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Abstract Manipulation of the gut microbiota holds great promise for the treatment of diseases.

However, a major challenge is the identification of therapeutically potent microbial consortia that

colonize the host effectively while maximizing immunologic outcome. Here, we propose a novel

workflow to select optimal immune-inducing consortia from microbiome compositicon and immune

effectors measurements. Using published and newly generated microbial and regulatory T-cell

(Treg) data from germ-free mice, we estimate the contributions of twelve Clostridia strains with

known immune-modulating effect to Treg induction. Combining this with a longitudinal data-

constrained ecological model, we predict the ability of every attainable and ecologically stable

subconsortium in promoting Treg activation and rank them by the Treg Induction Score (TrIS).

Experimental validation of selected consortia indicates a strong and statistically significant

correlation between predicted TrIS and measured Treg. We argue that computational indexes, such

as the TrIS, are valuable tools for the systematic selection of immune-modulating

bacteriotherapeutics.

DOI: https://doi.org/10.7554/eLife.30916.001

Introduction
The intestinal microbiota has been shown to critically influence a multitude of host physiological

functions, often through modulation of the immune system (Gevers et al., 2014; Paun et al., 2016).
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Evidence includes studies in germ-free mice, which show that both pro-inflammatory T-helper 17

(Th17) cells and anti-inflammatory regulatory T-cells (Treg) are reduced in numbers in the intestinal

lamina propria relative to conventional or specific pathogen-free mice (Atarashi et al., 2008), and

that repopulation with specific bacteria can reconstitute them (Atarashi et al., 2015; Ivanov et al.,

2009). One route to how the microbiota influences immune system activation is by the production

of small molecules (Donia and Fischbach, 2015). Microbially produced short-chain fatty acids

(SCFAs) were shown to facilitate extrathymic differentiation of immune system modulatory Treg
(Arpaia et al., 2013; Atarashi et al., 2013; Smith et al., 2013) and are implicated in Treg-dependent

anti-inflammatory properties of a mix of 17 human-derived Clostridia strains (Atarashi et al., 2013;

Tanoue et al., 2016). Interestingly, individual Clostridia strains only have a modest effect on Treg
induction – optimal induction relies on the synergistic interplay of several strains (Atarashi et al.,

2013; Belkaid and Hand, 2014). Because of these properties, there is currently great interest in the

manipulation of this community for the treatment of inflammatory and allergic diseases (Honda and

Littman, 2012; Olle, 2013; Vieira et al., 2016). Efforts involving transplantation of bacteria from

healthy humans to humans with C. difficile infections or with metabolic diseases have provided evi-

dence that microbiota repopulation could be used as possible strategy for disease prevention and

treatment (van Nood et al., 2013; Vrieze et al., 2012). For this reason, intestinal supplementation

of defined compositions of gut bacteria to treat a range of diseases is currently being pursued by

multiple bio-pharmaceutical companies (Garber, 2015). Determining what microbial consortia can

eLife digest The role of the immune system is to protect the body from infection. It does this by

using a powerful toolkit that isolates pathogens and removes damaged tissue. When directed

against bacteria and viruses, the system helps to keep the body safe, but an imbalance of the

components of the immune system can lead to inflammatory or allergic diseases.

The body has built-in mechanisms to shut off the immune response. For example, regulatory

T-cells are immune cells with an anti-inflammatory effect, meaning they can switch off inflammation

after the immune system has cleared an invasion. If their numbers are too low, it can contribute to

unwanted inflammation. In ulcerative colitis, for instance, an unbalanced immune system mistakenly

attacks healthy tissue. This causes inflammation and ulcers in the intestine, resulting in bleeding and

weight loss.

Previous studies revealed that bacteria in the gut might help to control regulatory T-cell numbers.

Certain combinations of bacteria can stimulate these regulatory T-cells and potentially dampen

inflammation. Tweaking the different populations of microbes in the gut could provide a new way to

treat diseases like ulcerative colitis. But, identifying the best combination to use is a major challenge.

Testing them all one by one would be extremely challenging. Now, Stein, Tanoue et al. present a

mathematical model designed to predict the best microbe-mix to use.

The model incorporated data from regulatory T-cells and microbes gathered from mice to

estimate the contribution that different strains of bacteria make to regulatory T-cell numbers. This

then fed into an ecological model predicted how different combinations of bacteria would behave in

mice. The model aimed to fulfill two key criteria. First, to find combinations that can form stable,

long-term bacterial colonies alone and when faced with competing microbes. Second, to boost

regulatory T-cell numbers, helping them to expand to correct the immune imbalance.

To test the predictions, mice received combinations of bacteria suggested by the model. The

model had predicted some combinations to be ’weak’ at inducing regulatory T-cells, some

’intermediate’ and some ’strong’. The results matched the predictions, validating the method.

This new model allows the rapid design of microbes that could dampen the immune response in

the gut and paves the way for new treatments to correct imbalances of the immune system. By using

already available data, it should be possible to expand the model to other diseases with imbalance

in the immune system. In future, similar models could also find combinations for other medical uses.

For example, to optimise the delivery of cancer immunotherapy, or to modulate the immune system

after an organ transplant.

DOI: https://doi.org/10.7554/eLife.30916.002
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colonize the host and stably coexist with an already resident microbial community, while inducing

the desired immune response, is still a major challenge that hinders the translation of these efforts

into the clinic (Maldonado-Gómez et al., 2016; Weil and Hohmann, 2015).

