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Abstract

Background: Malaria elimination strategies require a thorough understanding of parasite

transmission from human to mosquito. A clinical model to induce gametocytes to understand their

dynamics and evaluate transmission-blocking interventions (TBI) is currently unavailable. Here, we

explore the use of the well-established Controlled Human Malaria Infection model (CHMI) to induce

gametocyte carriage with different antimalarial drug regimens.
Methods: In a single centre, open-label randomised trial, healthy malaria-naive participants (aged

18–35 years) were infected with Plasmodium falciparum by bites of infected Anopheles mosquitoes.

Participants were randomly allocated to four different treatment arms (n = 4 per arm) comprising

low-dose (LD) piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by a curative regimen

upon recrudescence. Male and female gametocyte densities were determined by molecular assays.
Results: Mature gametocytes were observed in all participants (16/16, 100%). Gametocytes

appeared 8.5–12 days after the first detection of asexual parasites. Peak gametocyte densities and

gametocyte burden was highest in the LD-PIP/SP arm, and associated with the preceding asexual

parasite biomass (p=0.026). Male gametocytes had a mean estimated circulation time of 2.7 days

(95% CI 1.5–3.9) compared to 5.1 days (95% CI 4.1–6.1) for female gametocytes. Exploratory

mosquito feeding assays showed successful sporadic mosquito infections. There were no serious

adverse events or significant differences in the occurrence and severity of adverse events between

study arms (p=0.49 and p=0.28).
Conclusions: The early appearance of gametocytes indicates gametocyte commitment during the

first wave of asexual parasites emerging from the liver. Treatment by LD-PIP followed by a curative

SP regimen, results in the highest gametocyte densities and the largest number of gametocyte-

positive days. This model can be used to evaluate the effect of drugs and vaccines on gametocyte
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dynamics, and lays the foundation for fulfilling the critical unmet need to evaluate transmission-

blocking interventions against falciparum malaria for downstream selection and clinical

development.
Funding: Funded by PATH Malaria Vaccine Initiative (MVI).
Clinical trial number: NCT02836002.

Introduction
Malaria, a disease caused by Plasmodium parasites, continues to be a public health burden. Despite

a reduction in the malaria case incidence of ~40%, and mortality by 62% over the last decade,

malaria caused ~429,000 deaths in 2015 (World Health Organization, 2016). Apart from the direct

health implications, malaria is a substantial contributor to ongoing poverty in affected countries.

Recently, the spread of artemisinin-resistant parasites has emerged as a global health concern. Both

the recent gains in malaria control and concerns about artemisinin resistance have stimulated pro-

grams to eliminate malaria (World Health Organization, 2016). Novel interventions may support

malaria elimination efforts in endemic settings (Griffin et al., 2010) that are further dependent on

political and financial commitments to maximize coverage with currently available interventions and

improve surveillance systems to optimize disease notification and treatment (Moonen et al., 2010).

A major challenge to eliminating malaria is its highly efficient transmission by Anopheles mosqui-

toes. Transmission to mosquitoes starts when a small proportion of asexual parasites commit to

form male and female gametocytes. It is currently unclear what stimulates gametocyte commitment

and when gametocyte commitment first occurs (Nilsson et al., 2015). Upon commitment, matura-

tion of gametocytes takes place predominantly in the bone marrow, and requires 7 days (range 4–

12) of development. (Eichner et al., 2001) Subsequently, mature gametocytes (parasites that are

not associated with clinical disease) appear in the peripheral blood, where they may circulate for an

average of 6 days (Eichner et al., 2001; Bousema et al., 2010). During this period, blood-feeding

Anophelines may ingest gametocytes where, after a sporogonic development phase, sporozoites

reach the mosquito salivary gland rendering the mosquito infectious to humans upon its next bite.

Early work based on the microscopic evaluation of experimental P. falciparum infection (malariather-

apy) studies reported that gametocytes may make their appearance in small numbers around 10

days following the first day of fever (Shute and Maryon, 1951; Ciuca et al., 1937).

The renewed focus on malaria elimination requires a thorough understanding of malaria transmis-

sion dynamics - when mature male and female gametocytes are first produced upon infection and

how long they circulate in peripheral blood (Sinden, 2017). These parameters are difficult to mea-

sure in naturally acquired infections where frequent super-infections, immunity and other factors dic-

tate parasite and gametocyte dynamics (Bousema and Drakeley, 2011). Interventions that

specifically aim to reduce gametocyte development, circulation time or infectivity are highly desir-

able in the context of malaria elimination and require effective models for the early clinical

evaluation.

The controlled human malaria infection (CHMI) model allows the induction of parasitemia under

highly standardized conditions and plays an important role in the assessment of safety and efficacy

of novel antimalarial drugs and vaccines (Sauerwein et al., 2011). Preliminary evidence for the

induction of female gametocytes in CHMI studies with blood stage inoculum was recently demon-

strated using piperaquine monotherapy (Pasay et al., 2016; Farid et al., 2017).

In this study, we aimed to develop a CHMI transmission model to induce gametocyte carriage

after mosquito bite infection. The primary objective of the current trial was to safely induce gameto-

cytemia in study participants by the use of different (sub)curative drug regimens based on sulfadox-

ine-pyrimethamine (Bousema and Drakeley, 2011; Butcher, 1997) and piperaquine (Adjalley et al.,

2011).

