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Abstract Behavior relies on the ability of sensory systems to infer properties of the environment

from incoming stimuli. The accuracy of inference depends on the fidelity with which behaviorally

relevant properties of stimuli are encoded in neural responses. High-fidelity encodings can be

metabolically costly, but low-fidelity encodings can cause errors in inference. Here, we discuss

general principles that underlie the tradeoff between encoding cost and inference error. We then

derive adaptive encoding schemes that dynamically navigate this tradeoff. These optimal

encodings tend to increase the fidelity of the neural representation following a change in the

stimulus distribution, and reduce fidelity for stimuli that originate from a known distribution. We

predict dynamical signatures of such encoding schemes and demonstrate how known phenomena,

such as burst coding and firing rate adaptation, can be understood as hallmarks of optimal coding

for accurate inference.

DOI: https://doi.org/10.7554/eLife.32055.001

Introduction
Biological systems must make inferences about the environment in order to successfully plan and

accomplish goals. Inference is the process of estimating behaviorally relevant properties of the envi-

ronment from low-level sensory signals registered by neurons in the early sensory periphery

(Kersten and Schrater, 2002). Many perceptual tasks, such as color perception (Brainard et al.,

2006), visual speed estimation (Weiss et al., 2002), or sound localization (Fischer and Peña, 2011;

Młynarski, 2015), can be understood as probabilistic inference. All these tasks rely on the estimation

of features (such as the speed of an object) that are not explicitly represented by low-level sensory

stimuli (such as light signals incident on photoreceptors).

To accurately perform inference, the nervous system can construct an internal model that relates

incoming sensory stimuli to behaviorally relevant properties of the environment (Kersten and

Schrater, 2002; Kersten et al., 2004; Fiser et al., 2010; Rao et al., 2002; Coen-Cagli et al., 2015).

As the environment changes, this internal model must be continually updated with new stimuli

(Wark et al., 2009; DeWeese and Zador, 1998; Nassar et al., 2010; Lochmann et al., 2012;

Deneve, 2008), and therefore the accuracy of this internal model depends on the fidelity with which

incoming stimuli are encoded in neural responses.

The process of encoding sensory stimuli, however, is metabolically expensive (Laughlin et al.,

1998; Mehta and Schwab, 2012; Balasubramanian et al., 2001; Harris et al., 2012; Attwell and

Laughlin, 2001; Levy and Baxter, 1996), and a large body of evidence suggests that sensory sys-

tems have evolved to reduce the energetic costs of stimulus coding (Laughlin et al., 1998;

Laughlin and Sejnowski, 2003; Hermundstad et al., 2014). These findings provide empirical sup-

port for the efficient coding hypothesis (Barlow, 1961), which postulates that sensory systems mini-

mize metabolic cost while maximizing the amount of information that is encoded about a stimulus

(van Hateren, 1992; Olshausen and Field, 1996; Laughlin, 1981).
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The goal of maximizing stimulus information does not reflect the fact that different stimuli can

have different utility to a system for making inferences about the environment (Tishby et al., 2000;

Palmer et al., 2015; Geisler et al., 2009; Burge and Geisler, 2015). The relative utility of a stimulus

is determined by the potential impact that it can have on the system’s belief about the state of the

environment; stimuli that sway this belief carry high utility, while stimuli that do not affect this belief

are less relevant. Moreover, physically different stimuli can exert the same influence the observer’s

belief and can therefore be encoded in the same neural activity pattern without affecting the infer-

ence process. Such an encoding strategy decreases the fidelity of the neural representation by using

the same activity pattern to represent many stimuli, and consequently reduces the amount of meta-

bolic resources required to perform inference.

When the distribution of stimuli changes in time, as in any natural environment, both the belief

about the environment (DeWeese and Zador, 1998) and the relative impact of different stimuli on

this belief also change in time. Any system that must perform accurate inference with minimal energy

must therefore dynamically balance the cost of encoding stimuli with the error that this encoding

can introduce in the inference process. While studies have separately shown that sensory neurons

dynamically adapt to changing stimulus distributions in manners that reflect either optimal encoding

(Fairhall et al., 2001) or inference (Wark et al., 2009), the interplay between these two objectives is

not understood.

In this work, we develop a general framework for relating low-level sensory encoding schemes to

the higher level processing that ultimately supports behavior. We use this framework to explore the

dynamic interplay between efficient encoding, which serves to represent the stimulus with minimal

metabolic cost, and accurate inference, which serves to estimate behaviorally-relevant properties of

the stimulus with minimal error. To illustrate the implications of this framework, we consider three

neurally plausible encoding schemes in a simple model environment. Each encoding scheme reflects

a different limitation on the representational capacity of neural responses, and consequently each

represents a different strategy for reducing metabolic costs. We then generalize this framework to a

visual inference task with natural stimuli.

We find that encoding schemes optimized for inference differ significantly from encoding

schemes that are designed to accurately reconstruct all details of the stimulus. The latter produce

neural responses that are more metabolically costly, and the resulting inference process exhibits

qualitatively different inaccuracies.

Together, these results predict dynamical signatures of encoding strategies that are designed to

support accurate inference, and differentiate these strategies from those that are designed to recon-

struct the stimulus itself. These dynamical signatures provide a new interpretation of

experimentally observed phenomena such as burst coding and firing-rate adaptation, which we

argue could arise as a consequence of a dynamic tradeoff between coding cost and inference error.

Results

A general framework for dynamically balancing coding cost and
inference error
Sensory systems use internal representations of external stimuli to build and update models of the

environment. As an illustrative example, consider the task of avoiding a predator (Figure 1A, left

column). The predator is signaled by sensory stimuli, such as patterns of light intensity or chemical

odorants, that change over time. To avoid a predator, an organism must first determine whether a

predator is present, and if so, which direction the predator is moving, and how fast. This inference

process requires that incoming stimuli first be encoded in the spiking activity of sensory neurons.

This activity must then be transmitted to downstream neurons that infer the position and speed of

the predator.

Not all stimuli will be equally useful for this task, and the relative utility of different stimuli could

change over time. When first trying to determine whether a predator is present, it might be crucial

to encode stimulus details that could discriminate fur from grass. Once a predator has been

detected, however, the details of the predator’s fur are not relevant for determining its position and

speed. If encoding stimuli is metabolically costly, energy should be devoted to encoding those

details of the stimulus that are most useful for inferring the quantity at hand.
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Figure 1. Surprise and uncertainty determine the impact of incoming stimuli for efficient inference. (A) We consider a framework in which a sensory

system infers the state of a dynamic environment at minimal metabolic cost. The state of the environment (�t ) is signaled by sensory stimuli (xt ) that are

encoded in neural responses (yt ). To infer this state, the system must decode stimuli from neural responses and use them to update an internal model

of the environment (consisting of an estimate �̂t and a prediction ~�tþ1). This internal model can then be used to adapt the encoding at earlier stages.

(The image of the bear was taken from the Berkeley Segmentation Dataset, Martin et al., 2001). (B) Incoming stimuli can have varying impact on the

observer’s estimate of the environmental state depending on the relationship between the observer’s uncertainty and the surprise of the stimulus

(heatmap). We use the example of Bayesian estimation of the mean of a stationary Gaussian distribution (Murphy, 2007) to demonstrate that when the

observer is uncertain (wide prior p �t�1jxt<tð Þ) and the stimulus x*t is surprising (x*t falls on the edge of the distribution p xt j~�t
� �

), the stimulus has high

impact and causes a large shift in the posterior p �t jx*t ; xt<t
� �

(schematic (1)). In contrast, when the observer is certain and the stimulus is expected, the

stimulus has a small impact on the observer’s estimate (schematic (2)). We quantify impact by the squared difference �̂ x*t
� �

� �̂t�1

� �2

between the

estimate before and after incorporating the stimulus (Materials and methods). (Computed using �̂t�1 ¼ 0, for which impact spans the interval [0,0.7]). (C)

When the observer is certain, a large number of stimuli can be mapped onto the same neural response without inducing error into the observer’s

estimate (orange panel). When the observer is uncertain, the same mapping from stimulus to response induces higher error (red panel). Error is highest

when mapping a surprising stimulus onto an expected neural response, or vice versa. We quantify error by the squared difference �̂t xtð Þ � �̂t ytð Þ
� �2

between the estimate constructed with the stimulus versus the response (Materials and methods). Shown for uncertainty values of 0.1 (orange) and 0.6

(red). Pairs of colored dotted lines superimposed on the heatmap indicate contours of constant error tolerance Etol ¼ 0:05 (whose value is also marked

by the vertical dotted line in the colorbar). Colored horizontal bars indicate the set of stimuli xtf g that can be mapped to the same neural response yt ¼
0 with an error less than Etol. (D) Qualitatively similar results to those shown in panels B-C are observed for estimating the location and scale of a

Figure 1 continued on next page
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We formalize this scenario within a general Bayesian framework that consists of three compo-

nents: (i) an environment, which is parameterized by a latent state �t that specifies the distribution

p xtj�tð Þ of incoming sensory stimuli xt, (ii) an adaptive encoder, which maps incoming stimuli xt onto

neural responses yt, and (iii) an observer, which uses these neural responses to update an internal

belief about the current and future states of the environment. This belief is summarized by the pos-

terior distribution p �tjyt�tð Þ and is constructed by first decoding the stimulus from the neural

response, and then combining the decoded stimulus with the prior belief p �t�1jyt<tð Þ and knowledge

of environment dynamics. A prediction about the future state of the environment can be computed

in an analogous manner by combining the posterior distribution with knowledge of environment

dynamics (Materials and methods, Figure 1—figure supplement 1). This prediction is then fed back

upstream and used to adapt the encoder.

In order to optimize and assess the dynamics of the system, we use the point values �̂t and ~�tþ1 as

an estimate of the current state and prediction of the future state, respectively. The optimal point

estimate is computed by averaging the posterior and is guaranteed to minimize the mean squared

error between the estimated state �̂t and the true state �t, regardless of the form of the posterior

distribution (Robert, 2007).

In stationary environments with fixed statistics, incoming stimuli can have varying impact on the

observer’s belief about the state of the environment, depending on the uncertainty in the observer’s

belief (measured by the entropy of the prior distribution, H p �t�1jxt<tð Þ½ �), and on the surprise of a

stimulus given this belief (measured by the negative log probability of the stimulus given the current

prediction, � log p xtj~�t
� �h i

. We quantify the impact of a single stimulus x*t by measuring the

mean squared difference between the observer’s estimate before and after observing the stimulus:

�̂t x*t
� �

� �̂t�1

� �2

. When the observer is certain about the state of the environment or when a stimulus

is consistent with the observer’s belief, the stimulus has little impact on the observer’s belief

(Figure 1B, illustrated for mean estimation of a stationary Gaussian distribution). Conversely, when

the observer is uncertain or when the new observation is surprising, the stimulus has a large impact.