In previous work, some of us identified a set of 17 potent Treg-inducing Clostridia strains to select

candidate subsets from (Atarashi et al., 2013). The determination of maximally immune-phenotype

inducing combinations from these 17 strains is, however, experimentally infeasible as it would

require the testing of 217–1 = 131071 possible subsets in mice (Faith et al., 2014). Therefore, a

computational approach to prioritize which subsets to validate experimentally would have great util-

ity. To our knowledge, to date there has been no model that allows for the simultaneous prediction

of the dynamics of both the microbiota and the host immune response. Building on the approach to

select for optimal bacterial combinations from (Faith et al., 2014) and other efforts aimed at identi-

fying potential immune-modulating microbes (Geva-Zatorsky et al., 2017; Schirmer et al., 2016),

we overcome this problem by proposing a mathematical modeling-based framework that, by resolv-

ing microbiome–immune system interactions with parameters constrained to experimental observa-

tions of microbiome and immune effectors, allows computational optimization of immune-

stimulating bacterial combinations. To achieve this, we use a series of logically connected analyses

that capture CD4+FOXP3+ Treg accumulation in the colonic lamina propria (Omenetti and Pizarro,

2015; Round and Mazmanian, 2010) in response to the dynamics of human-derived Clostridia

strains in germ-free mice, which had previously been shown to potently induce Treg expansion

(Atarashi et al., 2013) (Figure 1). To constrain this proposed model framework to experimental

data, we combine previously published (Atarashi et al., 2013) and newly generated fluorescence-

activated cell scanning (FACS) data with simulated and newly generated time-series colonization

data from germ-free mice (Figure 2A). Subsequently, by applying a microbiome–Treg mathematical

model to this combined data set, we infer each strain’s individual contribution to the CD4+FOXP3+

Treg pool (Figure 2B) and obtain an estimate of every possible consortium’s Treg induction potential.

To justify the usage of predicted mono-colonization concentrations from a previously developed

microbiome ecological model (Bucci et al., 2016), we validate its ability in predicting temporal

dynamics in response to different subsets of Treg-inducing strains (Figure 3A) and quantify the devia-

tion of data and predictions (Figure 3B). Introduction of the TrIS, which assigns a score to every pre-

dicted steady-state microbial composition, enables us to identify combinations that robustly

maximize Treg induction (Figure 4A). We analyze the relationship of TrIS and biomass (Figure 4B) as

well as metabolic features of the consortia (Figure 4C and D). Most importantly, we demonstrate

the utility of our approach in predicting the potency of selected microbial combinations by validating

the Treg induction and colonization ability of model-predicted strong, intermediate and weak Treg-

inducing consortia in vivo (Figure 4E).

We envision that our framework, while in this study tailored to finding combinations ameliorating

auto-inflammatory conditions, may also have direct relevance to other immune-system enhancing

applications such as the optimal delivery of probiotic-based cancer immunotherapies

(Garrett, 2015).

Results

Generation of multimodal microbiome–Treg data set
The goal of this study is to develop a mathematical modeling-based framework to rapidly and sys-

tematically select microbial consortia that maximize a desired immune outcome when introduced in

a specific host microbial background. To achieve this, we combine (i) a microbiome ecological model

that accurately describes the dynamics of these bacteria in the host with (ii) a microbiome–Treg math-

ematical model that characterizes the contribution of every strain to the immune phenotype of inter-

est given corresponding microbiome colonization data (Figure 1). For (i), we gathered newly

produced quantitative polymerase chain reaction (qPCR) colonization data from gnotobiotic mice

and combined it with a previously published microbiome ecological model of the dynamics of 12

Treg-inducing Clostridia strains that are part of an original consortium of 17 Treg-inducing strains dis-

covered by some of us (Atarashi et al., 2013) (see also Table 1 for a breakdown of strains used in

each study). In contrast to the original study of (Bucci et al., 2016), we included only 12 of the 13

strains used there because, based on the modeling and analysis of Bucci et al. (2016), Strain 6 from
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the 13-strain set was predicted to not stably colonize in the presence of the other 12 strains. The

published colonization data have been reported in our previous work (Bucci et al., 2016) and

include time-series measurements of microbial abundances by qPCR under dietary perturbations.

These are used to derive a predictive microbiome ecology model in gnotobiotic conditions based

on an extension of the generalized Lotka–Volterra (gLV) equations (Hofbauer and Sigmund, 1998)

as introduced in Stein et al. (2013). For the newly generated dataset, we gavaged 14 mice with one

of three possible 11-strain subsets from the 12-strain subset of original 13 strains (Figure 2) and

used the derived stool measurements to validate the ability of our mathematical model in predicting

unseen conditions. The three 11-strain subsets were chosen based on our ‘keystoneness’ definition,

a measure describing the marginal predicted quantitative effect of removing each strain from the full

community (Bucci et al., 2016). Specifically, we included two 11-strain combinations each missing

one of the two highest keystoneness-scoring strains (VE202 Strain 15 and VE202 Strain 4) and one

11-strain combination which lacks the lowest keystoneness scoring strain (VE202 Strain 29). In anal-

ogy to Bucci et al. (2016), each strain’s density was profiled over time by qPCR with strain-specific

primers (see Materials and methods). To resolve the contribution of each of these to Treg induction

for point (ii) we coupled the colonization data from fecal content with newly collected and published
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Figure 1. Conceptual figure. A microbiome–immune system mathematical model describing the activation of regulatory T-cells (Treg) in response to

colonization profiles of Treg-stimulating Clostridia strains is the central element of this work. It consists of a previously derived microbiome ecological

model that describes the short and long-term temporal dynamics of Clostridia strains in germ-free mice (Bucci et al., 2016) and is supplemented by a

microbiome–Treg model of CD4+FOXP3+ Treg activation in response to long-term compositions in the microbiome. The individual contribution of each

strain to the measured Treg activation is inferred using long-term colonization data from mouse experiments with subsets of these strains and

corresponding measurements of Treg induction. The Treg-induction score, TrIS, which accounts for ecological stability and immune activation, assigns a

score to every possible strain combination and thereby identifies candidate probiotic consortia for experimental validation.

DOI: https://doi.org/10.7554/eLife.30916.003
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FACS measurements of the CD4+FOXP3+ Treg population in the lamina propria of these mice

(Figure 2A). As it is crucial to capture each strain’s contribution alone and in combination with

others, we also included CD4+FOXP3+ Treg measurements from our previously published mono-colo-

nization experiments (Atarashi et al., 2013) (Figure 2A). Due to the fact that the single-strain

mono-colonization concentrations were not measured in these experiments (Atarashi et al., 2013),

we simulated them using the microbiome ecological model and parameters from (Bucci et al.,

2016). This choice was supported by the model’s capability in predicting unseen validation data

(Figure 3A). Spearman’s rank-order correlation coefficient ranges from 0.92 to 0.98 (p-value<10�16)

between observations and predictions depending on the time point (Figure 3B).
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Figure 2. Data used for inference of the CD4+FOXP3+Treg induction parameters. (A) To infer the strain-resolved CD4+FOXP3+ Treg induction

parameters CD4+FOXP3+ Treg abundance measurements and corresponding microbiome colonization data are used. CD4+FOXP3+ Treg data of single

strains originates from previously published measurements from Atarashi et al. (2013). Because in Atarashi et al. (2013) microbial mono-colonization

levels were not measured, a previously published predictive model (Bucci et al., 2016) was used to simulate these experiments. In addition, newly

generated CD4+FOXP3+ Treg and colonization mouse stool data from three 11-strain combinations was included into the analysis (see also Figure 3).

