirds and humans, including one that lacks the DNA binding domain (Teramitsu and White,
2006; Bruce and Margolis, 2002). This truncated variant is referred to as FOXP2.10+ because,
although it lacks the FOX domain, it retains the dimerization domains plus an additional 10 amino
acids that are not found in the full length form (FoxP2.FL).

Consistent with its lack of a FOX domain, in vitro assays of FOXP2.10+ indicate that it may regu-
late other FoxP2 isoforms (Vernes et al., 2006). Since it retains the dimerization domain, it has been
hypothesized to act as a cytoplasmic sink, binding to other FOXP proteins and preventing their entry
to the nucleus and interaction with DNA. Investigation of FoxP2 function in zebra finches has
revealed remarkable parallels with humans. Similar FoxP2 expression patterns occur in developing
human and zebra finch brains (Teramitsu et al., 2004). In zebra finches, knockdown of FoxP2 in the
song dedicated striatopallidal nucleus, Area X, during vocal development impaired vocal mimicry of
tutor songs (Haesler et al., 2007), much as the KE family mutation impairs speech. These observa-
tions indicate that functional FoxP2 is necessary for proper vocal learning, an inference supported by
work in songbirds (Haesler et al., 2007, Heston and White, 2015).
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The unique organization of song control circuit neurons enabled the discovery that FoxP2 is
dynamically downregulated within Area X when zebra finches practice their songs, termed ‘undi-
rected’ (UD) singing (Teramitsu and White, 2006; Miller et al., 2008; Hall, 1962; Immel-
mann, 1962; Dunn and Zann, 1996). This decrease in FoxP2 is accompanied by increased vocal
variability (Miller et al., 2010; Hilliard et al., 2012a), thought to be a form of vocal exploration.
Blockade of FoxP2 downregulation impaired birds’ ability to induce variability in their songs. A poor
learning phenotype emerged following FoxP2 overexpression (Heston and White, 2015) that was
remarkably similar to that observed following FoxP2 knockdown (Haesler et al., 2007). Taken
together, these results indicate that the dynamic regulation of at least FoxP2.FL, and thereby the
behavior-linked up- and down-regulation of its transcriptional targets, is necessary for the proper
learning of vocalizations. No specific role in vocal behavior has yet been attributed to the FoxP2.10
+ isoform.

These observations pinpoint FoxP2 as a molecular entry point to the pathways underlying vocal
learning. In adult birds, we previously used Weighted Gene Coexpression Network Analysis
(WGCNA) to identify thousands of genes regulated by singing specifically in Area X (Hilliard et al.,
2012a; Langfelder and Horvath, 2008). Since adult zebra finches sing stable, or crystallized, songs,
the transcription patterns underlying vocal learning were not identified. Here we conduct a new
study with two goals: (1) Determine whether FoxP2.10+ may play a role in vocalization and, (2)
Manipulate FoxP2 isoforms in juveniles to generate a broad range of behavioral and transcriptional
states upon which to apply WGCNA and thereby reveal learning-related gene modules. Toward the
first goal, overexpression of FoxP2.10+ revealed a unique role for this truncated isoform in the acute
modulation of vocal variability. Toward the second goal, overexpression of either GFP or one of the
two FoxP2 isoforms created three distinct groups of juvenile birds: one that was good at learning
and acutely modulating variability (GFP), one that was poor at learning and acutely modulating vari-
ability (FoxP2.FL), and one that was good at learning but injected stability into song (FoxP2.10+).
We applied WGCNA to the Area X transcriptome of birds across this behavioral continuum and dis-
covered striatopallidal coexpression patterns that were positively correlated to learning. These learn-
ing-related patterns were present in juvenile but not adult Area X. However, singing-driven
coexpression patterns in Area X were largely preserved between juveniles and adults, suggesting
that: (1) song production modules are independent of learning state and (2) the spatiotemporal co-
occurrence of both song production and learning-related gene modules in juvenile Area X is funda-
mental to vocal learning.

Results

Virus-mediated overexpression of FoxP2 isoforms affects song learning
and/or vocal variability

Adeno-associated viral (AAV) constructs were used to drive overexpression of FoxP2.FL or FoxP2.10
+ in Area X of developing males (Figure 1—figure supplement 1). To verify isoform-specific overex-
pression, we used two riboprobes in in situ hybridization experiments: one antisense to a region
common to both transcripts (mid probe) and one antisense to a region near the 3' end of FoxP2.FL
(3" probe; [Teramitsu and White, 2006]; Figure 1A). Robust signals beyond endogenous/back-
ground levels were observed in the striatopallidum of both hemispheres using the mid probe but
only in the hemisphere injected with the FoxP2.FL construct using the 3’ probe (Figure 1B). These
results indicate that each viral construct overexpressed its encoded FoxP2 isoform and was thus suit-
able for bilateral injection into Area X of juvenile males at 35d. An additional cohort received AAV
encoding GFP as a control. We quantified levels of FoxP2 expression at 65d by performing qRT-PCR
with a set of primers that amplifies a region common to both transcripts (Haesler et al., 2007,
Olias et al., 2014) and another set specific to the FoxP2.10+ (see Materials and methods). The first
primer set indicated that FoxP2 levels were higher in birds injected with either construct relative to
control levels. When quantified by the second primer set, we found elevated PCR product only in
the animals injected with the FoxP2.10+ construct (Figure 1C). No overexpression was detected in
the ventral striatopallidum (VSP; the zebra finch striatum is interspersed with pallidal-like cells and is
separate from the pallidum [Reiner et al., 2004)) (Figure 1—figure supplement 2). Taken together,
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Figure 1. Overexpression of FoxP2 isoforms. (A) Schematics show full-length (FoxP2.FL) and 10+ (FoxP2.10+) isoforms. Regions whose transcripts were
targeted by the complementary riboprobes are shown in red. (B) Left panel depicts experimental design to test for isoform-specific expression in vivo.
Middle and right images depict two sections from the same female brain. For purposes of validation only, the bird’s right hemisphere (shown on left)
was injected with an AAV expressing FoxP2.FL while the left hemisphere was injected with the FoxP2.10+ construct. Two weeks post-injection, robust
signals were observed in the striatopallidum of both hemispheres using the mid probe but only in the hemisphere injected with the FoxP2.FL construct
using the 3’ probe. Signals reflect both the endogenous FoxP2 expression pattern (Teramitsu and White, 2006; Teramitsu et al., 2004;

Teramitsu et al., 2010) as well as enhanced levels due to viral-driven expression. (C) FoxP2 expression quantified by gRT-PCR in juvenile males that
were bilaterally injected with one of the constructs at 35d using primers that identify both isoforms (left graph) or only the FoxP2.10+ isoform (right
graph). Using the former primers, enhanced expression is observed in the FoxP2.FL (grey; 126.5 + 13.53%; n = 6) and FoxP2.10+ (red; 162.4 + 26.77%,
Figure 1 continued on next page
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n = 6) groups relative to levels of birds that received the GFP control construct (green; 100 + 7.54%; n = 7). Using the ‘FoxP2.10+ Only’ primers,
enhanced expression is only observed in the FoxP2.10+ group (red; 279 + 52.69%; n = 6) vs. the FoxP2.FL (grey; 126.16 + 24.61%; n = 6) and GFP
(green; 100 + 22.95%; n = 7). Values represent percentage relative to GFP £SEM. * and # denote p=0.031 and p=0.084, respectively, of an unpaired
two-tailed bootstrap test. (D) A cell in the zebra finch striatopallidum expressing GFP (indicating viral transduction; green), endogenous FoxP2 as
revealed by an antibody directed to the C-terminus (red), and Xpress-FoxP2.10+ revealed by an antibody to the Xpress tag (cyan). The Xpress signal is
reminiscent of FoxP2.10+ aggresomes observed by Vernes et al. (Vernes et al., 2006). Orthogonal views of the cell are presented below. Scale bar = 5

uM.

DOI: https://doi.org/10.7554/eLife.30649.003
The following source data and figure supplements are available for figure 1:

Source data 1. Contains averaged Ct values for each triplicate gPCR reaction presented in (C).
DOI: https://doi.org/10.7554/eLife.30649.006

Source data 2. Vector maps of AAV and HSV used in this studly.

DOI: https://doi.org/10.7554/eLife.30649.007

Figure supplement 1. FoxP2 isoform protein expression.

DOI: https://doi.org/10.7554/eLife.30649.004

Figure supplement 2. FoxP2 gRT-PCR in VSP samples.

DOI: https://doi.org/10.7554/eLife.30649.005

these results indicate that both constructs were effective in elevating levels of their encoded FoxP2
isoform within Area X throughout the 30d experimental period.

Overexpression of a tagged form of FoxP2.10+ in a human neuronal cell line (SH-SY5Y) sug-
gested that FoxP2.10+ acts as a posttranslational regulator of FoxP2.FL through heterodimerization
and the formation of cytoplasmic aggresomes (Vernes et al., 2006). We thus examined the protein-
level distribution of FoxP2.10+ and FoxP2.FL in the finch striatopallidum following overexpression of
an N-terminus Xpress tagged FoxP2.10+ linked to a GFP reporter (see Stereotaxic Surgery and
Viruses in Materials and methods). Transduced cells shared the distinctive FoxP2.10+ staining pat-
tern of aggresomes seen previously. In FoxP2+ cells that co-expressed the Xpress tag and GFP
reporter, endogenous FoxP2.FL signal was interspersed among Xpress-positive puncta
(Vernes et al., 2006) (Figure 1D).

We previously found that, in unmanipulated birds, two hours of UD singing in the morning is suffi-
cient to decrease Area X FoxP2 mRNA (as measured by both the mid and 3’ probes) and protein
(Teramitsu and White, 2006; Miller et al., 2008). This decrease in FoxP2 was accompanied by an
increase in the variability of UD songs, in the form of decreased self-similarity (see
Materials and methods), that were sung subsequent to the two hour time-point, a paradigm which
we term UD-UD (Miller et al., 2010; Hilliard et al., 2012a). In contrast, when birds were distracted
from singing for two hours in the morning (non-singing; NS), their subsequent UD songs (termed
NS-UD) were less variable. Moreover, overexpression of FoxP2.FL in Area X abolished the increase
in vocal variability normally induced by the UD-UD paradigm (Heston and White, 2015). These
observations indicate that downregulation of full length FoxP2 is important for acute vocal variability
but we did not directly manipulate FoxP2.10+. Here, we performed similar behavioral experiments
to test for the induction of vocal variability and included the FoxP2.10+ injected animals (Figure 2A
and B). To assess whether UD singing drove an increase in vocal variability, we used the UD-UD par-
adigm (see Materials and methods) and quantified the effect of two hours of UD singing on the coef-
ficient of variation (CV) of acoustic features in the subsequent UD songs of ~60d birds
overexpressing GFP, FoxP2.FL, or FoxP2.10+. Results were compared to songs sung by the same
birds undergoing the NS-UD paradigm. As predicted, GFP-expressing animals exhibited a negative
effect size for most acoustic features, and FoxP2.FL overexpression diminished these practice-
induced changes in vocal variability, replicating our previous findings (Heston and White, 2015)
(Figure 2C).

