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Abstract A significant body of research in cognitive neuroscience is aimed at understanding how

object concepts are represented in the human brain. However, it remains unknown whether and

where the visual and abstract conceptual features that define an object concept are integrated. We

addressed this issue by comparing the neural pattern similarities among object-evoked fMRI

responses with behavior-based models that independently captured the visual and conceptual

similarities among these stimuli. Our results revealed evidence for distinctive coding of visual

features in lateral occipital cortex, and conceptual features in the temporal pole and

parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and

conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was

highlighted by results from a searchlight analysis. Taken together, our findings suggest that

perirhinal cortex uniquely supports the representation of fully specified object concepts through

the integration of their visual and conceptual features.

DOI: https://doi.org/10.7554/eLife.31873.001

Introduction
Semantic memory imbues the world with meaning and shapes our understanding of the relationships

among object concepts. Many neurocognitive models of semantic memory incorporate the notion

that object concepts are represented in a feature-based manner (Rosch and Mervis, 1975;

Tyler and Moss, 2001; Rogers and McClelland, 2004). On this view, our understanding of the con-

cept ‘hairdryer’ is thought to reflect knowledge of observable perceptual properties (e.g. visual

form) and abstract conceptual features (e.g. ‘used to style hair’). Importantly, there is not always a

one-to-one correspondence between how something looks and what it is; a hairdryer and a comb

are conceptually similar despite being visually distinct, whereas a hairdryer and a gun are conceptu-

ally distinct despite being visually similar. Thus, a fully-specified representation of an object concept

(i.e. one that can be distinguished from any and all other concepts), requires integration of its per-

ceptual and conceptual features.

Neuroimaging research suggests that object features are coded in the modality-specific cortical

regions that supported their processing at the time of acquisition (Thompson-Schill, 2003). For

example, knowledge about the visual form of an object concept is thought to be coded in occipito-

temporal visual processing regions (Martin and Chao, 2001). However, neurocognitive models of

semantic memory differ with respect to how distributed feature representations relate to

fully specified object concepts. On one view, these representations are thought to emerge through

interactions among modality-specific cortical areas (Kiefer and Pulvermüller, 2012; Martin, 2016).
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Within a competing class of theories, they are thought to reflect the integration of modality-specific

features in trans-modal convergence zones (Damasio, 1989; Rogers et al., 2004; Binder and Desai,

2011), such as the anterior temporal lobes (ATL) (Patterson et al., 2007; Tranel, 2009; Ralph et al.,

2017).

The dominant view of the ATL as a semantic hub was initially shaped by neuropsychological inves-

tigations in individuals with semantic dementia (SD) (Patterson et al., 2007). Behaviorally, SD is

characterized by the progressive loss of conceptual knowledge across all receptive and expressive

modalities (Warrington, 1975; Hodges et al., 1992). At the level of neuropathology, SD is associ-

ated with extensive atrophy of the ATL, with the earliest and most pronounced volume loss in the

left temporal pole (Mummery et al., 2000; Galton et al., 2001). Most important from a theoretical

perspective, patients with SD tend to confuse conceptually similar objects that are visually distinct

(e.g. hairdryer – comb), but not visually similar objects that are conceptually distinct (e.g., hairdryer –

gun), indicating that the temporal pole expresses conceptual similarity structure (Graham et al.,

1994; see Peelen and Caramazza, 2012; Chadwick et al., 2016, for related neuroimaging evi-

dence). Taken together, these findings suggest that the temporal pole supports multi-modal integra-

tion of abstract conceptual, but not perceptual, features. Notably, however, a considerable body of

research indicates that the temporal pole may not be the only ATL structure that supports feature-

based integration.

The representational-hierarchical model of object coding emphasizes a role for perirhinal cortex

(PRC), located in the medial ATL, in feature integration that is distinct from that of the temporal

pole (Murray and Bussey, 1999). Namely, within this framework PRC is thought to support the inte-

gration of conceptual and perceptual features. In line with this view, object representations in PRC

have been described in terms of conceptual feature conjunctions in studies of semantic memory

(Moss et al., 2005; Bruffaerts et al., 2013; Clarke and Tyler, 2014; 2015; Wright et al., 2015),

and visual feature conjunctions in studies of visual processing (Barense et al., 2005;

2007; 2012; Lee et al., 2005; Devlin and Price, 2007; Murray et al., 2007; O’Neil et al., 2009;

eLife digest Our ability to interact with the world depends in large part on our understanding

of objects. But objects that look similar, such as a hairdryer and a gun, may do different things, while

objects that look different, such as tape and glue, may have similar roles. The fact that we can

effortlessly distinguish between such objects suggests that the brain combines information about an

object’s visual and abstract properties.

Nevertheless, brain imaging experiments show that thinking about what an object looks like

activates different brain regions to thinking about abstract knowledge. For example, thinking about

an object’s appearance activates areas that support vision, whereas thinking about how to use that

object activates regions that control movement. So how does the brain combine these different

kinds of information?

Martin et al. asked healthy volunteers to answer questions about objects while lying inside a brain

scanner. Questions about appearance (such as “is a hairdryer angular?”) activated different regions

of the brain to questions about abstract knowledge (“is a hairdryer manmade?”). But both types of

question also activated a region of the brain called the perirhinal cortex. When volunteers

responded to either type of question, the activity in their perirhinal cortex signaled both the physical

appearance of the object as well as its abstract properties, even though both types of information

were not necessary for the task. This suggests that information in the perirhinal cortex reflects

combinations of multiple features of objects.

These findings provide insights into a neurodegenerative disorder called semantic dementia.

Patients with semantic dementia lose their general knowledge about the world. This leads to

difficulties interacting with everyday objects. Patients may try to use a fork to comb their hair, for

example. Notably, the perirhinal cortex is a brain region that is usually damaged in semantic

dementia. Loss of combined information about the visual and abstract properties of objects may lie

at the core of the observed impairments.

DOI: https://doi.org/10.7554/eLife.31873.002
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Graham et al., 2010). However, it is difficult to synthesize results from these parallel lines of

research, in part, because conceptual and perceptual features tend to vary concomitantly across

stimuli (Mur, 2014). For example, demonstrating that ‘horse’ and ‘donkey’ are represented with

greater neural pattern similarity in PRC than are ‘horse’ and ‘dolphin’ may reflect differences in con-

ceptual or perceptual relatedness. Thus, although the representational-hierarchical account was ini-

tially formalized nearly two decades ago (Murray and Bussey, 1999), direct evidence of integration

across conceptual and perceptual features remains elusive.

In the current study, we used fMRI to identify where in the brain visual and conceptual object fea-

tures are stored, and to determine whether and where they are integrated at the level of

fully specified object representations. To this end, we first generated behavior-based models that

captured the visual and conceptual similarities among a set of object concepts, ensuring that these

dimensions were not confounded across stimuli (Figure 1). Next, participants were scanned using

task contexts that biased attention to either the conceptual or visual features of these well-character-

ized object concepts (Figure 2). We then used representational similarity analysis (RSA)

(Kriegeskorte and Kievit, 2013), implemented using ROI- and searchlight-based approaches, to

determine where the brain-based similarity structure among object-evoked multi-voxel activity pat-

terns could be predicted by the similarity structure in the behavior-based visual and conceptual simi-

larity models.

We predicted that lateral occipital cortex (LOC), an occipito-temporal region that has been impli-

cated in the processing of visual form (Grill-Spector et al., 1999; Kourtzi and Kanwisher, 2001;

Milner and Goodale, 2006), would represent stored visual object features in a visual similarity code.

Based on the neurocognitive models of semantic memory reviewed, we predicted that the temporal

pole would represent stored conceptual object features in a conceptual similarity code

(Patterson et al., 2007; Ralph et al., 2017). We also predicted conceptual similarity coding in para-

hippocampal cortex, which has been linked to the representation of the contextually-based co-

occurrence of objects (Bar, 2004; Aminoff et al., 2013). Critically, objects that are regularly encoun-

tered in the same context (e.g. ‘comb’ and ‘hairdryer’ in a barbershop) often share many conceptual

features (e.g. ‘used to style hair’). Thus, to the extent that shared conceptual features directly shape

contextual meaning, object-evoked responses in parahippocampal cortex may express conceptual

similarity structure. Returning to the primary objective of the study, we predicted that PRC would

uniquely represent the visual and conceptual features that define fully-specified object concepts in

an integrated similarity code.

Results

Behavior-based similarity models
Using a data-driven approach, we first generated behavior-based models that captured the visual

and conceptual similarities among 40 targeted object concepts (Figure 1). Notably, our visual simi-

larity model and conceptual similarity model were derived from behavioral judgments provided by

two independent groups of participants. For the purpose of constructing the visual similarity model,

the first group of participants (N = 1185) provided pairwise comparative similarity judgments

between object concepts (Figure 1A). Specifically, a pair of words was presented on each trial and

participants were asked to rate the visual similarity between the object concepts to which they

referred using a 5-point Likert scale. Similarity ratings for each pair of object concepts were aver-

aged across participants, normalized, and expressed within a representational dissimilarity matrix

(RDM). We refer to this RDM as the behavior-based visual RDM.