Results
From a total of 49 screened candidate participants, 16 volunteers were included in a first cohort and

randomly assigned to four study arms prior to challenge (Figure 1). After observed transient liver

enzyme elevations in the first cohort, the study was temporarily put on hold and the already initiated
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infections in the second cohort of 13 participants were abrogated by curative treatment on day 3

post challenge. The hold was lifted after reviewing safety data. Participants from the first cohort

completed all study visits, and form the basis of the current manuscript; their baseline characteristics

are shown in Table 1. After exposure to bites of a standard protocol of five P. falciparum infected

mosquitoes, all participants developed parasitemia on days 6.5–12 post-challenge; peak parasite

densities ranged from 1050 to 63113 Pf/mL (Figure 2; Figure 2—figure supplement 1; Table 2;

Supplementary file 1). Due to asexual recrudescence in seven of the eight participants after a sub-

curative treatment (T1) with LD-PIP, a curative treatment (T2) had to be administered before day 21

post challenge. The median period between T1 and T2 was 9.1 (range of 7.7–11.7), 10.0 (range of

9.2–10.2), 4.7 (range of 2–10.7), and 2.5 (range of 1.5–5.0) days for study arms LD-SP/SP, LD-SP/PIP,

LD-PIP/PIP, and LD-PIP/SP, respectively. In participants receiving a subcurative LD-SP as T1, no

recrudescent infection occurred and T2 was initiated on day 21 per protocol. One participant from

treatment arm LD-PIP/PIP developed asexual recrudescence after T2, and received end treatment

with atovaquone/proguanil on day 36. The remaining participants did not develop recrudescent

infections after T2, and were treated with atovaquone/proguanil on day 42 as per protocol.

All participants also developed gametocytemia as determined by Pfs25 qRT-PCR (Figure 2;

Figure 3A; Figure 2—figure supplement 1). Gametocytes were first detected 8.5–12 days after the

initial peak of asexual parasites with no statistically significant difference in time to gametocyte

appearance between study arms (p=0.26) (Table 2). The median peak density of gametocytes was

83 gametocytes/mL (range 11–1285) when all study participants were considered. Peak gametocyte

eLife digest The parasite that causes malaria, named Plasmodium falciparum, has a life cycle

that involves both humans and mosquitoes. Starting in the saliva of female Anopheles mosquitoes, it

enters a person’s bloodstream when the insects feed. It then moves to the person’s liver, where it

infects liver cells and matures into a stage known as schizonts. The schizonts then divide to form

thousands of so-called merozoites, which burst out of the liver cells and into the bloodstream. The

merozoites infect red blood cells, producing more schizonts and yet more merozoites, which

continue the infection.

To complete its life cycle, the parasite must return to a mosquito. Some of the parasites in the

person’s blood transform into male and female cells called gametocytes that are taken up by a

mosquito when it feeds on that person. Inside the mosquito, male and female parasites reproduce

to create the next generation of parasites. The new parasites then move to the mosquito’s salivary

glands, ready to begin another infection. Stopping the parasite being transmitted from humans to

mosquitoes will stop the spread of malaria in the population. Yet it has proven difficult to study this

part of the life cycle from natural infections.

Here, Reuling et al. report a new method for generating gametocytes in human volunteers that

will enable closer study of the biology of malaria transmission. The method is developed using the

Controlled Human Malaria Infection (CHMI) model. Healthy volunteers without a history of malaria

are bitten by mosquitoes infected with malaria parasites. Shortly afterwards, the volunteers are

given a drug treatment to control and reduce their symptoms. The gametocytes form during this

phase of the infection. At the end of the experiment, all the volunteers receive a final treatment that

completely cures the infection.

Reuling et al. recruited 16 volunteers and assigned them to four groups at random. Each group

received a different drug regime. Roughly a week after the mosquito bites, all participants showed

malaria parasites in their blood, and between 8.5 and 12 days later, mature gametocytes started to

appear. This early appearance suggests that the parasites start to transform into gametocytes when

they first emerge from the liver. The experiment also revealed that female gametocytes stay in the

blood for a longer period than their male counterparts.

These results are proof of principle for a new way to investigate malaria infection. The new model

provides a controlled method for studying P. falciparum gametocytes in people. In the future, it

could help to test the impact of drugs and vaccines on gametocytes. Understanding more about

these parasites’ biology could lead to treatments that block malaria transmission.
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densities were higher in the study arm randomised to LD-PIP/SP, with a median of 627 gametocytes/

mL (range of 199–1285), compared to 38 gametocytes/mL (range of 11–368), 30 gametocytes/mL

(range of 13–101), 83 gametocytes/mL (range of 46–99), for arms LD-SP/SP, LD-SP/PIP, and LD-PIP/

PIP, respectively (Figure 2; Figure 2—figure supplement 1; Table 2).

Thirteen (81%, 13/16) participants showed gametocytes on at least 5 consecutive days. The mean

number of consecutive gametocyte-positive days was 24.5 (range of 17–25) for the LD-PIP/SP arm

and was higher than for other arms (Table 2; Figure 2). Using multi-level logistic regression (random

effect for within-group variation), we estimated that the average proportion of days that individuals

tested positive for gametocytes was 27.4% (LD-SP/SP), 35.9% (LD-SP/PIP), 51.4% (LD-PIP/PIP), and

48.3% (LD-PIP/SP) (Table 2). The LD-PIP/PIP and LD-PIP/SP arms (i.e. those receiving ‘low dose PIP’)

each had significantly higher average proportions of gametocyte-positive days than both arms LD-

SP/SP and LD-SP/PIP (posterior probability 90.8% and 86.1%, respectively; 81.1% joint probability of

arms LD-PIP/PIP and LD-PIP/SP both being higher than both LD-SP/SP and LD-SP/PIP). Furthermore,

the area under the curve (AUC) for gametocyte density showed a statistically significant difference

between arms (p=0.04). The LD-PIP/SP arm had a significantly higher gametocyte load (area under

the curve) than each of the other three treatment arms (94.4% posterior probability of being the

highest; Figure 3B). After correction for the asexual AUC, the probabilities of the gametocyte AUC

in the LD-PIP/SP arm being higher than the other three decreased to 97.2%, 96.3%, and 96.2%

Figure 1. Trial profile. ECG = electrocardiography, BMI = body mass index, AST = aspartate aminotransferase, ALP = alkaline phosphatase

Reuling et al. eLife 2018;7:e31549. DOI: https://doi.org/10.7554/eLife.31549 4 of 19

Research article Microbiology and Infectious Disease Medicine

https://doi.org/10.7554/eLife.31549


(from 99,1%, 98.9%, and 95.4%), and the probability of LD-PIP/SP being higher than all other study

arms decreased to 94.0%.