The process of encoding stimuli in neural responses can introduce additional error in the observ-

er’s estimate. Some mappings from stimuli onto responses will not alter the observer’s estimate,

while other mappings can significantly distort this estimate. We measure the error induced by

encoding a stimulus xt in a response yt using the mean squared difference between the estimates

constructed with each input: �̂t xtð Þ � �̂t ytð Þ
� �2

. At times when the observer is certain, it is possible to

encode many different stimuli in the same neural response without affecting the observer’s estimate.

However, when the observer is uncertain, some encodings can induce high error, particularly when

mapping a surprising stimulus onto an expected neural response, or vice versa. These neural

responses can in turn have varying impact on the observer’s belief about the state of the

environment.

Figure 1 continued

stationary generalized Gaussian distribution. Stimuli have a larger impact on the observer’s estimate when the observer is uncertain and when stimuli

are unexpected (quantified by surprise in the case of location estimation, and centered surprise in the case of scale estimation; see main text). The error

induced by mapping a stimulus onto a response grows with the surprise of the stimulus. For the case of scale estimation, this error is symmetric to

exchanging þx and �x, because positive and negative deviations from the mean (taken here to be 0) exert similar influence on the estimation of scale.

Results are computed using �̂t�1 ¼ 0 (location) and �̂t�1 ¼ 1 (scale) and are displayed over the same ranges of uncertainty ([0,0.7]), surprise/centered

surprise (Yu et al., 2015; Roddey et al., 2000), and stimulus/response ([�4,4]) as in panels B-C. Heatmaps of impact are individually scaled for each

stimulus distribution relative to their minimum and maximum values; heatmaps of encoding error are scaled relative to the minimum and maximum

error across both uncertainty values for a given stimulus distribution. See Figure 1—figure supplement 2 for numerical values of color scale.

DOI: https://doi.org/10.7554/eLife.32055.002

The following figure supplements are available for figure 1:

Figure supplement 1. Algorithm for performing Bayesian inference with adaptively encoded stimuli.

DOI: https://doi.org/10.7554/eLife.32055.003

Figure supplement 2. Minimum and maximum values of the color ranges shown in Figure 1B–D.

DOI: https://doi.org/10.7554/eLife.32055.004
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The qualitative features of this relationship between surprise, uncertainty, and the dynamics of

inference hold across a range of stimulus distributions and estimation tasks (Figure 1D). The specific

geometry of this relationship depends on the underlying stimulus distribution and the estimated

parameter. In some scenarios, surprise alone is not sufficient for determining the utility of a stimulus.

For example, when the goal is to infer the spread of a distribution with a fixed mean, a decrease in

spread would generate stimuli that are closer to the mean and therefore less surprising than

expected. In this case, a simple function of surprise can be used to assess when stimuli are more or

less surprising than predicted:
�
�
�H p xtj~�t

� �h i

þ log p xtj~�t
� �h i�

�
�, where H p xtj~�t

� �h i

is the entropy, or

average surprise, of the predicted stimulus distribution. We refer to this as centered surprise, which

is closely related to the information-theoretic notion of typicality (Cover and Thomas, 2012).

Together, the relative impact of different stimuli and the error induced by mapping stimuli onto

neural responses shape the dynamics of inference. In what follows, we extend this intuition to non-

stationary environments, where we show that encoding schemes that are optimized to balance cod-

ing cost and inference error exploit these relationships to devote higher coding fidelity at times

when the observer is uncertain and stimuli are surprising.

Adaptive coding for inference in nonstationary environments
To make our considerations concrete, we model an optimal Bayesian observer in a two-state envi-

ronment (Figure 2A). Despite its simplicity, this model has been used to study the dynamics of infer-

ence in neural and perceptual systems and can generate a range of complex behaviors

(DeWeese and Zador, 1998; Wilson et al., 2013; Nassar et al., 2010; Radillo et al., 2017; Veliz-

Cuba et al., 2016). Within this model, the state variable �t switches randomly between a ’low’ state

(� ¼ �L) and a ’high’ state (� ¼ �H ) at a small but fixed hazard rate h (we use h ¼ 0:01). We take �t to

specify either the mean or the standard deviation of a Gaussian stimulus distribution, and we refer

to these as ‘mean-switching’ and ‘variance-switching’ environments, respectively. At each point in

time, a single stimulus sample xt is drawn randomly from this distribution. This stimulus is encoded in

a neural response and used to update the observer’s belief about the environment. For a two-state

environment, this belief is fully specified by the posterior probability PL
t that the environment is in

the low state at time t. The predicted distribution of environmental states can be computed based

on the probability that the environment will switch states in the next timestep:

PL
tþ1

¼ PL
t 1� hð Þ þ 1� PL

t

� �
h. The posterior can then be used to construct a point estimate of the

environmental state at time t: �̂t ¼ PL
t �

L þ 1� PL
t

� �
�H (the point prediction ~�tþ1 can be constructed

from the predicted distribution PL
tþ1

in an analogous manner). For small hazard rates (as considered

here), the predicted distribution of environmental states is very close to the current posterior, and

thus the prediction ~�tþ1 can be approximated by the current estimate �̂t. Note that although the

environmental states are discrete, the posterior distributions, and the point estimates constructed

from them, are continuous (Materials and methods).

We consider three neurally plausible encoding schemes that reflect limitations in representational

capacity. In one scheme, the encoder is constrained in the total number of distinct responses it can

produce at a given time, and uses a discrete set of neural response levels to represent a stimulus

(‘discretization’; Figure 2B–D). In second scheme, the encoder is constrained in dynamic range and

temporal acuity, and filters incoming stimuli in time (‘temporal filtering’; Figure 2E–G). Finally, we

consider an encoder that is constrained in the total amount of activity that can be used to encode a

stimulus, and must therefore selectively encode certain stimuli and not others (‘stimulus selection’;

Figure 2H–J). For each scheme, we impose a global constraint that controls the maximum fidelity of

the encoding. We then adapt the instantaneous fidelity of the encoding subject to this global con-

straint. We do so by choosing the parameters of the encoding to minimize the error in inference,

�̂t xtð Þ � �̂t ytð Þ
� �2

, when averaged over the predicted distribution of stimuli, p xtj~�t
� �

. (In what follows,

we will use �̂t and ~�tþ1 to denote the estimates and predictions constructed from the neural response

yt. When differentiating between �̂t xtð Þ and �̂t ytð Þ, we will use the shorthand notation �̂x;t and �̂y;t,

respectively). We compare this minimization to one in which the goal is to reconstruct the stimulus

itself; in this case, the error in reconstruction is given by xt � ytð Þ2. In both cases, the goal of minimiz-

ing error (in either inference or reconstruction) is balanced with the goal of minimizing metabolic
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cost. Because the encoding is optimized based on the internal prediction of the environmental state,

the entropy of the neural response will depend on how closely this prediction aligns with the true

state of the environment. The entropy specifies the minimal number of bits required to accurately

represent the neural response (Cover and Thomas, 2012), and becomes a lower bound on energy

expenditure if each bit requires a fixed metabolic cost (Sterling and Laughlin, 2015). We therefore

use the entropy of the response as a general measure of the metabolic cost of encoding.

Figure 2. Adaptive encoding schemes. (A) We consider a specific implementation of our general framework in which an environmental state �t switches

between two values with fixed probability. This state parameterizes the mean or variance of a Gaussian stimulus distribution. Stimuli xt are drawn from

this distribution and encoded in neural responses yt . We consider three encoding schemes that perform discretization (panels B-D), temporal filtering

(panels E-G), or stimulus selection (panels H-J) on incoming stimuli. (B) (Schematic) At each timestep, an incoming stimulus xt (black dot) is mapped

onto a discrete neural response level yit (solid blue rectangle) chosen from a set yit
� 	

(dotted rectangles). (C–D) The predicted inference error induced

by mapping a stimulus xt onto a neural response yt varies as a function of the observer’s belief PL
t about the state of the environment (shown for

PL
t ¼ 0:12, left column; PL

t ¼ 0:88, right column). At each timestep, the optimal response levels y1; y2; y3
� 	

(solid lines) are chosen to minimize this error

when averaged over the predicted stimulus distribution. See Figure 2—figure supplement 1A for numerical values of color scale. (E) (Schematic) At

each timestep, incoming stimuli are combined via a linear filter with a coefficient at . (F–G) The average predicted inference error (left column) depends

on the filter coefficient at and on the observer’s belief PL
t about the state of the environment. At each timestep, the optimal filter coefficient (blue dot)

is found by balancing error and entropy given a prediction of the environmental state (at and at0 are shown for PL
t ¼ 0:9 and PL

t0 ¼ 0:5, respectively). See

Figure 2—figure supplement 1B for numerical values of color scale. (H) (Schematic) At each timestep, the encoder computes the misalignment Mt

between the predicted and measured surprise of incoming stimuli. If the misalignment exceeds a threshold V , the stimulus is encoded with perfect

fidelity; otherwise, the stimulus is not encoded. (I–J) The misalignment signal (computed here analytically; see Materials and methods) depends on the

relationship between the predicted and true state of the environment. When the mean is changing over time (panel I), the misalignment depends only

on the absolute difference between the true and predicted mean. When the variance is changing over time (panel J), the misalignment also depends

on the true variance of the environment.

DOI: https://doi.org/10.7554/eLife.32055.005

The following figure supplement is available for figure 2:

Figure supplement 1. Minimum and maximum values of the color ranges shown in Figure 2.

DOI: https://doi.org/10.7554/eLife.32055.006
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We expect efficient encoding schemes to operate on uncertainty and surprise. The observer’s

uncertainty, given by H PL
t

� �
¼ PL

t �
L þ 1� PL

t

� �
�H , is largest when the posterior is near 0.5, and the

observer believes that the environment is equally likely to be in either state. The degree to which

incoming stimuli are surprising depends on the entropy of the stimulus distribution, and on the align-

ment between this distribution and the observer’s belief. When the mean of the Gaussian distribu-

tion is changing in time, the entropy is constant, and surprise depends symmetrically on the squared

difference between the true and predicted mean, �� ~�ð Þ2. When the variance is changing, the

entropy is also changing in time, and centered surprise depends asymmetrically on the ratio of true

and predicted variances, s2=~s2. As a result, encoding strategies that rely on stimulus surprise should

be symmetric to changes in mean but asymmetric to changes in variance.