The 11-strain combinations were chosen according to results of the ‘keystoneness’ analysis previously described in Bucci et al. (2016). The microbiome

compositions of these three 11-strain combinations were estimated by strain-specific qPCR. (B) The resulting CD4+FOXP3+ Treg induction parameters

quantify the contribution of each individual strain to Treg induction. (Coefficients are scaled by the microbial mono-colonization concentrations for

display reasons.)

DOI: https://doi.org/10.7554/eLife.30916.004

The following source data is available for figure 2:

Source data 1. Data containing the microbiome compositions, the corresponding measured CD4+FOXP3+ proportions and the derived induction

parameters.

DOI: https://doi.org/10.7554/eLife.30916.005
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Derivation of the microbiome–Treg mathematical model
We used the described microbiome colonization data and corresponding CD4+FOXP3+ Treg meas-

urements to determine the contribution of each strain to the Treg pool. We begin by subdividing the

population of CD4+ T-cells into two major subpopulations depending on their intracellular FOXP3

expression: CD4+FOXP3+ Treg and the remainder among the CD4+ T-cells, the conventional CD4+-

FOXP3� T-cells (Bilate and Lafaille, 2012; Rudensky, 2011). The concentration of CD4+ T-cells at

time t in the colonic lamina propria, cTðtÞ, is then the combination of these two T-cell populations,

cT tð Þ ¼ cFOXP3þ tð Þ þ cFOXP3� tð Þ. To include a variety of effects into our model, we assume T-cell

dynamics to follow the gLV equations (Gerber, 2014; Hofbauer and Sigmund, 1998), which also

account for the effect of the microbial strains in the lumen on the CD4+FOXP3� T-cell subpopula-

tion. In addition, we use an extension of the standard gLV equations to include the impact of the

Clostridia strains in terms of external perturbations (Stein et al., 2013). The resulting microbiome–

Treg mathematical model is found as,

dc
FOXP3þ ðtÞ

dt
¼ cFOXP3þðtÞ aFOXP3þ þbFOXP3þFOXP3þcFOXP3þðtÞ

�

þbFOXP3þFOXP3�cFOXP3�ðtÞþ
P

K

k¼1

"ikcstrainik ðtÞ

�
(1)

where aFOXP3þ denotes the basal growth rate and bFOXP3þFOXP3þ the self-interaction term of the

CD4+FOXP3+ Treg population. The interaction terms bFOXP3þFOXP3� and bFOXP3�FOXP3þ represent the

effect of the CD4+FOXP3� T-cell on the CD4+FOXP3+ Treg population and of the CD4+FOXP3+ Treg
on the CD4+FOXP3� T-cell population, respectively (d’Onofrio, 2005). Consequently, positive
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generalized Lotka–Volterra equations with parameters from Bucci et al. (2016) using only each mouse’s initial microbial composition. In timelines/

mouse 1–5, Strain 15 is absent referring to 11-strain set I (five biological replicates); in timelines 6–9, Strain 4 is absent (11-strain set II; four biological

replicates), and in timelines 10–14, Strain 29 is absent (11-strain set III; five biological replicates). Data were obtained by qPCR of genes specific to each

strain. Densities are computed as averages of three technical replicates. The number of mice used in each condition was chosen consistently with

previous experimental work (Atarashi et al., 2013; Bucci et al., 2016) and combined with extensive in silico testing of the inference error as a function

of sampling frequency and noise levels (Bucci et al., 2016). (B) Spearman’s rank correlation coefficient between observed and predicted data was

computed at different time points. All displayed coefficients have a p-value of less than 10�16.
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Figure 4. Identification and experimental validation of model-predicted Treg-stimulating consortia. (A) Predicted Treg Induction Score (TrIS) in germ-free

mice as a function of probiotic consortium size. Each data point represents one of the 2N�1 possible non-trivial consortia of size N. The five highest

and lowest TrIS consortia of size seven are highlighted by violet and cyan filled dots, respectively, as well as, the 4-strain consortia used for

experimental validation in subpanel E. (B) Distribution of the TrIS plotted against the total population density of each model-predicted consortium. This

Figure 4 continued on next page
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interaction parameters correspond to activation, negative ones to inhibition. Moreover, "ik denotes

the effect of strain ik on the CD4+FOXP3+ Treg population. For long-term observations, t!¥, the

dynamics of cFOXP3þðtÞ are given by its (non-trivial) steady-state solution, which simplifies the then

static microbiome–Treg mathematical model of the relative CD4+FOXP3+ proportion in steady state,

rFOXP3þ ; ss, to a linear regression problem,

rFOXP3þ ; ss ¼ ~aþ
X

K

k¼1

~"ikcstrainik ;ss : (2)

Here, we use that the absolute and relative abundance of the CD4+FOXP3+Treg population are

coupled by cFOXP3þ=� ; ss ¼ cT; ss � rFOXP3þ=� ; ss (see Materials and methods). We assume that the steady-

state CD4+ T-cell concentration is constant, cT; ss ¼ const:, across all microbial compositions. We jus-

tify this because we are dealing with genetically similar mice and a set of closely related Clostridia.

This assumption is however not justifiable when comparing non-colonized and colonized germ-free

mice (Faith et al., 2014).

Assigning to rFOXP3þ; ss the measured FACS-derived CD4+FOXP3+ Treg proportions after 35 days

and to cstrainik ; ss
the corresponding microbial profiles, we infer each strain’s contribution to the CD4+-

FOXP3+ Treg pool (Figure 2B) by solving Equation (2) with an ‘2-penalized least-square regression

with one shrinkage parameter, which is determined in a leave-one-sample-out cross-validation

(Stein et al., 2013). The resulting normalized root-mean square deviation on left-out samples was

found to be 12%.