Unexpectedly, in animals overexpressing FoxP2.10+, song variability after two hours of UD sing-
ing (UD-UD) was significantly less than that after two hours of non-singing (NS-UD) for syllable dura-
tion, amplitude modulation, and Wiener entropy (Figure 2C). Rather than increasing song variability
(as in the GFP group) or creating a state of equivalent variability (as in the FoxP2.FL group), UD-UD
singing led to markedly invariable songs in the FoxP2.10+ birds, suggesting a role for FoxP2.10+ in
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Figure 2. Overexpression of FoxP2 isoforms affect song learning and/or song variability. (A) Timeline of experimental procedures relative to critical
periods in song development. (B) Schematic illustrates NS-UD or UD-UD experiments performed on adjacent days. (C) The effect size of two hours of
UD singing on syllable CV was calculated using the formula (NS-UD)/(NS + UD) after an NS-UD, UD-UD experiment performed at ~60d and 61d as in
(B). Overexpression of FoxP2.FL (grey bars; n = 16 syllables; Duration = —0.059 + 0.029; AM = —0.010 + 0.028; Entropy = —0.038 + 0.04) diminishes

Figure 2 continued on next page
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Figure 2 continued

singing induced variability relative to that seen in GFP-expressing controls (green bars; n = 9 syllables; Duration = —0.128 + 0.071;

AM = —0.065 + 0.035; Entropy = —0.091 + 0.034). In contrast, overexpression of FoxP2.10+ (red bars; n = 13 syllables; Duration = 0.070 + 0.054;

AM = 0.088 + 0.047; Entropy = 0.048 + 0.029) leads to a singing-induced state of relative invariability. Values and bar heights represent the average
effect size for all syllables within the virus construct group +SEM. * denotes significant result in one-way ANOVA (Duration: F(2,35) = 3.95, p=0.028; AM:
F(2,35) = 3.96, p=0.028; Entropy: F(2,35) = 3.63, p=0.037) and Tukey's HSD post-hoc test (p<0.05). (D) Learning curves plot the relationship between
percentage similarity to tutor as a function of time. Animals overexpressing GFP (green; letter ‘B’; n = 7 birds;~65 d similarity = 67.2 + 6.64%) or
FoxP2.10+ (red, letter ‘A’; n = 5 birds;~65 d similarity = 75.8 + 2%) learn significantly better than those overexpressing FoxP2.FL (grey, letter 'C"; n = 5
birds;~65 d similarity = 44.3 £ 10.1%). Values are mean £SEM. Data are binned by day (top panel; bold points represent group mean and shifted smaller
points are individual birds) or by individuals (bottom panel). Significantly different groups tested by one-way ANOVA (Bin 1:~40d F(2,11) = 6.06,
p=0.016; Bin 3:~55d F(2,13) = 6.04, p=0.014; Bin 4:~60d F(2,14) = 9.94, p=0.002; Bin 5:~65d F(2,14) = 4.76, p=0.026) and Tukey HSD post-hoc test
(p<0.05) are denoted by capital and lowercase lettering. (E) Exemplar motifs of a tutor and three of his 65d pupils, each of which was injected with a
different viral construct at 30d. These examples illustrate the percent similarity depicted in panel D. (F) Summary of the learning and variability
phenotypes observed after virus injection.

DOI: https://doi.org/10.7554/eLife.30649.008

The following source data and figure supplement are available for figure 2:

Source data 1. Contains the effect sizes for each syllable that are presented in (C).

DOI: https://doi.org/10.7554/eLife.30649.010

Source data 2. Contains the binned similarity scores presented in the upper plot in (D).

DOI: https://doi.org/10.7554/eLife.30649.011

Figure supplement 1. Raw acoustic feature variability in the NS-UD and UD-UD conditions by virus group.
DOI: https://doi.org/10.7554/eLife.30649.009

promoting song stability. We also examined variability in the raw acoustic features of NS-UD and
UD-UD song and found that expression of either FoxP2 isoform did not dramatically alter variability,
indicating that the viral-driven overexpression specifically affected the modulation of variability (See
‘Acute Modulation of Vocal Variability’ in Materials and methods) and not its overall level (Figure 2—
figure supplement 1 and Materials and methods). Despite its suppressive effect on practice-induced
song variability, overexpression of FoxP2.10+ did not impair overall vocal learning (Figure 2D and
E). As shown by Heston and White (Heston and White, 2015), FoxP2.FL birds were capable of
changing their songs over the course of the experiment (data not shown) but were less able to
match their tutors’ songs (Figure 2D and E). These results suggest that the ability to modulate
between relatively low and high variability states is important for proper vocal learning.

In sum, our viral manipulations generated groups of animals in distinct states of vocal variability
and learning. GFP-injected birds learned well and displayed singing-induced variability in the acous-
tic features of song. FoxP2.FL birds learned poorly and had no difference in their songs’ acoustic var-
iability following practice. FoxP2.10+ birds learned well but seemed to exist in a state where
practice drives invariability in vocal acoustics. As such, a broad degree of both learning and variabil-
ity induction existed across groups (Figure 2F). Next, we used these behavioral metrics as correlates
to gene coexpression patterns to interrogate the transcriptional profiles underlying these traits.

Gene modules in juvenile Area X that correlate to vocal behavior are
enriched for communication and intellectual disability risk genes

We used RNA-seq to quantify gene transcription in Area X of 65d juveniles overexpressing GFP,
FoxP2.FL or FoxP2.10+, then used WGCNA to identify gene coexpression modules and link them to
song learning. We built an overall network composed from all samples together (Figure 3A and B),
as well as construct-specific networks (Figure 3—figure supplements 1-4). In the overall network
(see Materials and methods), 7461 genes formed 21 modules (Figure 3A and B, Supplementary file
1). We found significant correlations between module eigengenes and the following behaviors: tutor
percentage similarity (i.e. vocal learning: darkred, green, and greenyellow modules), number of
motifs sung (i.e. amount of singing: black, orange, darkgreen, royalblue, and blue modules), singing-
induced acoustic variability (i.e. variability induction: black, brown, darkgreen, darkgrey, magenta,
orange, pink, purple and turquoise modules), and motif identity (i.e. overall vocal variability: dark-
grey module) (0.00008 < p < 0.05; Figure 3B). Hereafter, these modules are termed ‘learning-
related’, ‘song-production’, ‘variability-induction’ and ‘vocal variability’ modules, respectively. We
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Figure 3. WGCNA yields behaviorally relevant modules. (A) Dendrogram (top) illustrates the topological overlap between genes in the juvenile Area X
overall network. Modules delineated by automated tree trimming are shown below and are depicted by arbitrary colors. Beneath the color bar, gene
significances to the quantified behaviors (number of motifs sung, tutor similarity, acute variability changes, and overall variability; see Results) are
indicated by a heatmap wherein red indicates a positive correlation and blue indicates a negative correlation (see B for scale). (B) Correlations between
Figure 3 continued on next page
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Figure 3 continued

module eigengenes and each behavior are presented as a heatmap. The Pearson’s p and, in parentheses, Student's asymptotic p-values for modules
where p<0.05 are displayed. P-values are uncorrected for multiple hypothesis testing but those that pass FDR correction at p<0.05 are denoted by *
(See ‘Correlation of behavior to gene expression’ in Materials and methods). (C) For all significant module-trait correlations, the relationship between
gene significance and module membership is plotted for each gene in the module. Dashed lines represent the linear regression and the Pearson’s p
(‘cor’) and p-value as determined by Fisher's z-transformation are indicated above each plot. (D) The average whole network connectivity (kTotal) within
each module reveals that the purple, green, and pink modules are composed of the most strongly connected genes in the network. (E) Term
significances for the black, darkred, and green modules are indicated for disease, gene ontology biological process and molecular function, as well as
for pathways for categories annotated as 'neuronal’ in the GeneCards GeneAnalytics software. (F) Network plots of the modules presented in panel E
where nodes represent genes scaled by the node’s intramodular connectivity and edge width displays the topological overlap between genes.

DOI: https://doi.org/10.7554/eLife.30649.012

The following source data and figure supplements are available for figure 3:

Source data 1. The behavioral metrics that were correlated to the network to generate (A) and (B).

DOI: https://doi.org/10.7554/eLife.30649.019

Source data 2. An R workspace containing the network presented in (A).

DOI: https://doi.org/10.7554/eLife.30649.020

Source data 3. An R workspace containing the processed expression data for the network presented in (A).
DOI: https://doi.org/10.7554/eLife.30649.021

Source data 4. The Pearson correlation values for each module eigengene and the behavioral metrics in Figure 3—source data 1.
DOI: https://doi.org/10.7554/eLife.30649.022

Figure supplement 1. GFP-only Area X network.

DOI: https://doi.org/10.7554/eLife.30649.013

Figure supplement 2. FoxP2.FL-only Area X network.

DOI: https://doi.org/10.7554/eLife.30649.014

Figure supplement 3. FoxP2.10+-only Area X network.

DOI: https://doi.org/10.7554/eLife.30649.015

Figure supplement 4. Module preservation between GFP vs FoxP2.

DOI: https://doi.org/10.7554/eLife.30649.016

Figure supplement 5. Juvenile Area X gene coexpression network.

DOI: https://doi.org/10.7554/eLife.30649.017

Figure supplement 6. Intersample correlation for Area X samples.

DOI: https://doi.org/10.7554/eLife.30649.018

examined all modules whose p-value was <0.05 and calculated the relationship between module
membership and gene significance. (For definitions of WGCNA and network terms, see Materials
and methods: WGCNA and network terminology. For information about significance levels reported
here, see Materials and methods: Correlation of behavior to gene expression). For most modules,
strong correlations were observed for each trait, indicating that the genes most representative of
the module’s overall expression profile were those most strongly related to the behavior
(Figure 3C).

Connectivity is the core gene coexpression network concept and genes with high connectivity
have the strongest coexpression relationships across the entire network, indicating greater impor-
tance to overall network structure and biological significance. The purple, green, and pink modules
contained the most densely interconnected genes (Figure 3—figure supplement 5), and were cor-
related to percentage similarity to tutor (green learning-related module) or singing-induced variabil-
ity (purple and pink variability-induction modules) (Figure 3B and D). These findings indicate that
information about the relationships between gene coexpression and behavior was reflected in the
structure of the network: A gene’s relationship to a module or a module’s relationship to the net-
work was predictive of strong behavioral relevance. Therefore, we examined the most well-con-
nected/hub genes within the context of their module (genes with the greatest intramodular
connectivity) or the entire network (genes with the greatest whole-network connectivity). We discov-
ered that many of these hub genes are known risk genes for human disease. For example, of the
7462 genes in the overall network, Fragile X Mental Retardation 1 (FMR1) had the third highest con-
nectivity and was the most well connected member of the green module (Supplementary file 1).
Deficiency in FMR1 gives rise to Fragile X Syndrome, a genetic disease with a multitude of symptoms
including intellectual deficiency and speech and language impairment.
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To attribute biological meaning to the modules, we calculated a module significance score for
the resulting disease, gene ontology, and pathway annotations returned from GeneAnalytics (Ben-
Ari Fuchs et al., 2016) (See Materials and methods). The top five terms for the black song produc-
tion module (negatively correlated to the amount of singing), the brown variability induction module
(positively correlated to variability induction), and green learning-related module (positively corre-
lated to learning) are shown in Figure 3E with comprehensive results presented in
Supplementary file 2. Since most modules contain hundreds of genes, prioritizing the ontology
terms by the connectivity of their annotated genes allows genes with the greatest network impor-
tance (Figure 3F) to emphasize the terms with the greatest biological importance (Figure 3E).

