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Abstract We have produced an mRNA expression time course of zebrafish development across

18 time points from 1 cell to 5 days post-fertilisation sampling individual and pools of embryos.

Using poly(A) pulldown stranded RNA-seq and a 30 end transcript counting method we characterise

temporal expression profiles of 23,642 genes. We identify temporal and functional transcript co-

variance that associates 5024 unnamed genes with distinct developmental time points. Specifically,

a class of over 100 previously uncharacterised zinc finger domain containing genes, located on the

long arm of chromosome 4, is expressed in a sharp peak during zygotic genome activation. In

addition, the data reveal new genes and transcripts, differential use of exons and previously

unidentified 30 ends across development, new primary microRNAs and temporal divergence of

gene paralogues generated in the teleost genome duplication. To make this dataset a useful

baseline reference, the data can be browsed and downloaded at Expression Atlas and Ensembl.

DOI: https://doi.org/10.7554/eLife.30860.001

Introduction
Gene regulatory interactions are the fundamental basis of embryonic development and transcription

is one of the major processes by which these interactions are mediated. A time-resolved comprehen-

sive analysis of relative mRNA expression levels is an important step towards understanding the reg-

ulatory processes governing embryonic development. Here we present a systematic assessment of

the temporal transcriptional events during this critical period in zebrafish (Danio rerio).

The zebrafish is a unique vertebrate model system as it possesses high morphological and geno-

mic conservation with humans, but also experimental tractability of embryogenesis otherwise only

found in invertebrate model organisms such as Drosophila melanogaster or Caenorhabditis elegans.

Features such as very large numbers of offspring, ex vivo development and embryonic translucency

have enabled comprehensive forward and reverse genetic screens (Amsterdam et al., 1999;

Driever et al., 1996; Haffter et al., 1996; Kettleborough et al., 2013; Moens et al., 2008;

Varshney et al., 2015) as well as high-throughput drug discovery approaches (Murphey et al.,

2006; North et al., 2007; Peterson et al., 2000; Peterson et al., 2004; Stern et al., 2005).

Together with a high quality genome (Howe et al., 2013b) only comparable in vertebrates to mouse

and human, this has led to many important discoveries in areas such as zygotic genome activation

(ZGA; Lee et al., 2013), blood stem cell biology (Bertrand et al., 2010; Kissa and Herbomel,

2010), and findings directly affecting human health (Li et al., 2015; Tobin et al., 2010).
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The morphological processes underlying the transformation of a fertilised egg into a free swim-

ming fish have been studied extensively owing to the ease with which embryogenesis can be

observed and manipulated (Behrndt et al., 2012). This has identified many genes that drive crucial

steps of the differentiation process, however the wealth of morphological phenotype data has not

been matched with a systematic analysis of the corresponding molecular events. Baseline transcrip-

tomic datasets in other species have greatly improved knowledge of relative levels of gene expres-

sion as well as alternative splicing events (Boeck et al., 2016; Brown et al., 2014; Gerstein et al.,

2014; Graveley et al., 2011; Hashimshony et al., 2015; Klepikova et al., 2016; Owens et al.,

2016; Tan et al., 2013).

The first baseline expression study in zebrafish was conducted by Mathavan et al. (2005) using

microarrays. This profiled the expression of 14,904 genes across 12 time points from unfertilised egg

to 2 days post-fertilisation (dpf). Other baseline transcriptome work in zebrafish has focused on

either certain aspects of development such as the maternal-zygotic transition (Aanes et al., 2011;

Harvey et al., 2013; Lee et al., 2013), the identification of specific transcript types (Pauli et al.,

2012) or promoters (Gehrig et al., 2009; Nepal et al., 2013), on gene annotation improvement

(Collins et al., 2012) or have a limited number of time points and replicates (Yang et al., 2013).

Using poly(A) pulldown RNA-seq we have generated a comprehensive polyadenylated RNA

expression profile of normal zebrafish development. We have also used a 30 end enrichment method

called DeTCT, developed by us for cost-effective high-throughput polyA transcript screening

(Collins et al., 2015), to catalogue 3’ end usage. We have taken advantage of the large numbers of

offspring and have divided the 5 day period of embryonic development into 18 stages. For each

stage, we have processed up to 29 biological replicates consisting of single or pooled embryos.

We have placed particular emphasis on making the presented data accessible without the need

for computational processing. The data are available to browse and download in a user-friendly

interface at Expression Atlas and as selectable tracks in the Ensembl genome browser. Furthermore,

incorporation into the Ensembl release 90 (August 2017) genebuild has identified novel protein-cod-

ing genes, temporal profiles of ~2000 new lincRNAs and stage-specific transcript isoform

annotation.

This developmental polyadenylated RNA baseline reference enhances our understanding of the

gene regulatory events during vertebrate development and provides a time-resolved transcriptional

basis for the comprehensive annotation of functional elements in the zebrafish genome using exist-

ing and future genome-wide datasets (Haberle et al., 2014; Kaaij et al., 2016; Lindeman et al.,

2010; Potok et al., 2013; Vastenhouw et al., 2010).

Results

A high-resolution transcriptional profile of zebrafish development
We sampled a total of 18 developmental time points in this study (Figure 1A). Four time points are

before or at the onset of zygotic transcription, four during gastrulation, three during somitogenesis,

three during prim stages – 24, 30 and 36 hr post-fertilisation (hpf) – and every 24 hr from 2 to 5 dpf.

This gives detailed coverage of all the important developmental processes taking place during this

time period. At each time point, five biological replicates of pools of 12 embryos were collected and

we obtained an average of 3.8 million reads per sample (Figure 1—figure supplement 1A). The

number of genes detected rises steadily as development proceeds and a wider range of genes are

expressed (Figure 1—figure supplement 1B). The reduced number of detected genes during gas-

trulation is most likely caused by degradation of maternal mRNAs. The distribution of expression lev-

els (TPM, transcripts per million) is initially bimodal, with one peak at very low levels and another at

much higher levels, and becomes more normally distributed as the embryo develops (Figure 1—fig-

ure supplement 1C, Supplementary files 2–3). This pattern is consistent with the observation that

RNA-seq on homogeneous populations of cells produces a bimodal distribution whereas the distri-

bution becomes more unimodal when heterogeneous samples are sequenced (Hebenstreit et al.,

2011), which fits well with the cells of the embryo being very similar at early stages and becoming

more differentiated over time.

A sample correlation matrix produced by comparing expression levels across all genes between

samples demonstrates the excellent agreement among biological replicates and close relation of
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Figure 1. A transcriptional map of development. (A) Stages represented in this study. The colour scheme is used throughout the figures. Also shown

are the ZFS stage IDs, stage names and approximate hours post-fertilisation (at 28.5˚C) for each stage and five developmental categories. (B) Sample

correlation matrix of Spearman correlation coefficients of every sample compared to every other sample. (C) Example of the overlap between H3K4me3

signal and genes. Ensembl screenshot of the region occupied by ndr2 and lrcc20 (the direction of transcription is indicated by arrows). Included tracks

Figure 1 continued on next page
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neighbouring stages in terms of gene expression profiles (Figure 1B). As a further validation of the

dataset we overlaid published Chromatin ImmunoPrecipitation sequencing (ChIP-seq) data on

H3K4me3 status (Haberle et al., 2014). Of the 12,950 genes detected at 1 TPM or above at dome,

10,747 (83.0%) of the promoter regions (1000 bp upstream to 200 bp downstream of the annotated

transcription start site) overlap with an H3K4me3 peak, whereas only 10.7% (633/5930) of the pro-

moters of genes that are not expressed (0 TPM in all samples at that stage) overlap (Figure 1C). Sim-

ilarly, at prim-5 (24 hpf) 64.8% (9741/15,044) of expressed genes have a corresponding peak, but

only 4.9% (236/4845) of genes that are not expressed. The overlap of expressed genes at this later

stage is lower than at dome. However, this is probably due to the higher differentiation and there-

fore tissue-restricted gene expression in embryos at prim-5. Whole embryo H3K4me3 ChIP-seq is

not as sensitive as RNA-seq in detecting spatially restricted gene expression as it interrogates a

small stretch of genomic sequence that carries the mark in only a subset of cells. By contrast, RNA-

seq assays multiple copies of full length mRNA per gene.