To illustrate the dynamic relationship between encoding and inference, we use a ‘probe’ environ-

ment that switches between two states at fixed intervals of 1=h timesteps. This specific instantiation

is not unlikely given the observer’s model of the environment (DeWeese and Zador, 1998) and

allows us to illustrate average behaviors over many cycles of the environment.

Encoding via discretization
Neurons use precise sequences of spikes (Roddey et al., 2000) or discrete firing rate levels (Laugh-

lin, 1981) to represent continuous stimuli. This inherent discreteness imposes a fundamental limita-

tion on the number of distinct neural responses that can be used to represent a continuous stimulus

space. Many studies have argued that sensory neurons make efficient use of limited response levels

by appropriately tuning these levels to match the steady-state distribution of incoming stimuli (e.g.

Laughlin, 1981; Balasubramanian and Berry, 2002; Gjorgjieva et al., 2017).

Here, we consider an encoder that adaptively maps an incoming stimulus xt onto a discrete set of

neural response levels yit
� 	

(Figure 2B). Because there are many more stimuli than levels, each level

must be used to represent multiple stimuli. The number of levels reflects a global constraint on rep-

resentational capacity; fewer levels indicates a stronger constraint and results in a lower fidelity

encoding.

The encoder can adapt this mapping by expanding, contracting, and shifting the response levels

to devote higher fidelity to different regions of the stimulus space. We consider an optimal strategy

in which the response levels are chosen at each timestep to minimize the predicted inference error,

subject to a constraint on the number of levels:

�̂x;t � �̂y;t

� �2
� �

pðxt j~�y;tÞ
predicted

inference error

(1)

When the mean of the stimulus distribution is changing over time, we define these levels with

respect to the raw stimulus value xt. When the variance is changing, we define these levels with

respect to the absolute deviation from the mean, jxt ��j (where we take �¼ 0). The predicted infer-

ence error induced by encoding a stimulus xt in a response yt changes over time as a function of the

observer’s prediction of the environmental state (Figure 2C–D). Because some stimuli have very little

effect on the estimate at a given time, they can be mapped onto the same neural response level

without inducing error in the estimate (white regions in Figure 2C–D). The optimal response levels

are chosen to minimize this error when averaged over the predicted distribution of stimuli.

The relative width of each level is a measure of the resolution devoted to different regions of the

stimulus space; narrower levels devote higher resolution (and thus higher fidelity) to the correspond-

ing regions of the stimulus space. The output of these response levels is determined by their align-

ment with the true stimulus distribution. An encoding that devotes higher resolution to stimuli that

are likely to occur in the environment will produce a higher entropy rate (and thus higher cost),

because many different response levels will be used with relatively high frequency. In contrast, if an

encoding scheme devotes high resolution to surprising stimuli, very few response levels will be used,

and the resulting entropy rates will be low.

When designed for accurate inference, we find that the optimal encoder devotes its resolution to

stimuli that are surprising given the current prediction of the environment (Figure 3B). In a mean-
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Figure 3. Dynamic inference with optimally-adapted response levels. (A) We consider a probe environment in which a state �t (solid line) switches

between two values at fixed time intervals. This state parametrizes the mean (left) or the variance (right) of a Gaussian stimulus distribution (heatmap).

(B, C) Optimal response levels (dotted lines) are chosen to minimize error in inference (blue) or stimulus reconstruction (green) based on the predicted

Figure 3 continued on next page
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switching environment (left column of Figure 3), stimuli that have high surprise fall within the tails of

the predicted stimulus distribution. As a result, when the observer’s prediction is accurate, the bulk

of the stimulus distribution is mapped onto the same response level (Figure 3B, left), and entropy

rates are low (blue curve in Figure 3D, left). When the environment changes abruptly, the bulk of

the new stimulus distribution is mapped onto different response levels. This results in a large spike

in entropy rate, which enables the observer to quickly adapt its estimate to the change (blue curve

in Figure 3E, left).

In a variance-switching environment (right column of Figure 3), stimuli that have high centered

surprise fall either within the tails of the predicted stimulus distribution (when variance is low), or

within the bulk (when variance is high). As a result, entropy rates are low in the low-variance state,

but remain high during the high-variance state (blue curve in Figure 3D, right).

When designed for accurate reconstruction of the stimulus, we find that the optimal encoder

devotes its resolution to stimuli that are likely given the current prediction of the environmental state

(Figure 3C). As a result, entropy rates are high when the observer’s prediction is accurate, regard-

less of the environment (green curves in Figure 3D). Entropy rates drop when the environment

changes, because likely stimuli become mapped onto the same response level. This drop slows the

observer’s detection of changes in the environment (green curve in Figure 3E, left). An exception

occurs when the variance abruptly increases, because likely stimuli are still given high resolution by

the encoder following the change in the environment.

Whether optimizing for inference or stimulus reconstruction, the entropy rate, and thus the cod-

ing cost, changes dynamically over time in a manner that is tightly coupled with the inference error.

The average inference error can be reduced by increasing the number of response levels, but this

induces a higher average coding cost (Figure 3F). As expected, a strategy optimized for inference

achieves lower inference error than a strategy optimized for stimulus reconstruction (across all num-

bers of response levels), but it also does so at significantly lower coding cost.

Encoding via temporal filtering
Neural responses have limited gain and temporal acuity, a feature that is often captured by linear fil-

ters. For example, neural receptive fields are often characterized as linear temporal filters, some-

times followed by a nonlinearity (Bialek et al., 1990; Roddey et al., 2000). The properties of these

filters are known to dynamically adapt to changing stimulus statistics (e.g. Sharpee et al., 2006;

Sharpee et al., 2011), and numerous theoretical studies have suggested that such filters are

adapted to maximize the amount of information that is encoded about the stimulus (van Hateren,

1992; Srinivasan et al., 1982).

Figure 3 continued

stimulus distribution p xt j~�t
� �

(heatmap). Results are shown for three response levels. All probability distributions in panels A-C are scaled to the same

range, 0; 0:4½ �. (B) Response levels optimized for inference devote higher resolution (narrower levels) to stimuli that are surprising given the current

prediction of the environment. (C) Response levels optimized for stimulus reconstruction devote higher resolution to stimuli that are likely. (D) The

entropy rate of the encoding is found by partitioning the true stimulus distribution (heatmap in panel A) based on the optimal response levels (dotted

lines in panels B-C). Abrupt changes in the environment induce large changes in entropy rate that are symmetric for mean estimation (left) but

asymmetric for variance estimation (right). Apparent differences in the baseline entropy rate for low- versus high-mean states arise from numerical

instabilities. (E) Encoding induces error in the estimate �̂t . Errors are larger if the encoding is optimized for stimulus reconstruction than for inference.

The error induced by upward and downward switches is symmetric for mean estimation (left) but asymmetric for variance estimation (right). In the latter

case, errors are larger when inferring upward switches in variance. (F) Increasing the number of response levels decreases the average inference error

but increases the cost of encoding. Across all numbers of response levels, an encoding optimized for inference (blue) achieves lower error at lower cost

than an encoding optimized for stimulus reconstruction (green). All results in panels A-C and E are averaged over 500 cycles of the probe environment.

Results in panel D were computed using the average response levels shown in panels B-C. Results in panel F were determined by computing time-

averages of the results in panels D-E.

DOI: https://doi.org/10.7554/eLife.32055.007

The following figure supplements are available for figure 3:

Figure supplement 1. Learning of optimal response levels with Lloyd’s algorithm.

DOI: https://doi.org/10.7554/eLife.32055.008

Figure supplement 2. Deviations from optimal inference due to transmission noise.

DOI: https://doi.org/10.7554/eLife.32055.009
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Here, we consider an encoder that implements a very simple temporal filter (Figure 2E):

yt ¼ atxt þ 1�atð Þxt�1 (2)

where at 2 0:5;1½ � is a coefficient that specifies the shape of the filter and controls the instantaneous

fidelity of the encoding. When at ¼ 0:5, the encoder computes the average of current and previous

stimuli by combining them with equal weighting, and the fidelity is minimal. When at ¼ 1, the

encoder transmits the current stimulus with perfect fidelity (i.e. yt ¼ xt). In addition to introducing

temporal correlations, the filtering coefficient changes the gain of the response yt by rescaling the

inputs xt;xt�1f g.
The encoder can adapt at in order to manipulate the instantaneous fidelity of the encoding

(Figure 2E). We again consider an optimal strategy in which the value of at is chosen at each time-

step to minimize the predicted inference error, subject to a constraint on the predicted entropy rate

of the encoding:

�̂x;t � �̂y;t

� �2
� �

pðxt j~�y;tÞ
þbHðyt;ytþ1Þ

predicted predicted

inference error entropy rate

(3)

Both terms depend on the strength of averaging at and on the observer’s belief PL
t about the

state of the environment (Figure 2F–G). The inference error depends on belief through the observ-

er’s uncertainty; when the observer is uncertain, strong averaging yields a low fidelity representation.

When the observer is certain, however, incoming stimuli can be strongly averaged without impacting

the observer’s estimate. The entropy rate depends on belief through the predicted entropy rate

(variance) of the stimulus distribution; when the predicted entropy rate is high, incoming stimuli are

more surprising on average. The multiplier b reflects a global constraint on representational capac-

ity; larger values of b correspond to stronger constraints and reduce the maximum fidelity of the

encoding. This, in turn, results in a reduction in coding fidelity through a decrease in gain and an

increase in temporal correlation.

When designed for accurate inference, we find that the optimal encoder devotes higher fidelity

at times when the observer is uncertain and the predicted stimulus variance is high. In a mean-

switching environment, the stimulus variance is fixed (Figure 4A, left), and thus the fidelity depends

only on the observer’s uncertainty. This uncertainty grows rapidly following a change in the environ-

ment, which results in a transient increase in coding fidelity (Figure 4B, left) and a rapid adaptation

of the observer’s estimate (Figure 4D, left). This estimate is highly robust to the strength of the

entropy constraint; even when incoming stimuli are strongly averaged (at ¼ 0:5), the encoder trans-

mits the mean of two consecutive samples, which is precisely the statistic that the observer is trying

to estimate.

In a variance-switching environment, the predicted stimulus variance also changes in time

(Figure 4A, right). This results in an additional increase in fidelity when the environment is in the

high- versus low-variance state, and an asymmetry between the filter responses for downward versus

upward switches in variance (Figure 4B, right). Both the encoder and the observer are slower to

respond to changes in variance than to changes in mean, and the accuracy of the inference is more

sensitive to the strength of the entropy constraint (Figure 4D, right).