Both female and male gametocytes were detected in 14/16 (88%) participants (Figure 4; Fig-

ure 4—figure supplement 1). Gametocyte sex-ratio’s and circulation times have to be interpreted

with caution since they rely on two separate qRT-PCR assays with differences in assay sensitivity (Fig-

ure 5; Supplementary file 2, 3). On average 2.5 times as many female gametocytes were observed

compared to male gametocytes per measured time-point (Figure 4; mean ratio 2.5 (SD = 2.5)).

Combining all treatment arms, the best estimate of gametocyte half-life was 5.1 days (95% CI 4.1–

6.1) for female gametocytes and 2.7 days (95% CI 1.5–3.9) for male gametocytes (Figure 4—figure

supplement 2).

Gametocytes are produced from their asexual progenitors, and hence asexual parasite kinetics

and gametocyte kinetics are related. The AUC of asexual parasitemia was statistically significantly

associated with the AUC of gametocytemia (r2 = 0.31, p=0.026), as shown in Figure 3C. The mean

time-window between the first asexual parasites and the first appearance of gametocytes was 10.6

(SD = 0.65) days, see Table 2. Membrane feeding experiments were performed as an exploratory

objective, and confirmed infectivity of gametocytes in three mosquitoes from three study arms on

days 25 (LD-PIP/SP and LD-SP/SP arms) and 31 (LD-SP/PIP arm) post-infection. Mean gametocyte

densities at those time-points were 106 gametocytes/mL (SD = 175), and 28 gametocytes/mL

(SD = 47), respectively. Expressed as a proportion of all examined mosquitoes, 0.0002% (3/14400)

of mosquitoes became infected in these exploratory assessments. Possible and probable related

adverse events after challenge infection are shown in Figure 6 and Table 3. The most frequently

reported adverse events were fatigue, malaise, headache, fever, nausea, and chills. Grade three

adverse events were reported in 14/16 (88%) participants, and were predominated by headache

(n = 8), chills (n = 6), and nausea (n = 5). All possible and probable related adverse events resolved

by the end of study. No serious adverse events occurred. The median number of adverse events was

20.5 per individual; the median number of adverse events with a grade three severity score was 1.5

per individual. There was no evidence for a difference between study arms in the occurrence of

adverse events (p=0.49) or grade three adverse events (p=0.28).

Laboratory abnormalities during the study are shown in Table 4. Most prevalent abnormalities

were elevated transaminases (ALT/AST) (n = 16), decreased lymphocytes (n = 15), decreased neutro-

phils (n = 13), and decreased platelets (n = 12). The only grade three laboratory abnormalities were

elevated ALT (n = 8), and elevated AST (n = 7). 16/16 (100%) volunteers showed mild to severe ALT/

AST elevations. 5/16 (31%) mild (grade 1); 3/16 (19%) moderate (grade 2), and 8/16 (50%) severe

(grade 3) (up to 25 x ULN) ALT/AST elevations. These derangements were transient, and returned to

baseline values within the normal range before the end of the study. A detailed overview of these

liver function test derangements can be found in the supporting information (Figure 6—figure

Table 1. Baseline characteristics of the participants included in analysis.

LD-SP/SP LD-SP/PIP LD-PIP/PIP LD-PIP/SP

No. subjects n = 4 n = 4 n = 4 n = 4

Treatment 1
(T1)

Sulfadoxine-pyrimethamine 500
mg/25 mg

Sulfadoxine-pyrimethamine 500
mg/25 mg

Piperaquine 480
mg

Piperaquine 480 mg

Treatment 2
(T2)

Sulfadoxine-pyrimethamine 1000
mg/50 mg

Piperaquine 960 mg Piperaquine 960
mg

Sulfadoxine-pyrimethamine 1000
mg/50 mg

Sex

Male n (%) 2 (50%) 0 (0%) 1 (25%) 1 (25%)

Female n (%) 2 (50%) 4 (100%) 3 (75%) 3 (75%)

Age Mean
(range)

24.5 (21–29) 24 (21–28) 21.5 (20–24) 22.5 (20–27)

BMI (kg/m2) Mean
(range)

21 (18–23) 22 (19–25) 24.5 (21–27) 26.5 (24–29)

The online version of this article includes the following source data for Table 1:

Source data 1. Source data for Table 1.
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supplement 1). These unexpected safety findings were reported to the Safety Monitoring Commit-

tee (SMC) and CCMO, and thoroughly reviewed.

Discussion
Here, we present a CHMI model to induce mature gametocytes after mosquito bite infection in

malaria-naive study participants. The timing of the first appearance of gametocytes suggests that a

fraction of the first wave of asexual parasites commit to the production of male and female gameto-

cytes. With the use of antimalarial drugs that attenuates asexual stage infections but leave (develop-

ing) gametocytes unaffected, we determined biologically plausible half-lives of male and female

gametocytes, and show preliminary evidence of the potential of this model to complete the lifecycle

of malaria in mosquito feeding assays.

Malaria elimination efforts require a thorough understanding of the transmissibility of infections.

Gametocyte commitment occurs for a fraction of asexual parasites under regulation of the transcrip-

tion factor AP2-G with the entire progeny of a sexually committed schizont forming either male or

female gametocytes (Kafsack et al., 2014). Our findings, based on novel sex-specific gametocyte

qRT-PCR, confirm earlier work from malariatherapy studies where gametocytes were first detected

by microscopy at 9–11 days after asexual parasites (Ciuca et al., 1937; Shute and Maryon, 1951).

