Targeted cortical reorganization using optogenetics in non-human primates

  1. Azadeh Yazdan-Shahmorad  Is a corresponding author
  2. Daniel B Silversmith  Is a corresponding author
  3. Viktor Kharazia
  4. Philip N Sabes
  1. University of California, San Francisco, United States

Abstract

Brain stimulation modulates the excitability of neural circuits and drives neuroplasticity. While the local effects of stimulation have been an active area of investigation, the effects on large-scale networks remain largely unexplored. We studied stimulation-induced changes in network dynamics in two macaques. A large-scale optogenetic interface enabled simultaneous stimulation of excitatory neurons and electrocorticographic recording across primary somatosensory (S1) and motor (M1) cortex (Yazdan-Shahmorad et al., 2016). We tracked two measures of network connectivity, the network response to focal stimulation and the baseline coherence between pairs of electrodes; these were strongly correlated before stimulation. Within minutes, stimulation in S1 or M1 significantly strengthened the gross functional connectivity between these areas. At a finer scale, stimulation led to heterogeneous connectivity changes across the network. These changes reflected the correlations introduced by stimulation-evoked activity, consistent with Hebbian plasticity models. This work extends Hebbian plasticity models to large-scale circuits, with significant implications for stimulation-based neurorehabilitation.

Data availability

We have provided the numerical data (.mat format) for all of the graphs in all of the figures except where images or raw data were presented. For each figure we are providing ReadMe files that include descriptions of the parameters used as well as the Matlab code for generating the figures. In addition, we have made the full dataset available via UCSF data share program: https://dash.berkeley.edu/stash/dataset/doi:10.7272/Q61834NF

The following data sets were generated

Article and author information

Author details

  1. Azadeh Yazdan-Shahmorad

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    For correspondence
    azadehy@uw.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5212-509X
  2. Daniel B Silversmith

    Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
    For correspondence
    dsilversmith@berkeley.edu
    Competing interests
    No competing interests declared.
  3. Viktor Kharazia

    Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Philip N Sabes

    Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    Philip N Sabes, has financial interest in Neuralink Corp., a company that is developing clinical therapies using brain stimulation.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8397-6225

Funding

Defense Advanced Research Projects Agency (W911NF-14-2-0043)

  • Azadeh Yazdan-Shahmorad
  • Daniel B Silversmith
  • Viktor Kharazia
  • Philip N Sabes

American Heart Association (Post-doctoral fellowship)

  • Azadeh Yazdan-Shahmorad

National Science Foundation (Graduate student fellowship)

  • Daniel B Silversmith

This research was partially funded by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement Number W911NF-14-2-0043, issued by the Army Research Office contracting office in support of DARPA'S SUBNETS program. The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed under the approval of the University of California, San Francisco Institutional Animal Care and Use Committee (AN108552-03) and were compliant with the Guide for the Care and Use of Laboratory Animals.

Copyright

© 2018, Yazdan-Shahmorad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,497
    views
  • 550
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Azadeh Yazdan-Shahmorad
  2. Daniel B Silversmith
  3. Viktor Kharazia
  4. Philip N Sabes
(2018)
Targeted cortical reorganization using optogenetics in non-human primates
eLife 7:e31034.
https://doi.org/10.7554/eLife.31034

Share this article

https://doi.org/10.7554/eLife.31034

Further reading

    1. Neuroscience
    Christine Ahrends, Mark W Woolrich, Diego Vidaurre
    Tools and Resources

    Predicting an individual’s cognitive traits or clinical condition using brain signals is a central goal in modern neuroscience. This is commonly done using either structural aspects, such as structural connectivity or cortical thickness, or aggregated measures of brain activity that average over time. But these approaches are missing a central aspect of brain function: the unique ways in which an individual’s brain activity unfolds over time. One reason why these dynamic patterns are not usually considered is that they have to be described by complex, high-dimensional models; and it is unclear how best to use these models for prediction. We here propose an approach that describes dynamic functional connectivity and amplitude patterns using a Hidden Markov model (HMM) and combines it with the Fisher kernel, which can be used to predict individual traits. The Fisher kernel is constructed from the HMM in a mathematically principled manner, thereby preserving the structure of the underlying model. We show here, in fMRI data, that the HMM-Fisher kernel approach is accurate and reliable. We compare the Fisher kernel to other prediction methods, both time-varying and time-averaged functional connectivity-based models. Our approach leverages information about an individual’s time-varying amplitude and functional connectivity for prediction and has broad applications in cognitive neuroscience and personalised medicine.

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.