Juvenile Area X modules for learning, but not singing, are preserved in
juvenile VSP

To validate the specificity of the Area X modules to vocal behavior, we compared the overall Area X
network to a network constructed from the adjacent non-song VSP (Hilliard et al., 2012a;
Feenders et al., 2008) from the same animals. Area X and VSP networks were constructed using the
genes that were common to the two, enabling analysis using module preservation functions. We
hypothesized that the genes in the Area X song production modules would have no correlation to
behavior in VSP since, despite its close proximity and similar cell type composition, the VSP is not
similarly linked into song control circuitry (Person et al., 2008). Moreover, a body of evidence sug-
gests that the song control circuit evolved as a specialization of existing motor circuitry
(Pfenning et al., 2014; Feenders et al., 2008; Barrett, 2012; Oakley and Rivera, 2008). As pre-
dicted, no module in the VSP network displayed any correlation to any of the singing or learning
behaviors as gene significances using Area X and VSP expression data are markedly different
(Figure 4A, X vs. V). We calculated module preservation statistics between the two brain regions
and observed that the song production modules were among the most poorly preserved
(Langfelder et al., 2011) across the two networks (Figure 4B, Supplementary file 3). This result
indicates differential connectivity of song production module genes between Area X (Figure 4C,
top) and VSP (Figure 4C, bottom), further underscoring that Area X is specialized for song. This lack
of preservation was not the product of differential gene expression between the two regions
(Figure 4D, top) but instead reflected altered connectivity among similar genes (Figure 4D, bot-
tom). In striking contrast to the song production modules, the green learning-related module was
strongly preserved in VSP (Figure 4B, Figure 3B), indicating a generalized learning-related coex-
pression state exists in the juvenile striatopallidum that is specialized for singing in Area X.

Juvenile Area X modules for singing, but not learning, are preserved in
adult Area X

To provide further context for the modules observed in our overall network and how they relate to
learned vocalization, we compared them with prior data from adult zebra finch Area X
(Hilliard et al., 2012a; Hilliard et al., 2012b). Our present network captures a point in zebra finch
development when birds are actively learning how to improve their songs whereas in adulthood, the
learning process has ended and adult songs are ‘crystallized’. Contrasts between juvenile and adult
networks highlight gene coexpression patterns that change between the two learning states, and
inform their molecular underpinnings.

Our previous study in adults found multiple modules in Area X that were correlated to singing
crystallized songs. We reasoned that if highly similar coexpression patterns were present in juveniles,
then they would likely be unrelated to learning. In this case, the capacity to learn a song might be
attributable to other genes and/or the relationships between them. To compare across studies, we
built two new, age-specific networks composed of genes common to the two original networks,
then computed gene significance scores for all genes in both networks. We found a remarkable cor-
relation between gene significances to singing in juveniles and adults (Figure 5A), showing that
genes in Area X shared similar relationships to singing, whether it be positive, negative, or nonexis-
tent, independent of the animal’s age and learning state. The replicated discovery of specific sets of
song-production genes across studies and ages speaks to the profound effect that singing behavior
has on gene transcription profiles within the song-dedicated basal ganglia.
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Figure 4. Juvenile Area X singing related gene coexpression patterns are not preserved in juvenile VSP. (A) Dendrogram (top) displays the topological
overlap in Area X between genes common to both juvenile Area X and VSP networks. Beneath, the module assignments and the gene significances for
each gene as calculated using expression from VSP ('V') or Area X ('X) for all behaviors are quantified as in Figure 3A. Module colors are consistent
with those presented in Figure 3. (B) Module preservation (Zsummary) for all modules that were present in both Area X and VSP displayed as a function

Figure 4 continued on next page
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Figure 4 continued

of module eigengene correlation to motifs. Lower and upper dashed horizontal lines indicate thresholds for low and high preservation, respectively. (C)
Circle plots display the adjacencies between the 20 most well-connected genes in the Area X black, cyan, green, royalblue, and blue modules. The
adjacency between genes is indicated by edge thickness. Genes grouped together in the black, cyan, royalblue, and blue song modules in Area X have
numerous and strong connections. Those connections are weakened or nonexistent in VSP such that genes sort into different modules in VSP. In
contrast, the green learning-related module genes maintain their common grouping and connections in VSP. (D) Raw gene expression is tightly
correlated between Area X and VSP for the genes in the black, cyan, green, royalblue, and blue modules (top). Only the intramodular connectivity of
the genes in the green learning-related module is correlated between Area X and VSP (bottom). Dashed lines represent the linear regression.

DOI: https://doi.org/10.7554/eLife.30649.023

The following source data is available for figure 4:

Source data 1. An R workspace containing the network presented in (A).

DOI: https://doi.org/10.7554/eLife.30649.024

Source data 2. An R workspace containing the processed expression data for the network presented in (A).

DOI: https://doi.org/10.7554/eLife.30649.025

We next calculated module preservation across the two studies, which assesses how well the
coexpression relationships between genes persist across ages (Langfelder et al., 2011). We
observed strong to very strong relationships between module preservation and correlation to sing-
ing, and genes related to singing clustered together independent of age (Figure 5B and C,
Supplementary file 4). These results indicate that not only are the relationships between genes and
singing consistent across ages but those genes’ coexpression patterns are preserved as well.

Since singing-driven gene coexpression patterns were similar between juvenile and adult Area X,
the capacity to learn vocalizations is not a product of large-scale differences in coexpression of the
song production module genes. We therefore looked for any modules that differed between juvenile
and adult Area X. We found that the green, greenyellow and darkred learning-related modules that
were significantly correlated to tutor similarity in juveniles were poorly preserved in adult Area X
(Figure 5B and C, Supplementary file 4). Irrespective of preservation between juvenile and adult
Area X, the genes in song production and learning-related modules were similarly activated by sing-
ing (Figure 5D, top row) and the ranked gene expression within each module displayed a positive
correlation across ages (Figure 5D, middle row). However, only the song production modules
showed positive correlations between connectivity in juvenile and adult Area X (Figure 5D, bottom
row). These results attribute the difference between juvenile and adult Area X not to differential
expression or altered correlation to behavior, but to differential connectivity in adults of modules
that are correlated to tutor similarity in juveniles. Our findings suggest that the capacity to alter
vocalizations may not reside in the absolute expression level of a given gene but instead the gene's
transcriptional context. For example, FMR1 was poorly connected in the adult network but was posi-
tioned as a hub gene in the juvenile network, indicating the gene’s importance during a develop-
mental period when vocalizations are being actively modified but not during their maintenance. In
general, genes that were positively correlated with learning and/or had high module membership in
the green learning-related module had the greatest decrease in connectivity in adulthood (Fig-
ure 5—figure supplement 1).

A bioinformatics approach indicates MAPK11 as an entry point to
neuromolecular networks for vocal learning
Above we describe two classes of coexpression modules: (1) learning-related modules that are pre-
served throughout the striatopallidum but present only in juveniles, (2) song production modules
that are preserved across age but specific to Area X. Therefore, song production modules and learn-
ing-related modules exist simultaneously only in juveniles, and their co-occurrence within Area X
may reflect the capacity to dramatically alter vocalizations during sensorimotor learning. Therefore,
we hypothesized that interactions between these two modules may drive the vocal learning process.
To test this idea using bioinformatics, we examined any genes linked to FoxP2, whose overex-
pression drove the broad range of tutor song copying in our animals. The gene with the greatest
gene significance to learning was MAPK11 (Figure 6A and B). Interestingly, in Foxp2 heterozygous
knockout mice, MAPK11 levels increase, supporting the interaction we observed here (Enard et al.,
2009). To examine whether MAPK11 could be a target of FoxP2 in the zebra finch, we scanned the
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Figure 5. Area X song production but not learning-related modules are preserved into adulthood. (A) Dendrogram (top) displays the topological
overlap in juvenile Area X between genes common to both juvenile and adult Area X networks. The module assignments and the gene significances to
motifs in juveniles and adults are presented below. Module colors are consistent with those presented in Figure 3. (B) Module preservation (Zsummary)
for all modules that were present in both juvenile and adult Area X displayed as a function of ME correlation to motifs. Lower and upper dashed
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Figure 5 continued

horizontal lines indicate thresholds for low and high preservation, respectively. (C) Circle plots display the adjacencies between the 20 most well-
connected genes in the juvenile Area X black, cyan, green, royalblue, and blue modules. The adjacency between genes are indicated by edge
thickness. Genes grouped together in the black, cyan, royalblue, and blue song modules in Area X have numerous and strong connections that are
mostly maintained in adulthood. The densely interconnected green learning-related module genes found in juveniles do not maintain these
relationships in adulthood. (D) Strong positive correlations between gene significance to motifs exist for all modules (top row). Ranked expression
values for the genes in each module also show positive correlation (middle row). Intramodular connectivity is more positively correlated between ages
for the black, cyan, royalblue, and blue song production modules than for the green learning-related module (bottom row).

DOI: https://doi.org/10.7554/eLife.30649.026

The following source data and figure supplement are available for figure 5:

Source data 1. An R workspace containing the expression data and networks used to generate (A).

DOI: https://doi.org/10.7554/eLife.30649.028

Figure supplement 1. Differential connectivity as a function of green module membership.

DOI: https://doi.org/10.7554/elife.30649.027

MAPK11 gene for sequences corresponding to the FoxP2 binding motif from the JASPAR database
(see Materials and methods) (Nelson et al., 2013; Mathelier et al., 2016). We found a match with a
single base difference beginning 288 base pairs upstream of the zebra finch MAPK11 transcription
start site identified in the RefSeq model (Figure 6C). (Note that the RefSeq model may be incom-
plete; sce MAPK11 annotation note in Materials and methods). We then used chromatin immuno-
precipitation followed by PCR (ChIP-PCR) to test whether or not FoxP2 binds this predicted
MAPK11 regulatory region. Chromatin-immunoprecipitation of FoxP2 enriched a MAPK11 fragment
of the predicted size and encompassing the putative FoxP2 binding site. Moreover, the sequenced
fragment contains the FoxP2 binding motif (Figure 6D, Figure 6—figure supplement 1). Taken
together, these data suggest that birds overexpressing FoxP2.FL may be limited in their capacity to
learn due, at least in part, to FoxP2 regulation of MAPK11. In line with this, both the FoxP2.10+ and
GFP animals had higher MAPK11 gene significance scores for tutor similarity than did FoxP2.FL ani-
mals (Figure 6A).