These data indicate very early gametocyte commitment and are in line with our earlier observations

Figure 2. Asexual parasitemia and gametocytemia. Black line represents 18S qPCR asexual parasitemia. Black dotted-line represents 18S qPCR after

treatment 1. Red line represents Pfs25 qRT-PCR gametocytemia.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Asexual parasitemia and gametocytemia per study participant.
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that Pfs16 mRNA, the earliest gametocyte transcript, is detectable at the moment of peak parasite-

mia in CHMI models (Schneider et al., 2004). This timing is highly relevant for understanding game-

tocyte transmission biology. The circulation of mature gametocytes has not been reported in

previous CHMI trials using curative regimens of chloroquine, artemether-lumefantrine, or atova-

qoune-proguanil, and our data illustrate the differential impact of antimalarial drugs on developing

gametocytes. Once treatment is initiated, gametocyte production ceases abruptly (in the case of

artemisinins), remains unaffected, or may even be stimulated under drug pressure as suggested for

sulfadoxine-pyrimethamine and piperaquine (Bousema and Drakeley, 2011; Butcher, 1997;

Adjalley et al., 2011). In our study, we aimed for a protracted low density of asexual parasitemia

demonstrating that early abrogation of asexual infections by both sulfadoxine-pyrimethamine and

piperaquine permits successful mature gametocyte development. SP has long been associated with

a rapid appearance of gametocytes that is too early to be explained by de novo gametocyte produc-

tion upon drug pressure and has thus been hypothesized to reflect an efflux of sequestered gameto-

cytes upon treatment (Butcher, 1997). Evidence for the permissiveness of piperaquine to

(developing) gametocytes is more recent (Pasay et al., 2016; Farid et al., 2017; Adjalley et al.,

2011). In the current study, group sizes are limited and comparisons between treatment arms have

to be interpreted with caution. CHMI studies are logistically challenging and the number of volun-

teers that can be monitored to ensure participant safety is an important consideration when defining

the study size. Our sample size calculation was based on the optimistic assumption that the vast

majority of volunteers would develop mature gametocytes; an assumption that was supported by

the current data. With our limited study size, our findings indicate that none of the study drugs pre-

vented the appearance of gametocytes after treatment, thereby suggesting limited or no effect of

PIP and SP on developing or mature gametocytes (Bolscher et al., 2015). We hypothesized that

slow acting drugs may promote the development of gametocytes (Méndez et al., 2002), potentially

via microvesicles that are derived from infected erythrocytes (Nilsson et al., 2015) and differences

between drug regimens in the rate at which asexual parasites are cleared upon T1 and T2 would

Table 2. Treatment and parasitological data per study group.

LD-SP/SP LD-SP/PIP LD-PIP/PIP LD-PIP/SP

Time to T1 (days) Median
(range)

13 (9.3–12.8) 10.8
(0.8–11.8)

10.3
(10.3–12.3)

12.8
(12.3–14.3)

Time between T1-T2 (days) Median
(range)

9.1
(7.7–11.7)

10 (9.2–10.2) 4.7 (2–10.7) 2.5
(1.5–5.0)

Area under the curve (AUC)* Median
(range)

Asexual 6490 (1120–
16337)

13280 (2773–
43777)

14347 (5408–
24898)

12747 (4572–
82973)

Sexual 280 (27–3640) 271 (64–848) 784 (316–1274) 6624 (1515–
10244)

Peak parasite density (Pf/mL) Median
(range)

6467 (1050–
20261)

16376 (2590–
50210)

11603 (2408–
21565)

8491 (3976–
63113)

Peak gametocyte density (gct/mL) Median
(range)

38 (11–368) 30 (13–101) 83 (46–99) 627 (199–1285)

Day of gametocyte detection after infection (days) Mean (SD) 18.3 (1.0) 18.5 (1.0) 17.3 (1.5) 19.4 (1.3)

Time to gametocyte detection relative to first asexual parasites†

(days)
Mean (SD) 10.5 (1.3) 11.5 (1.0) 10.1 (1.3) 10.1 (1.2)

Proportion of days gametocyte positive (%)‡ Mean (SD) 27.4 (6.7) 35.9 (7.6) 51.4 (7.9) 48.3 (8.1)

Duration gametocytemia§ (days) Median
(range)

7.5 (1–24) 6 (2–14) 17 (12–25) 24.5 (17–25)

*The area under the curve (AUC) represents the total parasite exposure over time (asexual- or sexual parasite load).
†Time to gametocyte detection is calculated as the day of the detection of gametocytes (�5 gct/mL) minus the day of first peak asexual parsitaemia.
‡The proportion of gametocyte positive days is calculated as all days with �5 gct/mL by Pfs25-qRT-PCR divided by all days where Pfs25 qRT-PCR was

performed.
§Maximum number of consecutive days of Pfs25 qRT-PCR measured gametocytemia �5 gct/mL.
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result in different gametocyte dynamics. Although our findings indicate highest gametocyte concen-

trations in the LD-PIP/SP arm, more observations and thus additional studies are needed to allow

the construction of a model that allows a quantification of gametocyte commitment at different

time-points during the study (e.g. prior to T1, during the phase of parasite recrudescence and fol-

lowing T2). One hypothesis would be similar gametocyte commitment in all arms after T1 but a

more rapid release of gametocytes that accumulated in the bone marrow between T1 and T2.

We present the novel evidence that both male and female gametocytes appear early, upon infec-

tion. Our findings suggest an earlier appearance of female gametocytes (18.8 days (SD 1.8) com-

pared to male gametocytes 20.3 days (SD 1. 2)) and a longer circulation time of female gametocytes

that is in line with previous estimates from naturally infected individuals (Bousema et al., 2010;

Ciuca et al., 1937). Whilst both male and female gametocytes are consistently detected at densities

of 0.1 gametocyte/mL (Stone et al., 2017), the highly abundant Pfs25 mRNA makes the female

gametocyte qRT-PCR more sensitive than the male PfMGET qRT-PCR. Differences in gametocyte

dynamics between male and female gametocytes should therefore be interpreted with caution.

Gametocyte densities remained below the threshold of detection by microscopy throughout the

Figure 3. Gametocyte kinetics between study arms. (A) Percentage gametocyte carriers between study arms (B) Estimated mean area under the curve

for concentration of gametocytes per arm (Bayesian framework). The shaded area of each density curve represents the middle 95% percentiles (i.e.