When designed to accurately reconstruct the stimulus, the fidelity of the optimal encoder

depends only on the predicted stimulus variance. In a mean-switching environment, the variance is

fixed (Figure 4A), and thus the fidelity is flat across time. In a variance-switching environment, the

fidelity increases with the predicted variance of incoming stimuli, not because variable stimuli are

more surprising, but rather because they are larger in magnitude and can lead to higher errors in

reconstruction (Figure 4C). As the strength of the entropy constraint increases, the encoder devotes

proportionally higher fidelity to high-variance stimuli because they have a greater impact on recon-

struction error.
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Figure 4. Dynamic inference with optimally-adapted temporal filters. (A) The observer’s uncertainty (H PL
t

� �
) is largest when the environment is

changing. The predicted stimulus variance (a proxy for both the predicted magnitude of the stimulus distribution, and the predicted surprise of

incoming stimuli) is constant in a mean-switching environment (left) but variable in a variance-switching environment (right) (computed using a filter

coefficient optimized for inference with a weak entropy constraint, corresponding to the lightest blue curves in panel B). (B, C) Optimal values of the

filter coefficient at are chosen at each timestep to minimize error in inference (blue) or stimulus reconstruction (green), subject to a constraint on

predicted entropy. Darker colors indicate stronger constraints. (B) Filters optimized for inference devote high fidelity at times when the observer is

uncertain and stimuli are predicted to be surprising. Shown for b ¼ 0:02; 0:1; 1 (left) and b ¼ 0:01; 0:1; 1 (right). (C) Filters optimized for reconstruction

devote fidelity at times when the magnitude of the stimulus is predicted to be high. Shown for b ¼ 0:01; 0:1; 1. (D) Filtering induces error into the

estimate �̂t . Strong filtering has minimal impact on mean estimation (left), but induces large errors in the estimation of high variances (right). All results

in panels A-D are averaged over 800 cycles of the probe environment.

DOI: https://doi.org/10.7554/eLife.32055.010
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Encoding via stimulus selection
Sensory neurons show sparse activation during natural stimulation (Vinje and Gallant, 2000;

Weliky et al., 2003; DeWeese and Zador, 2003), an observation that is often interpreted as a sig-

nature of coding cost minimization (Olshausen and Field, 2004; Sterling and Laughlin, 2015). In

particular, early and intermediate sensory neurons may act as gating filters, selectively encoding only

highly informative features of the stimulus (Rathbun et al., 2010; Miller et al., 2001). Such a selec-

tion strategy reduces the number of spikes transmitted downstream.

Here, we consider an encoder that selectively transmits only those stimuli that are surprising and

are therefore likely to change the observer’s belief about the state of the environment. When the

observer’s prediction is inaccurate, the predicted average surprise H p xtj~�t
� �h i

will differ from the

true average surprise H p xtj�tð Þ½ � by an amount equal to the KL-divergence of the predicted from the

true stimulus distributions (Materials and methods). In principle, this difference could be used to

selectively encode stimuli at times when the observer’s estimate is inaccurate.

In practice, however, the encoder does not have access to the entropy of the true stimulus distri-

bution. Instead, it must measure surprise directly from incoming stimulus samples. The measured

surprise of each incoming stimulus sample is given by its negative log probability, � log p xtj~�t
� �h i

.

We consider an encoder that compares the predicted surprise to a running average of the measured

surprise. In this way, the encoder can heuristically assess whether a change in the stimulus distribu-

tion had occurred by computing the ‘misalignment’ Mt between the predicted and measured stimu-

lus distributions:

Mt ¼H p xtj~�t
� �h i

þ 1

T

XT

t¼0

log p xt�tj~�t
� �h i

(4)

The misalignment is computed over a time window T , which ensures that the observer’s predic-

tion does not gradually drift from the true value in cases where surprising stimuli are not indicative

of a change in the underlying stimulus distribution (we use T ¼ 10). Because the misalignment signal

is directly related to the surprise of incoming stimuli, it is symmetric to upward and downward

switches in the mean of the stimulus distribution, but it is asymmetric to switches in variance and has

a larger magnitude in the high-variance state (shown analytically in Figure 2I–J).

The misalignment signal is both non-stationary and non-Gaussian. Optimizing an encoding

scheme based on this signal would require deriving the corresponding optimal observer model,

which is difficult to compute in the general case. We instead propose a heuristic (albeit sub-optimal)

solution, in which the encoder selectively encodes the current stimulus with perfect fidelity (yt ¼ xt)

when recent stimuli are sufficiently surprising and the magnitude of the misalignment signal exceeds

a threshold V (Figure 2H). When the magnitude of the misalignment signal falls below the threshold,

stimuli are not encoded (yt ¼ �). At these times, the observer does not receive any information about

incoming stimuli, and instead marginalizes over its internal prediction to update its estimate

(Materials and methods). The value of the threshold reflects a constraint on overall activity; higher

thresholds result in stronger criteria for stimulus selection, which decreases the maximum fidelity of

the encoding.

When the mean of the stimulus distribution changes in time, very few stimuli are required to

maintain an accurate estimate of the environmental state (Figure 5A–B, left). When the environment

changes abruptly, the observer’s prediction is no longer aligned with the environment, and the mis-

alignment signal increases until incoming stimuli are encoded and used to adapt the observer’s pre-

diction. Because it requires several stimulus samples for the misalignment to exceed threshold, there

is a delay between the switch in the environment and the burst of encoded stimuli. This delay, which

is proportional to the size of the threshold, slows the observer’s detection of the change (Figure 5C,

left).

When the variance changes in time, the average surprise of incoming stimuli also changes in time.

When the variance abruptly increases, the misalignment signal grows both because the observer’s

prediction is no longer accurate, and because the average surprise of the incoming stimulus distribu-

tion increases. A large proportion of stimuli are transmitted, and the observer quickly adapts to the

change. If the threshold is sufficiently high, however, the observer’s prediction never fully aligns with

the true state. When the variance abruptly decreases, the incoming stimulus distribution is less
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Figure 5. Dynamic inference with stimulus selection. (A) When the environment is changing, the observer’s prediction is misaligned with the state of the

environment. When this misalignment Mt is large, stimuli are transmitted in full (yt ¼ xt ). When this misalignment falls below a threshold V , stimuli are

not transmitted at all (yt ¼ 0). (B) The distribution of encoded stimuli changes over time, as can be seen by comparing the envelope of the stimulus

distribution (gray) with the envelope of the neural responses (blue). Left: When the mean of the stimulus distribution changes abruptly, a large

proportion of stimuli are encoded, and the mean of the neural response (blue line) approaches the mean of the stimulus distribution (black line). At

times when the mean of the stimulus distribution is stable, very few stimuli are encoded, and the mean of the neural response drops to zero. Right:

When the variance is low, very few stimuli are encoded. When the variance increases, the average surprise of incoming stimuli increases, and a large

proportion of stimuli are encoded. The envelope of the neural response expands and approaches the envelope of the stimulus distribution. Insets: At

times when the environment is changing (shown for t ¼ 105), the distribution of responses (blue) is sparser than the distribution of stimuli (gray), due to

the large proportion of stimuli that are not encoded (indicated by the large peak in probability mass at 0). Shown for V ¼ 0:5. (C) Higher thresholds

slow the observer’s detection of changes in the mean (left), and cause the observer to underestimate high variances (right). Threshold values are scaled

relative to the maximum analytical value of the misalignment signal in the mean- and variance-switching environment (shown in Figure 2I and J,

respectively). Results in panels B and C are averaged over 800 cycles of the probe environment.

DOI: https://doi.org/10.7554/eLife.32055.011
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surprising on average, and therefore a greater number of stimulus samples is needed before the

misalignment signal exceeds threshold. As a result, the observer is slower to detect decreases in var-

iance than increases (Figure 5C, right).

Dynamical signatures of adaptive coding
The preceding sections examined the dynamics of optimal encoding strategies as seen through the

internal parameters of the encoder itself. The alignment between these internal parameters and the

external dynamics of the environment determine the output response properties of each encoder. It

is these output response properties that would give experimental access to the underlying encoding

scheme, and that could potentially be used to distinguish an encoding scheme optimized for infer-

ence from one optimized for stimulus reconstruction.

To illustrate this, we simulate output responses of each encoder to repeated presentations of the

probe environment. In the case of discretization, we use a simple entropy coding procedure to map

each of four response levels to four spike patterns ( 00½ �; 01½ �; 10½ �; 11½ �) based on the probability that

each response level will be used given the distribution of incoming stimuli, and we report properties

of the estimated spike rate (see spike rasters in Figure 6A; Materials and methods). In the cases of

filtering and stimulus selection, we report properties of the response yt.

We find that encodings optimized for inference typically show transient changes in neural

response properties after a switch in the environment, followed by a return to baseline. This is mani-

fested in a burst in firing rates in the case of discretization, and a burst in response variability in the

cases of filtering and stimulus selection. Filtering is additionally marked by a transient decrease in

the temporal correlation of the response. The magnitude of these transient changes relative to base-

line is most apparent in the case of mean estimation, where the variability in the environment

remains fixed over time. Because periods of higher variability in the environment are intrinsically

more surprising, baseline response properties change during variance estimation, and bursts relative

to baseline are less pronounced. Nevertheless, we see a transient decrease in temporal correlation

in the case of filtering, and a transient increase in response variability in the case of stimulus selec-

tion, following switches in variance.

The same dynamical features are not observed in encoders optimized for stimulus reconstruction.

For mean estimation, firing rates and response variability remain nearly constant over time, despite

abrupt changes in the mean of the stimulus distribution. Discretization shows a brief rise and dip in

firing rate following a switch, which has been observed experimentally (Fairhall et al., 2001). For

variance estimation, response properties show sustained (rather than transient) changes following a

switch.

Differences in response properties are tightly coupled to the speed and accuracy of inference, as

mediated by the feedforward and feedback interactions between the encoder and the observer.

Note that these measures of speed and accuracy (as well as the comparisons made in Figures 3E,

4D, and 5C) intrinsically favor encodings optimized for inference; we therefore restrict our compari-

son to this set of encodings. We find that both the speed and accuracy of inference are symmetric

to changes in the mean of the stimulus distribution, but asymmetric to changes in variance. This is

qualitatively consistent with the optimal Bayesian observer in the absence of encoding

(DeWeese and Zador, 1998). We find that encoding schemes optimized for inference have a more

significant impact on the speed and accuracy of variance estimation than of mean estimation. Inter-

estingly, the speed of variance adaptation deviates from optimality in a manner that could poten-

tially be used to distinguish between encoding strategies. In the absence of encoding, the ideal

observer is faster to respond to increases than to decreases in variance. We find that encoding via

stimulus selection increases this asymmetry, encoding via discretization nearly removes this asymme-

try, and encoding via stimulus selection reverses this asymmetry.