A strength of WGCNA is the ‘guilt by association’ approach whereby genes in close network
proximity to a gene of interest become candidates for a role in the same biological processes. With
this in mind, we used MAPK11 as an entry point to pathways related to vocal learning. We first
scanned for genes with high topological overlap with MAPK11 (e.g. the closest network neighbors
to MAPK11). Many of these genes were well-connected members of the green learning module
(Figure 6E). One such gene, ATF2 (formerly known as CREB2), had the fifth highest green intramod-
ular connectivity and third highest whole network connectivity (Supplementary file 1). ATF2 protein
is necessary for proper development of the nervous system (Reimold et al., 1996) and serves a dual
purpose in affecting transcription by binding to cAMP response elements and also by acetylating his-
tones H2B and H4 (Bruhat et al., 2007; Kawasaki et al., 2000). Like FMR1, ATF2 is poorly con-
nected in the adult network (Hilliard et al., 2012a).

While its role in development of the nervous system has been defined, no specific relationship
between ATF2 and learned vocalization has been described. In our network, the ATF2 acetylation
target histone H2B sorted into the blue song production module, which is strongly and positively
correlated to the act of singing (Figure 3B, Supplementary file 1) and acetylation of histone H2B at
lysine five has been linked to learning and memory in rat hippocampus (Bousiges et al., 2013). A
pathway such as this represents an interaction between a network hub in a learning module (ATF2)
and a song production module gene (histone H2B) at a developmental time point at which the bird
is actively learning its vocalizations.

To generalize this strategy, we used the Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING) database (Szklarczyk et al., 2015) to identify additional interactions between learn-
ing-related network hubs and song production genes in Area X. We submitted genes from the
green, greenyellow, and darkred learning-related modules and the black, blue, darkgreen, orange,
and royalblue song production modules, then filtered for cross-module interactions and scaled the
confidence scores by the average intramodular connectivity of each gene in the interaction. This
yielded a ranked list of interactions between genes positively correlated to learning and those corre-
lated to singing, which was prioritized by weighted confidence score to yield the highest confidence
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Figure 6. Gene significance and network position implicate MAPK11 as a molecular entry point to vocal learning mechanisms. (A) The 20 genes with
the highest to lowest gene significances to tutor similarity (sorted from top to bottom) are shown. Each column represents a bird and columns are
sorted in order of increasing tutor similarity from left to right. Gene expression is scaled such the highest and lowest expression across samples have
the brightest shade of red or blue, respectively. (B) Expression of MAPK11 is replotted, here separated by virus group and then sorted by increasing
tutor percentage similarity. (C) The FoxP2 binding sequence as annotated by the JASPAR database (top) and a potential binding site found in the
MAPK11 '‘promoter’. (D) Amplification of genomic DNA ('Genomic’) with primers for a region of the MAPK11 ‘promoter’ that contains a putative FoxP2
binding site enrich a fragment of predicted size (red arrowhead) in the pull-down lane (FoxP2) but not the control (IgG) lane. (E) MAPK11 and its 10
closest network neighbors, including green learning-related module members and hub gene ATF2, as defined by topological overlap.

DOV https://doi.org/10.7554/eLife.30649.029

The following source data and figure supplement are available for figure 6:

Source data 1. The sorted gene expression data as presented in panel 6A.
DOI: https://doi.org/10.7554/eLife.30649.031

Figure supplement 1. MAPK11 PCR Product Sequencing.

DOI: https://doi.org/10.7554/eLife.30649.030
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interactions between genes with the greatest network importance (Supplementary file 5). These
interactions were plotted as a network with proteins as nodes and interaction scores as edges (Fig-
ure 7). This approach allowed us to not only visualize the confidence in gene interactions but also
the local neighborhoods formed by the protein interaction network, emphasizing genes of poten-
tially greater importance in the vocal learning process based on the number of interactions they
have.

We ranked interactions by four different metrics designed to emphasize or deemphasize gene
significance, intramodular connectivity, and differential connectivity in juveniles vs. adults (see Mate-
rials and methods). These metrics provide a basis for selecting protein-protein interactions based on
the relationship to the genes and their most strongly correlated behavior, the coexpression network
importance of the genes, or the change in connectivity between juvenile and adult birds. In using
the latter metric, the decreased connectivity of learning-related genes ATF2 and FMR1 in adulthood
is accounted for and interactions involving those genes are prioritized. Interactions between ATF2
and IRF2, DUSP5, and FOS are among the highest scoring interactions using this metric. All such
interactions are presented in Supplementary file 5.

Construct-specific networks

In addition to the overall Area X network presented above, we built and compared construct-specific
networks from birds injected with the FoxP2.FL expressing virus versus those injected with the
FoxP2.10+ expressing virus versus those expressing GFP (Figure 3—figure supplements 1-3). This
analysis enabled us to assess the level of construct-driven changes in gene coexpression as well as
to test for the presence of the learning-related module in the control birds whose FoxP2 levels were
unmanipulated. We quantified module preservation between the FoxP2 networks and the GFP net-
work (Figure 3—figure supplement 4). In both FoxP2 networks, a gradient of module preservation
was observed versus the GFP network with both overlapping and significantly different modules
observed. Birds in these experimental conditions were siblings, and in some cases from the same
clutch, suggesting that the driving effect of network differences is the construct-specific manipula-
tion. The green learning-related module was well-preserved across the three networks. The strong
correlation of this module to learning passed false discovery rate correction in the GFP cohort com-
prised of only seven birds, indicating that the learning-related coexpression pattern observed in the
overall network is also present without FoxP2 manipulation.

Discussion

In this study, we overexpressed FoxP2 isoforms or GFP and thereby created a range of song learning
and song variability induction (Figure 2F), ideal for transcriptome profiling and WGCNA. We con-
structed an overall Area X gene network and discovered modules correlated to singing, learning,
and vocal variability. The network properties of these modules revealed strong relationships
between gene module membership and the behavior(s) to which the modules were correlated.

To understand how gene coexpression patterns change across the boundary of the sensorimotor
critical period for vocal learning, we compared the juvenile Area X overall network constructed here
to one previously constructed from adult Area X (Hilliard et al., 2012a). We had competing hypoth-
eses about whether the inability to learn new songs as an adult is resultant of changes to the song
production modules observed in juveniles or associated with some other transcriptional change.
Module preservation statistics revealed robust preservation of the juvenile Area X song production
modules in the adult network, supporting the latter hypothesis. In striking contrast, the densely inter-
connected green learning-related module observed in juvenile striatopallidum was poorly preserved
in adults, indicating that at least part of the learning-related transcriptome is altered by aging. Fur-
ther, the green learning-related module was strongly preserved across the construct-specific net-
works (Figure 3—figure supplements 1-4) and robustly correlated to learning in the GFP network.
This latter finding suggests that the coexpression of these genes occurs in non-manipulated birds
and is not a byproduct of experimental perturbation of FoxP2 levels.

Because we created networks from VSP of the same animals, we could compare how well the
Area X modules were preserved in a similar brain region that is unspecialized for song. As in
Hilliard et al. (2012a), Area X song production modules were poorly preserved in VSP in contrast to
the strongly preserved green learning-related module. These experiments define juvenile Area X as

Burkett et al. eLife 2018;7:€30649. DOI: https://doi.org/10.7554/eLife.30649 16 of 35


https://doi.org/10.7554/eLife.30649

e LI FE Research article Computational and Systems Biology | Neuroscience

Figure 7. Protein-level interactions between song production and learning-related module genes in juvenile Area X. A protein interaction network plot
using the STRING database between genes in learning-related (darkred, green, greenyellow) and song production (black, blue, darkgreen, orange,
royalblue) modules. Nodes are scaled by number of connections. Edge width is determined by scaling the STRING protein interaction confidence score
for the two nodes by the product of each node’s intramodular connectivity. Interactions within learning or song production modules are omitted for
clarity.

DOI: https://doi.org/10.7554/eLife.30649.032

Figure 7 continued on next page
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Figure 7 continued
The following source data is available for figure 7:

Source data 1. An edgelist in. gexf format used to generate Figure 7.
DOI: https://doi.org/10.7554/eLife.30649.033

a nexus wherein the striatopallidal learning-related modules exist in tandem with song production
modules. As the brain ages, singing continues to drive transcriptional patterns in Area X but the
learning-related patterns are lost (Figure 8A; Figure 8B). Our findings suggest a model for the
molecular basis of complex learned vocal behavior as — not specific genes or coexpression modules
- but rather the spatiotemporal overlap of ‘singing’ and ‘learning’ building blocks. Song control
nuclei are proposed to have evolved as specializations of pre-existing motor circuitry
(Pfenning et al., 2014, Feenders et al., 2008). A similar principle may thus extend across the song-
bird telencephalon whereby nonspecialized/learning related and specialized/behavior related coex-
pression patterns converge to permit sensorimotor learning.

Our findings validate prior results in which overexpression of FoxP2.FL prevented practice-
induced changes in song variability and impaired song learning. These results support the hypothesis
that behavior-linked cycling of FoxP2, rather than its absolute level, is critical for vocal learning. In
addition, we uncovered singing-induced vocal invariability as a novel behavioral effect of FoxP2.10
+ overexpression. Despite the poor exploration of motor space induced by FoxP2.10+ overexpres-
ssion, these animals learned their tutors’ songs well, a finding seemingly at odds with motor learning
theory where broad exploration of motor space is refined through practice before arriving at an
‘ideal’ precise pattern for execution of the skill (Kaelbling et al., 1996; Wu et al., 2014). A similar
phenomenon was observed in a different species of passerine songbird, the Bengalese finch (Lon-
chura striata domestica), where two hours of UD singing resulted in less variable songs than those
sung after two hour of non-singing (Chen et al., 2013). In both species, the inability to induce song
variability did not affect vocal learning, suggesting that the ability to have relatively low or high vari-
ability states in singing are necessary to properly learn a song regardless of whether those differen-
tial variability states precede or follow singing.

WGCNA identified FMR1 as a gene of great importance in a learning module. FMR1 encodes an
RNA-binding protein and therefore its levels could have a profound effect on a number of targets in
the network (Ascano et al., 2012). FMR1 protein is expressed throughout the zebra finch song con-
trol circuit primarily in neurons, and birdsong has been suggested as an interesting model in which
to study the gene’s function (Winograd and Ceman, 2012, Winograd et al., 2008). Here, we
observed a correlative link between FMR1 expression and how well the animal copied its tutor’s
song, a novel association that could be reasonably hypothesized given the speech and language
phenotype associated with FMR1 deficiency in humans. A key strength of WGCNA is the ability to
query the network around genes known to be associated with a trait. FMR1's close network neigh-
bors included ATF2 which has been associated with learning but has no prior link to vocal behavior.
Further investigation into the learning-related modules is likely to reveal pathways fundamental to
procedurally learned behavior.