Derivation of the Treg Induction Score (TrIS) and selection of Treg-
inducing consortia
After deriving a model to predict our candidate strains dynamics in germ-free conditions and having

resolved each strain’s contribution to Treg expansion, we aim to use this information to computation-

ally select for consortia that maximize Treg induction while being ecologically robust (Bucci et al.,

2016; Stein et al., 2013). To specify a measure of ecological robustness as well as immune induction

potential for microbial consortia in germ-free mice, we define the Treg Induction Score (TrIS) as the

average predicted regulatory T-cell activation of a given consortium of K strains

straini1 ; � � � ; strainiKf g while ignoring contributions from the host,

Figure 4 continued

analysis shows a strong correlation (Spearman’s Rank Correlation with coefficient 0.88 and p<0.05) between TrIS and total microbial density. The color

of each dot represents the abundance of Strain 27, which is predicted to strongly colonize in high-TrIS subsets. (C) Heatmap of consortium membership

of the five highest and lowest TrIS-consortia of size seven and their predicted Treg induction and estimated butyrate production using data from

Atarashi et al. (2013). (D) Estimation of potential SCFA output based on single-strain in vivo metabolic profiling from Atarashi et al. (2013). The five

highest TrIS consortia of size seven (from 4C) are predicted to have a significantly higher SCFA output relative to the five lowest ones. (E) Five 4-strain

consortia were used for experimental validation: the two highest-ranked consortia (H1 and H2, respectively), the lowest-ranked consortium (L) and two

intermediates (M1, M2). M1 and M2 were included because of interest in other disease areas. The experimentally introduced strains are listed next to

each bar/consortium. Strains with numbers in black were detected by 16S rRNA sequencing in mouse stool samples, strains with numbers in gray were

introduced but failed to colonize. A Pearson’s correlation of 0.97 between the predicted TrIS and the average of each consortium’s measured

CD4+FOXP3+ Treg percentage proves the ability of the TrIS-based selection to correctly recover the experimentally observed Treg induction. (Pearson’s

correlation of all points has a value of 0.54.) Importantly, the H2 consortium displays an average increase in immune activity of 107% relative to the

average germ-free mouse control. Eight biological replicates were used for GF, H1 and H2, five biological replicates were used for M1, M2 and three

biological replicates were used for L. Replication and design of the validation experiment for Treg induction assessment is consistent with work from us

and others (Atarashi et al., 2013; Narushima et al., 2014).

DOI: https://doi.org/10.7554/eLife.30916.007

The following source data and figure supplements are available for figure 4:

Source data 1. TrIS, TrIS rank and predicted median steady-state concentrations of the selected microbial consortia from Figure 4E.

DOI: https://doi.org/10.7554/eLife.30916.010

Figure supplement 1. TrIS versus estimated mean population density.

DOI: https://doi.org/10.7554/eLife.30916.008

Figure supplement 2. Metabolic profiling of three selected microbial consortia and comparison of predicted and measured metabolic profiles of three

selected microbial consortia.

DOI: https://doi.org/10.7554/eLife.30916.009
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TrIS straini1 ; � � � ; strainiKf gð Þ¼
1

N

X

N

n¼1

X

K

k¼1

~"ikc
nð Þ
strainik

;ss: (3)

If the predicted steady state of the microbial consortium c
nð Þ
straini1

; . . . ;c
nð Þ
strainiK

� �

ss

that is computed

from the n-th Markov Chain Monte Carlo (MCMC) parameter estimate (Bucci et al., 2016) is biologi-

cally meaningful, i.e. positive, and stable, then c
nð Þ
strainik

; ss denotes the steady-state concentration of

strain ik; otherwise c
nð Þ
strainik

; ss is set to 0. Hence, the value of the TrIS is indicative of the expected

CD4+FOXP3+ Treg induction (after removing the host contribution) and it is of the same unit as the

FACS measurements. We evaluated TrIS for every possible strain combination that would stably col-

onize the gut in germ-free background. In our computation, of the 212–1 = 4095 possible steady-

state strain configurations evaluated in N = 22,500 MCMC parameter estimates, 84% are found to

be biologically meaningful and stable. Interestingly, while the average TrIS increases with consortium

size, our analysis shows that a subset size of seven already contains bacterial combinations

Table 1. List of strains used with respect to our previous published work.

The original publication (Atarashi et al., 2013) reported on 17 immune-modulating bacteria. In Bucci et al. (2016), a dynamical eco-

logical model for 13 of the original 17 strains was presented. These 13 strains were selected because they do not harbor antibiotic

resistance genes. For our study, we used a 12-strain subset of these 13 strains based on ecological stability considerations. Coloniza-

tion and CD4+FOXP3+Treg data for the three 11-strain sets, measured by qPCR and FACS, were used along with the simulated mono-

colonization concentrations (Figure 2) and included into the microbiome–immune system model (Figure 1). The resulting parameters

were employed to predict ecologically stable subsets with different Treg induction potentials. 4-strain subsets were selected to validate

the predictions of the mathematical model (see main text and Figure 3). Strain 1: Clostridium saccharogumia/Clostridium ramosum

JCM1298, Strain 3: Flavonibacter plautii/Pseudoflavonifractor capillosus, Strain 4: Clostridium hathewayi/Clostridium saccharolyticum

WM1, Strain 6: Blautia coccoides/Lachnospiraceae bacterium, Strain 7: Clostridium bolteae, Strain 8: Clostridium sp. MLG055/Erysipe-

lotrichaceae bacterium 2 44A, Strain 9: Clostridium indolis/Anaerostipes caccae DSM 14662, Strain 13: Anaerotruncus colihominis,

Strain 14: Ruminococcus sp. ID8/Lachnospiraceae bacterium 2 1 46FAA, Strain 15: Clostridium asparagiforme/Clostridium lavalense,

Strain 16: Clostridium symbiosum, Strain 18: Clostridium ramosum, Strain 21: Eubacterium fissicatena/Eubacterium contortum/Clostrid-

ium sp. D5, Strain 26: Clostridium scindens/Lachnospiraceae bacterium 5 1 57FAA, Strain 27: Lacnospiraceae bacterium A4/Lachno

bacterium 3 1 57FAA CT1, Strain 28: Clostridium sp. 316002/08, Strain 29: Lacnospiraceae bacterium A4/Lachno bacterium 3 1 57FAA

CT1.