Together, these observations suggest that both the dynamics of the neural response and the pat-

terns of deviation from optimal inference could be used to infer features of the underlying sensory

coding scheme. Moreover, these results suggest that an efficient system could prioritize some

encoding schemes over others, depending on whether the goal is to reconstruct the stimulus or infer

its underlying properties, and if the latter, whether this goal hinges on speed, accuracy, or both.
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Figure 6. Dynamical signatures of adaptive coding schemes. (A–C) We simulate the output of each encoder to repeated cycles of the probe

environment. In the case of discretization (panel A), we use a simple entropy coding procedure to map optimal response levels ytf g onto spike

patterns, as shown by the spike rasters. In the case of temporal filtering (panel B) and stimulus selection (panel C), we measure properties of the

response yt . When encodings are optimized for inference (dark blue traces), abrupt changes in the mean of the stimulus distribution (panels A-C, left)

are followed by transient increases in spike rate (discretization, panel A) and response variability (filtering, panel B; stimulus selection, panel C). In the

case of temporal filtering, these changes are additionally marked by decreases in the temporal correlation ’ yt;tþ1

� �
of the response. In contrast, the

response properties of encoders optimized for stimulus reconstruction (light green traces) remain more constant over time. Abrupt changes in variance

(panels A-C, right) are marked by changes in baseline response properties. Responses show transient deviations away from baseline when encodings

are optimized for inference, but remain fixed at baseline when encodings are optimized for reconstruction. In all cases, encodings optimized for

inference maintain lower baseline firing rates, lower baseline variability, and higher baseline correlation than encodings optimized for stimulus

reconstruction. Spike rates (panel A) are averaged over 500 cycles of the probe environment. Response variability (panels B-C) is computed at each

timepoint across 800 cycles of the probe environment. Temporal correlation ’ yt;tþ1

� �
(panel B) is computed between consecutive timepoints across 800

cycles of the probe environment. (D–E) Encoding schemes impact both the accuracy (panel D) and speed (panel E) of inference. In all cases, the

dynamics of inference are symmetric for changes in mean (points lie along the diagonal) but asymmetric for changes in variance (points lie off the

diagonal). Encodings decrease the accuracy of estimating high-variance states (panel D), and they alter the speed of responding to changes in both

mean and variance. The response to upward versus downward switches (dotted box) separates encoding schemes based on whether they are faster

(right of dotted vertical line) or slower (left of dotted vertical line) to respond to increases versus decreases in variance. Speed and accuracy are

measured from the trial-averaged trajectories of �̂y;t shown in Figure 3E, Figure 4D (b ¼ 0:01), and Figure 5C (V ¼ 0:5) (Materials and methods).

DOI: https://doi.org/10.7554/eLife.32055.012

The following figure supplement is available for figure 6:

Figure supplement 1. Physically different stimuli become indistinguishable to an adapted system optimized for inference.

DOI: https://doi.org/10.7554/eLife.32055.013
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Adaptive coding for inference under natural conditions
The simplified task used in previous sections allowed us to explore the dynamic interplay between

encoding and inference. To illustrate how this behavior might generalize to more naturalistic set-

tings, we consider a visual inference task with natural stimuli (Figure 7A, Materials and methods). In

particular, we model the estimation of variance in local curvature in natural image patches—a com-

putation similar to the putative function of neurons in V2 (Ito and Komatsu, 2004). As before, the

goal of the system is to infer a change in the statistics of the environment from incoming sensory

stimuli. We consider a sequence of image patch stimuli drawn randomly from a local region of a nat-

ural image; this sequence could be determined by, for example, saccadic fixations. Each image

patch is encoded in the responses of a population of sensory neurons using a well-known sparse-

coding model (Olshausen and Field, 1996). After adapting to natural stimulus statistics, the basis

functions of each model neuron resemble receptive fields of simple cells in V1. A downstream

observer decodes the stimulus from this population response and normalizes its contrast. The con-

trast-normalized patch is then projected onto a set of curvature filters. The variance in the output of

these filters is used as an estimate of the underlying statistics of the image region. Both the compu-

tation of local image statistics and visual sensitivity to curvature are known to occur in V2

(Freeman et al., 2013; Ito and Komatsu, 2004; Yu et al., 2015).

The encoder reconstructs each stimulus subject to a sparsity constraint l; large values of l

decrease the population activity at the cost of reconstruction accuracy (Figure 7—figure supple-

ment 1). In contrast to the encoding models discussed previously, this encoder is explicitly opti-

mized to reconstruct each stimulus, rather than to support accurate inference. Even in this scenario,

however, the observer can manipulate the sparsity of the population response to decrease resource

use while maintaining an accurate estimate of the environmental state. It has been proposed that

early sensory areas, such as V1, could manipulate the use of metabolic resources depending on top-

down task demands (e.g. Rao and Ballard, 1999).

We model a change in the stimulus distribution by a gaze shift from one region of the image to

another (Figure 7B). This shift induces an increase in the variance of curvature filters. Following this

change, the observer must update its estimate of local curvature using image patches drawn from

the new image region. We empirically estimated the impact of stimulus surprise and observer uncer-

tainty on this estimation and found it to be consistent with results based on model environments

(Figure 7D; compare with Figure 1B). Surprising stimuli that project strongly on curvature filters

exert a large impact on inference, while expected stimuli (characterized by low centered surprise)

exert little impact (Figure 7C–D, F). Similarly, individual stimuli exert a larger impact on the estimate

when the observer is uncertain than when the observer is certain (Figure 7D–E).

The system can modulate the sparsity of the population response based on

uncertainty and surprise. To illustrate this, we simulated neural population activity in response to a

change in each of these quantities (Figure 7E and F, respectively). To do this, we selected a

sequence of 45 image patches, 5 of which were chosen to have high centered surprise (Figure 7F;

red marker) or to correspond to an observer with high uncertainty (Figure 7E; red marker). An

increase in either surprise or uncertainty requires a higher fidelity response to maintain an approxi-

mately constant level of inference error. This results in a burst of population activity (blue traces in

Figure 7E–F). Similar population bursts were recently observed in V1 in response to violations of sta-

tistical regularities in stimulus sequences (Homann et al., 2017). When optimized for constant recon-

struction error, the sparsity of the population response remains fixed in time. The resulting

population response does not adapt, and instead fluctuates around a constant value determined by

l (green traces in Figure 7E–F).

Discussion
Organisms rely on incoming sensory stimuli to infer behaviorally relevant properties of their environ-

ment, and hierarchical inference is postulated to be a computational function of a broad range of

neural circuits (Lee and Mumford, 2003; Fiser et al., 2010). Representing and transmitting these

stimuli, however, is energetically costly, and such costs are known to constrain the design and func-

tion of the nervous system (Sterling and Laughlin, 2015). Here, we explored the interplay between

efficient encoding and accurate inference, and we identified two general principles that can be used

to balance these objectives. First, when the environment is changing over time, the relative utility of
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Figure 7. Model inference task with natural stimuli. (A) We model a simple task of inferring the variance of local curvature in a region of an image. The

system encodes randomly drawn image patches that model saccadic fixations. Individual image patches are encoded in sparse population activity via

V1-like receptive fields (see Figure 7—figure supplement 1). Image patches are then decoded from the population activity, contrast-normalized, and

projected onto V2-like curvature filters. The observer computes the variance of these filter outputs. (B) After a gaze shift from an area of low curvature

(bottom square, � ¼ �1) to an area of high curvature (top square, � ¼ �2), the observer must update its estimate of local curvature. (C) Image patches

that are surprising given the observer’s estimate (red) have larger variance in curvature, while expected patches (white) have low variance in curvature.

Frames of highly overlapping patches were slightly shifted for display purposes. (D) Individual image patches have a large impact on the observer’s

estimate when the observer is uncertain and when image patches have high centered surprise, analogous to the behavior observed in simple model

environments (see Figure 1B). Shown for l ¼ 0:1. Impact spans the interval [0, 34.12]. (E) The observer can exploit its uncertainty to adapt the sparsity

of the sensory encoding (heatmap; blue trace). When the observer is certain (white marker), population activity can be significantly reduced without

changing the inference error. Increases in uncertainty (red marker) result in bursts of activity (red bar). An encoder optimized for constant reconstruction

error produces activity that remains constant over time (green trace). Inference error spans the interval [0, 2.22]. (F) The observer can similarly exploit the

predicted surprise of incoming stimuli to reduce population activity when stimuli are expected. Inference error spans the interval [0, 1.57].
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Figure 7 continued on next page
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incoming stimuli for inference can also change. Second, physically different signals can exert similar

influence on the observer’s model of the environment and can therefore be encoded in the same

neural representation without negatively affecting the inference process.

We introduced a general theoretical framework that could exploit these two principles in order to

dynamically reduce metabolic costs while maintaining accurate inferences about the environment.

This framework employs a well-known computational motif consisting of a feedback loop between

an observer and an encoder. We demonstrated that when the goal is accurate inference, the

encoder can optimally adapt depending on the uncertainty in the observer’s belief about the state

of the environment, and on the surprise of incoming stimuli given this belief. This optimal adaptation

enables the system to efficiently infer high-level features from low-level inputs, which we argue is a

broad goal of neural circuits across the brain. We therefore expect this framework to bear relevance

for many different stages of sensory processing, from the periphery through the midbrain to central

brain areas.