To identify those molecules that may interact at this particular developmental time point and
brain region, we selected MAPK11 - a likely FoxP2 target (Enard et al., 2009) and the gene with
the greatest significance to learning — to further investigate as an entry point to the pathways under-
lying learning behavior. Local neighborhood analysis of MAPK11 in the coexpression network
revealed high topological overlap with many strongly connected members of green learning-related
module, including the hub gene ATF2. ATF2 is a phosphorylation target of MAPK11 and part of an
evolutionarily-conserved pathway for learning and memory (Guan et al., 2003). This phosphorylation
enhances ATF2 histone-acetyltransferase activity (Enslen et al., 1998, Stein et al., 1997). A known
enzymatic substrate of ATF2 is histone H2B (Kawasaki et al., 2000), a member of the blue song pro-
duction module that is positively correlated to singing. To probe for additional protein-protein inter-
actions such as these, we mined the STRING database using song production and learning-related
module members, then prioritized the interactions based on the network properties and/or behav-
ioral significance of the input genes. A prioritized list of interactions and a complex network
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Figure 8. Changes in vocal plasticity state between juvenile and adult birds. (A) Schematics depict the juvenile straitopallidum (left) in a ‘plastic’ state in
which genes in learning-related modules (green) are densely interconnected and of high importance in the network. Simultaneously, singing driven
gene coexpression patterns (blue) occur in Area X. In the adult striatopallidum (right), song production modules (blue) exist as they do in juveniles, but
the learning-related modules do not and are replaced by coexpression patterns that presumably underlie the maintenance of song (red). (B) Area X

Figure 8 continued on next page
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Figure 8 continued

modules in the juvenile brain are plotted to emphasize their preservation in adult Area X (x-axis) and juvenile VSP (y-axis). Points representing the
module colors are scaled by the module’s absolute correlation to learning (left) or the absolute correlation to singing (right), emphasizing the
preservation of singing coexpression patterns into adulthood and learning coexpression patterns in the juvenile striatopallidum. (C) Genes in song
production or learning-related modules that are within two steps of ATF2 in the high-confidence protein interaction network are shown. Nodes are
scaled by intramodular connectivity in juveniles (left) or adults (right) with edge width indicative of adjacency between genes in the coexpression
network. The change in coexpression patterns across age groups causes decreased connectivity of many learning-related genes, driving an alteration in
the network’s landscape which may underlie the transition from song learning to song maintenance.

DOI: https://doi.org/10.7554/eLife.30649.034

emerged, highlighting genes based on their coexpression network importance and/or the number
of protein level interactions in the database (Figure 7, Supplementary file 5).

While there are differences in overall gene expression between the juvenile and adult brain, the
context within which genes express, that is, their connectivity, is drastically altered, especially in the
learning-related modules. Changes in connectivity are not necessarily indicative of changes in the
absolute level of a gene’s expression, as evidenced by the comparisons between Area X and VSP
(Figure 4D) or juvenile and adult Area X (Figure 5D), where expression levels correlate positively
but connectivity does not. These data support the idea that the coexpression patterns, and thereby
the genes’ connectivity and network importance, contribute to the transition from a state of learning
to a state of non-learning.

In using connectivity as a measure of network importance and protein interaction as a measure of
functional biological output, the protein interaction landscape underlying learned vocal behavior
shifts across the two developmental time points analyzed here. For example, the local interaction
network around green module hub ATF2 (defined as all those neighbors within two steps and with
high confidence of protein interaction) is composed of well-connected genes in the learning-related
and song production modules (Figure 8C, top). Moreover, the connections to learning-related genes
are, themselves, inputs to well-connected network hubs. As the juvenile crosses over into adulthood,
the connectivity of many of the learning-related genes, like ATF2, dramatically decreases. As part of
the same process, the adjacencies between genes in the interaction network shift such that a con-
nection to a learning-related gene is no longer one with a hub (Figure 8C, bottom). This shift in net-
work importance may present a pattern underlying song maintenance rather than song learning, and
potentially the closure of the critical period in which the bird can change its song.

To understand the mechanisms underlying the transition between the two learning states, our
data highlight the importance of the network position of a gene. To enable vocal plasticity after criti-
cal period closure, a goal critically relevant to social and communication disorders, manipulations
that coordinate gene expression such that poorly connected genes are reestablished as network
hubs are likely required. Tools to accomplish a goal such as this do not yet exist, but the pathways
prioritized and presented here provide a framework for teasing out testable components.

In sum, we have described the Area X transcriptome at a developmentally significant point in the
vocal learning process and provided context for it in terms of aging and brain region specificity. We
suggest numerous coexpression and protein level interactions that our data indicate are significant
to vocal learning. Due to the large amount of data generated by this study, we provide interactive
graphics describing the coexpression and protein interaction networks as a supplement to the fig-
ures and tables in the manuscript. These, and the compiled descriptive statistics are hosted at
(https://www.ibp.ucla.edu/research/white/genenetwork.html). We encourage exploration of these
datasets to confirm or refute their validity and to provide the molecule-to-behavior links suggested
herein.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional inform

Continued on next page
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Source or reference

Identifiers

Additional inform.

Genetic reagent (Taeniopygia guttata)

AAV1-FoxP2.FL

Virovek
(Hayward, CA, USA),

DOI: 10.1523/JNEUROSCI.3715-14.2015

Genetic reagent (Taeniopygia guttata)

Genetic reagent (Taeniopygia guttata)

Genetic reagent (Taeniopygia guttata)

AAV1-FoxP2.10+

AAV1-GFP

HSV-FoxP2.10+

Virovek (Hayward, CA, USA),
this paper

Virovek
(Hayward, CA, USA),

DOI: 10.1523/JNEUROSCI.3715-14.2015

McGovern Institute for
Brain Research at
the Massachusetts
Institute of Technology,

this paper
Antibody FoxP2 Abcam Abcam Cat# ab1307; ChlIP: 4 ug
(goat polyclonal) (Cambridge, MA, USA) RRID: AB_1268%914
Antibody FoxP2 ThermoFisher Thermo Fisher Scientific ChlP: 4 ug
(rabbit polyclonal) (Rockford, IL, USA) Cat# 720037,
RRID: AB_2610345
Antibody FoxP2 Santa Cruz Biotechnology Santa Cruz Biotechnology, ChlIP: 4 ug
(mouse monoclonal) (Dallas, TX, USA) Cat# sc-517261;
RRID: AB_2721204
Antibody IgG EMD Millipore Millipore ChlIP: 4 ug
(rabbit polyclonal) (Burlington, MA, USA) Cat# 12-370;
RRID: AB_145841
Antibody Xpress ThermoFisher ThermoFisher Scientific
(mouse monoclonal) (Rockford, IL, USA) Cat# R910-25;
RRID: AB_2556552
Sequence-based FoxP2.FL F Sigma Aldrich Oligonucleotide
reagent CCTGGCTGTGAAAGCGTTTG
Sequence-based FoxP2.FL R Sigma Aldrich Oligonucleotide
reagent ATTTGCACCCGACACTGAGC
Sequence-based FoxP2.10+ F Sigma Aldrich Oligonucleotide
reagent CGCGAACGTCTTCAAGCAAT
Sequence-based FoxP2.10+ R Sigma Aldrich Oligonucleotide
reagent AAAGCAATATGCACTTACAGGTT
Sequence-based GAPDH F Sigma Aldrich Oligonucleotide
reagent AACCAGCCAAGTACGATGACAT
Sequence-based GAPDH R Sigma Aldrich Oligonucleotide
reagent CCATCAGCAGCAGCCTTCA
Sequence-based MapK11 F Sigma Aldrich Oligonucleotide
reagent CCCTTTCCCCAAATGGCAGA
Sequence-based MapK11 R Sigma Aldrich Oligonucleotide
reagent TATGAGCCTTGCCTTGGAGC
Sequence-based Mid probe DOI: 10.1523/jneurosci.1662-06.2006
reagent
Sequence-based 3’ probe DOI: 10.1523/jneurosci.1662-06.2006
reagent
Commercial ChIP-IT High Sensitivity Active Motif (Carlsbad, CA, USA) Active Motif Cat# 53040
assay or kit
Commercial Qiagen RNeasy Micro  Qiagen (Germantown, MD, USA) Qiagen Cat# 74004
assay or kit
Commercial [llumina TruSeq lllumina (San Diego, CA, USA) [llumina Cat# 20020594
assay or kit Stranded Poly-A Prep
Software, algorithm VoICE DOI: 10.1038/srep10237 RRID: SCR_016004
Continued on next page
Burkett et al. eLife 2018;7:€30649. DOI: https://doi.org/10.7554/eLife.30649 21 of 35


https://scicrunch.org/resolver/AB_1268914
https://scicrunch.org/resolver/AB_2610345
https://scicrunch.org/resolver/AB_2721204
https://scicrunch.org/resolver/AB_145841
https://scicrunch.org/resolver/AB_2556552
https://scicrunch.org/resolver/SCR_016004
https://doi.org/10.7554/eLife.30649

LI FE Research article Computational and Systems Biology | Neuroscience

Continued
Reagent type
(species) or resource Designation Source or reference Identifiers Additional inform
Software, algorithm STAR DOI: 10.1093/bioinformatics/bts635 RRID: SCR_015899
Software, algorithm SAP DOI: 10.1006/anbe.1999.1416 RRID: SCR_016003
Software, algorithm WGCNA R Package DOI: 10.1186/1471-2105-9-559 RRID: SCR_003302
Subjects

All animal use was in accordance with NIH guidelines for experiments involving vertebrate animals
and approved by the University of California, Los Angeles Chancellor’s Institutional Animal Care and
Use Committee. Birds were selected from breeding pairs in our colony.

Experimental timeline

The experimental timeline is schematized in Figure 2A. Breeding cages that contained candidate
experimental birds were placed in sound attenuation chambers along with their parents and siblings
when juveniles reached ~20 d, as in Heston and White (Heston and White, 2015). Chambers were
continuously recorded so as to capture tutor song. At 30d, juvenile males were bilaterally injected
with AAV1 into Area X to overexpress either FoxP2.FL, FoxP2.10+, or GFP, then returned to their
chambers. At 40d, juvenile males were isolated from all other birds and continuously audio-
recorded. At ~60 d, an ‘NS-UD’ experiment was performed according to the methods of Miller
et al., Chen et al., and Heston et al. (Heston and White, 2015; Miller et al., 2010; Chen et al.,
2013) to assess the induction of vocal variability. On the ‘NS-UD’ day, for the first two hours after
lights-on, birds were distracted by gentle ‘shushing’ if they attempted to sing. (Those that sang >10
motifs were excluded from that day’s experiment). On the ‘UD-UD’ day, birds were allowed to sing
UD song for the first two hours after lights-on. The level of variability in songs sung subsequent to
those two hours was quantified.

At 65d, birds were sacrificed following two hours of UD singing with one exception: In order to
assure a broad range of song amounts immediately preceding sacrifice (and thereby capture a range
of singing-induced gene expression), we distracted one bird in the GFP group from singing during
the two hours preceding sacrifice.

A total of 19 birds received stereotaxic injections with AAV (7 GFP, 6 FoxP2.FL, 6 FoxP2.10+).
Sample size was based on numbers used in Heston and White (Heston and White, 2015) where 5-8
animals per group were sufficient to reveal treatment effects. The authors of the WGCNA R package
recommend a minimum of 15 samples for building a network (https://labs.genetics.ucla.edu/hor-
vath/CoexpressionNetwork/Rpackages/WGCNA/fag.html), so we ensured at least five animals in
each of the three groups.

Song recording

Countryman EMW or Shure SM93 omnidirectional lavalier microphones were used to continuously
record birds from ~20 d until sacrifice (65d). Sounds were digitized using PreSonus FirePod or PreSo-
nus Audioboxes at a 44.1 kHz sampling rate and 24-bit depth. Recordings were managed by SAP
2011 software (Tchernichovski et al., 2000).

