SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer

  1. Ziling Fang
  2. Bo Cao
  3. Jun-Ming Liao
  4. Jun Deng
  5. Kevin D Plummer
  6. Peng Liao
  7. Tao Liu
  8. Wensheng Zhang
  9. Kun Zhang
  10. Li Li
  11. David Margolin
  12. Shelya X Zeng  Is a corresponding author
  13. Jianping Xiong  Is a corresponding author
  14. Hua Lu  Is a corresponding author
  1. Tulane University School of Medicine, United States
  2. Southern New Hampshire University, United States
  3. Xavier University of Louisiana, United States
  4. Ochsner Clinical Foundation, United States
  5. The First Affiliated Hospital of Nanchang University, China

Abstract

Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity towards p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.

Article and author information

Author details

  1. Ziling Fang

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Cao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-Ming Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Deng

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kevin D Plummer

    Department of Economy, Southern New Hampshire University, New Hampshire, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peng Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tao Liu

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wensheng Zhang

    Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kun Zhang

    Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Li Li

    Laboratory Translational Cancer Research, Ochsner Clinical Foundation, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David Margolin

    Department of Colon and Rectal Surgery, Ochsner Clinical Foundation, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shelya X Zeng

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    For correspondence
    szeng@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Jianping Xiong

    Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
    For correspondence
    jpxiong@ncu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  14. Hua Lu

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    For correspondence
    hlu2@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9285-7209

Funding

National Cancer Institute

  • Hua Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiment was not blind and was handled according to approved institutional animal care and use committee (IACUC) protocol (#4275R) of Tulane University School of Medicine. The maximum tumor volume per tumor allowed the IACUC committee is 1.5 cm diameter or 300 mm3 per tumor.

Copyright

© 2018, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,338
    views
  • 415
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziling Fang
  2. Bo Cao
  3. Jun-Ming Liao
  4. Jun Deng
  5. Kevin D Plummer
  6. Peng Liao
  7. Tao Liu
  8. Wensheng Zhang
  9. Kun Zhang
  10. Li Li
  11. David Margolin
  12. Shelya X Zeng
  13. Jianping Xiong
  14. Hua Lu
(2018)
SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer
eLife 7:e31275.
https://doi.org/10.7554/eLife.31275

Share this article

https://doi.org/10.7554/eLife.31275

Further reading

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.

    1. Cancer Biology
    2. Evolutionary Biology
    Lingjie Zhang, Tong Deng ... Chung-I Wu
    Research Article

    Tumorigenesis, like most complex genetic traits, is driven by the joint actions of many mutations. At the nucleotide level, such mutations are cancer-driving nucleotides (CDNs). The full sets of CDNs are necessary, and perhaps even sufficient, for the understanding and treatment of each cancer patient. Currently, only a small fraction of CDNs is known as most mutations accrued in tumors are not drivers. We now develop the theory of CDNs on the basis that cancer evolution is massively repeated in millions of individuals. Hence, any advantageous mutation should recur frequently and, conversely, any mutation that does not is either a passenger or deleterious mutation. In the TCGA cancer database (sample size n=300–1000), point mutations may recur in i out of n patients. This study explores a wide range of mutation characteristics to determine the limit of recurrences (i*) driven solely by neutral evolution. Since no neutral mutation can reach i*=3, all mutations recurring at i≥3 are CDNs. The theory shows the feasibility of identifying almost all CDNs if n increases to 100,000 for each cancer type. At present, only <10% of CDNs have been identified. When the full sets of CDNs are identified, the evolutionary mechanism of tumorigenesis in each case can be known and, importantly, gene targeted therapy will be far more effective in treatment and robust against drug resistance.