Transient increases in fidelity signal salient changes in the environment
To maintain low metabolic costs, we found that encoders optimized for inference adapt their encod-

ing strategies in response to the changing utility of incoming stimuli. This adaptation was signaled

by elevated periods of response variability, temporal decorrelation, or total activity. Transient, burst-

like changes in each of these properties served to increase the fidelity of the neural response, and

enabled the system to quickly respond to informative changes in the stimulus distribution. In the ner-

vous system, bursts of high-frequency activity are thought to convey salient changes in an organism’s

surroundings (Marsat et al., 2012). For example, in the lateral line lobe of the weakly electric fish,

neurons burst in response to electric field distortions similar to those elicited by prey (Oswald et al.,

2004), and these bursts are modulated by predictive feedback from downstream neurons

(Marsat et al., 2012). Similarly, in the auditory system of the cricket, bursts signal changes in fre-

quency that are indicative of predators, and the amplitude of these bursts is closely linked to the

amplitude of behavioral responses (Sabourin and Pollack, 2009; Marsat and Pollack, 2006). In the

visual system, retinal ganglion cells fire synchronously in response to surprising changes in the

motion trajectory of a stimulus (Schwartz et al., 2007), and layer 2/3 neurons in primary visual cortex

show transient elevated activity in response to stimuli that violate statistical regularities in the envi-

ronment (Homann et al., 2017). Neurons in IT cortex show strong transient activity in response to

visual stimuli that violate predicted transition rules (Meyer and Olson, 2011), and recent evidence

suggests that single neurons in IT encode latent probabilities of stimulus likelihood during behavioral

tasks (Bell et al., 2016). In thalamus, burst firing is modulated by feedback from cortex

(Halassa et al., 2011) and is thought to signal the presence of informative stimuli (Lesica and Stan-

ley, 2004; Miller et al., 2001; Rathbun et al., 2010). In the auditory forebrain of the zebra finch,

neural activity is better predicted by the surprise of a stimulus than by its spectrotemporal content

(Gill et al., 2008), and brief synchronous activity is thought to encode a form of statistical deviance

of auditory stimuli (Beckers and Gahr, 2012). We propose that this broad range of phenomena

could be indicative of an active data selection process controlled by a top-down prediction of an

incoming stimulus distribution, and could thus serve as an efficient strategy for encoding changes in

the underlying statistics of the environment. While some of these phenomena appear tuned to spe-

cific stimulus modulations (such as those elicited by specific types of predators or prey), we argue

that transient periods of elevated activity and variability more generally reflect an optimal strategy

for efficiently inferring changes in high-level features from low-level input signals.

In some cases, it might be more important to reconstruct details of the stimulus itself, rather than

to infer its underlying cause. In such cases, we found that the optimal encoder maintained consis-

tently higher firing rates and more heterogeneous response patterns. In both the cricket

(Sabourin and Pollack, 2010) and the weakly electric fish (Marsat et al., 2012), heterogeneous

Figure 7 continued

The following figure supplement is available for figure 7:

Figure supplement 1. Sparse coding model of natural image patches.
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neural responses were shown to encode stimulus details relevant for evaluating the quality of court-

ship signals (in contrast to the bursts of activity that signal the presence of aggressors). While sepa-

rate circuits have been proposed to implement these two different coding schemes (inferring the

presence of an aggressor versus evaluating the quality of a courtship signal), these two strategies

could in principle be balanced within the same encoder. The signatures of adaptation that distin-

guish these strategies could alternatively be used to identify the underlying goal of a neural encoder.

For example, neurons in retina can be classified as ‘adapting’ or ‘sensitizing’ based on the trajectory

of their firing rates following a switch in stimulus variance (Kastner and Baccus, 2011). These trajec-

tories closely resemble the response entropies of encoders optimized for inference or reconstruc-

tion, respectively (right panel of Figure 3D). A rigorous application of the proposed framework to

the identification of neural coding goals is a subject of future work.

Importantly, whether the goal is inference or stimulus reconstruction, the encoders considered

here were optimized based on predictive feedback from a downstream unit and thus both bear simi-

larity to hierarchical predictive coding as formulated by Rao and Ballard (1999). The goal, however,

crucially determines the difference between these strategies: sustained heterogeneous activity ena-

bles reconstruction of stimulus details, while transient bursts of activity enable rapid detection of

changes in their underlying statistics.

Periods of stationarity give rise to ambiguous stimulus representations
A central idea of this work is that stimuli that are not useful for a statistical estimation task need not

be encoded. This was most notably observed during periods in which an observer maintained an

accurate prediction of a stationary stimulus distribution. Here, different stimuli could be encoded by

the same neural response without impacting the accuracy of the observer’s prediction. This process

ultimately renders stimuli ambiguous, and it predicts that the discriminability of individual stimuli

should decrease over time as the system’s internal model becomes aligned with the environment

(Materials and methods, Figure 6—figure supplement 1). Ambiguous stimulus representation have

been observed in electrosensory pyramidal neurons of the weakly electric fish, where adaptation to

the envelope of the animal’s own electric field (a second-order statistic analogous to the variance

step considered here) reduces the discriminability of specific amplitude modulations (Zhang and

Chacron, 2016). Similarly, in the olfactory system of the locust, responses of projection neurons to

chemically similar odors are highly distinguishable following an abrupt change in the odor environ-

ment, but become less distinguishable over time (Mazor and Laurent, 2005). The emergence of

ambiguous stimulus representations has recently been observed in human perception of auditory

textures that are generated from stationary sound sources such as flowing water, humming wind, or

large groups of animals (McDermott et al., 2013). Human listeners are readily capable of distin-

guishing short excerpts of sounds generated by such sources. Surprisingly, however, when asked to

tell apart long excerpts of auditory textures, performance sharply decreases. We propose that this

steady decrease in performance with excerpt duration reflects adaptive encoding for accurate infer-

ence, where details of the stimulus are lost over time in favor of their underlying statistical summary.

Efficient use of metabolic resources yields diverse signatures of
suboptimal inference
We used an ideal Bayesian observer to illustrate the dynamic relationship between encoding and

inference. Ideal observer models have been widely used to establish fundamental limits of perfor-

mance on different sensory tasks (Geisler et al., 2009; Geisler, 2011; Weiss et al., 2002). The

Bayesian framework in particular has been used to identify signatures of optimal performance on sta-

tistical estimation tasks (Simoncelli, 2009; Robert, 2007), and a growing body of work suggests

that neural systems explicitly perform Bayesian computations (Deneve, 2008; Fiser et al., 2010;

Ma et al., 2006b; Rao et al., 2002). In line with recent studies (Wei and Stocker, 2015;

Ganguli and Simoncelli, 2014), we examined the impact of limited metabolic resources on such

probabilistic neural computations.

While numerous studies have identified signatures of near-optimal performance in both neural

coding (e.g. Wark et al., 2009) and perception (e.g. Burge and Geisler, 2015; Weiss et al., 2002),

the ideal observer framework can also be used to identify deviations from optimality. Such devia-

tions have been ascribed to noise (Geisler, 2011) and suboptimal neural decoding (Putzeys et al.,
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2012). Here, we propose that statistical inference can deviate from optimality as a consequence of

efficient, resource-constrained stimulus coding. We observed deviations from optimality in both the

speed and accuracy of inference, and we found that some of these deviations (namely asymmetries

in the speed of variance adaptation) could potentially be used to differentiate the underlying scheme

that was used to encode incoming stimuli. It might therefore be possible to infer underlying adapta-

tion strategies by analyzing patterns of suboptimal inference.

Limitations and future work
We discussed general principles that determine optimal encoding strategies for accurate inference,

and we demonstrated the applicability of these principles in simple model systems. Understanding

the applicability in more complex settings and for specific neural systems requires further

investigation.

Complexity of the environment
We considered a simple nonstationary environment whose dynamics varied on a single timescale.

These dynamics were parameterized by a single latent variable that specified either the mean or the

variance of a Gaussian stimulus distribution. These first- and second-order moments are basic prop-

erties of an input distribution and often correspond to interpretable, physical properties such as

luminance or local contrast. Similar stimulus distribution have been used to study a range of neural

and perceptual dynamics, including adaptation of fly visual neurons to changes in luminance and

contrast (Fairhall et al., 2001), neural representations of electric field modulations in the weakly

electric fish (Zhang and Chacron, 2016), and human perceptual decision making (Nassar et al.,

2010). Here, we used this simple environment to probe the dynamics of encoding schemes opti-

mized for inference. We found that optimal encoding schemes respond strongly to changes in the

underlying environmental state, and thereby carry information about the timescale of environmental

fluctuations. In natural settings, signals vary over a range of temporal scales, and neurons are known

to be capable of adapting to multiple timescales in their inputs (Lundstrom et al., 2008;

Wark et al., 2009). We therefore expect that more complex environments, for example those in

which the environmental state can both switch between distinct distributions and fluctuate between

values within a single distribution, will require that the encoder respond to environmental changes

on multiple timescales.

In all such cases, we expect the dimensionality of the latent variable space to determine the lower

bound on coding costs for inference. Even in the limit of highly complex models, however, we

expect accurate inference and reconstruction to impose qualitatively different constraints on neural

response properties.

Diversity of sensory encoding schemes
We considered three encoding schemes that approximate known features of neural responses, and

as such could be implemented broadly across the brain. Discretization is a non-linear encoding

scheme that specifies a finite set of instantaneous response levels (such as spiking patterns or dis-

criminable firing rates) and provides a good model of retinal ganglion cells responses (e.g.

Koch et al., 2004). Temporal filtering, on the other hand, is a linear encoding scheme that forms the

basis of a broad class of linear-nonlinear (LN) models. These models have been used to describe

neural responses in a range of systems (Sharpee, 2013), and can capture temporal dependencies in

the neural response. To more closely approximate spiking nonlinearities observed in real neurons,

the linear output of this encoder could be followed by a nonlinearity whose parameters are also

adapted over time, thereby enabling the system to more strongly suppress irrelevant stimuli. Finally,

our model of stimulus selection implements a form of gating, whereby unsurprising stimuli are not

encoded. This nonlinear encoding scheme produces bimodal responses (either strongly active or

completely silent), and we would therefore expect such a mechanism to be useful when transmitting

signals over long distances. This scheme can also be viewed as implementing a partitioning of the

stimulus space into surprising and unsurprising stimuli, similar to discretization.

In order to achieve optimal bounds on performance, the parameters of each encoding scheme

were computed and updated on each timestep. While it is known that neural systems can adapt on
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timescales approaching physical limits (Fairhall et al., 2001), it is possible that more complex neural

circuits might implement a heuristic version of this adaptation that operates on slower timescales.

Together, these approaches provide a framework for studying adaptive coding across a broad

class of neural encoding schemes. This framework can be implemented with other encoding

schemes, such as population or spike-time coding. In such cases, we expect that the principles iden-

tified here, including increased coding fidelity during periods of uncertainty or surprise, will general-

ize across encoding schemes to determine optimal strategies of adaptation.