Principal component analysis (PCA) shows close clustering of biological replicates and a smooth

transition from one stage to another through developmental time (Figure 1D). The first six principal

components (PCs) explain over 90% of the variance in the data (Figure 1—figure supplement 2);

the first component accounts for 58.2% of the observed variation. Summaries of the expression pat-

terns underlying the PCs are displayed in Figure 1E. Broadly, the genes that contribute the most to

the first PC are either low at early time points and increase towards the end of the time course or

the inverse (high early and decreasing later). Genes contributing to PC2 and PC3 have two peaks of

expression at similar stages (blastula/gastrula and days 3–5) although the patterns are different. The

other patterns are more complex (Figure 1—figure supplement 2) although PC6 has a clear spike

of expression, which starts at the 1000 cell stage (3 hpf) and peaks at dome (4.3 hpf) coinciding with

the start of zygotic transcription.

In order for this dataset to be as useful as possible to the scientific community, we have made it

available as sequence with metadata through the European Nucleotide Archive and in multiple loca-

tions for viewing. Pre-computed count profiles (TPM or FPKM) are available to search/browse at

Expression Atlas (http://www.ebi.ac.uk/gxa/experiments/E-ERAD-475)(Petryszak et al., 2016),

allowing comparison of the expression profiles of multiple genes across the entire time course

(Figure 2A). This is searchable by gene/allele name, Ensembl ID and Gene Ontology (GO) terms. It

is also possible to start with a single seed gene and have Expression Atlas add in similarly expressed

genes (as assessed by k-means clustering) for comparison (https://www.ebi.ac.uk/gxa/FAQ.html#si-

milarExpression). The data are also viewable in Ensembl as separate stage-specific selectable tracks

along with one merged track (http://www.ensembl.org/Danio_rerio). The aligned reads can be dis-

played as either coverage graphs or read pairs. Reads that span introns can be viewed to investigate

alternative splicing in a stage-specific manner (Figure 2B–C).

Figure 1 continued

are: H3K4me3-prim-6-FE (blue) – fold enrichment of H3K4me3 ChIP-seq (H3K4me3/control) at prim-6 stage, H3K4me3-dome-FE (red) – fold enrichment

of H3K4me3 ChIP-seq (H3K4me3/control) at dome/30% epiboly, Prim-5 RNAseq and Dome RNAseq (grey) – alignments of RNA-seq reads. The table

above shows the genome-wide overlap between H3K4me3 ChIP-seq peaks and the promoters of expressed/not expressed genes as well as the

average expression (TPM) of each gene at each stage. ndr2 is expressed only at dome stage and displays a peak only in the dome/30% epiboly

H3K4me3 ChIP-seq. lccr20 is expressed at both stages and has a H3K4me3 peak at both stages. (D) 3D plot of Principal Component Analysis (PCA)

showing the first three principal components (PCs), which together explain 83.8% of the variance in the data. Samples from the same stage cluster

together and there is a smooth progression through developmental time (shown as dashed arrow). Samples are coloured as in (A) and are annotated

with the stage categories. The amount of variance explained by each PC is indicated on each axis. (E) Representation of the expression profiles that

contribute most to the first 6 PCs. The expression values are centred and scaled for each gene for the 100 genes that contribute most to that PC and

then the mean value for each sample is plotted.

DOI: https://doi.org/10.7554/eLife.30860.002

The following figure supplements are available for figure 1:

Figure supplement 1. RNA-seq sample QC.

DOI: https://doi.org/10.7554/eLife.30860.003

Figure supplement 2. PCA matrix plot.

DOI: https://doi.org/10.7554/eLife.30860.004
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Figure 2 continued on next page

White et al. eLife 2017;6:e30860. DOI: https://doi.org/10.7554/eLife.30860 5 of 32

Tools and resources Developmental Biology and Stem Cells Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.30860


Graph-based clustering produces compact clusters of highly biologically
related genes
To visualise the expression of all genes across development we ordered the genes in our dataset by

their stage of maximum expression (Figure 3A). This organises the genes temporally, broadly by

expression pattern.

Of the 23,642 detectable genes in this time course (>0 TPM in all samples for at least one stage),

5024 are genes with automatically generated names (often derived from clone IDs) such as zgc:* and

si:ch*. Interestingly, at dome and gastrula stages, the proportion of these unnamed genes is nearly

twice as high (32.9–42.2%) as at other stages (18.2–28.6%; Figure 3B). This could indicate a lack of

orthologues and therefore that zebrafish gastrulation is enriched for the expression of genes exclu-

sive to this species. However, we did not find evidence of an increased proportion of danio/teleost-

specific genes at these stages (Figure 1—figure supplement 1). While the maximum expression

stage groupings provide a high-level, temporally organised view of development, smaller more spe-

cific groupings provide more insight especially into the role of uncharacterised genes. To get smaller

clusters that are more likely to contain biologically related genes, we used the BioLayout Express3D

software (http://www.biolayout.org/) (Theocharidis et al., 2009) to cluster and visualise the dataset

(Figure 3C). The software first builds a network graph in which genes are nodes with edges between

those whose expression is correlated above a given threshold. It then uses the Markov Cluster Algo-

rithm (MCL, Enright et al., 2002; van Dongen, 2000) to find strongly connected components within

the graph (Supplementary files 4–5). These are clusters of genes that are more highly connected

with each other than with the rest of the graph. This produces 254 clusters, the vast majority of

which (238/254) have fewer than 100 genes (Figure 3B). Broadly speaking, the clusters on the left-

hand side of the graph represent genes expressed at early stages, whereas towards the right of the

graph the expression profiles are progressively later in development (Figure 3B). For example, clus-

ter 3 contains genes that are maternally supplied and then degraded and cluster 5 genes are not

expressed until the last time points in the study. Cluster 2 has genes that accumulate after the 2 cell

stage, but before the onset of zygotic transcription (Figure 3C). Genes whose abundance changes

before ZGA have been identified before (Mathavan et al., 2005) and were shown to be regulated

by the control of polyadenylation (Aanes et al., 2011; Harvey et al., 2013).

The BioLayout clusters were analysed for enrichment of GO and Zebrafish Anatomy Ontology

(ZFA) terms. 70 of the clusters have significant GO enrichments (adjusted p-value<0.05) and 17 have

significant ZFA enrichments. For example, cluster 27 contains a large number of homeobox tran-

scription factors (including fox, hox, irx and nkx gene families) that are expressed from 1 to 4 somites

onwards and is associated with GO terms for transcription and development (Figure 3D). Clusters

36 and 49 have two peaks of expression and contain complement, clotting factor genes and serpins.

Both clusters have enrichments for the terms related to blood clotting (Figure 3D). Notably, there

are clusters that have stage-specific expression profiles, but no GO or ZFA enrichments (e.g. Cluster

30, Figure 3D). This cluster contains well known developmental regulators such as admp, chd and

fzd8b and a large proportion of unnamed genes (10/42). The information on GO/ZFA enrichments

for every cluster is provided in Supplementary file 6, which can be viewed in any web browser.

GO analysis on the genes which are not present in the heatmap in Figure 3A (0 TPM in at least

one sample for all stages) produces enrichments for terms related to apoptosis and the adaptive

immune system with B-cell related terms such as B cell receptor signalling, immunoglobulin produc-

tion and antigen processing and presentation (Supplementary file 7). These fit well with the obser-

vation that the adaptive immune system does not fully develop in zebrafish until 3 weeks post-

fertilisation (Lam et al., 2004; Trede et al., 2004; Willett et al., 1997). Although it is possible that

Figure 2 continued

chosen for display. (C) A screenshot of the Ensembl v89 browser showing the region surrounding the gene eif4enif1 (chr 6:40.922–40.952 Mb). Exon

read coverage from the merged 18 stages is displayed as grey histograms. Four of the 18 intron-defining tracks from the RNA-seq matrix are selected.

Introns are coloured in teal. Yellow dots indicate introns identifying a splice variant not found in any of the three gene models shown in red. Note that

only the forward strand is shown in full and a gene model overlaps on the reverse strand.

DOI: https://doi.org/10.7554/eLife.30860.005
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Figure 3. Clustering of expression patterns. (A) Heatmap of the expression profiles across the time course (includes genes expressed at >0 TPM in all

the samples for at least one stage). The expression values are scaled to the maximum expression for that gene across the time course. Genes are

organised by which stage the maximum expression occurs at and clustered within each stage. (B) Table of the numbers of named and unnamed genes

assigned to each stage. (C) Network diagram of the clustering produced by MCL on a network graph generated by linking genes with a Pearson

Figure 3 continued on next page
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this represents lack of detection rather than true absence of expression we do detect other genes

expressed in macrophages (another similarly small population of cells) such as marco and mpeg1.2.