Stereotaxic surgery and viruses

Behavior and RNA-seq experiments

As described in Heston and White (2015), 30d juvenile males were anesthetized using 2-4% isoflur-
ane in pure oxygen and secured in a custom-built avian stereotaxic apparatus, then injected with
virus bilaterally into Area X at the following coordinates: 45° head angle, 5.15 mm rostral of the
bifurcation of the midsagittal sinus, 1.60 mm lateral of the midline, and to a depth of 3.3 mm. Virus
was injected via a Drummond Nanoject Il through a glass microelectrode (~40 uM inner diameter)
backfilled with mineral oil. Three 27.6 nL injections were performed with a 15 s wait between injec-
tions and a 10 min wait before retraction of the electrode so as to minimize vacuum action pulling
the virus away from the injection site. Incisions in the scalp were closed with Vetbond (3M, St. Paul,
MN, USA). Birds received oxygen for ~2 min until alert, then returned to their home cages.
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AAV1 used in Heston and White (Heston and White, 2015) and produced by Virovek (Hayward,
CA) was used here. AAV1s contained zebra finch FoxP2.FL or FoxP2.10+ coding sequences
(Teramitsu and White, 2006) (Genbank Accession Number DQ285023), or that for GFP, down-
stream of the CMV early enhancer/chicken f actin (CAG) promoter. Virus titers were all ~2.24E + 13
vg/ml, thus equivalent volumes were delivered to each bird irrespective of construct. Heston et al.
(Heston and White, 2015) estimated that 24 + 5.5% of neurons at the epicenter of the virus injec-
tion are transduced and that 96.7 + 1.7% of cells that are transduced are neurons. These transduc-
tion rates are sufficient to observe a behavioral effect of the virus and were thus used in the present
study.

Histological assessment of FoxP2.10+ overexpression

FoxP2.10+ is a naturally occurring truncated isoform of FoxP2.FL, with a unique 10 amino acid
sequence at its C-terminus. There is currently no antibody specific to this truncated isoform, present-
ing a challenge to its immunological detection. The limited cloning capacity of AAV precluded our
ability to express a reporter gene in the viruses that we used for behavioral and RNA-seq experi-
ments. Moreover, we opted not to include an epitope tag on AAV-expressed FoxP2 isoforms in
order to avoid any conformational changes that could confound our behavioral or RNA-seq analyses.
For histological analysis only, however, we took advantage of the larger cloning capacity of HSV to
express FoxP2.10+ tagged with an Xpress epitope at its N-terminus downstream of the IE 4/5 pro-
moter and a GFP transduction reporter downstream of the CMV promoter (McGovern Institute for
Brain Research at the Massachusetts Institute of Technology, Cambridge, MA). Surgical procedures
were identical to those performed with AAV except that the virus was diluted to 60% in PBS immedi-
ately preceding injection, per the manufacturer's recommendation. HSV reaches peak expression
more rapidly than does AAV, thus HSV-injected birds were sacrificed 3-5 days post-injection
(Neve et al., 2005).

In situ hybridization

In situ hybridizations were performed as in Jacobs et al. (1999) using two [33PJUTP-labeled ribop-
robes antisense to distinct regions of zebra finch FoxP2 (Teramitsu et al., 2004). 20 uM thick sec-
tions were thaw-mounted onto Superfrost Plus microscope slides (ThermoFisher Scientific, Waltham,
MA, USA), then postfixed with 4% paraformaldehyde in PBS, pH 7.4.

PCR primers

To quantify levels of FoxP2.FL, we selected a primer pair previously used to quantify FoxP2 knock-
down (Haesler et al.,, 2007; Olias et al., 2014). The forward sequence was 5'-CCTGGCTG
TGAAAGCGTTTG-3' and the reverse was 5’ATTTGCACCCGACACTGAGC-3'. We designed a
primer pair for FoxP2.10+ using the NCBI Primer-BLAST tool (Ye et al., 2012). The input sequence
was FoxP2.10+ mRNA CDS (GenBank accession DQ285023.1). The forward primer sequence was 5'-
CGCGAACGTCTTCAAGCAAT-3' and the reverse sequence was 5'-AAAGCAATATGCACTTACAGG
TT-3'. Primer specificity was determined by obtaining a single peak in melting curve analysis and
obtaining a single amplicon of predicted size following gPCR. GAPDH forward and reverse primers
were 5-AACCAGCCAAGTACGATGACAT-3" and 5'-CCATCAGCAGCAGCCTTCA-3', respectively.

qRT-PCR experiments

200 ng of RNA from Area X micropunches was reverse transcribed into cDNA using the Bio-Rad
iScript cDNA Synthesis Kit (Hercules, CA, USA). 25 puL gPCR reactions were assembled in MicroAmp
Optical 96-Well Reaction Plates (ThermoFisher Scientific). Reaction components were 0.5 uL cDNA,
200 nM primers, 12.5 uL PowerUp SYBR Green Master Mix (ThermoFisher Scientific), and 10.75 uL
nuclease-free water. Cycling conditions were 50°C for 2 min, 95°C for 2 min, then 40 cycles of 95°C
for 15 s and 60°C for 1 min. A dissociation step of 95°C for 15 s, 60°C for 1 min, 95°C for 15 s, and
60°C for 15 s was then performed. All reactions were run in triplicate and all samples for an individ-
ual animal were run together on the sample plate. FoxP2 expression was quantified relative to
GAPDH and normalized to the GFP-injected animals using the 2°* T method (Livak and Schmitt-
gen, 2001).
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Immunostaining

For histological analyses, animals were sacrificed 3-5 days following HSV injection then perfused
with warm saline followed by ice cold 4% paraformaldehyde in 0.1 M phosphate buffer. Tissue was
cryosectioned at 20 uM, thaw-mounted onto glass microscope slides, and stored at —80°C until use.
Thawed sections were incubated overnight with goat-anti-FoxP2 (1:500; Abcam, Cambridge, UK;
[Thompson et al., 2013]) and mouse-anti-Xpress (1:500; ThermoFisher Scientific, Waltham, MA).
AlexaFluor 546 donkey-anti-goat (1:500) and AlexaFluor 405 donkey-anti-mouse (1:250) secondary
antibodies were used to generate anti-FoxP2 and anti-Xpress signals, respectively. Sections were
visualized using a Zeiss (Oberkochen, Germany) LSM 800 confocal microscope and processed using
NIH ImageJ (Schneider et al., 2012).

Song analysis and statistics

Motif similarity

The Similarity Batch in SAP was used to quantify the acoustic similarity between pupil and tutor
songs (Tchernichovski et al., 2000). Asymmetric comparisons were performed between 10 tutor
motifs (obtained from the final day before the pupil was acoustically isolated) and 20 pupil motifs
(obtained every ~3 days following viral injection). We used the average percentage similarity from
these comparisons as a representative of how well the pupil learned its tutor’s song on a given day
of analysis. Statistical significance of motif similarity data was calculated by performing one-way
ANOVAs on the average percentage similarity score of each animal across virus groups within each
time bin, as depicted in Figure 2D. If the ANOVA yielded a significant result, Tukey’s Honest Signifi-
cant Difference (HSD) was used as a post-hoc test.

Overall vocal variability

To broadly assess the amount of variability in the animal’s song preceding sacrifice, asymmetric com-
parisons between 20 pupil motifs and themselves were conducted. We calculated the motif identity
for all motif-motif comparisons as the product of their percentage similarity and accuracy divided by
100. Higher identity scores indicate lower variability within the batch.

Acute vocal variability modulation

For finer-grained analyses of acoustic variability as presented in Figures 2C and Figure 2—figure
supplement 1, we utilized SAP and Vocal Inventory Clustering Engine (VoICE; [Burkett et al.,
2015]; https://github.com/zburkett/VolCE). Syllables from the first 20 min following two hours of
non-singing or undirected singing on the NS-UD experiment days were hand segmented, had their
acoustic features quantified in the SAP Feature Batch, then clustered by VoICE. Data for analyses of
acoustic features were taken from the VoICE output. Effect sizes were calculated using the formula
(NS-UD)/(NS +UD), where values were the CV of a given acoustic feature following two hours of NS
or UD. Thus, negative values indicate increased song variability after UD singing (see below for more
information regarding this transformation). Statistical significance for each song feature was assessed
by one-way ANOVA on the CV effect size for all syllables from all animals within each group. Tukey’s
HSD was used as a post-hoc test in the instance of a significant ANOVA result. For the raw acoustic
data, as presented in Figure 2—figure supplement 1, the syllables were considered paired within
virus construct and across singing context. Paired T-tests were used to assess whether two hours of
non-singing vs. two hours of undirected singing significantly altered the CV for each acoustic
feature.

Song analysis: (NS-UD)/(NS + UD) effect size vs. raw acoustic feature
cv

The calculation of effect size was performed because it allows for comparison across virus groups
instead of a series of paired comparisons within group (Miller et al., 2015). The transformation nor-
malizes acoustic features so that any observed changes are viewed in the context of the initial values.
We present a hypothetical example in the table below where a change of 50 Hz for two syllables is
given a greater weight for a syllable that has an overall lower frequency when using the transforma-
tion we applied for our song data:
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Syllable A Syllable B
NS ubD Raw delta (NS-UD)/(NS + UD) NS ub Raw delta (NS-UD)/(NS + UD)
100 Hz 150 Hz 50 Hz -0.2 500 Hz 550 Hz 50 Hz —0.048

Tissue collection and processing, RNA extraction, cDNA library
preparation, and sequencing

Two hours following lights-on at ~65 d, birds were sacrificed by decapitation. Brains were rapidly
extracted and frozen on liquid nitrogen, then stored at —80°C until all brains were collected. As in
Hilliard et al. (2012a), tissue micropunches of Area X and VSP were performed. Brains were coro-
nally sectioned on a cryostat at 30 uM until Area X became visible. Area X and outlying VSP were
punched using a 20 gauge Luer adapter and stored in RNAlater (Qiagen, Germantown, MD) at
—80°C until RNA extraction was performed. 30 UM sections were then collected, thaw mounted, and
thionin stained for post-hoc validation of punch accuracy.

Total RNA extraction was performed as in Hilliard et al. (2012a). Samples were processed semi-
randomly and in parallel with another sequencing project. Tissue punches from both studies were
processed in batches of 8. We used Qiagen RNeasy Micro Kits (Cat. No 74004) following the manu-
facturer’s protocol and QlAzol as the lysis reagent. An additional wash beyond the manufacturer’s
protocol was performed in RW1 and RPE buffers. Final elution volume was 20 pL. Extracted total
RNA were stored at —80°C until all RNA extractions were completed. All extractions were com-
pleted over the course of two weeks.

Total RNA was provided to the UCLA Neuroscience Genomics Core (UNGC; https://www.semel.
ucla.edu/ungc) where RNA quality was assessed on an Agilent TapeStation (Agilent Technologies,
Santa Clara, California). RNA of sufficient quality (RIN >8) was then used to generate cDNA libraries
using the Illumina TruSeq Stranded Poly-A Prep Kit (lllumina, San Diego, CA, USA Cat No
20020594). Libraries for each sample were divided across two lanes and sequenced in a total of 8
lanes using an lllumina HiSeq 2500 in high output mode, generating between 15 and 35 million 50
bp paired-end reads per library.