For the purpose of constructing the conceptual similarity model, a second group of participants

(N = 1600) completed an online feature-generation task (McRae et al., 2005; Taylor et al., 2012)

(Figure 1B). Each participant was asked to generate a list of conceptual features that characterize

one object concept (e.g. hairdryer: ‘used to style hair’, ‘found in salons’, ‘electrically powered’,

‘blows hot air’; comb: ‘used to style hair’, ‘found in salons’, ‘has teeth’, ‘made of plastic’). Concep-

tual similarity between all pairs of object concepts was quantified as the cosine angle between the

corresponding pairs of feature vectors. With this approach, high cosine similarity between object

concepts reflects high conceptual similarity. Cosine similarity values were then expressed within an

RDM, which we refer to as the behavior-based conceptual RDM.
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We next performed a second-level RSA to quantify the relationship between our behavior-based

visual RDM and behavior-based conceptual RDM. This comparison is denoted by the gray arrow

between behavior-based RDMs in Figure 1. Critically, this analysis revealed that the model RDMs

were not significantly correlated with one another (Kendall’s tau-a = 0.01, p=0.10), indicating that

Figure 1. Behavior-based RDMs. (A) Visual similarity rating task (top) and corresponding 40 � 40 behavior-based visual RDM (bottom). (B) Conceptual

feature generation task (top), abridged feature matrix depicting the feature frequencies across participants for each concept (middle), and

corresponding 40 � 40 behavior-based conceptual RDM (bottom). The dashed horizontal arrow between behavior-based RDMs denotes a second-level

RSA that compared these similarity models with one another. All object concepts are listed in Figure 1—source data 1 - Object concepts and targeted

pairs. Behavior-based RDMs (together with the word2vec RDM) are contained in Figure 1—source data 2 - Behavior-based RDMs and word2vec RDM.

DOI: https://doi.org/10.7554/eLife.31873.003

The following source data is available for figure 1:

Source data 1. Object concepts and targeted pairs.

DOI: https://doi.org/10.7554/eLife.31873.004

Source data 2. Behavior-based RDMs and word2vec RDM.

DOI: https://doi.org/10.7554/eLife.31873.005
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differences in visual and conceptual features were not confounded across object concepts. In other

words, ensuring that these different types of features varied independently across stimuli (e.g. hair-

dryer – gun; hairdryer – comb), rather than concomitantly (e.g. horse – donkey; horse – dolphin),

allowed us to isolate the separate influence of visual and conceptual features on the representational

structure of object concepts in the brain. In this example, a hairdryer and a gun are visually similar

but conceptually dissimilar, whereas a hairdryer and a comb are visually dissimilar but conceptually

similar.

Figure 2. Brain-based RDMs. (A) Example of object-evoked neural activity patterns obtained across all eight probes in the visual task context (top),

mean object-specific activity patterns averaged across repetitions (middle), and corresponding 40 � 40 brain-based visual task RDM derived from a

first-level RSA (bottom). (B) Example of object-evoked neural activity patterns obtained across all eight probes in the conceptual task context (top),

mean object-specific activity patterns averaged across repetitions (middle), and corresponding 40 � 40 brain-based conceptual task RDM derived from

a first-level RSA (bottom).

DOI: https://doi.org/10.7554/eLife.31873.006
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Comparison of behavior-based RDMs with a corpus-based (word2vec)
semantic RDM
We next sought to compare our behavior-based RDMs with a corpus-based model of conceptual

similarity. To this end, we implemented a word2vec language model, which mapped 3 million words

to 300 feature vectors in a high-dimensional space (Mikolov et al., 2013). The model was trained

using ~100 billion words from a Google News dataset. From this model, we calculated the cosine

similarity between feature vectors for all pairs of words in our stimulus set. These data were

expressed in a 40 � 40 word2vec RDM (Figure 1—source data 1 contains the word2vec RDM).

Importantly, the word2vec RDM was significantly correlated with our behavior-based conceptual

RDM (Kendall’s tau-a = 0.11, SE = 0.0141, p<0.00001), suggesting that both models captured the

conceptual similarity structure among the object concepts. However, the word2vec RDM was also

significantly correlated with our behavior-based visual RDM (Kendall’s tau-a = 0.04, SE = 0.0130,

p<0.001). This result suggests that, in line with our objectives, the behavior-based conceptual RDM

captured semantic similarity selectively defined as conceptual object features, whereas the word2vec

RDM may have captured a broader definition of semantic similarity, that is, one that includes both

visual semantics and abstract conceptual features. Consistent with this view, gun and hairdryer were

conceptually unrelated in our behavior-based conceptual RDM (cosine = 0), whereas the word2vec

RDM suggested modest conceptual similarity (cosine = 0.16). Although this difference is likely deter-

mined by multiple factors, it is important to note that gun and hairdryer had a relatively high visual

similarity index in our behaviour-based visual RDM (normalized mean rating = 0.58). These data

highlight a theoretically important distinction between our behaviorally derived conceptual feature-

based statistics and corpus-based estimates of semantic similarity. Specifically, the former allow for

distinctions between visual and conceptual object features, whereas corpus-based models may not.

fMRI task and behavioral results
We used fMRI to estimate the representational structure of our 40 object concepts from neural activ-

ity patterns in an independent group of participants (Figure 2). Given our specific interest in under-

standing pre-existing representations of object concepts rather than bottom-up perceptual

processing, all stimuli were presented as words. This approach ensured that conceptual and visual

features were extracted from pre-existing representations of object concepts. That is to say, both

conceptual and visual features were arbitrarily related to the physical input (i.e. the orthography of

the word). By contrast, when pictures are used as stimuli, visual features are accessible from the pic-

torial cue, whereas conceptual features require abstraction from the cue. Functional brain data were

acquired over eight experimental runs, each of which consisted of two blocks of stimulus presenta-

tion. All 40 object concepts were presented sequentially within each block, for a total of 16 repeti-

tions per concept. On each trial, participants were asked to make a ‘yes/no’ property verification

judgment in relation to a block-specific verification probe. Half of the blocks were associated with

verification probes that encouraged processing of visual features (e.g. ‘is the object angular?”), and

the other half were associated with verification probes that encouraged processing of conceptual

features (e.g. ‘is the object a tool?”). Each run consisted of one visual feature verification block and

one conceptual feature verification block, with order counterbalanced across runs. With this experi-

mental design, we were able to characterize neural responses to object concepts across two task

contexts: a visual task context (Figure 2A) and a conceptual task context (Figure 2B).

Behavioral performance on the scanned property verification task indicated that participants

interpreted the object concepts and property verification probes with a high degree of consistency

(Figure 3). Specifically, all participants (i.e. 16/16) provided the same yes/no response to the prop-

erty verification task on 88.4% of all trials. Agreement was highest for the ‘living’ verification probe

(96.8%) and lowest for the ‘non-tool’ verification probe (73.2%). Moreover, the proportion of trials

on which all participants provided the same response did not differ between the visual feature verifi-

cation task context (mean = 87.3% collapsed across all eight visual probes) and the conceptual fea-

ture verification task context (mean = 89.5% collapsed across all eight conceptual probes) (z = 0.19,

p=0.85). Response latencies were also comparable across the visual feature verification task context

(mean = 1361 ms, SD = 303) and the conceptual feature verification task context (mean = 1376 ms,

SD = 315) (t (15)=1.00, p=0.33, 95% CI [�49.09, 17.71).
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ROI-based RSA: comparison of behavior-based RDMs with brain-based
RDMs
We next quantified pairwise similarities between object-evoked multi-voxel activity patterns using a

first-level RSA (Figure 2). For the purpose of conducting ROI-based RSA, we focused on multi-voxel

activity patterns obtained in PRC, the temporal pole, parahippocampal cortex, and LOC. ROIs from

a representative participant are presented in Figure 4. These ROIs were selected a priori based on

empirical evidence linking their respective functional characteristics to visual object processing, con-

ceptual object processing, or both. Our primary focus was on PRC, which has been linked to integra-

tive coding of visual object features and conceptual object features across parallel lines of research

(Barense et al., 2005; 2007; 2012; Lee et al., 2005; O’Neil et al., 2009; Bruffaerts et al., 2013;

Clarke and Tyler, 2014; 2015; Wright et al., 2015; Erez et al., 2016). The temporal pole has pri-

marily been linked to processing of conceptual object properties (Mummery et al., 2000;

Galton et al., 2001; Patterson et al., 2007; Pobric et al., 2007; Lambon Ralph et al., 2009;

Peelen and Caramazza, 2012; Chadwick et al., 2016). Parahippocampal cortex has been impli-

cated in the conceptual processing of contextual associations, including representing the co-occur-

rence of objects, although its functional contributions remain less well defined than the temporal

pole (Bar and Aminoff, 2003; Aminoff et al., 2013; Ranganath and Ritchey, 2012). Lastly, LOC,

which is a functionally defined region in occipito-temporal cortex, has been revealed to play a critical

role in processing visual form (Grill-Spector et al., 1999; Kourtzi and Kanwisher, 2001; Milner and

Goodale, 2006). Because we did not have any a priori predictions regarding hemispheric differen-

ces, estimates of neural pattern similarities between object concepts were derived from multi-voxel

activity collapsed across ROIs in the left and right hemisphere.

