SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer

  1. Ziling Fang
  2. Bo Cao
  3. Jun-Ming Liao
  4. Jun Deng
  5. Kevin D Plummer
  6. Peng Liao
  7. Tao Liu
  8. Wensheng Zhang
  9. Kun Zhang
  10. Li Li
  11. David Margolin
  12. Shelya X Zeng  Is a corresponding author
  13. Jianping Xiong  Is a corresponding author
  14. Hua Lu  Is a corresponding author
  1. Tulane University School of Medicine, United States
  2. Southern New Hampshire University, United States
  3. Xavier University of Louisiana, United States
  4. Ochsner Clinical Foundation, United States
  5. The First Affiliated Hospital of Nanchang University, China

Abstract

Ribosomal proteins (RPs) play important roles in modulating the MDM2-p53 pathway. However, less is known about the upstream regulators of the RPs. Here we identify SPIN1 (Spindlin 1) as a novel binding partner of human RPL5/uL18 that is important for this pathway. SPIN1 ablation activates p53, suppresses cell growth, reduces clonogenic ability, and induces apoptosis of human cancer cells. Mechanistically, SPIN1 sequesters uL18 in the nucleolus, preventing it from interacting with MDM2, and thereby alleviating uL18-mediated inhibition of MDM2 ubiquitin ligase activity towards p53. SPIN1 deficiency increases ribosome-free uL18 and uL5 (human RPL11), which are required for SPIN1 depletion-induced p53 activation. Analysis of cancer genomic databases suggests that SPIN1 is highly expressed in several human cancers, and its overexpression is positively correlated with poor prognosis in cancer patients. Altogether, our findings reveal that the oncogenic property of SPIN1 may be attributed to its negative regulation of uL18, leading to p53 inactivation.

Article and author information

Author details

  1. Ziling Fang

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bo Cao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jun-Ming Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jun Deng

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kevin D Plummer

    Department of Economy, Southern New Hampshire University, New Hampshire, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Peng Liao

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tao Liu

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Wensheng Zhang

    Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kun Zhang

    Department of Computer Science, Bioinformatics Facility of Xavier RCMI Center of Cancer Research, Xavier University of Louisiana, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Li Li

    Laboratory Translational Cancer Research, Ochsner Clinical Foundation, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. David Margolin

    Department of Colon and Rectal Surgery, Ochsner Clinical Foundation, New Orleans, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shelya X Zeng

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    For correspondence
    szeng@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
  13. Jianping Xiong

    Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
    For correspondence
    jpxiong@ncu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
  14. Hua Lu

    Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
    For correspondence
    hlu2@tulane.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9285-7209

Funding

National Cancer Institute

  • Hua Lu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experiment was not blind and was handled according to approved institutional animal care and use committee (IACUC) protocol (#4275R) of Tulane University School of Medicine. The maximum tumor volume per tumor allowed the IACUC committee is 1.5 cm diameter or 300 mm3 per tumor.

Reviewing Editor

  1. Maureen Murphy, The Wistar Institute, United States

Publication history

  1. Received: August 15, 2017
  2. Accepted: March 13, 2018
  3. Accepted Manuscript published: March 16, 2018 (version 1)
  4. Version of Record published: March 27, 2018 (version 2)
  5. Version of Record updated: April 3, 2018 (version 3)

Copyright

© 2018, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,141
    Page views
  • 389
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ziling Fang
  2. Bo Cao
  3. Jun-Ming Liao
  4. Jun Deng
  5. Kevin D Plummer
  6. Peng Liao
  7. Tao Liu
  8. Wensheng Zhang
  9. Kun Zhang
  10. Li Li
  11. David Margolin
  12. Shelya X Zeng
  13. Jianping Xiong
  14. Hua Lu
(2018)
SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer
eLife 7:e31275.
https://doi.org/10.7554/eLife.31275

Further reading

    1. Cancer Biology
    Jiangfei Chen, Kunal Baxi ... Myron S Ignatius
    Research Article

    In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153D and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153D unexpectedly also predisposes to hedgehog expressing medulloblastomas in the kRASG12D-driven ERMS-model.

    1. Cancer Biology
    Aojia Zhuang, Aobo Zhuang ... Chen Ding
    Research Article Updated

    The presence of lymph node metastasis (LNM) affects treatment strategy decisions in T1NxM0 colorectal cancer (CRC), but the currently used clinicopathological-based risk stratification cannot predict LNM accurately. In this study, we detected proteins in formalin-fixed paraffin-embedded (FFPE) tumor samples from 143 LNM-negative and 78 LNM-positive patients with T1 CRC and revealed changes in molecular and biological pathways by label-free liquid chromatography tandem mass spectrometry (LC-MS/MS) and established classifiers for predicting LNM in T1 CRC. An effective 55-proteins prediction model was built by machine learning and validated in a training cohort (N=132) and two validation cohorts (VC1, N=42; VC2, N=47), achieved an impressive AUC of 1.00 in the training cohort, 0.96 in VC1 and 0.93 in VC2, respectively. We further built a simplified classifier with nine proteins, and achieved an AUC of 0.824. The simplified classifier was performed excellently in two external validation cohorts. The expression patterns of 13 proteins were confirmed by immunohistochemistry, and the IHC score of five proteins was used to build an IHC predict model with an AUC of 0.825. RHOT2 silence significantly enhanced migration and invasion of colon cancer cells. Our study explored the mechanism of metastasis in T1 CRC and can be used to facilitate the individualized prediction of LNM in patients with T1 CRC, which may provide a guidance for clinical practice in T1 CRC.