A burst of transcription of highly related zinc finger proteins during
zygotic genome activation
During examination of the clusters produced by BioLayout, we noticed several clusters protruding

from the rest of the network (Figure 3B; clusters 23 and 26 [bottom left]) that appeared to be

enriched for a family of zinc finger (ZnF) proteins located on chromosome 4 (Howe et al., 2016). To

test systematically if any chromosomes were over-represented in any of the clusters, we performed a

binomial test for each chromosome for each cluster that contained more than five genes from that

chromosome. This identifies four clusters (clusters 7, 23, 26 and 135) with more chromosome 4

genes than would be expected by chance given the size of the clusters (Table 1). Most of the chro-

mosome 4 genes (153/168) within these clusters are predicted to encode proteins with ZnF domains

(Supplementary file 8). The unnamed genes within these clusters represent on average 30.6% of

the unnamed genes assigned to gastrula stages in the maximum-stage groupings.

The expression profiles of these ZnF genes have a burst of expression from dome to 75% epiboly

(4.3–8 hpf) and several begin to be expressed at the 128- and 1000 cell stages (Figure 4A–C). Clus-

ter 23 has a particularly sharp peak with a very large increase from the 1000 cell stage to dome and

an almost equal decrease from dome to 50% epiboly. This suggests that these ZnF genes are co-

ordinately expressed at the onset of zygotic transcription. The effect can even be seen on the chro-

mosomal scale (Figure 4B). To investigate whether this is a global effect on all the genes on the

long arm of chromosome 4 we looked at the expression profiles of NLR family genes, another large

family of proteins present on chromosome 4 (Howe et al., 2016). These genes are present in the

same region of chromosome 4 as the ZnF genes although their distribution is slightly different, with

more NLR genes towards the end of the chromosome (Figure 4D). Of the 311 NLR genes present in

the Ensembl version 85 genebuild, 148 have expression (>0 TPM in all samples for at least one

stage) during this time course and they are not expressed in the same pattern as the ZnF genes

(Figure 4E, Figure 4—figure supplement 1). Only 9 of them are assigned to a BioLayout cluster.

Chromosomal expression domains
Since the expression pattern of the chromosome 4 ZnF genes is obvious on a chromosome level

plot, we wondered if it was possible to find any other chromosomal regions where the genes share a

Figure 3 continued

correlation coefficient of >0.94 and removing unassigned genes and clusters with five genes or fewer. The numbers indicate the positions in the

network diagram of the clusters shown in D and Figure 4. (D) Example clusters illustrating the progression of expression peaks through development

displayed as the mean of mean-centred and variance-scaled TPM for the genes in the clusters.

DOI: https://doi.org/10.7554/eLife.30860.006

The following figure supplement is available for figure 3:

Figure supplement 1. Relationship of named and unnamed genes to other species.

DOI: https://doi.org/10.7554/eLife.30860.007

Table 1. BioLayout clusters with significant chromosomal enrichments (adjusted p-value<0.05 and

log2 fold enrichment [log2FE]>1).

Cluster Chromosome Count Expected log2[FE] Adjusted p-value

Cluster007 Chr4 99 23.55 2.07 4.772e-35

Cluster023 Chr4 40 6.11 2.71 2.707e-23

Cluster026 Chr4 20 5.03 1.99 1.810e-06

Cluster135 Chr4 9 0.99 3.19 6.997e-07

Cluster086 Chr12 7 0.42 4.05 3.447e-06

Cluster057 Chr23 6 0.69 3.13 1.637e-03

DOI: https://doi.org/10.7554/eLife.30860.008

White et al. eLife 2017;6:e30860. DOI: https://doi.org/10.7554/eLife.30860 8 of 32

Tools and resources Developmental Biology and Stem Cells Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.30860.006
https://doi.org/10.7554/eLife.30860.007
https://doi.org/10.7554/eLife.30860.008
https://doi.org/10.7554/eLife.30860


A

C

E

0

1

2

3

log
10

(TPM)
Cluster

Cluster007

Cluster023

Cluster026

Cluster135

0

50

100

150

Stage

m
e
a
n
 T

P
M

Cluster

Cluster007

Cluster023

Cluster026

Cluster135

0

1

2

3

log
10

(TPM)

0

10

20

30

0e+00 2e+07 4e+07 6e+07 8e+07

Position (Mb)

G
e

n
e

 C
o

u
n

t

Zinc Finger

NLR

Chr4:3.4

Chr4:7.7

Chr4:11.8

Chr4:16.1

Chr4:20.5

Chr4:29.2

Chr4:36.4

Chr4:42.5

Chr4:48.8

Chr4:56.2

Chr4:63.6

Chr4:71

Chr4:75.4

0

1

2

3

C
lu

s
te

r0
0

2

C
lu

s
te

r0
0

1

C
lu

s
te

r0
0

5

C
lu

s
te

r0
0

4

C
lu

s
te

r0
0

3

C
lu

s
te

r1
3

5

C
lu

s
te

r0
2

6

C
lu

s
te

r0
2

3

C
lu

s
te

r0
0

7

B

D

log
10

(TPM)

Figure 4. Zinc Finger (ZnF) genes expressed at the onset of zygotic transcription. (A) Heatmap of the expression profiles (log10[TPM]) of the ZnF genes

from clusters 7, 23, 26 and 135. (B) Heatmap of the expression of all genes on chromosome 4 (log10[TPM]) in chromosomal order with cluster

assignments shown on the right. (C) Expression profiles of clusters 7, 23, 26 and 135 shown as average expression (mean TPM). (D) Plot of the

distribution of ZnF (red) and NLR (blue) genes on chromosome 4. (E) Heatmap of the expression profiles (log10[TPM]) of the NLR genes present in

GRCz10.

DOI: https://doi.org/10.7554/eLife.30860.009

The following figure supplement is available for figure 4:

Figure supplement 1. Comparison of ZnF and NLR genes on chromosome 4.
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common expression pattern. To investigate this, we calculated the average pairwise Pearson correla-

tion coefficient in a sliding window of 10 genes along each chromosome and selected regions that

were above 0.5 (Figure 5). This identified 62 regions (Supplementary file 9) including the hoxda

cluster. There are several more groups of genes containing zinc finger domains, in smaller regions

on chromosomes 3, 15 and 22. These genes have a peak at a similar stage to the chromosome 4

ZnF genes, although they tend to be more widely expressed over the time course (Figure 5—figure

supplement 1A–D).

Many of the regions contain groups of related genes that share domains such as gamma crystal-

lins, cadherins, histone and globin genes (Supplementary file 9). One of the regions on chromo-

some 12 (Figure 5—figure supplement 1E) contains genes that also appear in BioLayout cluster 86,

which has an overrepresentation of genes on chromosome 12 (Table 1). This appears to be a fish-

specific expansion of cathepsin L and contains the gene ctslb (ENSDARG00000039173, also known

as hatching gland 1).

For some of the regions (26/62), when compared to the mouse and human genomes, the homolo-

gous genes maintain their physical co-localisation. However most of them have been split up into

two or three regions, suggesting that there is no selective pressure on maintaining synteny

(Supplementary file 9).

Conservation/divergence of the expression profiles of paralogous
genes
Teleost fish underwent a third round of whole genome duplication compared to the two rounds of

tetrapods (Meyer and Schartl, 1999). During rediploidisation, most of the duplicate genes were

lost, but a significant proportion were retained and are now present as paralogous pairs. Paralogous

genes can have conserved expression patterns but often the expression patterns have diverged so

that the paralogues function at different times or in different tissues. To investigate whether we can

see this in our data, which has only stage and not tissue specificity information, we produced a list of

one-to-one teleost-specific paralogous pairs using data from Ensembl (2929 gene pairs with expres-

sion in our data;>0 TPM in all samples for at least one stage. Supplementary file 10).

We calculated the Pearson correlation coefficients between the expression values (TPM) for each

paralogous pair as a measure of how similar the expression profiles are. The distribution of the cor-

relation coefficients is skewed to high positive correlations when compared to a random sample of

gene pairs of similar size (Figure 6A). Despite this skew, there is a significant proportion of the distri-

bution with low or negative correlation coefficients, suggesting that this may represent a set of

genes whose expression patterns have diverged (50% of the distribution is below 0.45). Examples of

highly positively (ckma/b) and negatively (impdh1a/b) correlated paralogous genes are shown in

Figure 6B–F and Figure 6—figure supplement 1.

