DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes

  1. David B Lyons
  2. Daniel Zilberman  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Cytosine methylation regulates essential genome functions across eukaryotes, but the fundamental question of whether nucleosomal or naked DNA is the preferred substrate of plant and animal methyltransferases remains unresolved. Here, we show that genetic inactivation of a single DDM1/Lsh family nucleosome remodeler biases methylation toward inter-nucleosomal linker DNA in Arabidopsis thaliana and mouse. We find that DDM1 enables methylation of DNA bound to the nucleosome, suggesting that nucleosome-free DNA is the preferred substrate of eukaryotic methyltransferases in vivo. Furthermore, we show that simultaneous mutation of DDM1 and linker histone H1 in Arabidopsis reproduces the strong linker-specific methylation patterns of species that diverged from flowering plants and animals over a billion years ago. Our results indicate that in the absence of remodeling, nucleosomes are strong barriers to DNA methyltransferases. Linker-specific methylation can evolve simply by breaking the connection between nucleosome remodeling and DNA methylation.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. David B Lyons

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Daniel Zilberman

    Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    danielz@berkeley.edu
    Competing interests
    Daniel Zilberman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0123-8649

Funding

Howard Hughes Medical Institute

  • Daniel Zilberman

Horizon 2020 Framework Programme

  • Daniel Zilberman

National Institutes of Health

  • David B Lyons

Helen Hay Whitney Foundation

  • David B Lyons

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard Amasino, University of Wisconsin, United States

Publication history

  1. Received: July 24, 2017
  2. Accepted: November 14, 2017
  3. Accepted Manuscript published: November 15, 2017 (version 1)
  4. Version of Record published: December 13, 2017 (version 2)

Copyright

© 2017, Lyons & Zilberman

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,321
    Page views
  • 878
    Downloads
  • 58
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David B Lyons
  2. Daniel Zilberman
(2017)
DDM1 and Lsh remodelers allow methylation of DNA wrapped in nucleosomes
eLife 6:e30674.
https://doi.org/10.7554/eLife.30674

Further reading

    1. Chromosomes and Gene Expression
    Qiming Yang, Te-Wen Lo ... Barbara J Meyer
    Research Article

    An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species C. briggsae (Cbr) and C. elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13-bp MEX and 30-bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Vy Nguyen, Iain Searle
    Insight

    A well-established model for how plants start the process of flowering in periods of cold weather may need revisiting.