2.5th to 97.5th percentiles) of the estimated mean AUC for a study arm; the density curve itself spans the middle 99% percentiles of the posterior; the

posterior mean is indicated by the vertical solid line within each density plot. (C) Association of area under the curves of asexual parasitemia and

gametocytemia. The different plotting shapes are the individual participants per group. (D) Thin- and thick- blood smears of concentrated gametocytes

after magnetic cell sorting of blood samples from two individuals from LD-PIP/SP arm.
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study period and were strongly associated with the preceding densities of the asexual progenitors.

Participants in the LD-PIP/SP study arm showed the highest gametocytes densities, and a mean

female/male sex ratio of 4.1 (SD = 5.1), in line with gametocyte sex-ratios in natural infections (~3 to

5 females to one male) (Ciuca et al., 1937; Delves et al., 2013). We confirmed the infectivity of

gametocytes in three mosquitoes from three study arms. The very low rate of infected mosquito cor-

roborates observations from naturally acquired infections where mosquito infection becomes highly

unlikely below 1000–10,000 gametocytes/mL (Gonçalves et al., 2016). The sporadic mosquito infec-

tions thus demonstrate that mature gametocytes in sex-ratios supportive of mosquito infections can

Figure 4. Total female and male gametocyte density of all participants. Dots represent individual gametocyte

data. Circles and squares represent mean and error (SEM) of gametocytes per timepoint.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Female and male gametocytes per study arm.

Figure supplement 2. Female and male gametocyte clearance dynamics per participant included in analysis.

Figure 5. Standard curves of qRT-PCR and qPCR. Standard curves (Mean, SD) obtained using 10-fold dilutions of cultured gametocytes. The highest

concentration was enumerated by two independent expert microscopists. The mean and standard deviation of 54, 28, 72 replicates of the standard

curve during the study was determined for the Pfs 25-, PfMGET, and 18S target genes, respectively. For PfMGET, six points starting from 106 pure male

gametocytes/mL were measured. 101 was positive in 6/28 replicates (black dot).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Standard curves of Pfs25 qRT-PCR – low-density trendlines.

Figure supplement 2. Correlation of duplo Pfs25 qRT-PCR measurements in all study samples.
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be achieved in CHMI transmission models. Studies on the evaluation of TBIs will need a further opti-

mized protocol aimed to achieve higher gametocyte densities by increasing duration and load of the

asexual parasite burden. For the evaluation of gametocytocidal interventions in the CHMI transmis-

sion model, gametocyte densities should be sufficiently high to quantify an intervention-associated

reduction in gametocyte appearance or gametocyte half-life. For the evaluation of interventions that

reduce the transmissibility of gametocytes, higher mosquito infections should be achieved at propor-

tions that allow the detection of meaningful reductions in mosquito infection rates in experimental

arms. Low infectivity in membrane feeding assays may be overcome by achievement of higher game-

tocyte densities in the model, and the use of gametocyte concentration methods (Reuling et al.,

2017), or by direct skin feeding assays (Bousema et al., 2012).

In line with recent findings, we observed recrudescent infections in 7/8 participants treated with

LD-PIP (Pasay et al., 2016). Recrudescent infections were not observed in arms that first received

LD-SP, suggesting that this dose, although 1/3 of the standard curative dose of sulfadoxine-pyri-

methamine, is curative at asexual parasite densities observed in our participants. It has been hypoth-

esized that the prolonged parasitemia under drug pressure increases gametocyte commitment

(WWARN Gametocyte Study Group, 2016). The duration of parasite multiplication between T1

and T2 was relatively short in this study (2–5 days) for subjects with recrudescent infections, and the

contribution of drug pressure may thus have been limited. The current findings suggest that further

lowering the SP dose may be considered to prolong asexual parasite exposure.

The liver enzyme elevations found in our study led to a structured risk analysis, and review by

independent experts. Transient, asymptomatic liver function test (LFT) derangements have been

reported in volunteers in previous CHMI studies, and are likely to be related to the asexual stage

parasitemia, and subsequent treatment.

Detailed studies on gametocyte biology and dynamics, and the early development of novel drugs

and vaccines that target malaria transmission (TBIs) are currently restricted to in vitro assays, such as

drug sensitivity assays, and standard membrane feeding assays (SMFA) (Bousema and Drakeley,

2011; Wells et al., 2009). Recently, a humanized mice model has been developed to investigate P.

Figure 6. Adverse events. (A) Adverse events per study arm (B) Total no. of adverse events and time course.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Liver function test derangements.
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falciparum sexual commitment that could, therefore, bridge in vitro assays to in vivo animal studies

that take into account drug metabolism and gametocyte sequestration (Duffier et al., 2016). Also,

an experimental Plasmodium vivax transmission model in human has been reported (Griffin et al.,

2016). However, mechanisms underlying P. falciparum gametocytogenesis and dynamics have never

been addressed in a controlled clean system in humans.

Here, we present a novel CHMI transmission model for P. falciparum that can be used to study

gametocyte biology and dynamics providing novel insights and tools in malaria transmission and

elimination efforts. The dynamics of gametocyte commitment, maturation, sex ratio, and sequestra-

tion found in our model reflect parasite dynamics found in naturally acquired infections, although

parasite densities are much lower than in many endemic settings. This model can be used to evalu-

ate the effect of drugs and vaccines on gametocyte dynamics and sex ratios. With its current perfor-

mance, the CHMI transmission model may allow testing of vaccination strategies that reduce the

Table 3. List of adverse events possibly or probably related to the trial.