However, paralogous pairs that have highly similar temporal patterns and levels may still have

spatially distinct expression patterns. To get an estimate of how many of these gene pairs have

divergent spatial expression patterns, we used the ZFA annotation provided by ZFIN. There are 683

gene pairs where there is anatomical expression information for both genes. For each pair, we

counted up the intersection of all the pairs of stage ID and anatomy term that make up the expres-

sion annotations. For the pairs studied, 83.7% (572 pairs) have an intersection of less than 50%. It is

important to note that ZFA annotation is not complete, which means that this is an underestimate of

the amount of concordance of expression patterns.

GO analysis shows an enrichment for terms related to neural and muscle development

(Supplementary file 11). Neural terms are already enriched in the whole set of 3144 one-to-one

paralogue pairs, but that enrichment becomes even greater when the gene set is limited to the

highly correlated paralogue pairs (Pearson coefficient >0.9). By contrast, negatively correlated pairs

(Pearson coefficient <�0.5) show limited enrichments. This suggests that temporal divergence is mir-

rored by greater diversity of GO annotations which in turn leads to reduced term enrichment.

Figure 4 continued
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Figure 5. Chromosomal expression domains. (A) Manhattan plot of the calculated similarity measure (mean pairwise Pearson correlation coefficient) in

windows of 10 genes across the genome. (B) Heatmaps of the expression profiles (log10[TPM]) of genes in chromosomal order. To the left of each

histogram, the similarity measure is plotted as a line graph with a red line marking the 0.5 cut-off for identifying regions of co-expression.

DOI: https://doi.org/10.7554/eLife.30860.011
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Novel features
An important aspect of a large-scale dataset is the extent to which novel transcripts/genes can be

defined. The Ensembl genebuild pipeline contains a procedure to build gene models from RNA-seq

data and incorporate these models into the genebuild (Collins et al., 2012). Our data have been

used by Ensembl to produce an updated gene annotation set, which is available in Ensembl release

90. Table 2 shows summary statistics comparing release 90 to 89. The new release contains a total

of 62,895 transcripts in 35,117 genes. 127 new protein-coding genes (Supplementary file 12) and

1166 new transcripts in previously annotated genes have been created as a consequence of incorpo-

rating our RNA-seq data (Figure 7A). These genes are expressed at lower levels (3-fold) on average

as measured by their mean expression across the entire time course (Figure 7—figure supplement

2A), which may explain why they haven’t previously been annotated. Differential splice isoform

usage is a crucial mechanism for generating transcript diversity allowing different forms with poten-

tially divergent functions, localisations and post-transcriptional regulation. To investigate this, we

have used Salmon (Patro et al., 2017) and maSigPro (Conesa et al., 2006; Nueda et al., 2014) to

produce transcript-level counts for the new e90 genebuild and test for differential isoform usage.

We find that 5043 of the 35,117 genes show differential isoform usage across the time course

(Figure 7B, Figure 7—figure supplement 1 and Supplementary files 13–14) with 3084 genes

expressing more than two isoforms across development (Figure 7C).

In addition, our data has been used by Ensembl, in conjunction with previously incorporated

RNA-seq data, to build 2294 new lincRNAs (Supplementary file 12). Of these lincRNAs, 1304 are

detected in our dataset with the same cut-off as for protein-coding genes (>0 TPM in all samples for

at least one stage) and a high proportion show dynamic expression patterns across the 18 stages

(Figure 7D). Also, of the detectable lincRNAs, 81 have differential isoform usage during the time

course. We compared the Ensembl lincRNAs with two previously published sets (Pauli et al., 2012;

Ulitsky et al., 2011) to investigate the overlap. None of the sets overlap to any great extent, which

possibly reflects the different methods and data that were used to identify them (Figure 7E). Only

10 of the e90 lincRNAs overlap lincRNAs in both of the other two sets, one of which is malat1 (ENS-

DARG00000099970; Tripathi et al., 2010; Ulitsky et al., 2011). However, all 10 of these were

already present in e89.

Like mammalian and previously identified zebrafish lincRNAs (Cabili et al., 2011; Pauli et al.,

2012; Ulitsky et al., 2011), they tend to be shorter than protein-coding genes with fewer exons

(mean length = 1006 nt, mean number of exons = 3.04; Figure 7F–G). They are also expressed at

lower levels on average (mean TPM across all samples; protein-coding, median = 7.3 TPM, lincRNA,

median = 1.6 TPM; Figure 7—figure supplement 2B). Analysis of promoter-associated motifs shows

that the transcriptional start sites of these genes are not well-defined (Figure 7—figure supplement

2C–D). In mouse and human annotation, the Ensembl lincRNA pipeline and subsequent manual

annotation incorporate comprehensive cap analysis of gene expression (CAGE), H3K4me3 and

H3K36me3 data for promoter and gene body definition, respectively. By contrast, the zebrafish

lincRNA annotation relies on RNA-seq data only, therefore the inherent 3’ bias of the expression

data leads to less reliable 5’ end annotation.

Novel primary miRNA transcripts
Another class of important transcripts are primary microRNAs (pri-miRNAs). As in other systems,

miRNAs play important roles during zebrafish development such as the miR-430 family which is

required for proper morphogenesis at early stages and also oriented cell divisions in the neural rod

(Giraldez et al., 2005; Takacs and Giraldez, 2016).

Mature miRNAs (miRNAs) are released from the longer pri-miRNAs by a series of processing

steps (Denli et al., 2004; Gregory et al., 2004; Grishok et al., 2001; Hutvágner et al., 2001). First,

precursor hairpins (pre-miRNAs) are sliced from the host transcript in the nucleus by the

Figure 5 continued

The following figure supplement is available for figure 5:

Figure supplement 1. Heatmaps showing the expression profiles of example regional expression domains.

DOI: https://doi.org/10.7554/eLife.30860.012
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Figure 6. Conservation/divergence of paralogous genes. (A) Plot of the distribution of Pearson correlation coefficients among one-to-one paralogous

gene pairs (red) and a random sample of gene pairs of the same size (blue). (B) Heatmap of the expression of the gene pairs with the top 10 highest

correlation coefficients (top half) and the top 10 most negative correlation coefficients (bottom half). (C–D) Plots displaying the expression of ckma/b by

stage (C) and plotted against each other (D). (E–F) Plots showing the expression of impdh1a/b by stage (E) and plotted against each other (F).
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microprocessor complex, consisting of the proteins Drosha (Rnasen) and Dgcr8 (Pasha). Subse-

quently the hairpin is cut by Dicer1 in the cytoplasm, freeing the miRNA duplex.

Although much effort has been dedicated to sequencing and annotating the mature miRNAs

themselves, the annotation of many primary miRNA genes is likely hindered by their rapid nuclear

processing (Chang et al., 2015). Reasoning that the depletion of drosha and dgcr8 may enrich the

transcriptome for unprocessed pri-miRNAs, we sequenced RNA derived from dgcr8 and drosha

wild-type, heterozygous and homozygous mutant embryos (5 dpf) to determine whether this would

allow us to improve the current pri-miRNA annotation.

Following the assembly of the transcriptome, we were able to better define a large number of

novel pri-miRNA loci not annotated in Ensembl release v87. The v87 release includes 313 pri-miRNA

transcripts overlapping 220 annotated miRNA loci. Our assembly contains 398 pri-miRNA transcripts

which overlap 283 miRNA loci, 94 of which are not currently associated with a pri-miRNA

(Figure 8A, Supplementary file 15–16). As with protein-coding genes, there can be multiple differ-

ent spliced isoforms often having different transcription start sites (Figure 8B–C). These pri-miRNA

transcripts are now available to view as a selectable track in Ensembl v90 (Figure 8D).

Alternative 30 end use
Differential use of 3’ ends is another process that achieves transcript diversity and enables differen-

tial regulation. There are multiple possible consequences of alternative 30 ends, such as different/

extra 30 UTR sequence (Figure 9A). This can provide different binding sites for RNA-binding proteins

or regulation by microRNAs. For example, one transcript may contain a microRNA binding site lack-

ing in another, changing post-transcriptional regulation. Other possibilities include different/extra

coding sequence at the 30 end of transcripts, leading to proteins that contain different domains and

can therefore fulfil different molecular functions. We have catalogued alternative 30 end usage across

development for the same time points as the RNA-seq using a 30 pulldown method called DeTCT

(Collins et al., 2015).