Robustness to noise
Noise can arise at different stages of neural processing and can alter the faithful encoding and trans-

mission of stimuli to downstream areas (Roddey et al., 2000; Brinkman et al., 2016). Individual neu-

rons and neural populations can combat the adverse effects of noise by appropriately tuning their

coding strategies, for example by adjusting the gain or thresholds of individual neurons

(van Hateren, 1992; Gjorgjieva et al., 2017), introducing redundancies between neural responses

(Doi and Lewicki, 2014; Tkacik et al., 2010; Moreno-Bote et al., 2014; Abbott and Dayan, 1999;

Sompolinsky et al., 2001), and forming highly distributed codes (Denève and Machens, 2016;

Deneve and Chalk, 2016). Such optimal coding strategies depend on the source, strength, and

structure of noise (Brinkman et al., 2016; Tkacik et al., 2010; van Hateren, 1992; Kohn et al.,

2016), and can differ significantly from strategies optimized in the absence of noise (Doi and Lew-

icki, 2014).

Noise induced during encoding stages can affect downstream computations, such as the class of

inference tasks considered here. To examine its impact on optimal inference, we injected additive

Gaussian noise into the neural response transmitted from the discretizing encoder to the observer.

We found that the accuracy of inference was robust to low levels of noise, but degraded quickly

once the noise variance approached the degree of separation between environmental states (Fig-

ure 3—figure supplement 2). Although this form of Gaussian transmission noise was detrimental to

the inference process, previous work has argued that noise-related variability, if structured appropri-

ately across a population of encoders, could support representations of the probability distributions

required for optimal inference (Ma et al., 2006a). Moreover, we expect that the lossy encoding

schemes developed here could be beneficial in combating noise injected prior to the encoding step,

as they can guarantee that metabolic resources are not wasted in the process of representing noise

fluctuations.

Ultimately, the source and degree of noise can impact both the goal of the system and the under-

lying coding strategies. Here, we considered the goal of optimally inferring changes in environmen-

tal states. However, in noisy environments where the separation between latent environmental

states is low, a system might need to remain stable in the presence of noise, rather than flexible to

environmental changes. We expect that the optimal balance between stability and flexibility to be

modulated by the spread of the stimulus distribution relative to the separation between environmen-

tal states. A thorough investigation of potential sources of noise, and their impact on the balance

between efficient coding and optimal inference, is the subject of future work.

Measures of optimal performance
To measure the optimal bound on inference error, we used the mean squared difference between

point estimates derived in the presence and absence of an encoding step. This metric is general and

makes no assumptions about the form of the posterior distribution (Jaynes, 2003; Robert, 2007).

Other measures, such as KL-divergence, could be used to capture not only changes in point esti-

mates, but also changes in uncertainty underlying these estimates.

Connections to existing theoretical frameworks
Efficient coding of task-relevant information has been studied before, primarily within the framework

of the Information Bottleneck (IB) method (Tishby et al., 2000; Chechik et al., 2005; Strouse and

Schwab, 2016). The IB framework provides a general theoretical approach for extracting task-rele-

vant information from sensory stimuli, and it has been successfully applied to the study of neural

coding in the retina (Palmer et al., 2015) and in the auditory cortex (Rubin et al., 2016). In parallel,

Bayesian Efficient Coding (BEC) has recently been proposed as a framework through which a
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metabolically-constrained sensory system could minimize an arbitrary error function that could, as in

IB, be chosen to reflect task-relevant information (Park and Pillow, 2017). However, neither frame-

work (IB nor BEC) explicitly addresses the issue of adaptive sensory coding in non-stationary environ-

ments, where the relevance of different stimuli can change in time. Here, we frame general

principles that constrain the dynamic balance between coding cost and task relevance, and we pose

neurally plausible implementations.

Our approach bears conceptual similarities to the predictive coding framework proposed by

Rao and Ballard (1999), in which low-level sensory neurons support accurate stimulus reconstruction

by encoding the residual error between an incoming stimulus and a top-down prediction of the stim-

ulus. Our encoding schemes similarly use top-down predictions to encode useful deviations in the

stimulus distribution. Importantly, however, the goal here was not to reconstruct the stimulus itself,

but rather to infer the underlying properties of a changing stimulus distribution. To this end, we con-

sidered encoding schemes that could use top-down predictions to adaptively adjust their strategies

over time based on the predicted utility of different stimuli for supporting inference.

This work synthesizes different theoretical frameworks in an effort to clarify their mutual relation-

ship. In this broad sense, our approach aligns with recent studies that aim to unify frameworks such

as efficient coding and Bayesian inference (Park and Pillow, 2017), as well as concepts such as effi-

cient, sparse, and predictive coding (Chalk et al., 2017).

Outlook
Efficient coding and probabilistic inference are two prominent frameworks in theoretical neurosci-

ence that address the separate questions of how stimuli can be encoded at minimal cost, and how

stimuli can be used to support accurate inferences. In this work, we bridged these two frameworks

within a dynamic setting. We examined optimal strategies for encoding sensory stimuli while mini-

mizing the error that such encoding induces in the inference process, and we contrasted these with

strategies designed to optimally reconstruct the stimulus itself. These two goals could correspond to

different regimes of the same sensory system (Balasubramanian et al., 2001), and future work will

explore strategies for balancing these regimes depending on task requirements. In order to test the

implications of this work for physiology and behavior, it will be important to generalize this frame-

work to more naturalistic stimuli, noisy encodings, and richer inference tasks. At present, our results

identify broad signatures of a dynamical balance between metabolic costs and task demands that

could potentially explain a wide range of phenomena in both neural and perceptual systems.

Materials and methods

A. Optimal Bayesian inference with adaptively encoded stimuli
We describe a class of discrete-time environmental stimuli xt whose statistics are completely charac-

terized by a single time-varying environmental state variable �t.

We then consider the scenario in which these stimuli are encoded in neural responses, and it is

these neural responses that must be used to construct the posterior probability over environmental

states. In what follows, we derive the optimal Bayesian observer for computing this posterior given

the history of neural responses. The steps of this estimation process are summarized in Figure 1—

figure supplement 1.

In a full Bayesian setting, the observer should construct an estimate of the stimulus distribution,

p xtð Þ, by marginalizing over its uncertainty in the estimate of the environmental state �t (i.e. by com-

puting p xtð Þ ¼
R
d�t p xtj�tð Þp �tð Þ). For simplicity, we avoid this marginalization by assuming that the

observer’s belief is well-summarized by the average of the posterior, which is captured by the point

value �̂t ¼
R
d�t �tp �tð Þ for estimation, and ~�tþ1 ¼

R
d�tþ1 �tþ1p �tþ1ð Þ for prediction. The average of the

posterior is an optimal scalar estimate that minimizes the mean squared error between the esti-

mated and true states of the environment, and is known to provide a good description of both neu-

ral (DeWeese and Zador, 1998) and perceptual (Nassar et al., 2010) dynamics. The observer then

uses these point values to condition its prediction of the stimulus distribution, p xtj~�t
� �

. Conditioning

on a point estimate guarantees that the observer’s prediction of the environment belongs to the

same family of distributions as the true environment. This is not guaranteed to be the case when
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marginalizing over uncertainty in �t. For example, if the posterior assigns non-zero probability mass

to two different mean values of a unimodal stimulus distribution, the predicted stimulus distribution

could be bimodal, even if the true stimulus distribution is always unimodal. We verified numerically

that the key results of this work are not affected by approximating the full marginalization with point

estimates.

When the timescale of the environment dynamics is sufficiently slow, the point prediction ~�tþ1 can

be approximated by the point estimate �̂t. In the two-state environments considered here, the prob-

ability that the environment remains in the low state from time t to time t þ 1 is equal to

PL
tþ1

¼ PL
t 1� hð Þ þ 1� PL

t

� �
h, where h is the hazard rate (DeWeese and Zador, 1998). For the small

hazard rate used here (h ¼ 0:01), PL
tþ1

¼ 0:99PL
t þ 0:01 1� PL

t

� �
, and the estimate �̂t is therefore a very

close approximation of the prediction ~�tþ1. All results presented in the main text were computed

using this approximation (i.e. ~�tþ1 » �̂t). With this approximation, the optimal Bayesian observer com-

putes the approximate posterior distribution p �tjyt�t; �̂t<t

� �

, conditioned on the history of neural

responses yt�t and the history of point estimates �̂t<t. In the remainder of the

Materials and methods, we will formulate all derivations and computations in terms of the history of

past estimates (up to and including time t � 1), with the understanding that these estimates can be

used as approximate predictions of the current state at time t.

With these simplifications, the general steps of the inference process can be broken down as

follows:

1. Encoder: maps incoming stimuli xt�t onto a neural response yt by sampling from the ‘encoding

distribution’ p ytjxt�t; �̂t<t

� �

2. Decoder: uses Bayes’ rule to compute the conditional distribution of a stimulus xt given the

neural response yt, which we refer to as the ‘decoding distribution’ p xtjyt; �̂t<t
� �

3. Observer: uses the neural response yt to update the posterior p �tjyt�t ; �̂t<t

� �

. This can be bro-

ken down into the following steps, in which the observer:

a. Combines the previous posterior p �t�1jyt<t ; �̂t<t�1

� �

with knowledge of environment

dynamics p �tj�t�1ð Þ to compute the probability distribution of �t given all past data,

p �t jyt<t; �̂t<t�1

� �

b. Uses Bayes’ rule to incorporate a new stimulus xt and form p �tjxt; yt<t ; �̂t<t�1

� �

c. Marginalizes over the uncertainty in xt using the decoding distribution p xtjyt; �̂t<t
� �

,

thereby obtaining the updated posterior p �tjyt�t; �̂t<t

� �

(which can be averaged to com-

pute the point estimate �̂t)
d. Combines the updated posterior with knowledge of environment dynamics p �tþ1j�tð Þ to

generate a predicted distribution of environmental states p �tþ1jyt�t; �̂t<t

� �

(which can be

averaged to compute the point prediction ~�tþ1)
4. Feedback loop: sends the prediction back upstream to update the encoder.

In what remains of this section, we derive the general equations for the full inference process in

the presence of both encoding and decoding. In Section B, we derive the specific forms of the infer-

ence equations in a simplified, two-state environment. We first focus on the general equations of the

observer model (Section B.2). We then describe the forms of the encoding and decoding distribu-

tions implemented by the three different encoding schemes considered in this paper, and detail

how the parameters of each encoder can be optimized based on the observer’s prediction of the

environmental state (Sections B.3-B.6). In Section C, we describe the numerical approximations used

to simulate the results presented in the main paper.

A.1. Environment dynamics
We consider a non-stationary environment with Markovian dynamics. The dynamics of the environ-

mental state variable �t are then specified by the distribution p �tj�t�1ð Þ. At each time t, the value of �t
specifies the distribution of stimuli p xtj�tð Þ.
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A.2. Encoder
We consider an encoder that maps incoming stimuli xt�t onto a neural response yt. We assume that

the encoder has access to the history of estimates �̂t<t (fed back from a downstream observer) to

optimally encode incoming stimuli via the ‘encoding distribution’, p ytjxt�t; �̂t<t

� �

.