Adverse
events Total LD-SP/SP LD-SP/PIP LD-PIP/PIP LD-PIP/SP

Number
of
subjects

Number
of
subjects

Number
of
episodes

Mean
duration
in days
(SD)

Number
of
subjects

Number
of
episodes

Mean
duration
in days
(SD)

Number
of
subjects

Number
of
episodes

Mean
duration
in days
(SD)

Number
of
subjects

Number
of
episodes

Mean
duration
in days
(SD)

Fatigue,
Malaise

16 4 10 3.6 (4.5) 4 15 2.0 (3.0) 4 10 2.9 (1.1) 4 6 6.8 (8.1)

Headache 15 3 12 1.0 (1.5) 4 25 1.2 (1.2) 4 17 1.3 (1.2) 4 21 1.6 (1.4))

Fever 15 4 9 0.4 (0.4) 4 10 0.3 (0.4) 3 11 0.4 (0.3) 4 13 0.7 (0.4)

Nausea 14 4 12 0.6 (0.8) 4 15 1.1 (1.6) 3 8 1.2 (1.5) 3 10 0.7 (1.0)

Chills 14 3 4 1.7 (1.0)) 3 5 1.7 (2.0) 4 10 1.2 (1.3) 4 6 0.9 (1.1)

Myalgia 11 3 5 3.2 (3.3) 3 9 2.1 (1.9) 3 5 1.2 (1.0) 2 3 2.2 (2.6)

Abdominal
pain

10 2 5 0.3 (0.2) 3 3 0.6 (0.9) 2 8 1.1 (1.3) 3 3 1.6 (2.4)

Pruritis 6 2 3 0.6 (0.8) 2 2 3.3 (0.5) 1 2 0.3 (0.4) 1 1 3.6

Athralgia 5 1 1 2.2 2 4 1.5 (1.8) 0 - - 2 2 5.1 (3.6)

Diarrhoea 5 1 1 0.8 1 1 0.1 2 2 1.7 (2.1) 1 1 4

Diziness 3 1 1 0.1 0 - - 2 5 0.5 (0.7) 0 - -

Reflux 2 0 - - 2 2 2.9 (1.8) 0 - - 0 - -

Pyrosis 1 0 - - 0 - - 0 - - 1 1 8.6

Aspecific
chest pain

1 1 2 0.0 (0.0) 0 - - 0 - - 0 - -

Syncope 1 0 - - 1 1 0.0 0 - - 0 - -

Mouth
ulcera

1 1 1 10.0 0 - - 0 - - 0 - -

Grade 3
adverse
events

Total 14 3 4 3 4

Headache 8 0 - - 2 2 0.3 (0.2) 2 2 0.6 (0.1) 4 4 1.1 (1.3)

Chills 6 1 1 0.9 2 2 1.7 (2.0) 2 2 0.3 (0.3) 1 1 2.2

Nausea 5 1 1 0.1 2 3 0.3 (0.6) 1 1 0.7 1 1 0

Fever 4 0 - - 0 - - 2 5 0.5 (0.4) 2 5 0.7 (0.5)

Fatigue,
malaise

4 0 - - 3 4 0.8 (0.4) 1 1 2 0 - -

Abdominal
pain

1 1 1 0.5 0 - - 0 - - 0 - -
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production of gametocytes from their asexual progenitors or accelerate their clearance from the

blood stream (Stone et al., 2016), and the testing of gametocytocidal drugs (White, 2013). To allow

testing of sterilizing effect of drugs on circulating gametocytes (White et al., 2014) or the effect of

antibodies that interfere with gametocyte fertilisation inside the mosquito gut (Stone et al., 2016),

the model needs to be optimized to achieve considerably higher mosquito infection rates. The cur-

rent work lays the foundation for fulfilling the critical unmet need to evaluate transmission-blocking

interventions against falciparum malaria for downstream selection and clinical development.

Materials and methods

Study design
This single centre, open-label randomised trial was conducted at the Radboud university medical

center (Radboudumc), Nijmegen, the Netherlands. Healthy malaria-naive male and female partici-

pants aged 18–35 years were recruited from June until November 2016. Screening included physical

examination, electrocardiography (ECG), hematology and biochemistry parameters and serology for

human immunodeficiency virus (HIV), hepatitis B and C, and asexual stages of P. falciparum.

Informed consent was provided by all participants at screening visit. The central committee for

research involving human subjects (CCMO), and the Western Institutional Review Board (WIRB)

approved the protocol for this study (NL56659.091.16). The trial was conducted according to the

Table 4. Laboratory abnormalities per study arm.

LD-SP/SP LD-SP/PIP LD-PIP/PIP LD-PIP/SP

N (% of
total) of
grade 1

N (% of
total) of
grade 2

N (% of
total) of
grade 3

N (% of
total) of
grade 1

N (% of
total) of
grade 2

N (% of
total) of
grade 3

N (% of
total) of
grade 1

N (% of
total) of
grade 2

N (% of
total) of
grade 3

N (% of
total) of
grade 1

N (% of
total) of
grade 2

N (% of
total) of
grade 3

Any lab.
abnormality

15 (14) 7 (7) 2 (2) 13 (12) 10 (9 3 (3) 16 (15) 9 (8) 2 (2) 13 (12) 8 (8) 8 (8)

Decreased
hemoglobin

0 0 0 1 (14) 2 (29) 0 1 (14) 1 (14) 0 1 (14) 1 (14) 0

Decreased
WBC

1 (8) 3 (23) 0 1 (8) 2 (15) 0 1 (8) 2 (15) 0 1 (8) 2 (15) 0

Decreased
neutrophils

3 (23) 1 (8) 0 2 (15) 0 0 3 (23) 1 (8) 0 3 (23) 0 0

Decreased
lymphocytes

3 (20) 1 (7) 0 1 (7) 3 (20) 0 3 (20) 1 (7) 0 1 (7) 2 (13) 0

Decreased
platelets

3 (25) 0 0 2 (17) 0 0 4 (33) 0 0 1 (8) 2 (17) 0

Elevated ALT 2 (13) 1 (6) 1 (6) 2 (13) 0 2 (13) 1 (6) 2 (13) 1 (6) 0 0 4 (25)

Elevated AST 1 (7) 1 (7) 1 (7) 2 (13) 1 (7) 1 (7) 1 (7) 2 (13) 1 (7) 0 0 4 (27)

Elevated yGT 1 (11) 0 0 1 (11) 1 (11) 0 2 (22) 0 0 3 (33) 1 (11) 0

Elevated ALP 0 0 0 0 1 (33) 0 0 0 0 2 (67) 0 0

Elevated total
bilirubin

1 (50) 0 0 0 0 0 0 0 0 1*(50) 0 0

Elevated
creatinine

0 0 0 1 (100) 0 0 0 0 0 0 0 0

Elevated BUN 0 0 0 0 0 0 0 0 0 0 0 0

Number of subjects with the highest grade reported for a laboratory abnormality. Grading based on WHO toxicity grading scale. No grade four abnormal-

ities were reported. Lymphocytes (109/l) were graded based on grade 1: 0.9–0.6; grade 2: 0.3–0.5; grade 3:<0.3.