Atarashi et al., 2013 Bucci et al., 2016 11-str. I 11-str. II 11-str. III H1 H2 M1 M2 L

Strain 1 x

Strain 3 x

Strain 4 x x x x x x

Strain 6 x x

Strain 7 x x x x x x x x

Strain 8 x

Strain 9 x x x x x x

Strain 13 x x x x x

Strain 14 x x x x x x x

Strain 15 x x x x x

Strain 16 x x x x x x x

Strain 18 x

Strain 21 x x x x x

Strain 26 x x x x x

Strain 27 x x x x x x x x

Strain 28 x x x x x x x

Strain 29 x x x x x x x x

DOI: https://doi.org/10.7554/eLife.30916.011
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maximizing induction (Figure 4A). Furthermore, in addition to the strong correlation between TrIS

and the predicted total bacterial abundance in the consortium, we observed that high-induction con-

sortia display an especially large enrichment in the abundance of Strain 27 (Figure 4B, Figure 4—

figure supplement 1). Because short-chain fatty acids have been previously associated with colonic

Treg induction (Arpaia et al., 2013) and increase in density upon supplementation with these strains

(Atarashi et al., 2013), we decided to test if modeling-predicted high Treg-inducing consortia were

also enriched in SCFAs. We therefore compared the top 5-inducing microbial consortia of size seven

against their same-size counterpart bottom 5 (Figure 4C). We predicted the SCFA concentration for

each of the predicted compositions by summing the scaled metabolic outputs of each strain mea-

sured in mono-colonization experiments (Atarashi et al., 2013; Narushima et al., 2014) and normal-

ized by the strain’s model-predicted mono-colonization density. We performed a Welch two-

samples t-test for each of the predicted SCFAs concentrations and found significant enrichment for

all estimated SCFAs (p<0.05, one tailed) in the high-TrIS consortia compared to the low ones

(Figure 4D).

Experimental validation of mathematical model predictions
We decided to experimentally test our approach’s ability to correctly predict consortium ranking

with respect to Treg-induction. Due to regulatory constraints on the used probiotic strains – limiting

us to a maximum of four strains at a time in follow-up experiments – we selected five 4-strain combi-

nations with a variety of predicted immune effects. We measured CD4+FOXP3+ Treg induction for

five microbial consortia of size four and the germ-free control. We chose the two highest TrIS con-

sortia (H1, H2 with rank 1 and 2, respectively), the lowest one (L with rank 495) and two TrIS-interme-

diate consortia of interest (M1, M2 with rank 129 and 452, respectively). Strains contained in each of

the five consortia are detailed in Table 1. We correlated the TrIS score with the mean observed

CD4+FOXP3+ Treg percentage and found a significant Pearson correlation with coefficient of 0.97

and p-value<0.01 (Figure 4E). Importantly, when using 16S rRNA sequencing to investigate the

resulting colonization profiles for these combinations, we observed that the high TrIS-scoring consor-

tia (H1, H2, M1) all stably colonized while the two low-scoring consortia only displayed a subset of

the introduced strains. This result remarkably reflects the nature of our scoring system which, in addi-

tion to immune activation potential, also incorporates colonization success (Equation 3).

Because the SCFA enrichment analysis from in vivo measurements of individual strains

(Figure 4C) predicted acetate to be significantly increased in the five high versus low Treg-inducing

consortia of size seven, we decided to compare the measured acetic acid concentrations (Figure 4—

figure supplement 2A) to predictions of acetate in the two high (H1 and H2) and low (L) Treg-induc-

ing 4-strain consortia (Figure 4—figure supplement 2B). ANOVA and subsequent post-hoc Tukey

test showed significance in the measured enrichment of H1 compared to L (adjusted p-value<0.05)

and of H1 compared to H2 (adjusted p-value<0.05) (Figure 4—figure supplement 2A). However,

no statistical difference was observed between measurements in H2 and L (adjusted p-value<0.05).

Remarkably, the model-predicted germ-free normalized acetate enrichment and the observed acetic

acid concentration (normalized by the mean in germ-free conditions) are well correlated (Figure 4—

figure supplement 2B).

Discussion
Manipulation of the intestinal microbiota with defined bacterial consortia for the treatment of dis-

ease is a promising route for future therapeutics (Hansen and Sartor, 2015). However, choosing

bacterial combinations from the vast combinatorial space of microbes that effectively colonize a host

(possibly with a dysbiotic microbiota) and at the same time maximize a desired host phenotype

requires an enormous number of expensive and time-consuming experimental trials (Faith et al.,

2014). While data mining and statistical approaches could aid in this process, the majority of avail-

able microbiome analysis methods is still based on correlations (Gerber, 2014; Morgan et al.,

2015) and inept at predicting unseen phenotypes. Identification of causal associations between

microbes and host phenotype has been recently achieved by using an experimentally based

microbe–phenotype triangulation (Surana and Kasper, 2017). However, this approach remains

impractical when the goal is to explore and rank all possible microbiome consortium combinations

with respect to a host phenotype of interest. In this study, we leveraged our previous computational
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methods to forecast temporal microbiome dynamics and make predictions on stability in the context

of infectious and inflammatory diseases including C. difficile colonization and inflammatory bowel

disease (Bucci et al., 2016; Buffie et al., 2015; Stein et al., 2013).

Specifically, we have presented a novel modeling-based method that combines dynamical predic-

tions from data-driven models of the microbiome and the interactions between microbes and the

immune response (such as CD4+FOXP3+ Treg) and thereby enables the rational design of immune-

modulating bacterial consortia. Limiting our scope to long-term steady-state dynamics, we were

able to derive a microbiome–Treg mathematical model which is constrained by experimental obser-

vations from multimodal data. In the presented work, the used data modalities are qPCR and 16S

rRNA sequencing data to estimate microbial abundances and FACS to assess CD4+FOXP3+ Treg
induction, respectively. However, the proposed framework is naturally extensible to other host data,

for example data from metabolite profiling, immune readouts (e.g. CD8 T-cell activation, Th1/Th17

cell depletion) or host transcriptome profiling (Atarashi et al., 2017; Morgan et al., 2015). To evalu-

ate candidate consortia that could be relevant to the treatment of auto-inflammatory diseases, we

introduced the Treg Induction Score, TrIS, as a novel metric that accounts for both ecological stability

and efficacy in immune modulation. This metric allowed us to rationally identify combinations that

would stably colonize and at the same time produce substantial Treg induction in germ-free mice.