Object-specific multi-voxel activity patterns were estimated in each run using general linear mod-

els fit to data from the visual and conceptual task contexts, separately. Mean object-specific

responses were then calculated for each task context by averaging across runs. Linear correlation

distances (Pearson’s r) were calculated between all pairs of object-specific multi-voxel activity pat-

terns within each task context and expressed in participant-specific brain-based visual task RDMs

and brain-based conceptual task RDMs. The brain-based visual task RDMs captured the neural pat-

tern similarities obtained between all object concepts in the visual task context (i.e. while partici-

pants made visual feature verification judgments) (Figure 2A), and the brain-based conceptual task

Figure 3. fMRI feature verification task performance. Percentage of trials on which all participants (i.e. 16/16)

provided the same ‘yes/no’ response for each property verification probe.

DOI: https://doi.org/10.7554/eLife.31873.007
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RDMs captured the neural pattern similarities obtained between all object concepts in the concep-

tual task context (i.e. while participants made conceptual feature verification judgments) (Figure 2B).

We implemented second-level RSA to compare behavior-based visual and conceptual RDMs with

the brain-based visual and conceptual task RDMs (these comparisons are denoted by the solid verti-

cal and diagonal arrows in Figure 5). All RDMs were compared in each ROI using a ranked correla-

tion coefficient (Kendall’s tau-a) as a similarity index (Nili et al., 2014). Inferential statistical analyses

were performed using a one-sided Wilcoxon signed-rank test, with participants as a random factor.

A Bonferroni correction was applied to adjust for multiple comparisons (4 ROIs x 2 behavior-based

RDMs x 2 brain-based RDMs = 16 comparisons, yielding a critical alpha of. 003). With this approach,

we revealed that object concepts are represented in three distinct similarity codes that differed

across ROIs: a visual similarity code, a conceptual similarity code, and an integrative code. Results

from our ROI-based RSA analyses are shown in Figure 6 and discussed in turn below.

Lateral occipital cortex represents object concepts in a task-dependent
visual similarity code
Consistent with its well-established role in the processing of visual form, patterns of activity within

LOC reflected the visual similarity of the object concepts (Figure 6A). Specifically, the brain-based

visual task RDMs obtained across participants in LOC were significantly correlated with the behavior-

based visual RDM (Kendall’s tau-a = 0.045, p<0.002), but not the behavior-based conceptual RDM

(Kendall’s tau-a = �0.006, p=0.72). In other words, activity patterns in LOC expressed a visual simi-

larity structure when participants were asked to make explicit judgments about the visual features

that characterized object concepts (e.g. whether an object is angular in form). By contrast, the brain-

based conceptual task RDMs obtained across participants in LOC were not significantly correlated

with either the behavior-based visual RDM (Kendall’s tau-a = 0.006, p=0.13) or the behavior-based

conceptual RDM (Kendall’s tau-a = 0.003, p=0.65). That is to say, activity patterns in LOC expressed

neither visual nor conceptual similarity structure when participants made judgments that pertained

to conceptual object features (e.g. whether an object is naturally occurring). Considered together,

these results suggest that LOC represented perceptual information about object concepts in a task-

Figure 4. ROIs in a representative participant. Cortical regions examined in the ROI-based RSAs, including lateral occipital cortex (green),

parahippocampal cortex (pink), perirhinal cortex (purple), and the temporal pole (cyan).

DOI: https://doi.org/10.7554/eLife.31873.008
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dependent visual similarity code. Specifically, when task demands biased attention toward visual fea-

tures, signals in LOC generalized across visually related object concepts even when they are concep-

tually distinct (e.g. hairdryer – gun).

Parahippocampal cortex represents object concepts in a task-
dependent conceptual similarity code
Patterns of activity obtained in parahippocampal cortex, which has previously been associated with

the processing of semantically-based contextual associations (Bar and Aminoff, 2003;

Aminoff et al., 2013), reflected the conceptual similarity of the object concepts (Figure 6B). First,

the brain-based visual task RDMs obtained across participants in parahippocampal cortex were not

significantly correlated with either the behavior-based visual RDM (Kendall’s tau-a = 0.005, p=0.26)

or the behavior-based conceptual RDM (Kendall’s tau-a = 0.009, p=0.26). In other words, activity

patterns in parahippocampal cortex expressed neither visual nor conceptual similarity structure

when participants made judgments that pertained to conceptual object features (e.g. whether an

object is symmetrical). Second, the brain-based conceptual task RDMs obtained across participants

in parahippocampal cortex were not significantly related to the behavior-based visual RDM (Ken-

dall’s tau-a = �0.008, p=0.55), but they were correlated with the behavior-based conceptual RDM

(Kendall’s tau-a = 0.046, p<0.002). Thus, activity patterns in parahippocampal cortex expressed a

conceptual similarity structure when participants were asked to make explicit judgments about the

conceptual features that characterized object concepts (e.g. whether an object is a tool). Put another

way, conceptual information was represented in parahippocampal cortex in a task-dependent man-

ner that generalized across conceptually related object concepts even when they were visually dis-

tinct (e.g. hairdryer – comb).

The temporal pole represents object concepts in a task-invariant
conceptual similarity code
In line with theoretical frameworks that have characterized the temporal pole as a semantic hub

(Patterson et al., 2007; Tranel, 2009), patterns of activity within this specific ATL structure reflected

the conceptual similarity of the object concepts (Figure 6D). Specifically, whereas the brain-based

visual task RDMs obtained across participants in the temporal pole were not significantly correlated

with the behavior-based visual RDM (Kendall’s tau-a = 0.006, p=0.25), they were correlated with the

behavior-based conceptual RDM (Kendall’s tau-a = 0.035, p<0.001). In other words, activity patterns

in the temporal pole expressed a conceptual similarity structure when participants were asked to

make explicit judgments about the visual features that characterized object concepts (e.g. whether

Figure 5. Second-level RSAs. Solid vertical and diagonal arrows reflect second-level RSA in which behavior-based RDMs were compared with brain-

based RDMs (ROI-based results in Figure 6, searchlight-based results in Figures 9, 10 and 11). The dashed horizontal arrow between brain-based

RDMs reflects second-level RSA in which neural pattern similarities from each task context were directly compared with each other (results in Figure 7).

DOI: https://doi.org/10.7554/eLife.31873.009
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an object is elongated). Similarly, whereas the brain-based conceptual task RDMs obtained across

participants in the temporal pole were not significantly correlated with the behavior-based visual

RDM (Kendall’s tau-a = 0.0005, p=0.47), they were correlated with the behavior-based conceptual

RDM (Kendall’s tau-a = 0.05, p<0.0001). Thus, activity patterns in the temporal pole expressed a

conceptual similarity structure when participants were asked to make explicit judgments about either

the visual or conceptual features that characterized object concepts (e.g. whether an object is dark

in color, or whether an object is pleasant). In other words, conceptual information was represented

in the temporal pole in a task-invariant manner that generalized across conceptually related object

concepts even when they were visually distinct (e.g. hairdryer – comb).

Perirhinal cortex represents object concepts in a task-invariant
similarity code that reflects integration of visual and conceptual
features
Results obtained in PRC support the notion that this structure integrates visual and conceptual

object features (6C), as first theorized in the representational-hierarchical model of object represen-

tation (Murray and Bussey, 1999). Namely, we revealed that the brain-based visual task RDMs

obtained across participants in PRC were significantly correlated with both the behavior-based visual

RDM (Kendall’s tau-a = 0.052, p<0.0001), and the behavior-based conceptual RDM (Kendall’s tau-

Figure 6. Comparison of behavior-based and brain-based RDMs. Similarities between behavior-based and brain-based RDMs are plotted for (A) LOC,

(B) parahippocampal cortex, (C) PRC, and (D) the temporal pole. These comparisons are denoted by the solid vertical and diagonal arrows in Figure 5.

Similarity was quantified as the ranked correlation coefficient (Kendall’s tau-a) between behavior-based RDMs and the brain-based RDMs. Error bars

indicate standard error of the mean. ***p<0.001, **p<0.01, *p<0.05 (Bonferroni corrected). Participant-specific Kendall’s tau-a co-efficients are

contained in Figure 6—source data 1 - Comparison of similarity models and brain-based RDMs.

DOI: https://doi.org/10.7554/eLife.31873.010

The following source data and figure supplement are available for figure 6:

Source data 1. Comparison of similarity models and brain-based RDMs.

DOI: https://doi.org/10.7554/eLife.31873.012

Figure supplement 1. Comparison of word2vec RDM with brain-based RDMs.

DOI: https://doi.org/10.7554/eLife.31873.011
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a = 0.036, p<0.0003). Similarly, the brain-based conceptual task RDMs obtained across participants

were also correlated with both the behavior-based visual RDM (Kendall’s tau-a = 0.035, p<0.002),

and the behavior-based conceptual RDM (Kendall’s tau-a = 0.057, p<0.0001). In other words, activity

patterns in PRC expressed both visual and conceptual similarity structure when participants were

asked to make explicit judgments about the visual features that characterized object concepts (e.g.

whether an object is round) and when participants were asked to make explicit judgments about the

conceptual features that characterized object concepts (e.g. whether an object is manufactured).