Liver function tests were graded based on grade 1: 1.1.–2.5X ULN, grade 2: 2.6–5.0x ULN, grade 3:>5.0X ULN. WBC, white blood count; ALT, alanine ami-

notransferase; AST, aspartate aminotransferase; yGT, glutamyl transpeptidase; ALP, alkaline phosphatase;

See Figure 6—figure supplement 1 for a detailed overview of liver function test abnormalities.

BUN, blood urea nitrogen. T1, treatment 1; T2, treatment 2.*Subject showed elevated total bilirubin at baseline.
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principles outlined in the Declaration of Helsinki and Good Clinical Practice standards, and regis-

tered at ClinicalTrials.gov, identifier NCT02836002 (Supplementary file 4; Reporting Standard 1).

Randomisation
A total of 16 participants were included in the analysis of this study. After inclusion, study partici-

pants were randomly allocated to one of the four different treatment arms (n = 4 per group) with

low-dose (LD) of either piperaquine (PIP) or sulfadoxine-pyrimethamine (SP), followed by curative

regimen of piperaquine or sulfadoxine-pyrimethamine upon recrudescence; (i) LD-SP/SP, (ii) LD-SP/

PIP, (iii) LD-PIP/SP, or (iv) LD-PIP/SP. Randomisation was done by a computer-generated random

number table (Microsoft Excel 2007, Redmond, WA).

Procedures
All study participants were subjected to a standard CHMI with five female Anopheles stephensi mos-

quitoes infected with the P. falciparum strain 3D7 (Sauerwein et al., 2011; Cheng et al., 1997). P.

falciparum 3D7 asexual and sexual blood stages were cultured in a semi-automated culture system

and used to infect mosquitoes by standard membrane feeding as described previously

(Ponnudurai et al., 1986; Ponnudurai et al., 1989). The 3D7 lineage that was used in the current

study is based on a 3D7 bank described in detail in Cheng et al. (1997). To examine molecular

markers of drug resistance, we used available Illumina whole genome sequencing data (https://www.

ebi.ac.uk/ena/data/view/PRJEB12838); aligning reads to the P. falciparum reference genome v3

(plasmoDB) with bowtie2 (sourceforge) and obtaining consensus sequences for dhps and dhfr genes

with samtools. No mutations were identified in the dhfr gene; the only detected mutation was dhps

A437G which, by itself, is not associated with sulfadoxine-pyrimethamine resistance (Staedke et al.,

2004). Plasmepsin II/III duplication events are associated with piperaquine resistance

(Witkowski et al., 2017) but were not observed although the sequence similarities with neighboring

genes Plasmepsin I and IV suggest that unambiguous quantification may require more specific gene

targeting. Importantly, piperaquine sensitivity of our 3D7 lineage was previously confirmed by in

vivo experiments (Pasay et al., 2016). We conclude that the lineage used was sensitive to both sulfa-

doxine-pyrimethamine and piperaquine.

Participants were monitored twice daily on an outpatient basis from day 6 after exposure to

infected mosquitoes until malaria parasites were detected at a density of �5000 parasites per millili-

ter (Pf/mL) by qPCR or a positive thick blood smear, upon which they were treated with a subcura-

tive dose of 500 mg/25 mg sulfadoxine-pyrimethamine (Roche, Boulogne-billancourt, FR) or 480 mg

of piperaquine phosphate (PCI Pharma Services, Tredegar, UK). After the first treatment (T1), partici-

pants continued to visit the study center twice daily for another 4 days to monitor the initial clear-

ance of parasitemia by qPCR, after which they were monitored once a day for recrudescence. On

day 21 or upon parasite density reaching �1500 Pf/mL, participants received a second treatment

(T2), consisting of 1000 mg/50 mg sulfadoxine-pyrimethamine or 960 mg of piperaquine phosphate.

After the second treatment, participants were monitored daily for 3 days, then three times a week

until final treatment with atovaquone/proguanil (Malarone) on day 42. Adverse events were

recorded, and blood sampling was performed to monitor parasitemia and blood safety parameters.

Symptoms of malaria were treated with acetaminophen up to 4000 mg daily, and nausea with meto-

clopramide up to 30 mg daily, if necessary.

Parasite density was determined by quantitative PCR (qPCR) targeting the multicopy 18S rRNA

gene (Hermsen et al., 2001); samples collected in the morning were processed immediately, even-

ing samples 12 hr later. Thick blood smears were taken during evening visits, double-read and con-

sidered positive if two or more parasites were detected in 0.5 mL (Laurens et al., 2012). The

presence of gametocytes was monitored in samples from day 7.5 after challenge until end of study

by quantitative reverse-transcriptase PCR (qRT-PCR) targeting female-specific Pfs25 mRNA and male

specific PfMGET (Pf3D7_1469900) and using sex-specific trendlines (Stone et al., 2017; Pett et al.,

2016). All samples with an estimated gametocyte density �5 gametocytes per mL (gametocytes/mL)

were considered gametocyte positive. The duration of gametocyte carriage as an indicator of stable

gametocyemia was defined as the maximum number of consecutive days with detectable gametocy-

temia above the threshold for detection. Direct Membrane Feedings Assays (DMFA) were per-

formed as exploratory measures on days 21, 25 and 31 post-infection with ~300 mosquitoes per
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feed per participant (total of ~14,400 mosquitoes) (Bousema et al., 2013; Lensen et al., 1998;

Ouédraogo AL et al., 2013). Mosquito infection status was determined on day 12 by circumsporo-

zoite (CSP) ELISA(Stone et al., 2015) followed by qPCR confirmation of mosquitoes where the OD

exceeded the mean +3 standard deviations of control mosquitoes (Graumans et al., 2017).