Remarkably, in validation experiments of five distinct modeling-guided consortia with predicted

diverse induction potential, we proved the ability of our approach to successfully select microbial

combinations with a desired therapeutic activity. To our knowledge, this is to date, the first study in

which observation-constrained in silico modeling of microbiome and host phenotype has successfully

guided the rational design of drugs of defined bacterial consortia.

Our work relies on the gLV model assumption for both microbiome and CD4+ regulatory T-cell

dynamics which, despite being very versatile, has some limitations including the lack of third or

higher order interactions or saturation effects (Wangersky, 1978). Moreover, with the data available

to us, we needed to assume that the overall T-cell density at steady state is constant across mice

and different microbiome compositions. While this assumption was reasonable for the data we ana-

lyzed (see Results), the addition of future measurements on total T-cell abundance will likely improve

the prediction accuracy of our model as well as provide important insight into the variability of T-cell

population size in response to microbial immune induction.

We performed our data and modeling analysis in germ-free mice. While previous work by some

of us showed that the amount of Treg induction is independent of the germ-free background (IQI,

Balb/c or C57BL/6) (Atarashi et al., 2015), it is noteworthy that our model, which was trained on IQI

mice data, robustly predicted both Treg induction and acetate enrichment of C57BL/6 colonized

mice as used in the validation experiments.

Our predictions suggest some degree of consistency in terms of functional outcome (e.g. enrich-

ment in acetate) of high-scoring consortia relative to low-scoring ones in germ-free mice. However,

before translating these findings into therapeutic development, future studies will need to be per-

formed in not germ-free settings (e.g. SPF mice, humanized mice) in order to account for the effects

of an already-established flora. Individual-specific microbiome features may constrain the coloniza-

tion potential of the selected strains due to specific ecological network effects (Smits et al., 2016),

which suggests the need for a careful characterization of the ecological interactions between the

proposed probiotic product and a specific recipient community (e.g. a single ulcerative colitis patient

(Atarashi et al., 2013)).

Treatment of auto-immune diseases overall is not necessarily achieved by the exclusive optimiza-

tion of one objective function (e.g. for ulcerative colitis, the maximization of Treg activation), but may

need the simultaneous manipulation of a multi-process host immune spectrum, which could include

the concomitant reduction of pro-inflammatory phenotypes (Atarashi et al., 2015). Given new data

availability and careful experimental design, we believe that the modeling framework proposed in this

study could overcome these problems by introducing constraints into the scoring metric that account

for pre-colonized mouse model features. To the limit, in the presence of a large training data set that

would include sufficient information on individual patient variation, our workflow will give us the

unprecedented potential of testing microbiota manipulation on a personalized level in silico.

Mathematical modeling-based methods have the potential to greatly accelerate the development

of treatment of human disease (Michor and Beal, 2015). In this work, we develop and demonstrate

in a first-of-a-kind experimental validation the usefulness of a mathematical microbiome–immune
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system model. It can be considered a stepping-stone to the accelerated prototyping and rational

design of microbiome therapies.

Materials and methods

Derivation of the microbiome–Treg induction mathematical model
We assume the following dynamics for the CD4+FOXP3+ regulatory T-cell population:

dc
FOXP3þ tð Þ

dt
¼ cFOXP3þ tð Þ aFOXP3þ þbFOXP3þFOXP3þcFOXP3þ tð Þþ bFOXP3þFOXP3�cFOXP3� tð Þþ

P

K

k¼1

"ikcstrainik tð Þ

� �

:

Here, aFOXP3þ denotes the basal growth rate and bFOXP3þFOXP3þ the self-interaction term of the

CD4+FOXP3+ Treg population, while the interaction parameters bFOXP3þFOXP3� and bFOXP3�FOXP3þ

characterize the effect of the CD4+FOXP3� T-cells on the CD4+FOXP3+ Treg population and of the

CD4+FOXP3+ Treg on the CD4+FOXP3� T-cell population, respectively

(d’Onofrio, 2005). Moreover, "ik denotes the effect of strain ik on the CD4+FOXP3+

Treg population. The non-trivial steady-state solution (i.e., the algebraic solution of the right-hand

side of Equation (1) set to 0 with cFOXP3þ 6¼ 0) is found as,

cFOXP3þ ; ss ¼� 1

b
FOXP3þFOXP3þ

aFOXP3þ þbFOXP3þFOXP3�cFOXP3�; ss þ
P

K

k¼1

"ikcstrainik ; ss

� �

:

Using cT; ss ¼ cFOXP3þ ; ssþ cFOXP3� ; ss; the steady-state concentrations of the CD4+FOXP3+ Treg and

CD4+FOXP3� populations, cFOXP3þ=� ; ss, are derived from the FACS-based relative abundances

rFOXP3þ=� ; ss by, cFOXP3þ=� ; ss ¼ cT; ss � rFOXP3þ=�; ss ¼ cT; ss 1� rFOXP3�=þ ; ss

� �

. Finally, the linear relationship

between the relative abundances, rFOXP3þ; ss, and the strain densities, cstrainik ; ss , is found as,

rFOXP3þ ; ss ¼
1

bFOXP3þFOXP3� �bFOXP3þFOXP3þ

aFOXP3þ

cT; ss
þbFOXP3þFOXP3� þ

1

cT; ss

X

K

k¼1

"ikcstrainik ; ss

 !

� ~aþ
X

K

k¼1

~"ikcstrainik ;ss

assuming constant concentration of CD4+ T-cells, cT; ss ¼ const:, across all possible microbiome com-

positions. The unknown parameters ~a and ~"ik are estimated in an ‘2-penalized least-square regres-

sion (so-called ridge regression) with a positive shrinkage parameter l, which is determined in a

leave-one-sample-out cross-validation as l� ¼ 2.