Numerically, patterns of activity in PRC showed more similarity to the behavior-based visual RDM

than to the behavior-based conceptual RDM in the visual task context, and vice versa in the concep-

tual task context. Therefore, we performed a 2 [behavior-based RDMs] x 2 [brain-based task RDMs]

repeated measures ANOVA to formally test for an interaction between behavior-based model and

fMRI task context. For this purpose, all Kendall’s tau-a values were transformed to Pearson’s r co-

efficients (r = sin (½ p tau-a), Walker, 2003), which were then Fisher-z transformed. The task x model

interaction neared, but did not reach, significance (F(1,15) = 3.48, p=0.082).

In sum, these findings indicate that PRC simultaneously expressed both conceptual and visual

similarity structure, and did so regardless of whether participants were asked to make targeted

assessments of conceptual or visual features. In other words, activity patterns in PRC captured the

conceptual similarity between hairdryer and comb, as well as the visual similarity between hairdryer

and gun, and did so irrespective of task context. Critically, these results were obtained despite the

fact that the brain-based RDMs were orthogonal to one another (i.e. not significantly correlated).

Considered together, these results suggest that, of the a priori ROIs considered, PRC represents

object concepts at the highest level of specificity through integration of visual and conceptual

features.

Figure 7. Comparison of brain-based RDMs. (A) Similarities between brain-based visual task RDMs and brain-based conceptual task RDMs within

lateral occipital cortex (LOC), parahippocampal cortex (PHC), perirhinal cortex (PRC), and the temporal pole (TP). These comparisons are denoted by

the dashed horizontal arrow in the bottom of Figure 5. (B) Similarities between brain-based visual task RDMs across different ROIs. Labels on the x-axis

denote the ROIs being compared. (C) Similarities between brain-based conceptual task RDMs across different ROIs. Similarity was quantified as the

ranked correlation coefficient (Kendall’s tau-a) between behavior-based RDMs and the brain-based RDMs. Error bars indicate standard error of the

mean. ***p<0.001 (Bonferroni corrected),~p < 0.05 (uncorrected). Participant-specific Kendall’s tau-a co-efficients are contained in Figure 7—source

data 1 - Comparison of brain-based RDMs.

DOI: https://doi.org/10.7554/eLife.31873.013

The following source data is available for figure 7:

Source data 1. Comparison of brain-based RDMs.

DOI: https://doi.org/10.7554/eLife.31873.014
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ROI-based RSA: comparison of corpus-based (word2vec) semantic RDM
with brain-based RDMs
For the purpose of comparison, we next examined similarities between the word2vec RDM and the

brain-based RDMs using the same procedures described in the previous section. Results are pre-

sented in Figure 6—figure supplement 1. These analyses revealed significant positive correlations

between the word2vec RDM and the brain-based conceptual task RDMs in parahippocampal cortex

(Kendall’s tau-a = 0.05, p<0.01), PRC (Kendall’s tau-a = 0.035, p<0.01), and the temporal pole (Ken-

dall’s tau-a = 0.029, p<0.01). The word2vec RDM was also significantly correlated with the brain-

based visual task RDMs in PRC (Kendall’s tau-a = 0.025, p<0.05) and the temporal pole (Kendall’s

tau-a = 0.027, p<0.05). Notably, this pattern of results was identical to that obtained using the

behavior-based conceptual RDMs in parahippocampal cortex, PRC, and the temporal pole. Interest-

ingly, however, the word2vec RDM was also significantly correlated with the brain-based visual task

RDMs in LOC (Kendall’s tau-a = 0.028, p<0.05). This result is consistent with the observation that the

word2vec RDM was significantly correlated with our behavior-based visual RDM, and further sug-

gests that corpus-based models of semantic memory likely capture similarities between object con-

cepts at the level of abstract conceptual properties and visual semantics.

ROI-based RSA: comparisons of brain-based RDMs within ROIs
Having examined the relationships between behavior-based RDMs and brain-based RDMs, we next

sought to directly characterize the relationships between brain-based conceptual and visual RDMs

within each ROI (these comparisons are denoted by the dashed horizontal arrow in the bottom of

Figure 5). These analyses were conducted using the same methodological procedures used to com-

pare behavior-based RDMs with brain-based RDMs in the previous section. A Bonferroni correction

Figure 8. Comparison of within-object multi-voxel activity patterns across different task contexts. (A) Depiction of first-level RSA procedure for

quantifying within-object multi-voxel activity patterns across the visual and conceptual task contexts. (B) Mean similarities between within-object multi-

voxel activity patterns across different task contexts within each region of interest. Similarity was quantified as the linear correlation coefficient

(Pearson’s r) between object-evoked multi-voxel activity patterns. Lateral occipital cortex (LOC), parahippocampal cortex (PHC), perirhinal cortex (PRC),

and the temporal pole (TP). Error bars indicate standard error of the mean. **p<0.01, *p<0.05 (Bonferroni corrected). Participant-specific Pearson’s r co-

efficients are contained in Figure 8—source data 1 - Comparison of within-object similarity across task contexts.

DOI: https://doi.org/10.7554/eLife.31873.015

The following source data is available for figure 8:

Source data 1. Comparison of within-object similarity across task contexts.

DOI: https://doi.org/10.7554/eLife.31873.016
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was applied to adjust for multiple comparisons (16 brain-based comparisons, yielding a critical alpha

of. 003). Using second-level RSAs, we asked whether the brain-based visual task RDMs and brain-

based conceptual task RDMs had a common similarity structure within a given ROI. Results are plot-

ted in Figure 7A. Importantly, we found a significant positive correlation in PRC (Kendall’s tau-

a = 0.063, p<0.0001), and a trend toward a significant correlation in the temporal pole (Kendall’s

tau-a = 0.032, p=0.012). Conversely, brain-based visual and conceptual task RDMs were not signifi-

cantly correlated in either parahippocampal cortex (Kendall’s tau-a = 0.008, p=0.12), or LOC (Ken-

dall’s tau-a = �0.008, p=0.92). These results suggest that object concepts were represented

similarly within PRC, and to a lesser extent within the temporal pole, regardless of whether they

were encountered in a visual or conceptual task context.

ROI-based RSA: comparisons of brain-based RDMs across ROIs
We next conducted second-level RSAs to quantify representational similarities between the brain-

based visual task RDMs obtained across different ROIs. In other words, we asked whether activity in

different ROIs (e.g. PRC and LOC) reflected similar representational distinctions across object con-

cepts within the visual task context. Results are plotted in Figure 7B. Interestingly, these analyses

did not reveal any significant results between any of our ROIs (all Kendall’s tau-a <0.01, all p>0.07).

These findings indicate that PRC and LOC, two regions that expressed a visual similarity code, repre-

sented different aspects of the visual object features.

Figure 9. Visual task context representational similarity searchlight mapping results. (A) Cortical regions in which the brain-based visual task RDMs were

significantly correlated with the behavior-based visual RDM. (B) Cortical regions in which the brain-based visual task RDMs were significantly correlated

with the behavior-based conceptual RDM. The correlation coefficients (Kendall’s tau-a) obtained between behavior-based RDMs and brain-based RDMs

were Fisher-z transformed and mapped to the voxel at the centre of each searchlight. Similarity maps were corrected for multiple comparisons using

threshold-free cluster enhancement with a corrected statistical threshold of p<0.05 on the cluster level (Smith and Nichols, 2009). Outlines are shown

for the lateral occipital cortex (green), parahippocampal cortex (pink), perirhinal cortex (purple), and the temporal pole (cyan).

DOI: https://doi.org/10.7554/eLife.31873.017
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Finally, we quantified the representational similarities between the brain-based conceptual task

RDMs obtained across different ROIs. In other words, we asked whether activity in different ROIs

(e.g. PRC and the temporal pole) reflected similar representational distinctions across object con-

cepts within the conceptual task context. Results are plotted in Figure 7C. This set of analyses did

not reveal any significant results between any of our ROIs (all Kendall’s tau-a <0.016, all p>0.012).

These findings indicate that the three regions that expressed a conceptual similarity code (i.e., PRC,

parahippocampal cortex, and temporal pole), represented different aspects of the conceptual object

features.

ROI-based RSA: comparisons of within-object multi-voxel activity
patterns across different task contexts
The RSAs reported thus far have quantified relationships among behavior-based and brain-based

RDMs that reflected similarities between different object concepts (e.g. between ‘hairdryer’ and

‘comb’). We next quantified within-object similarities (e.g. between ‘hairdryer’ and ‘hairdryer’) across

visual and conceptual task contexts (e.g. ‘is it living?’ or ‘is it angular?”) using first-level RSAs. Specif-

ically, we calculated one dissimilarity value (1 – Pearson’s r) between the mean multi-voxel activity

patterns evoked by a given object concept across different task contexts. These 40 within-object dis-

similarity values were expressed along the diagonal of an RDM for each ROI in each participant,

Figure 10. Conceptual task context representational similarity searchlight mapping results. (A) Cortical regions in which the brain-based conceptual

task RDMs were significantly correlated with the behavior-based visual RDM. (B) Cortical regions in which the brain-based conceptual task RDMs were

significantly correlated with the behavior-based conceptual RDM. The correlation coefficients (Kendall’s tau-a) obtained between behavior-based RDMs

and brain-based RDMs were Fisher-z transformed and mapped to the voxel at the centre of each searchlight. Similarity maps were corrected for

multiple comparisons using threshold-free cluster enhancement with a corrected statistical threshold of p<0.05 on the cluster level (Smith and Nichols,

2009). Outlines are shown for the lateral occipital cortex (green), parahippocampal cortex (pink), perirhinal cortex (purple), and the temporal pole

(cyan).