As with the RNA-seq data, samples from the same stage correlate well with each other (Fig-

ure 9—figure supplement 1). PCA plots show very similar patterns to PCA on the RNA-Seq with

tight clustering of samples (Figure 9—figure supplement 2). Of the genes that contribute more

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.30860.013

The following figure supplement is available for figure 6:

Figure supplement 1. Divergent expression of paralogous pairs.

DOI: https://doi.org/10.7554/eLife.30860.014

Table 2. Comparison of Ensembl genebuild versions 89 and 90.

Biotype e89 e90

protein_coding 25,672 25,743

snRNA 1287 1287

processed_transcript 1106 1106

lincRNA 914 3208

rRNA 780 1579

miRNA 767 440

antisense_RNA 696 696

snoRNA 297 305

unprocessed_pseudogene 228 228

Other 519 525

Total Genes 32,266 35,117

Total Transcripts 58,549 62,895

DOI: https://doi.org/10.7554/eLife.30860.015
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Figure 7. Novel features of the dataset. (A) Heatmap of the expression profiles (log10[TPM]) of the 127 new protein-coding gene annotations in the

Ensembl v90 gene build produced by the contribution of this RNA-seq dataset. (B) Example of a gene (ENSDARG00000029885, rab41) with differential

isoform usage across the time course plotted as TPM (points are individual samples and the line represents the mean). (C) Histogram of the number of

isoforms per gene for genes with differentially expressed isoforms. (D) Heatmap of the expression profiles (log10[TPM]) of the 1304 detected new

Figure 7 continued on next page
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than 0.01% to PC1, 74.6% overlap with those contributing more than 0.01% to PC1 in the RNA-seq

PCA (for PC2–6 the percentages are 64.8%, 76.3%, 67.1%, 36.4%, 14.5%; Supplementary file 17).

This suggests that the largest signals in the data are very similar between the RNA-seq and DeTCT

data. Across all 423 samples over all the stages (for each stage there are 11–12 replicates of pools

of 8 embryos and 11–12 replicates of single embryos), there were 253,627 regions identified, where

each region may be associated with multiple 30 ends. However, a proportion of these are false posi-

tives due to poly(T) pulldown from genomic poly(A) tracts within transcripts. Therefore, we have fil-

tered these regions by various criteria such as distance to an annotated gene and genomic context

to remove artefactual regions (Figure 9B, Figure 9—figure supplement 3 and Materials and meth-

ods), which reduces the set to 37,724 regions. For this analysis, we increased the stringency of filter-

ing to reduce the inclusion of false-positive ends and produce a high-confidence set of 30 ends to

work from. This stricter set contains 8358 regions. Once the regions have been associated with anno-

tated genes, 1552 genes have two or more 30 ends (Supplementary file 18).

This high-confidence set has allowed us to define 30 ends of genes that are alternatively used

throughout development. For example, pdlim5b (ENSDARG00000027600) has three alternative 30

ends which are used at different times during development (Figure 9C–D). During cleavage and gas-

trula stages, one particular end is used (end 2 in Figure 9C), but all three are observed during seg-

mentation stages. Ends 1 and 2 would be predicted to produce the same protein with different 30

UTRs, allowing for differential post-transcriptional regulation. However, end 3 is predicted to pro-

duce a protein which lacks the C-terminal zinc finger domain, allowing for this alternative transcript

to have a completely different molecular function (Figure 9D).

GO enrichment analysis of the 1552 genes with multiple 3’ ends produces enrichments of a wide

variety of biological processes from JNK signalling to exocrine pancreas development with no obvi-

ous process or tissue specificity (Supplementary file 19). There are no enrichments for Pfam

domains, suggesting that there isn’t a particular class of gene that is more commonly regulated by

alternative 3’ ends.

Discussion
We have produced a high-quality map of zebrafish mRNA expression during development. It repre-

sents the first detailed temporal mRNA reference in zebrafish and enhances our understanding of

the transcriptional diversity underlying vertebrate development.

The large number of stages and replicates allows us to cluster genes by their expression profile

across all of development using a graph-based method. This splits the assayed genes into 254 differ-

ent expression profiles containing at least five genes each (11,439 of the genes are assigned to clus-

ters). GO/ZFA enrichment on these clusters allows us to suggest an association of unnamed genes

with known processes. There are also many clusters which show no GO enrichments at all, despite

having some well-known developmental regulators in them. One possible explanation for this is that

genes that already have GO annotations are more likely than unannotated genes to accrue new

annotations leading to an inequality in annotation (Haynes et al., 2017). This analysis is based on

Pearson correlation coefficient between genes across all the samples and so is limited to genes that

have a high enough coefficient to be retained and assigned to a cluster. Therefore, it cannot say any-

thing about genes that are not expressed in a similar enough pattern to at least four other genes.

Also, since this analysis used whole embryos, it represents a temporal, but not tissue-resolved

Figure 7 continued

lincRNA annotations. (E) Venn diagram showing the number of lincRNA regions that overlap with previously published lincRNA sets (Pauli et al., 2012;

Ulitsky et al., 2011). (F) Histogram of the lincRNA transcript lengths. (G) Histogram of the numbers of exons per lincRNA. The red line represents the

median and the mean is shown at the top right.

DOI: https://doi.org/10.7554/eLife.30860.016

The following figure supplements are available for figure 7:

Figure supplement 1. Differential isoform usage.

DOI: https://doi.org/10.7554/eLife.30860.017

Figure supplement 2. Properties of lincRNAs.

DOI: https://doi.org/10.7554/eLife.30860.018

White et al. eLife 2017;6:e30860. DOI: https://doi.org/10.7554/eLife.30860 16 of 32

Tools and resources Developmental Biology and Stem Cells Genomics and Evolutionary Biology

https://doi.org/10.7554/eLife.30860.016
https://doi.org/10.7554/eLife.30860.017
https://doi.org/10.7554/eLife.30860.018
https://doi.org/10.7554/eLife.30860


A

B

C

Assembly Ensembl

miRNA loci with primary transcript annotation

94 189 31
Represented by 97 

pri-miRNA transcripts

Pri-miRNA transcripts

Ensembl and Havana v87   313

Assembly     398

D

miRBase v21 miRNAs

Ensembl v87 miRNAs

Assembly pri-miRNAs

Ensembl/Havana v87 pri-miRNAs

dre-mir-363

dre-mir-19c

dre-mir-18c

dre-mir-20b

14:31,125,170-31,130,305

miRBase v21 miRNAs

Ensembl v87 miRNAs

Assembly pri-miRNAs

Ensembl/Havana v87 pri-miRNAs

dre-let-7d-1 dre-mir-125a-1

16:24,295,630-25,034,559

Zebrafish pri-miRNAs

Genes (Merged
Ensembl/Havana)

CABZ01076733.1 >Contigs

%GC

2,840,000 2,840,200 2,840,400 2,840,600 2,840,800 2,841,000 2,841,200 2,841,400

Non-Protein Coding

RNA gene

Gene Legend

Ensembl Danio rerio version 90.10 (GRCz10) Chromosome 5: 2,840,000 - 2,841,500

2,840,000 2,840,200 2,840,400 2,840,600 2,840,800 2,841,000 2,841,200 2,841,400

1.50 kb Forward strand

Reverse strand 1.50 kb

ENSDARESTT00001672317 >

misc RNA

dre-mir-142a.1-201 >

miRNA

Figure 8. Annotation of primary miRNA transcripts. (A) Table and Venn diagram of the numbers of assembled pri-miRNA transcripts and the overlap of
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overview of development. Studies using tissue- and cell-specific approaches (Ståhl et al., 2016;

Trinh et al., 2017) will refine this baseline with greater resolution and uncover developmental pro-

cesses in smaller cell populations.