Collection of experimental data for training the microbiome–immune
system model
Strain abundance profiling
In our previous work (Bucci et al., 2016), we have inferred a mathematical model describing the

dynamics of a 13-strain subset from the original 17-strain human-derived Clostridia consortium from

Atarashi et al. (2013) in germ-free mice. Using newly generated data from the same experimental

setup, we are now able to assess its predictive quality for three distinct 11-strain subsets. The three

11-strain compositions were selected based on their capability to maintain stability in the simulations

when either one of two high (Strain 15 and Strain 4, here referred to as cases I and II, respectively)

or one low (Strain 29; III) keystone strain was removed (Bucci et al., 2016). For the experimental vali-

dation, germ-free IQI mice were purchased from Sankyo Laboratories (Japan), randomized and main-

tained in germ-free vinyl isolators in the animal facility of RIKEN. Twelve Treg-inducing Clostridia

strains were selected from the previously reported VE202 consortium consisting of 17 Treg-inducing

strains (4, 7, 9, 13–16, 21, 26–29) and were individually cultured in modified Eggerth Gagnon broth

under strictly anaerobic conditions (80% N2, 10% H2, 10% CO2) at 37˚C in an anaerobic chamber

(Coy Laboratory Products, Grass Lake, MI) to confluence. The cultured bacterial strains were then

mixed and the three mixtures of 11 strains (described above) were orally inoculated into five IQI

germ-free adult mice each. One mouse for condition II died and was therefore discarded from the
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study. After an initial 9-day interval of acclimation, we collected fecal pellets at 2–4 days interval until

day 35, time at which mice were euthanized and analyzed for CD4+FOXP3 induction as in

Atarashi et al. (2013). Colonization levels for each strain were assessed by amplifying strain-specific

regions with qPCR as described in Bucci et al. (2016). Bacterial genomic DNA was extracted from 1

to 2 fecal pellets using QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). The amount of DNA

was quantified using a Qubit dsDNA HS assay kit and Qubit fluorometer (Invitrogen, Carlsbad, CA).

DNA was then subjected to qPCR using Thunderbird SYBR qPCR Mix (TOYOBO, Osaka, Japan) and

a LightCycler 480 (Roche) with primers specific to 16S ribosomal RNA (rRNA) genes of the 12 Clos-

tridia strains as in Bucci et al. (2016). Quantification of each strain in each sample was accomplished

using standard curves of known concentrations of DNAs purified from each strain individually cul-

tured in vitro. Strain densities in each sample were calculated by dividing the above absolute quanti-

fication numbers by the weight of the extracted fecal DNA. The 11-strain experiments were ethically

approved by RIKEN, Keio and Azabu Universities under protocol H24-9(14) from RIKEN.

Estimation of CD4+FOXP3+ Treg – Isolation of intestinal lamina propria
lymphocytes and flow cytometry
The colons were collected and opened longitudinally, washed with PBS to remove all luminal con-

tents and shaken in Hanks’ balanced salt solution (HBSS) containing 5 mM EDTA for 20 min at 37˚C.
After removing epithelial cells, muscle layers and fat tissue using forceps, the lamina propria layers

were cut into small pieces and incubated with RPMI1640 containing 4% fetal bovine serum, 0.5 mg/

ml collagenase D, 0.5 mg/ml dispase and 40 mg/ml DNase I (all Roche Diagnostics, Risch-Rotkreuz,

Switzerland) for 1 hr at 37˚C in a shaking water bath. The digested tissues were washed with HBSS

containing 5 mM EDTA, resuspended in 5 ml of 40% Percoll (GE Healthcare, Boston, MA) and over-

laid on 2.5 ml of 80% Percoll in a 15 ml Falcon tube. Percoll gradient separation was performed by

centrifugation at 850 g for 25 min at 25˚C. The lamina propria lymphocytes were collected from the

interface of the Percoll gradient and suspended in ice-cold PBS. For analysis of Treg, isolated lympho-

cytes were labeled with the LIVE/DEAD fixable dead cell stain kit (Life Technologies, Carlsbad, CA)

to exclude dead cells from the analysis. Then, surface and intracellular staining of CD3, CD4 and

FOXP3 was performed using the BV605-labeled anti-CD3 (17A2, Biolegend, San Diego, CA), BV421-

labeled anti-CD4 (RM4-5, Biolegend), Alexa700-labeled anti-FOXP3 antibody (FJK-16 s, eBioscience,

San Diego, CA), and FOXP3 staining buffer set (eBioscience). The antibody-stained cells were ana-

lyzed with LSR Fortessa and data were analyzed using FlowJo software (Tree Star, Ashland, OR).

Measurement of organic acids
Organic acid concentrations in caecal contents were determined by gas chromatography-mass spec-

trometry (GC-MS). Caecal contents (10 mg) were disrupted using 3 mm zirconia/silica beads (BioSpec

Products) and homogenized in extraction solution containing 100 ml of internal standard (100 mM cro-

tonic acid), 50 ml of HCl and 200 ml of ether. After vigorous shaking using a Shakemaster neo (Bio

Medical Science) at 1500 rpm for 10 min, homogenates were centrifuged at 1000 g for 10 min and

then the top ether layer was collected and transferred into new glass vials. Aliquots (80 ml) of the ether

extracts were mixed with 16 ml of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA).

The vials were sealed tightly by screwing and heated at 80˚C for 20 min in a water bath, and left at

room temperature for 48 hr for derivatization. The samples were then run through a 6890N Network

GC System (Agilent Technologies) equipped with HP-5MS column (0.25 mm 330 m 30.25 mm)

and 5973 Network Mass Selective Detector (Agilent Technologies, Santa Clara, CA). Pure helium

(99.9999%) was used as a carrier gas and delivered at a flow rate of 1.2 ml/min. The head pressure was

set at 10 psi with split 10:1. The inlet and transfer line temperatures were 250 mC and 260 mC, respec-

tively. The following temperature program was used: 60 mC (3 min), 60–120˚C (5˚C/min), 120–300˚C
(20˚C/min). One microliter quantity of each sample was injected with a run time of 30 min. Organic

acid concentrations were quantified by comparing their peak areas with the standards.