DOI: https://doi.org/10.7554/eLife.31873.018
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separately (Figure 8A). We next calculated mean within-object dissimilarity by averaging across the

diagonal of each RDM for the purpose of performing statistical inference.

Results are presented in Figure 8B. Within-object similarity did not differ from zero in either LOC

(Pearson’s r = 0.007, p=0.20) or parahippocampal cortex (Pearson’s r = �0.008, p=0.87), suggesting

that a given object concept was represented differently across the visual and conceptual task con-

texts in these ROIs. These findings are consistent with the task-dependent nature of the similarity

codes we observed in these regions (Figure 6A and B). Conversely, within-object similarity was sig-

nificantly greater than zero in the temporal pole (Pearson’s r = 0.34, p<0.05, Bonferroni corrected

for four comparisons), indicating that this structure represents a given object concept similarly across

different task contexts. This observation is consistent with results from the previous section which

revealed that the similarities between object concepts in the temporal pole are preserved across

task contexts (Figure 7A). These findings reflected the fact that the same conceptual object informa-

tion (e.g. ‘used to style hair’ and ‘found in salons’) was carried in multi-voxel activity patterns

obtained in each task context (Figure 6D). Within-object similarity was also significantly greater than

zero in PRC (Pearson’s r = 0.41, p<0.01, Bonferroni corrected for four comparisons), again indicating

that a given object concept was represented similarly across different task contexts. This finding

dovetails with our result from the previous section which revealed that the similarities between

object concepts in PRC were preserved across task contexts (Figure 7A). When considered

together, we interpret this pattern of results in PRC as further evidence of integrative coding, reflect-

ing the fact that this structure carried the same conceptual (e.g. ‘used to style hair’ and ‘found in sal-

ons’) and visual (e.g. visually similar to a gun) object information in both task contexts (Figure 6C).

Searchlight-based RSA: comparisons of behavior-based RDMs with
brain-based RDMs
Perirhinal cortex is the only cortical region that supports integrative coding
of conceptual and visual object features
We next implemented a whole-volume searchlight-based RSA to further characterize the neuroana-

tomical specificity of our ROI-based results. Specifically, we sought to determine whether object rep-

resentations in PRC expressed visual and conceptual similarity structure within overlapping or

distinct populations of voxels. If PRC does indeed support the integrative coding of visual and con-

ceptual object features, then the same set of voxels should express both types of similarity codes. If

PRC does not support the integrative coding of visual and conceptual object features, then different

subsets of voxels should express these different similarity codes. More generally, data-driven search-

light mapping allowed us to explore whether any other regions of the brain showed evidence for

integrative coding of visual and conceptual features in a manner comparable to that observed in

PRC. To this end, we performed searchlight RSA using multi-voxel activity patterns restricted to a

Figure 11. Overlap of searchlight similarity maps. (A) Overlap between similarity maps obtained in the visual task context (i.e. overlapping voxels from

Figure 9A and B). (B) Overlap between similarity maps obtained in the conceptual task context (i.e. overlapping voxels from Figure 10A and B). (C)

Overlap across brain-behavior similarity maps across both task contexts (i.e. overlapping voxels from Figures 9A, B, 10A and B). Outlines are shown for

the lateral occipital cortex (green), parahippocampal cortex (pink), perirhinal cortex (purple), and the temporal pole (cyan).

DOI: https://doi.org/10.7554/eLife.31873.020
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100 voxel ROI that was iteratively swept across the entire cortical surface (Kriegeskorte et al.,

2006; Oosterhof et al., 2011). In each searchlight ROI, the behavior-based RDMs were compared

with the brain-based RDMs using a procedure identical to that implemented in our ROI-based RSA.

These comparisons are depicted by the solid black vertical and diagonal arrows in Figure 5. The

obtained similarity values (Pearson’s r) were Fisher-z transformed and mapped to the center of each

ROI for each participant separately. With this approach, we obtained participant-specific similarity

maps for all comparisons, which were then standardized and subjected to a group-level statistical

analysis. A threshold-free cluster enhancement (TFCE) method was used to correct for multiple com-

parisons with a cluster threshold of p<0.05 (Smith and Nichols, 2009).

Statistically thresholded group-level similarity maps depicting cortical regions in which behavior-

and brain-based RDMs were significantly correlated are presented for the visual task context in Fig-

ure 9, and for the conceptual task context in Figure 10. Corresponding cluster statistics, co-ordi-

nates, and neuroanatomical labels are reported in Table 1. Importantly, results from our whole-

volume searchlight mapping analysis showed a high degree of consistency with our ROI-based

results. First, we found evidence for visual similarity coding in the visual task context in aspects of

right LOC (Figure 9A), as well as aspects of early visual cortex, posterior parietal cortex, and areas

of medial and lateral ventral temporal cortex (Figure 9A). Next, we revealed conceptual similarity

coding in the conceptual task context within a cluster of voxels that straddled the border between

right parahippocampal cortex and PRC (Figure 10B). Although this cluster was only partially situated

with parahippocampal cortex, it is interesting to note that its posterior extent did slightly encroach

upon anterior aspects of the parahippocampal place area (PPA; functionally defined using a group-

level GLM (scenes > objects); Epstein and Kanwisher, 1998), which has previously been linked to

the representation of abstract conceptual information (Aminoff et al., 2007; Baldassano et al.,

2013; Marchette et al., 2015). Moreover, we found evidence of conceptual similarity coding in

bilateral aspects of the temporal pole in both task contexts (Figures 9B and 10B), an observation

that is consistent with results from multiple prior studies that have demonstrated conceptual similar-

ity structure this aspect of the ATL (Peelen and Caramazza, 2012; Chadwick et al., 2016; cf

Fairhall and Caramazza, 2013). Finally, and most importantly, results from the whole-brain search-

light revealed evidence for visual similarity coding and conceptual similarity coding in PRC in both

task contexts (Figures 9 and 10). This result dovetails with findings from previous RSA-based fMRI

research that has demonstrated conceptual similarity coding in PRC (Bruffaerts et al., 2013;

Clarke and Tyler, 2014; cf Fairhall and Caramazza, 2013).

Although suggestive, neither the searchlight- nor the ROI-based RSA results presented thus far

necessarily imply integrative coding in PRC. Indeed, it is possible that visual and conceptual object

information was carried in spatially distinct sub-regions of this structure. To examine this issue, we

first asked whether any voxels showed both visual and conceptual similarity coding in the visual task

context (similarity maps in Figure 9A and B, respectively) using a voxel overlap analysis

(Figure 11A). Importantly, we revealed a contiguous cluster of voxels that was unique to left PRC in

which both behavior-based RDMs predicted the similarity structure in the brain-based visual task

RDMs. This result indicated that a subset of voxels in PRC carried information about visual and con-

ceptual object information even when task demands biased attention toward visual object features.

We next asked whether any voxels showed both visual and conceptual similarity coding in the con-

ceptual task context (similarity maps in Figure —figure supplement 10A and B, respectively) using

a second voxel overlap analysis (Figure 11B). This analysis also revealed a contiguous cluster of vox-

els that was unique to left PRC in which both behavior-based RDMs predicted the similarity structure

in the brain-based conceptual task RDMs. This finding indicated that a subset of voxels in PRC car-

ried information about visual and conceptual object information when task demands biased atten-

tion toward conceptual object features.

In a final step using a third voxel overlap analysis, we examined whether any voxels showed both

visual and conceptual similarity coding in both the visual and conceptual task contexts (Figure 11C).

This analysis revealed a contiguous cluster of voxels in left PRC in which both behavior-based RDMs

predicted the similarity structure captured by both brain-based RDMs. This result indicated that a

subset of voxels that were unique to PRC carried information about visual and conceptual object

information regardless of whether task demands biased attention toward visual or conceptual object

features. Ultimately, this pattern of results suggests that not only does PRC carry both visual and

conceptual object information, but it does so in the same subset of voxels.
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Discussion
Decades of research has been aimed at understanding how object concepts are represented in the

brain (Warrington, 1975; Hodges et al., 1992; Martin et al., 1995; Murray and Bussey, 1999;

Chen et al., 2017), yet the fundamental question of whether and where their visual and conceptual

features are integrated remains unanswered. Progress toward this end has been hindered by the

fact that these features tend to vary concomitantly across object concepts. Here, we used a data-

driven approach to systematically select a set of object concepts in which visual and conceptual fea-

tures varied independently (e.g. hairdryer – comb, which are conceptually similar but visually distinct;

hairdryer – gun, which are visually similar but conceptually distinct). Using RSA of fMRI data, we

revealed novel evidence of task-dependent visual similarity coding in LOC, task-dependent

Table 1. Clusters in which behavior-based RDMs were significantly correlated with brain-based RDMs as revealed using

representational similarity searchlight analyses, with corresponding cluster extent, peak z-values, and MNI co-ordinates1.