Adverse events were recorded and graded by the research physician as mild (easily tolerated,

grade 1), moderate (interfering with daily activity, grade 2) or severe (preventing daily activity, grade

3), and in the case of fever as mild (38.0–38.4˚C), moderate (38.5–38.9,˚C) or severe (�39˚C). Safety

blood tests were performed daily, including full blood counts, LDH and highly sensitive troponin-T.

Biochemistry tests including liver function test were assessed at screening, inclusion, 2 days after

every treatment and at the end of study, and on additional days if considered relevant for clinical

decision-making.

Pfs25 and PfMGET RNA quantification
For the quantification of the P. falciparum Pfs25 transcript levels total NA was RQ1 DNaseI treated

according to the manufacturer’s protocol. 2 mL of DNaseI-treated material was run in a total volume

of 25 mL of TaqMan RNA-to-Ct qRT-PCR reaction mixture (Applied Biosystems, Foster City, Califor-

nia). For the quantification of the P. falciparum male gametocyte enriched transcript (PfMGET),

cDNA was synthesized from Total NA with the High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems). Samples were added in a 1: one ratio to the mastermix. 2 mL of cDNA was run

in a total volume of 20 mL making use of the GoTaq qPCR Master Mix

(Promega, Madison, Wisconsin). Male P. falciparum gametocytes were quantified using a standard

curve of serially diluted StageV male gametocytes from the transgenic PfDynGFP/P47mCherry line

(Lasonder et al., 2016). Detailed information on the validation and performance characteristics of

the assays can be found in the supporting materials (Figure 5; Supplementary file 2, 3; Figure 5—

figure supplement 1, 2).

Study outcome
The primary study outcomes were the frequency and magnitude of adverse events, and the preva-

lence of gametocytes by Pfs25 qRT-PCR. The prevalence of gametocytes is the presence of female

gametocytes as measured by qRT-PCR targeting female-specific Pfs25 mRNA at any of the twice

daily measurements from day 6. Secondary outcomes were the peak density and time-point of peak

density of male and female gametocytes, the AUC of gametocyte density, and assessment of the

dynamics of gametocyte commitment, maturation and sex-ratio. The AUC of gametocyte density

represents the total gametocyte exposure over time (gametocyte load). Assessment of gametocyte

infectivity to Anopheles stephensi mosquitoes by DMFA was an exploratory study endpoint.

Statistical analysis
The sample size was calculated based on preliminary data that > 95% of the participants would

develop gametocytemia. Conservatively, we considered the approach unsuitable for gametocyte

induction if <50% of individuals developed mature gametocytes. We, therefore, powered the trial to

estimate a 90% confidence interval around the proportion of gametocytaemic individuals that

excludes 50%. If eight individuals (allowing for one dropout per arm), and 6/7 or 7/7 of these individ-

uals become gametocytaemic, we would be able to estimate this proportion with a lower limit of the

90% Wilson confidence interval �54.8% (the lower limit of the 95% confidence interval being

48.7%). Differences between study arms were assessed by comparing mean values using a one-way

ANOVA or non-parametric equivalents.

To further identify which study arm(s) potentially deviated from others, we jointly estimated the

differences between all four arms in a Bayesian framework (standard linear regression model, no

mixed effects), using Hamiltonian Monte Carlo as implemented in the R package rstanarm, and using

an uninformative (uniform) prior for the explained variation (R̂2) (see R codes used in Source code 1)

(Team SD, 2016). For discrete variables (e.g. the number of positive assays), the chi-squared test or

Fisher’s exact test was used (two-tailed). The total number of adverse events and total number of

grade three adverse events were calculated per individual and compared by non-parametric Kruskal

Wallis test.
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A previously developed model was used to estimate gametocyte half-life for female and male

gametocytes separately (Bousema et al., 2010). For this analysis, gametocyte observations were

included from 12 days after the last detection of asexual parasites until the end of study. This was

based on the gametocyte sequestration time of 10–12 days in this study, and the assumption that

the number of newly released gametocytes would thus be minimal in this observation period. All

model fittings were carried out using the PROC NLMIXED procedure in SAS (Version 9, SAS Institute

Inc) and included no covariates other than time (see Source code 2 for SAS code). The AUC was

computed by GraphPad Prism 5 (USA) with the (X2-X1)*(Y1 +Y2)/2 formula (X = days post challenge;

Y = gametocytes per mL (�5 gametocytes/mL)) as used repeatedly for each adjacent pair of points

defining the curve; the total AUC was used.
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Duffier Y, Lorthiois A, Cisteró P, Dupuy F, Jouvion G, Fiette L, Mazier D, Mayor A, Lavazec C, Moreno Sabater A.
2016. A humanized mouse model for sequestration of Plasmodium falciparum sexual stages and in vivo
evaluation of gametocytidal drugs. Scientific Reports 6:35025. DOI: https://doi.org/10.1038/srep35025,
PMID: 27731362

Eichner M, Diebner HH, Molineaux L, Collins WE, Jeffery GM, Dietz K. 2001. Genesis, sequestration and survival
of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malariatherapy data.
Transactions of the Royal Society of Tropical Medicine and Hygiene 95:497–501. DOI: https://doi.org/10.1016/
S0035-9203(01)90016-1, PMID: 11706658

Farid R, Dixon MW, Tilley L, McCarthy JS. 2017. Initiation of gametocytogenesis at very low parasite density in
Plasmodium falciparum infection. The Journal of Infectious Diseases 215:1167–1174. DOI: https://doi.org/10.
1093/infdis/jix035, PMID: 28498997
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