Numerical simulations of the three 11-strain subsets used for
microbiome–Treg model training
We used 22,500 sets of Markov Chain Monte Carlo generalized Lotka–Volterra parameter sets deter-

mined by applying the Bayesian Variable Selection algorithm within MDSINE to the data of
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Bucci et al. (2016), and the first time point of measured microbial profiles for each of the 14 valida-

tion mice as initial condition, to simulate the gLV system of differential equations corresponding to

each mouse microbiome (Figure 3A). Prediction accuracy was evaluated by calculating the Spear-

man correlation coefficient between observed and predicted data (Figure 3B).

Simulation of mono-colonization abundances
As the experimental data from Atarashi et al. (2013) only provided CD4+FOXP3+ T-cell levels for

the mono-strain colonization experiments at 35 days after inoculation but no measurement of the

long-term microbial concentrations in the gut, we used instead the corresponding estimated mono-

strain colonization densities obtained from the gLV model (section above and Figure 2A). In general,

the long-term behavior of the gLV system is determined by its steady states which are uniquely

defined by the inferred model parameters (Stein et al., 2013). We computed the parameter median

in each single model variable from the 22,500 MCMC parameter sets. These median parameters

were then used to deduce the steady-state densities, which were together with the measured CD4+-

FOXP3 proportions included into the training of the microbiome–Treg model.

Collection of CD4+FOXP3+ Treg data from 4-strain experiments for
validation of the modeling-based predictions
Bacterial strains 4, 7, 9, 14, 15, 16, 27, 28, 29 were grown anaerobically in PYG broth (Peptone,

Yeast and Glucose broth from Anaerobe Systems, Cat no: AS-822) until they reached stationary

phase (48 hr for strains 27 and 29, 24 hr for the remaining strains). Each 200 ml-mouse dose of a 4-

strain LBP contained 50 ml of 20 times concentrated stationary phase culture. Germ-free C57BL/6

mice aged 6–8 weeks were randomized and gavaged with a total dose of 5�107–2�108 bacteria in a

200 ml, and maintained under gnotobiotic conditions for four weeks. Use of a C57BL/6 background

for these experiments was motivated by availability of animals at the facility where we performed

the validation and justified by the fact that previous work from us has shown that Treg induction by

our Clostridia strains does not differ between Balb/c, IQI, and C57BL/6 mice (Atarashi et al., 2015).

Mice were then sacrificed, colons harvested, and lamina propria leukocytes isolated and stained for

CD3+CD4+FOXP3+ Treg as described above. Eight mice each were used for consortia High 1 (H1-

strains: 7, 27, 28, 29) and High 2 (H2-strains: 4, 7, 27, 29). Five mice each were used for the interme-

diate high (M1-strains: 4, 7, 14, 28), and intermediate low consortia (M2-strains: 9, 16, 27, 29). Three

mice were used for Low 1 (L1-strains: 14, 15, 16, 29). Colonization profiling was determined through

16S rRNA sequencing (as above) and verified by blasting representative sequences to a 16S VE202

fasta database. The 4-strain validation experiments were performed in the Massachusetts Host

Microbiome Center under IACUC protocol 2016N000141.
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Maldonado-Gómez MX, Martı́nez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay
P, Knights D, Hutkins RW, Walter J. 2016. Stable engraftment of bifidobacterium longum ah1206 in the human
gut depends on individualized features of the resident microbiome. Cell Host & Microbe 20:515–526.
DOI: https://doi.org/10.1016/j.chom.2016.09.001, PMID: 27693307

Michor F, Beal K. 2015. Improving cancer treatment via mathematical modeling: surmounting the challenges is
worth the effort. Cell 163:1059–1063. DOI: https://doi.org/10.1016/j.cell.2015.11.002, PMID: 26590416

Morgan XC, Kabakchiev B, Waldron L, Tyler AD, Tickle TL, Milgrom R, Stempak JM, Gevers D, Xavier RJ,
Silverberg MS, Huttenhower C. 2015. Associations between host gene expression, the mucosal microbiome,
and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biology 16:67.
DOI: https://doi.org/10.1186/s13059-015-0637-x, PMID: 25887922

Narushima S, Sugiura Y, Oshima K, Atarashi K, Hattori M, Suematsu M, Honda K. 2014. Characterization of the
17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5:333–339. DOI: https://doi.
org/10.4161/gmic.28572, PMID: 24642476

Olle B. 2013. Medicines from microbiota. Nature Biotechnology 31:309–315. DOI: https://doi.org/10.1038/nbt.
2548, PMID: 23563425

Omenetti S, Pizarro TT. 2015. The Treg/Th17 Axis: a dynamic balance regulated by the gut microbiome.
Frontiers in Immunology 6. DOI: https://doi.org/10.3389/fimmu.2015.00639, PMID: 26734006

Paun A, Yau C, Danska JS. 2016. Immune recognition and response to the intestinal microbiome in type 1
diabetes. Journal of Autoimmunity 71:10–18. DOI: https://doi.org/10.1016/j.jaut.2016.02.004, PMID: 26908163

Round JL, Mazmanian SK. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of
the intestinal microbiota. PNAS 107:12204–12209. DOI: https://doi.org/10.1073/pnas.0909122107,
PMID: 20566854

Rudensky AY. 2011. Regulatory T cells and Foxp3. Immunological Reviews 241:260–268. DOI: https://doi.org/
10.1111/j.1600-065X.2011.01018.x, PMID: 21488902

Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Ter Horst R, Jansen T, Jacobs L,
Bonder MJ, Kurilshikov A, Fu J, Joosten LAB, Zhernakova A, Huttenhower C, Wijmenga C, Netea MG, Xavier
RJ. 2016. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1125–
1136. DOI: https://doi.org/10.1016/j.cell.2016.10.020, PMID: 27814509

Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. 2013. The
microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573.
DOI: https://doi.org/10.1126/science.1241165, PMID: 23828891

Smits SA, Marcobal A, Higginbottom S, Sonnenburg JL, Kashyap PC. 2016. Individualized Responses of Gut
Microbiota to Dietary Intervention Modeled in Humanized Mice. mSystems 1:e00098-16. DOI: https://doi.org/
10.1128/mSystems.00098-16, PMID: 27822551
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