Region Cluster extent Peak z-value X Y Z

Visual task context

Behavior-Based Visual RDM – Brain-Based Visual Task RDM

Mid calcarine 1660 5.79 -2 �74 12

R lateral occipital cortex 455 3.89 50 �66 4

R perirhinal cortex 112 3.64 34 �12 �34

L superior parietal
lobule

110 3.21 �32 �40 44

L perirhinal cortex 76 2.85 �30 �12 �36

R superior parietal
lobule

48 2.64 38 �54 54

R fusiform gyrus 45 2.77 40 �46 �20

R precuneus 29 2.66 12 �76 48

R Inferior Temporal
Gyrus

9 2.52 44 �22 �28

Behavior-Based Conceptual RDM – Brain-Based Visual Task RDM

L Perirhinal Cortex 368 3.96 �24 2 �38

R Perirhinal Cortex 232 3.26 22 2 �36

Overlap

L Perirhinal Cortex 22 �30 -8 �38

Conceptual task context

Behavior-Based Conceptual RDM – Brain-Based Conceptual Task RDM

L Perirhinal Cortex 79 2.88 �30 �10 �34

R Parahippocampal Cortex 64 2.94 30 �24 �24

L Temporal Pole 61 2.89 �34 4 �26

R Temporal Pole 25 2.70 24 12 �36

Behavior-Based Visual RDM – Brain-Based Conceptual Task RDM

L Perirhinal Cortex 98 4.87 �26 -4 �10

R Perirhinal Cortex 26 3.01 28 �12 �34

Overlap

L Perirhinal Cortex 31 �26 -8 �42

Overlap across all Behavior-Based RDMs and Brain-Based RDMs

L Perirhinal Cortex 16 �30 -8 �36

1MNI co-ordinates are reported for the peak voxel in individual clusters and the centre of mass for cluster overlap.

DOI: https://doi.org/10.7554/eLife.31873.019
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conceptual similarity coding in parahippocampal cortex, task-invariant coding in the temporal pole,

and task-invariant integrative coding in PRC.

Several aspects of our data provide novel support for the notion that PRC uniquely represents

the visual and conceptual features that define fully specified object concepts in an integrated similar-

ity code. First, this was the only region of the brain in which both visual and conceptual object cod-

ing was revealed. Moreover, these effects were observed regardless of whether fMRI task demands

biased attention toward visual or conceptual object features. These results are particularly striking

given the fact that they were revealed using a behavior-based visual similarity model and a behavior-

based conceptual similarity model that were orthogonal to one another. In other words, the degree

of similarity between multi-voxel activity patterns obtained while participants made conceptual judg-

ments, such as whether a ‘hairdryer’ is man-made or a ‘gun’ is pleasant, was captured by the degree

of visual similarity between these object concepts. Likewise, the degree of similarity between multi-

voxel activity patterns obtained while participants made visual judgments, such as whether a ‘hair-

dryer’ is angular or a ‘comb’ is elongated, was captured by the degree of conceptual similarity

between these object concepts. In both cases, PRC carried information about pre-existing represen-

tations of object features that were neither required to perform the immediate task at hand, nor cor-

related with the features that did in fact have task-relevant diagnostic value. Moreover, we also

found that the brain-based visual task RDMs and brain-based conceptual task RDMs were correlated

with one another across task contexts in PRC. That is to say, the similarity between ‘hairdryer’ and

‘gun’ was comparable regardless of whether task demands biased attention toward visual or concep-

tual features. Likewise, we also revealed that PRC also represented a given object concept similarly

across task contexts, that is, ‘hairdryer’ evoked a pattern of activation that was comparable across

task contexts. When considered together, these results suggest that, at the level of PRC, it may not

be possible to fully disentangle conceptual and perceptual information. An important but challeng-

ing objective for future research will be to determine whether this pattern of results can be repli-

cated at the level of individual neurons.

What is the behavioral relevance of fully specified object representations in which visual and con-

ceptual features are integrated? It has previously been suggested that such representations allow for

discrimination among stimuli with extensive feature overlap, such as exemplars from the same cate-

gory (Murray and Bussey, 1999; Noppeney et al., 2007; Graham et al., 2010; Clarke and Tyler,

2015). In line with this view, individuals with medial ATL lesions that include PRC typically have more

pronounced conceptual impairments related to living than non-living things (Warrington and Shal-

lice, 1984; Moss et al., 1997; Bozeat et al., 2003), and more striking perceptual impairments for

objects that are visually similar as compared to visually distinct (Barense et al., 2007, Barense et al.,

2010; Lee et al., 2006). Functional MRI studies in neurologically healthy individuals have also dem-

onstrated increased PRC engagement for living as compared to non-living objects (Moss et al.,

2005), for known as compared to novel faces (Barense et al., 2011; Peterson et al., 2012), and for

faces or conceptually meaningless stimuli with high feature overlap as compared to low feature over-

lap (O’Neil et al., 2009; Barense et al., 2012). In a related manner, fully specified object representa-

tions in PRC have also been implicated in long-term memory judgments. For example, PRC has

been linked to explicit recognition memory judgments when previously studied and novel items are

from the same stimulus category (Martin et al., 2013; 2016; 2018), and when subjects make judg-

ments about their lifetime of experience with a given object concept (Duke et al., 2017). Common

among these task demands is the requirement to discriminate among highly similar stimuli. In such

scenarios, a fully specified representation that reflects the integration of perceptual and conceptual

features necessarily enables more fine-grained distinctions than a purely perceptual or conceptual

representation.

This study also has significant implications for prominent neurocognitive models of semantic

memory in which the ATL is characterized as a semantic hub (Rogers et al., 2006; Patterson et al.,

2007; Tranel, 2009). On this view, the bilateral ATLs are thought to constitute a trans-modal conver-

gence zone that abstracts conceptual information from the co-occurrence of features otherwise rep-

resented in a distributed manner across modality-specific cortical nodes. Consistent with this idea,

we have shown that a behavior-based conceptual similarity model predicted the similarity structure

of neural activity patterns in the temporal pole, irrespective of task context. Specifically, neural activ-

ity patterns associated with conceptually similar object concepts that are visually distinct (e.g. hair-

dryer – comb) were more comparable than were conceptually dissimilar concepts that are visually
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similar (e.g. hairdryer – gun), even when task demands required a critical assessment of visual fea-

tures. This observation, together with results obtained in PRC, demonstrates a representational dis-

tinction between these ATL structures, a conclusion that dovetails with recent evidence indicating

that this region is not functionally homogeneous (Binney et al., 2010; Murphy et al., 2017). Ulti-

mately, this outcome suggests that some ATL sub-regions play a prominent role in task-invariant

extraction of conceptual object properties (e.g. temporal pole), whereas others appear to make dif-

ferential contributions to the task-invariant integration of perceptual and conceptual features (e.g.

PRC) (Ralph et al., 2017; Chen et al., 2017).

Convergent evidence from studies of functional and structural connectivity in humans, non-human

primates, and rodents have revealed that PRC is connected to the temporal pole, parahippocampal

cortex, LOC, and nearly all other unimodal and polymodal sensory regions in neocortex (Suzuki and

Amaral, 1994; Burwell and Amaral, 1998; Kahn et al., 2008; McLelland et al., 2014; Suzuki and

Naya, 2014; Wang et al., 2016; Zhuo et al., 2016). Importantly, our results have linked LOC to the

representation of visual object features, and the temporal pole and parahippocampal cortex to the

representation of conceptual object features. Thus, PRC has the connectivity properties that make it

well suited to be a trans-modal convergence zone capable of integrating object features that are

both visual and conceptual in nature. An interesting challenge for future research will be to deter-

mine how differentially attending to specific types of object features shapes functional connectivity

profiles between these regions.

Although speculative, results from the current study suggest that attention may modulate infor-

mation both within and between the ROIs examined. First, we see visual similarity coding in LOC

only when task demands biased attention to visual object features, and conceptual similarity coding

in parahippocampal cortex only when task demands biased attention to conceptual object features.

Second, we saw a trend toward an interaction between behavior-based models and fMRI task con-

text in PRC, such that visual similarity coding was more pronounced in the visual task context than

was conceptual similarity coding, and vice versa. Thus, attending to specific types of features did not

merely manifest as univariate gain modulation. Rather, attention appeared to modulated multi-voxel

activity patterns.