RNA-seq preprocessing and WGCNA

Raw FASTQ files furnished by UNGC were first quality controlled using FASTQC (http://www.bioin-
formatics.babraham.ac.uk/projects/fastqc/). FASTQC returned results indicating high quality across
all bases in each read in each sample and no adapter contamination was detected, therefore we did
not perform any filtration of the reads before alignment. Reads were aligned to the NCBI zebra finch
genome assembly 3.2.4 (http://www.ncbi.nlm.nih.gov/assembly/524908/) and RefSeq annotations
using STAR (Dobin et al., 2013). Mismatch tolerance was two base pairs. Only uniquely mapped
reads were considered in downstream analyses. The featureCounts() function in the Rsubread R
package was used to count all reads mapping within exon features, then all exon counts were
summed to the gene level so that each gene had a single value of reads mapped to it (Liao et al.,
2014, Liao et al., 2013). Gene expression was then quantified by calculation of transcripts per mil-
lion (TPM). TPM values were log2 transformed and genes with zero variance across samples were
removed. We checked for batch effect on average expression resultant of RNA extraction group,
RNA extraction experimenter, and across sequencing lanes. No batch effects were observed. We
used an iterative process of removing gene expression data from single samples whose expression
was >2.5 SD of that gene’s expression across all samples, repeating until no samples remained with
expression >2.5 SD away from the gene's average expression across all samples. Finally, we calcu-
lated the intrasample correlation (ISC) and used a hard cutoff of 2 SD away from the group ISC for
removal of samples from the study. No sample in any group (Area X or VSP) was >2 SD from the
group ISC. Data were quantile normalized as the last step. Final data input to WGCNA was 13665
and 13781 genes for Area X and VSP networks, respectively, across 19 total samples.

We calculated the soft thresholding power for construction of the WGCNA adjacency matrix
using the pickSoftThreshold function in the WGCNA R package at 18 for Area X and 14 for VSP. We
then constructed a signed network using the blockwiseModules function in the WGCNA R package.
For the Area X network, we used a minimum module size of 100 genes and deepSplit was set equal
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to four for Area X and two for VSP. Genes were required to have at least a connectivity of 0.3 with
their module eigengene in order to remain a member of their module and the module ‘core’ (=mini-
mum module size/3) needed to have a minimum eigengene connectivity of 0.5 for the module to not
be disbanded. All other parameters were set to default. Networks were iteratively constructed with
genes in the grey module removed from the expression data after each round of network building
and module definition. The networks were considered final after no genes were placed into the grey
module.

During network construction, FoxP2 was removed, presumably due to the lack of coexpression
with other genes in the network resulting from virus-driven overexpression. Therefore, we added
FoxP2's expression data back into the final overall network and it became the only gene in the grey
module. Once coexpression modules were defined, we correlated vocal behavior to the module
eigengenes. Since the grey module included only a single gene with no significant behavioral corre-
lations, it was excluded from module-trait analyses.

WGCNA and network terminology

WGCNA is a well-established technique for gleaning biologically relevant clusters of coexpressed
and functionally related genes from microarray and sequencing data. WGCNA methods and termi-
nology are summarized and defined in numerous manuscripts (Hilliard et al., 2012a; Zhang and
Horvath, 2005; Dong and Horvath, 2007; Zhao et al., 2010; Yip and Horvath, 2007, Hor-
vath, 2011). For the sake of convenience, we provide working definitions of network terms that we
use throughout the manuscript. Definitions of greater detail are available in the manuscripts cited
above.

e Adjacency (a): The first step of network construction is to generate an adjacency matrix where
A = SijB, where i and j are genes, S is the expression correlation across samples, and 8 is an
empirically derived power to which the correlation is raised such that the resulting network
approximates a scale free topology.

e Connectivity (k): Connectivity is a measure of connectedness of a given gene, either in the con-

text of its module (kIN) or the entire network (kTotal). Connectivity is defined as follows: k; =

Z;VZI a;j where i and j are genes, N is all of the genes in the module or network, and a is the

adjacency between genes i and .

e Topological overlap: Adjacency is transformed to topological overlap as a method of calculat-

ing the interconnectedness (or similarity) between two nodes. Topological overlap is defined
lyj+ai
j- A and k are defined above.

e Gene significance: The Pearson correlation between a gene’s expression profile and, in our
work, a given behavioral metric.

e Module eigengene: The first principal component of a module’s gene expression profile, a
method of summarizing an entire module in one vector.

e Module membership: The correlation between an individual gene expression profile and a
module eigengene. Genes with high module membership tend to have high intramodular con-
nectivity and are referred to as intramodular hubs. Of note, genes can have high module mem-
bership in more than one module.

e Zsummary: Along with median rank, a term for quantifying preservation of gene coexpression
patterns between two independent datasets (Langfelder et al., 2011), such as between juve-
nile and adult Area X or juvenile Area X and juvenile VSP. Zsummary is a composite preserva-
tion score defined as the average of Zdensity and Zconnectivity, which assess the preservation
of connection strength among network nodes (e.g. Are strongly connected nodes in one net-
work also strongly connected in the other?) and the connectivity patterns between nodes (e.g.
Do the patterns of connection between specific nodes exist in both networks?), respectively,
following permutation tests under the null hypothesis. Higher Zsummary scores indicate better
preservation.

as follows: w;; = and [; = Z#Lj ai, a,j, where u represents all genes besides i and

Correlation of behavior to gene expression
Calculation of gene significance to a trait requires the definition of a single value to which the
amount of gene expression in each sample is correlated. Gene significances were calculated for the
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following traits: Motifs, defined as the number of motifs each animal sang in the two hours following
lights-on on the day of sacrifice; Tutor similarity, defined as the percentage similarity between the
pupil and its tutor on the day of sacrifice; Variability induction, defined by inserting Wiener entropy
CV scores into the equation (NS-UD)/(NS + UD) from the first twenty syllable renditions sung during
the NS-UD experiment performed at ~60 d; Motif identity, defined as the product of the similarity
and accuracy scores divided by 100 of the last 20 motifs sung by each bird before sacrifice. Song
variability was assessed on the motif level for the purpose of gene significance calculations so as to
obtain a single value for each animal.

Following network construction, modules were summarized by calculating a module eigengene,
defined as the first principal component of the module’s expression data using the moduleEigen-
genes() function in the WGCNA R package. The relationship between a module and a behavior was
assessed by determining the Pearson correlation between the module eigengene and continuous
behavioral traits as defined in ‘Song Analysis and Statistics’, above. Significance was then deter-
mined by calculating the Fisher transformation of each correlation using the corPvalueFisher() func-
tion in the WGCNA R package. We performed p-value corrections for module-trait correlations
using the p.adjust() function with the number of comparisons equal to the number of traits (4) by the
number of modules (21; the FoxP2-only grey module was not included for purposes of p-value cor-
rection). The p-values presented in this manuscript are uncorrected for multiple hypothesis testing
but those that pass FDR-correction at p<0.05 are indicated. We chose to present uncorrected p-val-
ues due to the small sample size used to create the overall network (n = 19 birds). The authors of
WGCNA suggest a minimum of 15 samples with >20 preferred (https://labs.genetics.ucla.edu/hor-
vath/CoexpressionNetwork/Rpackages/WGCNA/fag.html). P-value corrections drive nearly all results
to insignificance, including well preserved module-trait relationships that are present in adults and
survive such corrections due to the larger sample size in that study. We use the significant but uncor-
rected p-values in this study as a guide toward interesting module-trait relationships, then use the
properties of the network to inform the downstream analysis.

Our choice of behavioral traits for correlation to the gene network was hypothesis-driven. In addi-
tion to the obvious quantification of vocal learning, the comparison for variability induction was
planned, as indicated by the fact that we conducted the NS-UD and UD-UD behavioral paradigms
(prior to the bird's sacrifice) that led to it. We originally used these paradigms as a method for natu-
rally regulating FoxP2 levels, before we had identified a virus that was effective in doing so. In that
study (Miller et al., 2010), our prediction was that behavioral conditions that lead to low endoge-
nous FoxP2 in Area X (namely 2 hr of UD singing), would be associated with higher levels of variabil-
ity. This was indeed the case. We replicated this finding in zebra finches (Heston and White, 2015)
but did not observe the same phenomenon in Bengalese finches (Chen et al., 2013) as noted in our
Discussion. The feature highlighted by those studies was Weiner entropy.

Gene ontology, module significance, and term significance

At the time of this study, annotation of the zebra finch genome is relatively sparse, thus zebra finch
gene symbols were converted to their Human Genome Organisation (HUGO) Gene Nomenclature
Committee (HGNC) paralogs, then submitted to GeneAnalytics, a comprehensive tool for the con-
textualization of gene set data that integrates across multiple databases (Ben-Ari Fuchs et al.,
2016). Genes with no known human homolog were excluded. Symbols were submitted to the Gene-
Cards GeneAnalytics suite at http://geneanalytics.genecards.org (Ben-Ari Fuchs et al., 2016). Gene-
Cards enrichment scores were converted into p-values, which were used as the input to module
significance calculations. Module significance of a term was defined as the product of the average
module membership for each gene annotated with a term, and one minus the p-value for that term
such that the genes with the highest module membership and lowest p-value prioritize the terms
(Hilliard et al., 2012a). Term significance was defined by weighting the module significance score
by the gene significance for a given behavioral metric.

Transcription factor binding site analysis

The FoxP2 consensus binding sequence from the JASPAR database (Nelson et al., 2013,
Mathelier et al., 2016) was converted into a position-weight matrix (PWM) and used to scan the
promoter (defined as the first 1000 base pairs upstream of the transcription start site in the RefSeq
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models) for each gene in the zebra finch genome. Putative FoxP2 binding sites were identified using
the matchPWM function in the Biostrings R package (https://bioconductor.org/packages/release/
bioc/html/Biostrings.html) with a minimum hit score of 80%.

MAPK11 annotation note

The MAPK11 region discussed in this manuscript was identified using methods described above.
Upon closer inspection of the MAPK11 RefSeq annotation model, we believe the identified region
does not lie within the promoter but instead within an intronic region of MAPK11. There is currently
no experimental evidence to verify the RefSeq model’s predicted transcription start site and the
Ensembl model for MAPK11 is considerably longer (323 residues vs. 285 residues) due to an
expanded N-terminus region. Further, the chicken MAPK11 RefSeq model is 361 residues and con-
tains an N-terminus residue (MSERGGFYRQELNKTVWEVPQRYQNLTPVGSGAYGSVC) that maps ~12
kb upstream of the second exon of chicken MAPK11. This residue does not map to the zebra finch
genome, presumably because a gap in the genome exists ~13 kb upstream of zebra finch MAPK11.
The MAPK11 N-terminus peptides of other songbird species (Bengalese finch, starling, white-
throated sparrow, great tit and Tibetan ground-tit) are highly similar to that in chicken and align to
the first exon in chicken MAPK11. This peptide is found in mice and humans, indicating high conser-
vation. We thus posit that the MAPK11 RefSeq annotation in zebra finch is incomplete on the 5’ end
and that we are reporting a binding site internal to MAPK11 and not at the promoter.