One intriguing set of clusters contains an over-representation of genes on the long arm of chro-

mosome 4, a region considered to be constitutive heterochromatin (Howe et al., 2013b). The vast

majority of these genes encode proteins with zinc finger domains. The clusters have expression pro-

files that rise sharply around the time of ZGA and decrease at the latest after 75% epiboly. Given

this, it is tempting to speculate that these genes have a role during the activation of the zygotic

genome. In Drosophila the zinc finger gene Zelda (zld) is involved in zygotic genome activation by

early and widespread binding to promoters and enhancers ahead of their genes’ activation during

the maternal-zygotic transition (Harrison et al., 2010; Harrison et al., 2011; Liang et al., 2008). In

zebrafish, pou5f3, nanog and soxB genes have been implicated in activating specific genes during

ZGA (Lee et al., 2013; Leichsenring et al., 2013), but no general factor comparable to Zelda has

been identified yet. It is possible that the role of the ZnF protein family genes on chromosome 4 is

to set up or maintain open chromatin in a genome-wide way to allow for the rapid activation of the

first zygotic genes. This is supported by the finding that these clusters also contain four unnamed

genes, also found on chromosome 4, that are predicted to be H3K36 methyltransferases (ENS-

DARG00000104681, ENSDARG00000091062, ENSDARG00000076160, ENSDARG00000103283).

H3K36 methylation is generally, albeit not exclusively, associated with active euchromatin

(Wagner and Carpenter, 2012). Notably, loss of the chromatin modifier Kdm2aa leads to a specific

de-repression of these ZnF genes (Scahill et al., 2017).

Another option is that they could be responsible for negatively regulating areas of open chroma-

tin to stop inappropriate activation of transposable elements during ZGA. In mammals, suppression

of retrotransposons is mediated by the rapidly evolving KRAB zinc finger genes (Jacobs et al.,

2014). KRAB zinc finger genes are not found in ray-finned fish (Imbeault et al., 2017), making the

ZnF genes on chromosome 4 a possible functional equivalent.

Also, as would be expected given their expression profiles, within these four clusters are a large

number of well-known developmental regulators such as members of the Tgf-beta (Bmp and Nodal)

and Wnt signalling pathways, as well as transcription factors such as gata5 & 6, sox32, vox, ved, vent

and both Brachyury homologues.

Paralogue analysis
Correlation analysis of paralogues stemming from a teleost-specific genome duplication shows that

although there is the expected skew towards positive temporal expression correlation, a significant

proportion of paralogues have diverged in their expression pattern as demonstrated by low or nega-

tive correlation coefficients. This is confirmed by an analysis of the expression annotations provided

by ZFIN. However, it is important to note that the spatial-temporal expression annotation is far from

complete and, therefore, annotations may not overlap simply because a certain stage has been

investigated for one paralogue, but not the other. It will also be the case that some genes have

expression patterns that are diverged spatially, but not temporally and we will not necessarily be

able to detect these events. Thus, the number of genes whose expression annotations do not over-

lap is an estimate, but it does suggest that the phenomenon of divergence is widespread among

paralogues, something that might be expected to be the case since there needs to be some form of

selective pressure on retaining paralogous pairs. GO enrichment of highly correlated paralogues

reveals a skew towards neural and muscle expression whereas negatively correlated pairs do not

exhibit this expression restriction, which is likely to reflect greater GO term diversity among the

latter.

Figure 8 continued

shots from the Ensembl v90 browser demonstrating how to display the pri-miRNAs. The track is selectable from the ‘Genes and transcripts’ section of

the ‘Configure this page’ menu. The region around miR-142a (chr5: 2,840,000–2,841,500) is shown with its annotated pri-miRNA.

DOI: https://doi.org/10.7554/eLife.30860.019
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Figure 9. Alternative 3’ end use during development. (A) Diagrams illustrating the possible outcomes of differential 3’ end usage. Only the 3’ end of

the gene is shown, where the exons are boxes, the introns are represented as lines and filled boxes are coding. The dotted line represents the

remaining 5’ end of the gene. (B) Flowchart of the DeTCT 3’ end filtering strategy. See Materials and methods for the definition of each filter. The table

shows the number of ends removed by each filter when using the strict/stricter settings. (C) Graph of the mean normalised counts by stage for the

three alternative 3’ ends (shown in D) of the pdlim5b gene. Error bars represent standard deviations. Underneath is a screenshot from Expression Atlas

(Aug 2017) showing the overall TPM for pdlim5b. (D) Screenshot from Ensembl (release 89) showing the 3’ portion of the pdlim5b gene (10:1,187,000–

1,215,000). The top two tracks are RNA-seq coverage for 1 cell and prim-15 (30 hpf). Red arrowheads point to the genomic positions of the three

transcript ends. Note, the 3’ UTR resulting in end 1 is not annotated in this genebuild. Below is a schematic of the proteins that are predicted to be

produced by two of the transcripts. The positions of domains within the protein are also indicated.

DOI: https://doi.org/10.7554/eLife.30860.020

The following figure supplements are available for figure 9:

Figure 9 continued on next page
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Novel genes
Our data has added 127 previously unknown potential protein-coding genes to Ensembl’s annota-

tion. These genes are expressed at lower levels on average than the entire set of protein-coding

genes and many are expressed in a limited number of stages. This may explain why there has not

been enough evidence previously for Ensembl’s gene-build pipeline to annotate them. Similarly,

2294 new genes annotated as lincRNAs have been added. This compares with 7821 currently anno-

tated in Ensembl for the human genome. Properties of the lincRNAs in terms of numbers of exons,

length of transcript and overall expression level are similar to what has been reported previously

(Cabili et al., 2011; Pauli et al., 2012; Ulitsky et al., 2011). The fact that there is so little overlap

between the three sets is probably because of the different methods that were used to define them.

Ulitsky et al. (2012) used H3K4me3 peaks and 3’-end profiling to define regions of transcription,

and transcript models were built within these regions. Pauli et al. (2012) used RNA-seq data to

assemble a set of transcripts which were then filtered for coding potential using PhyloCSF. The

Ensembl lincRNA pipeline uses the RNA-seq models that do not overlap protein-coding genes and

filters them by looking for Pfam (Finn et al., 2014) domains in all candidate protein sequences in all

frames in the transcript. The numbers of transcripts produced by the Ensembl pipeline suggest that

it is more sensitive, but less specific than the other two methods. For human and mouse genomes,

Ensembl uses chromatin methylation state (H3K4me3 and H3K36me3), but does not yet use this for

the zebrafish. Incorporation of CAGE data would also help to correctly identify the 5’ ends of these

transcripts.

The involvement of microRNAs during embryonic development is widespread (reviewed in Bar-

tel, 2009; Mishima, 2012). However, the primary transcripts of miRNAs are often poorly annotated.

Using two miRNA processing mutants (dgcr8 and drosha), we have produced an improved pri-

miRNA assembly with an increase of 42% in the number of Ensembl miRNAs with an associated pri-

mary transcript, including genes implicated in developmental processes in zebrafish (Figure 9D,

Fan et al., 2014). In agreement with previous studies (Chang et al., 2015; Gaeta et al., 2017), the

assembly shows that miRNAs are processed from primary transcripts with multiple isoforms with

potentially multiple transcription start sites (Figure 9). This diversity of transcripts means that the

expression of miRNAs in relatively close proximity (e.g. dre-let-7d-1 and dre-mir-125a-1) could be

regulated at multiple levels (Figure 9C). In some transcripts let-7d-1 and mir-125a-1 are both

intronic and in some mir-125a-1 is exonic. There are also transcripts with alternate promoters which

exclude the let-7d-1 locus entirely. These features provide significant flexibility to the transcriptional

regulation of miRNAs. It is possible that a proportion of the assembled constructs are fragments.

Clear definition of the 5’ and 3’ termini will require further work and ultimately experimental valida-

tion by an alternative method such as 50 rapid amplification of cDNA ends.

Transcript diversity
A further layer of complexity is added by differential exon and 30 end use. The dataset uncovers new

splice isoforms that show differential expression across the 18 stages. When viewed in Ensembl

against the Ensembl genebuild, this refines the current gene annotation and ties splice isoforms to

their temporal expression patterns. This is of particular relevance to the ongoing debate surrounding

reverse genetics approaches in zebrafish (Kok et al., 2015). One possible explanation for pheno-

typic discrepancies between morpholino antisense oligo knockdown, code disrupting point muta-

tions and CRISPR/Cas9 or TALEN-mediated larger deletions is that mutations affect potentially non-

critical exons that are only present in a subset of transcripts of a given gene. Indeed, recent publica-

tions demonstrate that genes carrying code-disrupting mutations created by ENU or CRISPR/Cas9

Figure 9 continued

Figure supplement 1. DeTCT QC.