Another novel aspect of our findings is that parahippocampal cortex exhibited conceptual similar-

ity coding in the conceptual task context. Interestingly, it has been suggested that this structure

broadly contributes to cognition by processing contextual associations, including the co-occurrence

of objects within a context (Bar, 2004; Aminoff et al., 2013). Critically, objects that regularly co-

occur in the same context (e.g. ‘comb’ and ‘hairdryer’ in a barbershop) often share many conceptual

features (e.g. functional properties such as ‘used to style hair’), but do not necessarily share many

visual features. Thus, object-evoked responses in parahippocampal cortex may express feature-

based conceptual similarity structure because objects with many shared conceptual features bring to

mind an associated context, whereas objects that are visually similar but conceptually distinct do not

(e.g. hairdryer and gun). We note, however, that the current study was not designed to test-specific

hypotheses about the contextual co-occurrence of objects, or how co-occurrence relates to concep-

tual feature statistics. Ultimately, a mechanistic account of object-based coding in PHC will require

further research using a carefully selected stimulus set in which the strength of contextual associa-

tions (i.e. co-occurrence) between object concepts is not confounded with conceptual features.

In summary, this study sheds new light on our understanding of how object concepts are repre-

sented in the brain. Specifically, we revealed that PRC represented object concepts in a task-invari-

ant, integrative similarity code that captured the visual and conceptual relatedness among stimuli.

Most critically, this result was obtained despite systematically dissociating visual and conceptual fea-

tures across object concepts. Moreover, the striking neuroanatomical specificity of this result sug-

gests that PRC uniquely supports integration across these fundamentally different types of features.

Ultimately, this pattern of results implicates PRC in the representation of fully-specified objects.
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Materials and methods

Participants
Behavior-based visual similarity rating task and conceptual feature
generation task
A total of 2846 individuals completed online behavioral tasks using Amazon’s Mechanical Turk

(https://www.mturk.com). Data from 61 participants were discarded due to technical errors, incom-

plete submissions, or missed catch trials. Of the remaining 2785 participants, 1185 completed the

visual similarity rating task (616 males, 569 females; age range = 18–53; mean age = 30.1), and 1600

completed the semantic feature generation task (852 males, 748 females; age range = 18–58 years;

mean age = 31.7). These sample sizes are proportionally in line with those reported by

McRae et al., 2005. Individuals who completed the visual similarity rating task were excluded from

completing the feature generation task, and vice versa. All participants provided informed consent

and were compensated for their time. Both online tasks were approved by the University of Toronto

Ethics Review Board.

Brain-based fMRI task
A separate group consisting of sixteen right-handed participants took part in the fMRI experiment

(10 female; age range = 19–29 years; mean age = 23.1 years). This sample size is in line with extant

fMRI studies that have used comparable analytical procedures to test hypotheses pertaining to

object representation in the ventral visual stream and ATL (Bruffaerts et al., 2013; Devereux et al.,

2013; Martin et al., 2013; 2016; 2018; Clarke and Tyler, 2014;Chadwick et al., 2016; Erez et al.,

2016; Borghesani et al., 2016). Due to technical problems, we were unable to obtain data from

one experimental run in two different participants. No participants were removed due to excessive

motion using a criterion of 1.5 mm of translational displacement. All participants gave informed con-

sent, reported that they were native English speakers, free of neurological and psychiatric disorders,

and had normal or corrected to normal vision. Participants were compensated $50. This study was

approved by the Baycrest Hospital Research Ethics Board.

Stimuli
As a starting point, we chained together a list of 80 object concepts in such a way that adjacent

items in the list alternated between being conceptually similar but visually distinct and visually similar

but conceptually distinct (e.g. bullet – gun – hairdryer – comb; bullet and gun are conceptually but

not visually similar, whereas gun and hairdryer are visually but not conceptually similar, and hairdryer

and comb are conceptually but not visually similar, etc.). Our initial stimulus set was established

using the authors’ subjective impressions. The visual and conceptual similarities between all pairs of

object concepts were then quantified by human observers in the context of a visual similarity rating

task and a conceptual feature generation task, respectively. Results from these behavioral tasks were

then used to select 40 object concepts used throughout the current study.

Participants who completed the visual similarity rating task were presented with 40 pairs of words

and asked to rate visual similarity between the object concepts to which they referred (Figure 1A).

Responses were made using a 5-point scale (very dissimilar, somewhat dissimilar, neutral, somewhat

similar, very similar). Each participant was also presented with four catch trials on which an object

concept was paired with itself. Across participants, 95.7% of catch trials were rated as being very

similar. Data were excluded from 28 participants who did not rate all four catch trials as being at

least ‘somewhat similar’. Every pair of object concepts from the initial set of 80 object concepts

(3160) was rated by 15 different participants.

We next quantified conceptual similarities between object concepts based on responses obtained

in a conceptual feature generation task (Figure 1B), following task instructions previously described

by McRae et al., 2005. Each participant was presented with one object concept and asked to pro-

duce a list of up to 15 different types of descriptive features, including functional properties (e.g.

what it is used for, where it is used, and when it is used), physical properties (e.g. how it looks,

sounds, smells, feels, and tastes), and other facts about it, such as the category to which it belongs

or other encyclopedic facts (e.g. where it is from). One example object and its corresponding fea-

tures from a normative database were presented as an example (McRae et al., 2005). Interpretation
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and organization of written responses were guided by criteria described by McRae et al., 2005. Fea-

tures were obtained from 20 different participants for each object concept. Data were excluded

from 33 participants who failed to list any features. A total of 4851 unique features were produced

across all 80 object concepts and participants. Features listed by fewer than 4 out of 20 participants

were considered to be unreliable and discarded for the purpose of all subsequent analyses, leaving

723 unique features. This exclusion criterion is proportionally comparable to that used by

McRae et al., 2005. On average, each of the 80 object concepts was associated with 10.6 features.

We used a data-driven approach to select a subset of 40 object concepts from the initial 80-item

set. These 40 object concepts are reflected in the behavior-based visual and conceptual RDMs, and

were used as stimuli in our fMRI experiment. Specifically, we first ensured that each object concept

was visually similar, but conceptually dissimilar, to at least one other item (e.g. hairdryer – gun), and

conceptually similar, but visually dissimilar, to at least one different item (e.g. hairdryer – comb). Sec-

ond, in an effort to ensure that visual and conceptual features varied independently across object

concepts, stimuli were selected such that the corresponding behavior-based visual and conceptual

similarity models were not correlated with one another.

Behavior-based RDMs
Behavior-based visual RDM
A behavior-based model that captured visual dissimilarities between all pairs of object concepts

included in the fMRI experiment (40 object concepts) was derived from the visual similarity judg-

ments obtained from our online rating task. Specifically, similarity ratings for each pair of object con-

cepts were averaged across participants, normalized, and expressed within a 40 � 40 RDM (1 –

averaged normalized rating). Thus, the value in a given cell of this RDM reflects the visual similarity

of the object concepts at that intersection. This behavior-based visual RDM is our visual dissimilarity

model.

Behavior-based conceptual RDM
A behavior-based model that captured conceptual dissimilarities between all pairs of object con-

cepts included in the fMRI experiment was derived from data obtained in our online feature-genera-

tion task. In order to ensure that the semantic relationships captured by our conceptual similarity

model were not influenced by verbal descriptions of visual attributes, we systematically removed fea-

tures that characterized either visual form or color (e.g. ‘is round’ or ‘is red’). Using these criteria a

total of 58 features (8% of the total number of features provided) were removed. We next quantified

conceptual similarity using a concept-feature matrix in which columns corresponded to object con-

cepts (i.e. 40 columns) and rows to the conceptual features associated with those objects (i.e.

282 rows) (Figure 1B, center). Specifically, we computed the cosine angle between each row; cosine

similarity reflects the conceptual distances between object concepts such that high cosine similarities

between items denote short conceptual distance. The conceptual dissimilarities between all pairs of

object concepts were expressed as a 40 � 40 RDM. The value within each cell of the conceptual

model RDM was calculated as 1 – the cosine similarity value between the corresponding object con-

cepts. This behavior-based conceptual RDM is our conceptual dissimilarity model.

Behavior-based RSA: comparison of behavior-based RDMs
We next quantified similarity between our behavior-based visual RDM and behavior-based concep-

tual RDM using Kendall’s tau-a as the relatedness measure. This ranked correlation coefficient is the

most appropriate inferential statistic to use when comparing sparse RDMs that predict many tied

ranks (i.e. both models predict complete dissimilarity between many object pairs; Nili et al., 2014).

Statistical analysis of model similarity was performed using a stimulus-label randomization test

(10,000 iterations) that simulated the null hypothesis of unrelated RDMs (i.e. zero correlation) based

on the obtained variance. Significance was assessed through comparison of the obtained Kendall’s

tau-a coefficient to the equivalent distribution of ranked null values. As noted in the Results section,

this analysis revealed that our behavior-based visual and conceptual RDMs were not significantly cor-

related (Kendall’s tau-a = 0.01, p=0.10). Moreover, inclusion of the 58 features that described color

and visual form in the behavior-based conceptual RDM did not significantly alter its relationship with

the visual behavior-based visual RDM (Kendall’s tau-a = 0.01, p=0.09).
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Experimental procedures: fMRI feature verification task
During scanning, participants completed a feature verification task that required a yes/no judgment

indicating whether a given feature was applicable to a specific object concept on a trial-by-trial

basis. We systematically varied the feature verification probes in a manner that established a visual

feature verification task context and conceptual feature verification task context. Verification probes

comprising the visual task context were selected to encourage processing of the visual semantic fea-

tures that characterize each object concept (i.e. shape, color, and surface detail). To this end, eight

specific probes were used: shape [(angular, rounded), (elongated, symmetrical)], color (light, dark),

and surface (smooth, rough). Notably, all features are associated with two opposing probes (e.g.

angular and rounded; natural and manufactured) to ensure that participants made an equal number

of ‘yes’ and ‘no’ responses. Verification probes comprising the conceptual feature verification task

context were selected to encourage processing of the abstract conceptual features that characterize

each object concept (i.e. animacy, origin, function, and affective associations). To this end, eight spe-

cific verification probes were used: (living, non-living), (manufactured, natural), (tool, non-tool),

(pleasant, unpleasant).