Chromatin immunoprecipitation-PCR

Chromatin immunoprecipitation (ChIP) was performed using ChIP-IT High Sensitivity (Active Motif,
Carlsbad, CA, USA, Cat. No. 53040) following the manufacturer’s protocol. Whole brain was isolated
from an adult male zebra finch, minced, and crosslinked in a formaldehyde solution. The tissue was
homogenized with a hand-held tissue homogenizer for 45 s at 35,000 rpm. Following homogeniza-
tion, the sample was sonicated at 25% amplitude 30 s on, 30 s off, for 10 min. A portion of the soni-
cate was de-crosslinked and quantified. The sample was split evenly into three tubes. A cocktail of
anti-FoxP2 primary antibodies were applied to one sample (Millipore, Billerica, MA, USA Cat. No.
ABE73, ThermoFisher Scientific Cat. No. 5C11A2, and Abcam ab16046), 1gG in another (Millipore
12-370), and the third was input DNA. After an overnight incubation, the samples were washed, de-
crosslinked and subjected to PCR.

The ‘promoter’ sequence for MAPK11 was binned into 100 bp regions for primer construction.
MAPK11 primers were as follows: forward 5'- CCCTTTCCCCAAATGGCAGA-3' and reverse 5'-TA
TGAGCCTTGCCTTGGAGC-3'. PCR protocol was performed using DreamTag PCR Master Mix per
manufacturer’s protocol. A PCR protocol was used as follows: (1) 95°C 1 min, (2) 95°C 30 s, (3) 67°C
30 s, (4) 72°C 1 min, repeat (2-4) for 40 cycles, (5) 72°C 10 min. PCR products were run on a 1.5%
agarose gel in the presence of SYBR Safe to allow visualization of DNA. PCR products were purified
(QlAQuick Gel Extraction Kit) and sent for sequencing by Laragen, Inc. Reverse primers sent for
sequencing are as follows: 5-TATGAGCCTTGCCTTGGAGC-3' and 5'-CCTATGAGCCTTGCC
TTGGA-3".

Protein interaction networks and scaling of interaction confidence
scores
STRING is a comprehensive database of known and predicted protein-protein interactions derived
from experimental data, coexpression data, automated text mining, and also pulls information from
other interaction databases. STRING accepts gene symbols as input, then mines for interactions
between those genes and assigns a confidence score between 0 and 1 based on the evidence in the
database for the genes’ interaction. We submitted gene symbols for the human homologs of module
members to STRING then operated on the highest confidence interactions (>0.9) in downstream
analyses.

Interaction scores were scaled by different metrics to emphasize or deemphasize network posi-
tion and/or relationship to behavior (Supplementary file 5). Those metrics are:

1. The product of each gene’s connectivity in juvenile Area X network: emphasizes interactions
between the most connected genes in the juvenile network.
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2. The product of each gene's differential connectivity between juvenile and adult Area X net-
works: emphasizes interactions between genes that are of high network importance in juve-
niles but not adults.

3. The product of each gene’s gene significance for learning or singing: emphasizes interactions
between genes that are strongly correlated to behavior independent of their connectivity.

4. The product of each gene’s connectivity and gene significance: emphasizes interactions
between genes that are strongly correlated to behavior and of highly connected in the juvenile
network.

Network visualization and interactive figures
Network plots presented in this manuscript were constructed using the freely available plotting soft-
ware, Gephi (https://gephi.org), using edge lists prepared in R and exported in the. GEXF format.

We have created interactive versions of many of the network plots in this manuscript (Figure 3F)
all additional Area X modules (similar to Figure 3F but not presented in the manuscript), and the
protein interaction network presented in Figure 7. They are hosted at our laboratory website
(https://www.ibp.ucla.edu/research/white/genenetwork.html) along with high resolution static PDF
versions. Interactive figures were exported from Gephi using the Sigma.js Exporter plugin (https://
github.com/oxfordinternetinstitute/gephi-plugins).

In weighted coexpression networks, each node (i.e. gene) is connected to every other node in the
network, even if the weight of the edge (i.e. connection) is zero. Therefore, plots depicting nodes
and their edges with other genes become exceedingly complicated and unintuitive if all nodes and
edges are included. In an effort to sparsify the networks and present the most salient data, we
removed edges and genes from the coexpression networks using the following workflow: first,
remove <98% of edges, then remove all disconnected nodes, then remove all nodes that are not
part of the network’s main component (e.g. the largest group of connected nodes). The remaining
nodes and edges were plotted.

In this manuscript, we present three types of network plots that look similar but convey different
data. The three types are as follows:

1. The overall gene coexpression network, as in Figure 3—figure supplement 5 and https://
sites.google.com/a/g.ucla.edu/genenet/coexpressionnetwork. In these plots, the nodes repre-
sent genes and their colors represent the module assignment. Edges represent the adjacency
between nodes and the edge color is a combination of the origin and target node colors. Due
to the overwhelming number of edges in this network, the edge weights are scaled to mini-
mize the range. Node size in this network is equivalent to the node’s degree (e.g. the number
of connections originating or terminating at that node) and the maximum node size is sup-
pressed so as to provide maximal visual clarity.

2. Individual coexpression modules, as in Figure 3F and https://sites.google.com/a/g.ucla.edu/
genenet/modules. These plots are similar to the preceding except that, potentially, more
nodes are present in the module since the filtration procedures detailed above are applied in
a different context (e.g. only the expression data in the module are considered here vs. the
expression data for the entire network). The same scaling parameters as above are applied to
the edges for visual clarity.

3. Protein interaction network, as in Figure 7 and https://sites.google.com/a/g.ucla.edu/gene-
net/protein. Nodes represent proteins and their colors represent the coexpression module
assignments. Node size is equivalent to its degree. Here, the edge width conveys meaning
and is helpful in interpreting the relationship between nodes. An edge is drawn between two
nodes when the STRING database indicates a high confidence interaction (score >0.9)
between them. Edge widths are the confidence score scaled by the product of the origin and
target node’s intramodular connectivities (kIN). Thus, thick edges indicate a high confidence
protein level interaction between two genes that are well connected members of learning and
singing related modules. Unlike the previous plots, a node’s size does not necessarily convey a
higher degree of coexpression network importance. Instead, it indicates many interactions
involving this protein described in the database. The thickness of the edges conveys influence
of the gene’s biological importance, as interpreted through their kIN. Whether a node’s
degree or the weight of its connections is the ultimate determinant of its relationship to vocal
learning remains to be determined but the reader should keep the preceding information in
mind when interpreting this network.
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Accession information
Raw and processed RNA-seq and behavioral data for each bird are available at the Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) at accession number GSE96843.
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Additional files

Supplementary files

« Supplementary file 1. Network data summary table. (A) xIsx table summarizing all gene level Area
X and VSP network data for the juvenile birds presented in this study. Area X connectivity data in
the adult network are included (Hilliard et al., 2012a). Columns are sortable using Microsoft Excel
and defined as follows: [A] Gene symbol as annotated by NCBI Taeniopygia guttata genome assem-
bly 3.2.4 annotation release 103. [B] Human homolog of the zebra finch genes in column A, as dic-
tated by NCBI. [C] Gene’'s module assignment in the Area X overall network. NA implies the gene
was in the VSP but not the Area X network. [D-E] Gene kIN and kTotal for juvenile Area X. [F-G]
Gene kIN and kTotal for juvenile VSP. [H-] Gene kIN and kTotal for adult Area X. [J-S] Gene signifi-
cances ('gs’) and q value for each gene-behavior trait relationship using Area X expression data. [T-
BK] Module membership (‘MM’) as defined by correlation between the gene’s expression profile
across all samples and a module’s eigengene and p-value for the correlation. [BL] Gene’s module
assignment in the VSP network. [BM-BT] Same as columns J through S except using VSP expression
data.

DOI: https://doi.org/10.7554/eLife.30649.035

« Supplementary file 2. GeneAnalytics gene ontology information (A) xlsx workbook containing gene
ontology information from the GeneCards GeneAnalytics module. For each module, there are four
tabs sorted by default by descending module significance. Columns within each module are defined
as follows: (1) Diseases: [A] Enrichment score. [B] Enrichment term. [C] Disease category. [D] Total
genes annotated with this term. [E] Genes in this module annotated with this term. [F] Human gene
symbols for genes in column E. [G] Link to disease page in GeneCards database. [H] Genetic associa-
tions (if applicable). [I] Matched genes for genetic associations (if applicable). [J] Differentially
expressed in diseased tissues. [K] Matched genes for differential expression in diseased tissues. [L-P]
Module and term significances for all behavior metrics (see Materials and methods). (2) GO - Biolog-
ical Process, GO — Molecular Function, Pathways: [A] Enrichment score. [B] Enrichment term or path-
way name. [C] Total genes annotated with this term or pathway. [D-E] Number and symbol of genes
in this module annotated with this term. [F] Link to AMIGO or PathCards site for ontology term or
pathway. [G-K] Module and term significances for all behavior metrics (see Materials and methods).
DOI: https://doi.org/10.7554/eLife.30649.036

« Supplementary file 3. Area X to VSP module preservation statistics Module preservation statistics
with Z scores and Bonferroni-corrected log10 p-values are presented in columns C-AL. Column C is
the basis for the scatter plot presented as Figure 4B.

DOI: https://doi.org/10.7554/eLife.30649.037

« Supplementary file 4. Juvenile Area X to adult Area X module preservation statistics Module pres-
ervation statistics with Z scores and Bonferroni-corrected log10 p-values are presented in columns
C-AL. Column C is the basis for the scatter plot presented as Figure 5B.

DOI: https://doi.org/10.7554/eLife.30649.038

« Supplementary file 5. STRING database protein interaction data Pairwise protein level interactions
between genes in singing and learning modules. These nodes were linked with edges and presented
as Figure 7. Columns are defined as follows: [A-B] Nodes 1 and 2, one of which is in a song produc-
tion module and the other in a learning module. [C-F] Methods for weighting the protein interaction
scores as described in Methods: Protein Interaction Networks and Scaling of Interaction Confidence
Scores. Figure 7 uses weighted kIN (column C) as the metric for dictating edge width.

DOI: https://doi.org/10.7554/eLife.30649.039

« Transparent reporting form
DOI: https://doi.org/10.7554/eLife.30649.040

Major datasets
The following dataset was generated:
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Author(s) Year Dataset title Dataset URL information

Burkett ZD, Day NF, 2017 Weighted gene coexpression https://www.ncbi.nlm. Publicly available at
Kimball TH, Aa- analysis of RNA-seq data from 65d nih.gov/geo/query/acc.  the NCBI Gene
modt CM, Heston juvenile Area X and adjacent non-  cgi?acc=GSE?6843 Expression Omnibus
JB, Hilliard AT, song ventral striatopallidum (VSP). (accession no:

Xiao X, White SA GSE96843)

The following previously published dataset was used:

Database, license,
and accessibility

Author(s) Year Dataset title Dataset URL information
Hilliard AT, Miller 2012 Weighted gene co-expression ~ https://www.ncbi.nlm.  Publicly available at
JE, Fraley E, Hor- network analysis on microarray data nih.gov/geo/query/acc.  the NCBI Gene
vath S, White SA from subregions of zebra finch cgi?acc=GSE34819 Expression Omnibus
(Taeniopygia guttata) basal ganglia (accession no:
GSE34819)
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