A spatial memory signal shows that the parietal cortex has access to a craniotopic representation of space

  1. Mulugeta Semework  Is a corresponding author
  2. Sara C Steenrod
  3. Michael E Goldberg
  1. Columbia University, United States

Abstract

Humans effortlessly establish a gist-like memory of their environment whenever they enter a new place, a memory that can guide action even in the absence of vision. Neurons in the lateral intraparietal area (LIP) of the monkey exhibit a form of this environmental memory. These neurons respond when a monkey makes a saccade that brings the spatial location of a stimulus that appeared on a number of prior trials, but not on the present trial, into their receptive fields (RFs). The stimulus need never have appeared in the neuron's RF. This memory response is usually weaker, with a longer latency than the neuron's visual response. We suggest that these results demonstrate that LIP has access to a supraretinal memory of space, which is activated when the spatial location of the vanished stimulus can be described by a retinotopic vector from the center of gaze to the remembered spatial location.

Article and author information

Author details

  1. Mulugeta Semework

    Mahoney-Keck Center for Brain and Behavior Research, Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    mulugetas@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6070-0119
  2. Sara C Steenrod

    Mahoney-Keck Center for Brain and Behavior Research, Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7932-7385
  3. Michael E Goldberg

    Mahoney-Keck Center for Brain and Behavior Research, Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0728-2464

Funding

National Eye Institute (R24 EY-015634)

  • Michael E Goldberg

National Eye Institute (R01 EY-017039)

  • Michael E Goldberg

National Eye Institute (P30 EY-019007)

  • Michael E Goldberg

National Eye Institute (R01 EY-014978)

  • Michael E Goldberg

National Institute of Neurological Disorders and Stroke (2T32MH015174-35)

  • Mulugeta Semework

W. M. Keck Foundation

  • Michael E Goldberg

Gatsby Charitable Foundation

  • Michael E Goldberg

Fight for Sight

  • Michael E Goldberg

Dana Foundation

  • Michael E Goldberg

Kavli Foundation

  • Michael E Goldberg

National Eye Institute (R21 EY-017938)

  • Michael E Goldberg

National Eye Institute (R21 EY-020631)

  • Michael E Goldberg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Ethics

Animal experimentation: The Animal Care and Use Committees at Columbia University and the New York State Psychiatric Institute approved all of the animal protocols in this study as complying with the guidelines established in the United States Public Health Service Guide for the Care and Use of Laboratory Animals. protocol NYSPI-1225-C

Version history

  1. Received: July 26, 2017
  2. Accepted: February 15, 2018
  3. Accepted Manuscript published: February 16, 2018 (version 1)
  4. Version of Record published: March 2, 2018 (version 2)

Copyright

© 2018, Semework et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,583
    views
  • 213
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mulugeta Semework
  2. Sara C Steenrod
  3. Michael E Goldberg
(2018)
A spatial memory signal shows that the parietal cortex has access to a craniotopic representation of space
eLife 7:e30762.
https://doi.org/10.7554/eLife.30762

Share this article

https://doi.org/10.7554/eLife.30762

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.