Procedures
The primary experimental task was evenly divided over eight runs of functional data acquisition.

Each run lasted 7 m 56 s and was evenly divided into two blocks, each of which corresponded to

either a visual verification task context or a conceptual feature verification task context. The order of

task blocks was counter-balanced across participants. Each block was associated with a different fea-

ture verification probe, with the first and second block in each run separated by 12 s of rest. Blocks

began with an 8 s presentation of a feature verification probe that was to be referenced for all intra-

block trials. With this design, each object concept was repeated 16 times: eight repetitions across

the visual feature verification task context and eight repetitions across the conceptual feature verifi-

cation task context. Behavioral responses were recorded using an MR-compatible keypad.

Stimuli were centrally presented for 2 s and each trial was separated by a jittered period of base-

line fixation that ranged 2–6 s. Trial order and jitter interval were optimized for each run using the

OptSeq2 algorithm (http://surfer.nmr.mgh.harvard.edu/optseq/), with unique sequences and timing

across counterbalanced versions of the experiment. Stimulus presentation and timing was controlled

by E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA).

Experimental procedure: fMRI functional localizer task
Following completion of the main experimental task, each participant completed an independent

functional localizer scan that was subsequently used to identify LOC. Participants viewed objects,

scrambled objects, words, scrambled words, faces, and scenes in separate 24 s blocks (12 functional

volumes). Within each block, 32 images were presented for 400 ms each with a 350 ms ISI. There

were four groups of six blocks, with each group separated by a 12 s fixation period, and each block

corresponding to a different stimulus category. Block order (i.e. stimulus category) was counterbal-

anced across groups. All stimuli were presented in the context of a 1-back task to ensure that partic-

ipants remained engaged throughout the entire scan. Presentation of images within blocks was

pseudo-random with 1-back repetition occurring 1–2 times per block.

ROI definitions
We performed RSA in four a priori defined ROIs. The temporal pole, PRC, and parahippocampal cor-

tex were manually defined in both the left and right hemisphere on each participant’s high-resolu-

tion anatomical image according to established MR-based protocols (Pruessner et al., 2002), with

adjustment of posterior border of parahippocampal cortex using anatomical landmarks described by

Frankó et al. (2014). Lateral occipital cortex was defined as the set of contiguous voxels located

along the lateral extent of the occipital lobe that responded more strongly to intact than scrambled

objects (p<0.001, uncorrected; Malach et al., 1995).

fMRI data acquisition
Scanning was performed using a 3.0 T Siemens MAGNETOM Trio MRI scanner at the Rotman

Research Institute at Baycrest Hospital using a 32-channel receiver head coil. Each scanning session
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began with the acquisition of a whole-brain high-resolution magnetization-prepared rapid gradient-

echo T1-weighted structural image (repetition time = 2 s, echo time = 2.63 ms, flip angle = 9˚, field
of view = 25.6 cm2, 160 oblique axial slices, 192 � 256 matrix, slice thickness = 1 mm). During each

of eight functional scanning runs comprising the main experimental task, a total of 238 T2*-weighted

echo-planar images were acquired using a two-shot gradient echo sequence (200 � 200 mm field of

view with a 64 � 64 matrix size), resulting in an in-plane resolution of 3.1 � 3.1 mm for each of 40 2

mm axial slices that were acquired in an interleaved manner along the axis of the hippocampus. The

inter-slice gap was 0.5 mm; repetition time = 2 s; echo time = 30 ms; flip angle = 78˚). These param-

eters yielded coverage of the majority of cortex, excluding only the most superior aspects of the

frontal and parietal lobes. During a single functional localizer scan, a total of 360 T2*-weighted

echo-planar images were acquired using the same parameters reported for the main experimental

task. Lastly, a B0 field map was collected following completion of the functional localizer scan

fMRI data analysis software
Preprocessing and GLM analyses were performed in FSL5 (Smith et al., 2004). Representational sim-

ilarity analyses were performed using CoSMoMVPA (http://www.cosmomvpa.org/; Oosterhof et al.,

2016).

Preprocessing and estimation of object-specific multi-voxel activity
patterns
Images were initially skull-stripped using a brain extraction tool (BET, Smith, 2002) to remove non-

brain tissue from the image. Data were then corrected for slice-acquisition time, high-pass tempo-

rally filtered (using a 50-s period cut-off for event-related runs, and a 128 s period cut-off for the

blocked localizer run), and motion corrected (MCFLIRT, Jenkinson et al., 2002). Functional runs

were registered to each participant’s high-resolution MPRAGE image using FLIRT boundary-based

registration with B0-fieldmap correction. The resulting unsmoothed data were analyzed using first-

level FEAT (v6.00; fsl.fmrib.ox.ac.uk/fsl/fslwiki) in each participant’s native anatomical space. Parame-

ter estimates of BOLD response amplitude were computed using FILM, with a general linear model

that included temporal autocorrelation correction and six motion parameters as nuisance covariates.

Each trial (i.e. object concept) was modeled with a delta function corresponding to the stimulus pre-

sentation onset and then convolved with a double-gamma hemodynamic response function. Sepa-

rate response-amplitude (b) images were created for each object concept (n = 40), in each run

(n = 8), in each property verification task context (n = 2). Obtained b images were converted into t-

statistic maps; previous research has demonstrated a modest advantage for t-maps over b images in

the context of multi-voxel pattern analysis (Misaki et al., 2010). In a final step, we created mean

object-specific t-maps by averaging across runs. These data were used for all subsequent similarity

analyses.

Representational similarity analysis (RSA)
ROI-based first-level RSA
We used linear correlations to quantify the participant-specific dissimilarities (1 – Pearson’s r)

between all object-evoked multi-voxel activity patterns (n = 40) within each ROI (n = 4). Participant-

specific dissimilarity measures were expressed in 40 � 40 RDMs for each verification task context

(n = 2), separately. Thus, for each ROI, each participant had one RDM that reflected the dissimilarity

structure from the visual feature verification task context (i.e. brain-based visual task RDM), and one

RDM that reflected the dissimilarity structure from the conceptual verification task context (i.e.,

brain-based conceptual task RDM).

ROI-based second-level RSA
We performed second-level RSAs, that is, we compared RDMs derived from first-level RSAs, to

quantify similarities among behavior-based RDMs and brain-based RDMs. Similarity was quantified

in each participant using the ranked correlation coefficient (Kendall’s tau-a) between RDMs. Inferen-

tial statistical analyses were performed using a one-sided Wilcoxon signed-rank test across subject-

specific RDM correlations to test for significance. This non-parametric test provides valid inference

and treats the variation across subjects as a random effect, thus supporting generalization of results
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beyond the sample. A Bonferroni correction was applied in each analysis to compensate for the

number of second-level comparisons.

Searchlight-based RSA
Whole-volume RSA was implemented using 100-voxel surface-based searchlights

(Kriegeskorte et al., 2006; Oosterhof et al., 2011). Each surface-based searchlight referenced the

100 nearest voxels to the searchlight center based on geodesic distance on the cortical surface.

Neural estimates of dissimilarity (i.e. RDMs) were calculated in each searchlight using the same

approach implemented in our ROI-based RSA. Correlations between behavior-based RDMs were

also quantified using the same approach. The correlation coefficients obtained between behavior-

based RDMs and brain-based RDMs were then Fisher-z transformed and mapped to the voxel at the

centre of each searchlight to create a whole-brain similarity map. Participant-specific similarity maps

were then normalized to a standard MNI template using FNIRT (Greve and Fischl, 2009). To assess

the statistical significance of searchlight maps across participants, all maps were corrected for multi-

ple comparisons without choosing an arbitrary uncorrected threshold using threshold-free cluster

enhancement (TFCE) with a corrected statistical threshold of p<0.05 on the cluster level (Smith and

Nichols, 2009). A Monte Carlo simulation permuting condition labels was used to estimate a null

TFCE distribution. First, 100 null searchlight maps were generated for each participant by randomly

permuting condition labels within each obtained searchlight RDM. Next, 10,000 null TFCE maps

were constructed by randomly sampling from these null data sets in order to estimate a null TFCE

distribution (Stelzer et al., 2013). The resulting surface-based statistically thresholded z-score were

projected onto the PALS-B12 surface atlas in CARET version 5.6. (http://www.nitrc.org/projects/

caret/; Van Essen et al., 2001; Van Essen, 2005).
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