DOI: https://doi.org/10.7554/eLife.30860.021

Figure supplement 2. DeTCT PCA.

DOI: https://doi.org/10.7554/eLife.30860.022

Figure supplement 3. 3’ end filtering.

DOI: https://doi.org/10.7554/eLife.30860.023
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mutagenesis can produce potentially functional transcripts by exon skipping (Anderson et al., 2017;

Mou et al., 2017). An improved annotation that gives temporal resolution of exon usage is of great

value for the identification of critical exons.

Using the 30 end sequencing method DeTCT, we have catalogued the differential use of alterna-

tive 30 ends in a filtered set of transcripts. In accordance with previous work on a subset of stages

(Collins et al., 2012; Sheppard et al., 2013; Ulitsky et al., 2012) we find that there is differential

use of not only 30 UTRs but also coding sequence across development. We show that pdlim5b is

expressed as several transcripts, with a single maternal isoform and multiple zygotic ones which

would be predicted to produce different proteins. This type of data provides scope for temporally

resolved analysis using transcript-specific knockout targeting strategies.

A major aim for this work was to create an accessible reference of normal mRNA expression dur-

ing zebrafish development. The primary sequence is available from the European Nucleotide Archive

(ENA, http://www.ebi.ac.uk/ena), but importantly has also been interpreted for immediate user-

friendly access. Expression Atlas (http://www.ebi.ac.uk/gxa/experiments/E-ERAD-475/Results) pro-

vides relative expression levels and Ensembl displays alternative genomic transcript structures for

each stage alongside the current gene annotation. These pre-computed analyses allow an in-depth

examination of the data on a gene by gene basis. This makes it easy for researchers to benefit from

the data and provides a direct link to the wealth of information present in genomic databases.

Materials and methods

Key resource table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

genetic reagent
(Danio rerio)

droshasa191 this paper ZFIN:sa191; RRID:
ZFIN_ZDB-ALT-100831-1

ENU mutant. C - > T at position
GRCz10:12:13311049. Available from ZIRC
(http://zebrafish.org/fish/lineAll.php?
OID=ZDB-ALT-100831-1)

genetic reagent
(D. rerio)

dgcr8sa223 this paper ZFIN:sa223; ZFIN:
ZDB-ALT-161003–11399

ENU mutant. C - > T at position
GRCz10:12:24021119

strain, strain background
(D. rerio)

HLF this paper Hubrecht Long Fin

software, algorithm TopHat 10.1038/nprot.2012.016 RRID:SCR_013035

software, algorithm Cufflinks 10.1038/nprot.2012.016 RRID:SCR_014597

software, algorithm QoRTs 10.1186/s12859-015-0670-5 https://github.com/hartleys/QoRTs

software, algorithm htseq-count 10.1093/bioinformatics/btu638 RRID:SCR_011867

software, algorithm R https://www.r-project.org/ RRID:SCR_001905

software, algorithm Perl https://perldoc.perl.org/

software, algorithm zfs-devstages this paper github repository,
https://github.com/richysix/zfs-devstages

software, algorithm Ontologizer 10.1093/bioinformatics/btn250 RRID:SCR_005801

software, algorithm STAR 10.1093/bioinformatics/bts635

software, algorithm Samtools 10.1093/bioinformatics/btp352 RRID:SCR_002105

software, algorithm Picard http://broadinstitute.
github.io/picard

RRID:SCR_006525

software, algorithm gtfToGenePred UCSC Genome Browser http://hgdownload.soe.ucsc.edu/downloads.html
#utilities_downloads

software, algorithm genePredToBed UCSC Genome Browser http://hgdownload.soe.ucsc.edu/downloads.html
#utilities_downloads

Animal care
Zebrafish were maintained in accordance with UK Home Office regulations, UK Animals (Scientific

Procedures) Act 1986, under project licence 70/7606, which was reviewed by the Wellcome Trust

Sanger Institute Ethical Review Committee.
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Sample collection
Wild-type HLF strain zebrafish (Danio rerio) were maintained at 23.5˚C on a 14 hr light/10 hr dark

cycle. At the time of mating, breeding males and females were separated overnight before letting

them spawn naturally in the morning to allow for synchronisation of developmental stages. Fertilised

eggs were grown at 28˚C and staged using previously defined criteria (Kimmel et al., 1995). Sam-

ples from 18 different developmental stages from 1 cell to 5 days post-fertilisation were collected by

snap freezing the embryos in dry ice. Details of sample names and accession numbers are provided

in Supplementary file 1.

RNA extraction
RNA was extracted from embryos by mechanical lysis in RLT buffer (Qiagen) containing 1 ml of

14.3M beta mercaptoethanol (Sigma). The lysate was combined with 1.8 volumes of Agencourt

RNAClean XP (Beckman Coulter) beads and allowed to bind for 10 min. The plate was applied to a

plate magnet (Invitrogen) until the solution cleared and the supernatant was removed without dis-

turbing the beads. This was followed by washing the beads three times with 70% ethanol. After the

last wash, the pellet was allowed to air dry for 10 mins and then resuspended in 50 ml of RNAse-free

water. RNA was eluted from the beads by applying the plate to the magnetic rack. RNA was quanti-

fied using Quant-IT RNA assay (Invitrogen) for samples 24 hr post-fertilisation and older.

RNA sequencing
Total RNA from 12 embryos was pooled and DNase treated for 20 mins at 37˚C followed by addition

of 1 ml 0.5M EDTA and inactivation at 75˚C for 10 mins to remove residual DNA. RNA was then

cleaned using 2 volumes of Agencourt RNAClean XP (Beckman Coulter) beads under the standard

protocol. Five replicate libraries were made for each stage using 700 ng total RNA and ERCC spike

mix 2 (Ambion). Strand-specific RNA-seq libraries containing unique index sequences in the adapter

were generated simultaneously following the dUTP method. Libraries were pooled and sequenced

on Illumina HiSeq 2500 in 100 bp paired-end mode. Sequence data were deposited in ENA under

accession ERP014517.

FASTQ files were aligned to the GRCz10 reference genome using TopHat (v2.0.13, options: –

library-type fr-firststrand, Kim et al., 2013). The data were assessed for technical quality (GC-con-

tent, insert size, proper-pairs etc.) using QoRTs (Hartley and Mullikin, 2015). Counts for genes were

produced using htseq-count (v0.6.0 options: –stranded=reverse, Anders et al., 2015) with the

Ensembl v85 annotation as a reference. The processed count data are in Supplementary file 2.

Analysis
Count data was converted to Transcripts per Million (TPM) and all subsequent analysis was done

using TPM (Supplementary file 3). Analysis was done using R (R Core Team, 2015) and Perl as well

as the tools mentioned below. The code to reproduce all the plots in this paper can be downloaded

from GitHub (https://github.com/richysix/zfs-devstages) (White, 2017). A copy is archived at https://

github.com/elifesciences-publications/zfs-devstages.

Sample correlation matrix
The sample correlation matrix was produced by calculating the Spearman correlation coefficient

between each possible pair of samples. Spearman correlation coefficient was used in preference to

Pearson because it is less sensitive to outliers.

Principal component analysis
Principal Component Analysis was carried out using the prcomp function in R. This projects the data

down from 32,105 dimensions (genes) to 90 (samples). Each component accounts for a fraction of

the variance present in the data with the first six components together capturing over 90%. The

genes that contribute most to each component were determined by calculating the proportion of

variance explained by each gene for each component and selecting those above 0.01%.
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ZFA enrichment
The ZFA (Van Slyke et al., 2014) is a controlled vocabulary for describing the anatomy and develop-

ment of zebrafish and is used by the Zebrafish Information Network (ZFIN, Howe et al., 2013a) to

annotate the spatial expression patterns of genes from the literature and large-scale whole mount

mRNA in situ hybridisation experiments (Rauch et al., 2003; Thisse et al., 2001). ZFA enrichment

was done with Ontologizer (http://ontologizer.de, Bauer et al., 2008) using the ‘Parent-Child-Union’

calculation method and Benjamini-Hochberg correction for multiple testing. The ZFA ontology was

downloaded from http://www.berkeleybop.org/ontologies/zfa.obo and mappings between ZFIN

gene IDs and ZFA IDs were downloaded from ZFIN (http://zfin.org/downloads/wildtype-expression_

fish.txt and http://zfin.org/downloads/phenoGeneCleanData_fish.txt).

GO enrichment
GO enrichment was performed using the R topGO package (Alexa and Rahnenfuhrer, 2016). The

mapping between Ensembl IDs and GO terms was retrieved from the Ensembl database using a cus-

tom Perl script (get_ensembl_go_terms.pl) from the topgo-wrapper repository (https://github.com/

iansealy/topgo-wrapper).

Unnamed genes
Unnamed genes were defined by matching gene names to the following patterns: [A-Z][A-Z][0–9]{6}

\.[0–9]+, CABZ[0–9]{8}\.[0–9]+, im:[0–9]{7}, si:.*, wu:.*, zgc:[0–9]{5,6}. Orthologues (along with the

predicted last common ancestor) were obtained from the Ensembl Compara database (Vilella et al.,

2009) using a custom Perl script (https://github.com/richysix/zfs-devstages) for the following spe-

cies: Astyanax mexicanus, Gasterosteus aculeatus, Oryzias latipes, Takifugu rubripes, Tetraodon

nigroviridis, Gadus morhua, Mus musculus, Rattus norvegicus and Homo sapiens.

Genes with no identifiable orthologue in any of the species were classed as Danio-specific. Those

with orthologues in the six fish species but not the mammals examined (last common ancestor Neo-

pterygii, Clupeocephala or Otophysi) were categorised as Teleost-specific. Those with orthologues

also present in the mammalian species (last common ancestor Euteleostomi, Vertebrata, Chordata

or Bilateria) were labelled as Vertebrate.

BioLayout
BioLayout Express3D is available to download for free (http://www.biolayout.org/downloads/). The

input to the program is the expression values for the genes in each sample. The Pearson correlation

cut-off was set to 0.94; gene pairs with a correlation coefficient above this are linked by an edge in

the input graph (13162 genes). After running MCL, clusters with fewer than six genes were removed

(1723 genes) which produced 254 clusters ranging in size from 6 to 2360 genes. The input expres-

sion file is provided as Supplementary file 4. The processed layout file of the network displayed in

Figure 3B is available at https://doi.org/10.6084/m9.figshare.4622293.

Chromosome enrichment in BioLayout clusters
Enrichment for particular chromosomes within BioLayout clusters was tested for using a one-tailed

binomial test followed by multiple testing correction using the R qvalue package (Storey, 2003;

Storey et al., 2015) at FDR = 0.05. For each cluster, only chromosomes that appeared more than

five times were tested.

Chromosomal co-expression regions
To calculate a similarity measure for groups of genes in a chromosomal region the genome was split

up into overlapping windows of 10 genes. For each window, the Pearson correlation coefficient was

calculated for every combination of pairs of genes (45 pairs for a group of 10 genes) and averaged.

Windows with a mean correlation coefficient greater than 0.5 were selected and overlapping win-

dows were merged.

Paralogous gene pairs
One-to-one paralogues were identified from the Ensembl Compara database (Vilella et al., 2009)

using a custom Perl script (https://github.com/richysix/zfs-devstages) filtering for one-to-one
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relationships and ones where the last common ancestor was one of Clupeocephala, Danio rerio,

Neopterygii or Otophysi to get paralogous pairs arising from the most recent whole genome dupli-

cation event (Meyer and Schartl, 1999).

ZFA annotation of wild-type gene expression data was downloaded from ZFIN (http://zfin.org/

downloads/wildtype-expression_fish.txt). For each paralogous pair, the overlap in ZFA term, ZFS

stage pairs was calculated. Image data for this paper were retrieved from the Zebrafish Information

Network (ZFIN), University of Oregon, Eugene, OR 97403–5274; URL: http://zfin.org/; 23 Jan 2017.

Differential isoform usage
Transcript level counts were produced using Salmon (Patro et al., 2017) in Quasi-mapping-based

mode with the new Ensembl e90 transcripts as a reference (v0.8.2, options: –threads 4 –seqBias –

gcBias –libType ISR). Differentially spliced genes and differentially expressed transcripts were called

using the R package maSigPro (Conesa et al., 2006; Nueda et al., 2014) after removing the 20% of

genes with the lowest expression.

DeTCT
DeTCT libraries were generated, sequenced and analysed as described previously (Collins et al.,

2015). The resulting genomic regions and putative 30 ends were filtered using DeTCT’s filter_output

script (https://github.com/iansealy/DETCT/blob/master/script/filter_output.pl) in both its –strict and

–stricter modes. –stricter mode removes 30 ends more than 5000 bases downstream of existing pro-

tein-coding annotation (Ensembl v86) or more than 50 bases from existing non-coding annotation

(antisense, lincRNA, misc_RNA and processed_transcript biotypes). 30 ends are also removed if

nearby sequence is enriched for As, if within 14 bp of an N, if within coding sequence, a simple

repeat (repeats annotated by Dust or TRF) or a transposon, or if not near a primary hexamer. –strict

mode removes 3’ ends in coding sequence, transposons, if nearby sequence is enriched for As or if

not near a primary hexamer. Regions not associated with 30 ends are also removed. Sequence data

were deposited in ENA under accessions ERP006948 and ERP013756. The processed count data is

available to download at https://doi.org/10.6084/m9.figshare.4622311.

pri-miRNA assembly
For each mutant allele – droshasa191 (rnasen); dgcr8sa223 (pasha) – embryos were collected at 5 dpf

and genotyped by KASP genotyping as previously described (Dooley et al., 2013). We produced

and sequenced stranded RNA-seq libraries from single homozygous, heterozygous and wild-type

embryos (5 replicates of each). Sequence data were deposited in ENA under accession ERP013690.

To identify new pri-miRNAs, FASTQ files were aligned to the zebrafish genome (GRCz10) using

STAR (Dobin et al., 2013) v2.5.1a, options: –alignSJoverhangMin 8 –alignSJDBoverhangMin 1 –out-

FilterMismatchNmax 999 –alignIntronMin 20 –alignIntronMax 1000000 –alignMatesGapMax

1000000 –readFilesCommand zcat –outFilterIntronMotifs RemoveNoncanonical –outFilterType

BySJout –outFilterMultimapNmax 10 –sjdbOverhang 74. Ensembl v86 zebrafish annotation was pro-

vided as a junction file. Aligned reads were sorted, indexed and mate pairings were fixed using Sam-

tools (v1.3.1, Li et al., 2009). Duplicate alignments were removed with Picard (http://broadinstitute.

github.io/picard, v2.7.1, REMOVE_DUPLICATES = true READ_NAME_REGEX = null). Alignments for

the homozygous, heterozygous and wild-type samples for both the drosha and dgcr8 lines were

merged into two line-specific datasets with Samtools. Each set of merged alignments was then used

to assemble a transcriptome with Cufflinks (v2.2.1, Trapnell et al., 2012) (–library-type=fr first-

strand). Ensembl (v86) annotation stripped of rows corresponding to ‘gene’ features was provided

as a backbone for the assembly. The drosha and dgcr8 assemblies were then merged with

Cuffmerge.

Ensembl miRNA annotation (v87) (‘miRNA’ biotype) was used to define miRNA loci. For the pur-

pose of this analysis we defined pri-miRNAs as any spliced transcript overlapping at least one of

these loci. Ensembl and Havana (v87) annotation was selected as the baseline for novel pri-miRNA

prediction. UCSC utilities gtfToGenePred and genePredToBed were used to convert from GTF to

BED format. Pri-miRNAs were identified by removing single exon transcripts from the merged

assembly and Ensembl annotations and comparing the remainder to annotated miRNA loci using

bedtools (v2.24.0) intersect (-wa –s). Finally, assembled pri-miRNA transcripts were filtered to
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remove those for which either the first or last exon was less than 20nt in length, those which contain

an intron greater than 100,000 nt, or those which contain an intron that isn’t flanked by the GT-AG

or GC-AG motifs (Breathnach et al., 1978).

Ensembl lincRNA pipeline
lincRNAs are annotated by a separate pipeline that is run after the RNA-seq and genebuild pipe-

lines. In the first stage, this method traverses each toplevel sequence (e.g. chromosomes) and col-

lects the models created by the RNA-seq pipeline that neither overlap known protein-coding genes

nor were used to build protein-coding genes. These potential non-coding models are filtered by

looking for Pfam (Finn et al., 2014) domains in all candidate protein sequences (and frames) to

determine the coding potential of the model. Finally, if the RNA-seq model is long enough and

doesn’t have coding potential, it is labelled as a lincRNA.
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