A.3. Decoder
Because the observer does not have direct access to the stimulus, it must first decode the stimulus

from the neural response. We assume that the decoder has access to the instantaneous neural

response yt and this history of past estimates �̂t<t. The decoder must use these signals to marginalize

over past stimuli xt<t and compute the probability of the response yt conditioned on the current stim-

ulus xt (this probability will later be used to update the observer’s posterior):

p ytjxt; �̂t<t
� �

¼
Z

dxt<t p yt jxt;xt<t ; �̂t<t
� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

encoding

distribution

p xt<tj�̂t<t
� �

(5)

The decoder must then invert this distribution (using Bayes’ rule) to estimate the probability of

the stimulus xt given the response yt and past estimates �̂t<t:

p xtjyt; �̂t<t
� �

¼
p ytjxt ; �̂t<t
� �

p xt j�̂t<t
� �

p yt j�̂t<t
� �

¼
p ytjxt ; �̂t<t
� �

p xt j�̂t�1

� �

Z yt ; �̂t<t

� �

(6)

where we have written the distribution in the denominator as a normalization constant obtained by

integrating the numerator:

Z yt; �̂t<t

� �

¼
Z

dxt p ytjxt ; �̂t<t
� �

p xt j�̂t�1

� �

(7)

In what follows, we refer to p xtjyt; �̂t<t
� �

(defined in Equation 6) as the ‘decoding distribution’.

A.4. Observer
The optimal observer should use the decoding distribution to marginalize over its uncertainty about

the true value of the stimulus xt and thereby obtain the posterior probability of �t given past

responses yt�t and past estimates �̂t<t. To do this, we first write an expression for the probability of

�t given all data up to (but not including) the current timestep:

p �tjyt<t ; �̂t<t�1

� �

¼
Z

d�t�1 p �tj�t�1ð Þp �t�1jyt<t; �̂t<t�1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

posterior from

previous timestep

(8)

where the prior is taken to be the posterior from the last timestep, and the distribution p �tj�t�1ð Þ
governs the dynamics of the environment.

This distribution can then be combined with a new stimulus xt:
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p �tjxt ;yt<t; �̂t<t�1

� �

¼
p xtj�t ;yt<t; �̂t<t�1

� �

p �tjyt<t; �̂t<t�1

� �

p xtjyt<t ; �̂t<t�1

� �

¼
p xt j�tð Þp �tjyt<t; �̂t<t�1

� �


 xt;yt<t ; �̂t<t�1

� � :

(9)

As before, we have written the distribution in the denominator as a normalization constant

obtained by integrating the numerator:


 xt;yt<t; �̂t<t�1

� �

¼
Z

d�t p xtj�tð Þp �tjyt<t ; �̂t<t�1

� �

(10)

Finally, we marginalize over the unknown value of the signal xt using the decoding distribution

p xtjyt; �̂t<t
� �

to obtain the updated posterior distribution:

p �tjyt�t; �̂t<t

� �

¼
Z

dxt p �t jxt;yt<t ; �̂t<t�1

� �

p xtjyt; �̂t<t
� �

(11)

To form a prediction about the future state of the environment, the observer should combine its

belief p �tjyt�t; �̂t<t

� �

about the current state of the environment with the knowledge p �tþ1j�tð Þ of

the environment dynamics in a manner analogous to Equation 8.

A.5. Computing point estimates
The posterior can be used to compute a point estimate �̂t and prediction ~�tþ1 of the environmental

state:

�̂t ¼
Z

d�t �tp �tjyt�t; �̂t<t

� �

� �̂y;t (12)

~�tþ1 ¼
R
d�tþ1 �tþ1p �tþ1jyt�t; �̂t<t

� �

¼
R
d�tþ1 �tþ1

R
d�t p �tþ1j�tð Þp �tjyt�t; �̂t<t

� � (13)

The point estimate given in Equation 12 is referred to in the main text as ’�̂y;t’. We distinguish

this from the point estimate ’�̂x;t’, which was derived in DeWeese and Zador (1998) in the absence

of encoding/decoding.

B. Model environments
B.1. Environment dynamics
We consider a two-state environment in which the state �t can take one of two values, �L and �H . At

each timestep, the environment can switch states with a constant probability h, referred to as the

‘hazard rate’. The hazard rate fully specifies the dynamics of the environment:

�t ¼ zt�t�1þ 1� ztð Þ �Lþ �H � �t�1

� �
(14)

where zt is a binary random variable equal to 1 with probability h and 0 with probability 1� h.

We take �t to parametrize either the mean � or the standard deviation s of a Gaussian stimulus

distribution:

p xtj�tð Þ ¼ N xt;�t;s
2ð Þ; mean-switching environment �t ¼ �ð Þ

N xt;�;�
2

t

� �
; variance-switching environment �t ¼ sð Þ

(

(15)
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B.2. Observer

In a two-state environment, the posterior distribution p �tjyt�t ; �̂t<t

� �

can be summarized by a single

value PL
t ¼ p �t ¼ �Ljyt�t; �̂t<t

� �

, which is the probability that the environment is in the low state at

time t.

Given the posterior PL
t�1

at the previous timestep, the distribution for �t given all past data is

given by:

p �t ¼ �Ljyt<t ; �̂t<t
� �

¼ 1� hð ÞPL
t�1

þ h 1�PL
t�1

� �
(16)

where h is the a priori probability that a switch occurred at the current timestep. This distribution

can then be combined with a new stimulus xt:

p �t ¼ �Ljxt;yt<t ; �̂t<t
� �

¼
p xtj�t ¼ �Lð Þp �t ¼ �Ljyt<t; �̂t<t

� �


 xt ;yt<t; �̂t<t

� �

¼N xt;�L;s
2

L

� �
1� hð ÞPL

t�1
þ h 1�PL

t�1

� �� �


 xt;yt<t; �̂t<t

� �

(17)

The variables (�L, sL) and (�H , sH ) correspond to mean and standard deviation of the stimulus dis-

tribution in the low and high states, respectively, and their values vary depending on the type of the

environment (mean-switching versus variance-switching).

To obtain the updated posterior PL
t , we marginalize over the decoding distribution p xt jyt; �̂t<t

� �

:

PL
t ¼ p �t ¼ �Ljyt�t; �̂t<t

� �

¼
Z

dxt p �t ¼ �Ljxt;yt<t ; �̂t<t
� �

p xt jyt; �̂t<t
� �

¼
Z

dxt
N xt;�L;s

2

L

� �
1� hð ÞPL

t�1
þ h 1�PL

t�1

� �� �


 xt;yt<t; �̂t<t

� � p xtjyt; �̂t<t
� � (18)

The posterior can be used to construct a new point-estimate �̂t of the environmental state:

�̂t ¼ PL
t �

Lþ 1�PL
t

� �
�H ; (19)

where 1�PL
t ¼ PH

t is the probability that the environment is in the high state at time t. Note that

although the environmental states are discrete, the optimal Bayesian observer maintains a continu-

ous estimate �̂t.

To form a prediction about the future state of the environment, the observer first combines the

posterior PL
t with knowledge of environment dynamics (in a manner analogous to Equation 16), and

then computes a point prediction (in a manner analogous to Equation 19):

PL
tþ1

¼ PL
t 1� hð Þþ 1�PL

t

� �
h (20)

~�tþ1 ¼ PL
tþ1

�L þ 1�PL
tþ1

� �
�H (21)

For small hazard rates (as considered here), the predicted value ~�tþ1 is very close to the current

estimate �̂t. For simplicity, we approximate the prediction ~�tþ1 by the estimate �̂t. This estimate is

then fed back upstream and used to update the encoder. In the general case, however, one should

compute the full predicted distribution of environmental states via Equation 20, and use this distri-

bution to optimize the encoder.

B.3. Encoder/decoder

The posterior (given in Equation 18) is a function of the decoding distribution p xtjyt; �̂t<t
� �

, which

depends on the encoding distribution p ytjxt�t; �̂t<t

� �

through Equations 5-6. In what follows, we
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derive the encoding and decoding distributions for the three encoding schemes considered in this

paper. All three encoding schemes are noiseless; as a result, the encoding distribution p yt jxt�t; �̂t<t

� �

reduces to a delta function in each case. This encoding distribution can then be used to derive the

decoding distribution, from which it is straightforward to compute the posterior PL
t via Equation 18

(and similarly any estimates and predictions derived from the posterior).

Each encoding scheme considered here was parametrized by one or more encoding parameters.

In two of the three encoding schemes, these parameters were chosen to minimize an error function

E x; yð Þ, subject to a constraint on the fidelity of the encoding. We defined this error function with

respect to inference or stimulus reconstruction:

E x;yð Þ ¼ �̂x � �̂y

� �2

; error in inference

x� yð Þ2; error in reconstruction

8

<

:
(22)

where �̂y was defined in Equation 12, and �̂x was derived in DeWeese and Zador (1998).

B.4. Limited neural response levels: encoding via discretization
B.4.1. Encoder
Here, we consider a quantization (instantaneous discretization) of the stimulus space that maps the

current stimulus xt onto one of a discrete set of values yit
� 	

, where i ¼ 1; 2; :::N labels distinct

response levels. This mapping is performed deterministically by choosing the response level that

minimizes the instantaneous error E xt; yit
� 	� �

:

yt ¼
yit

argmin Eðxt;fyitgÞ

¼ yit

(23)

We can therefore write the encoding distribution as a delta function:

p ytjxt�t; �̂t<t

� �

¼ d xt � yit
� �

; (24)

where the set of response levels yit
� 	

implicitly contains the dependence on �̂t�1.

B.4.2. Decoder
The decoder must estimate the probability of a stimulus xt, given that the observed response was yit.

In principle, the response yit could have been generated by any stimulus in the range y
i;L
t ; yi;Ht

� �
, where

y
i;L
t and y

i;H
t are the lower and upper bounds of the bin represented by level yit, respectively.

The decoding distribution can then be written as a truncated Gaussian distribution:

p xtjyt; �̂t<t
� �

¼
1

Z y
i;L
t ;yi;Ht ;�̂t�1ð ÞN xt ; �̂t�1; ŝ

2

t�1

� �
; y

i;L
t <xt<y

i;H
t

0; otherwise

(

(25)

where Z y
i;L
t ;yi;Ht ; �̂t�1

� �

is a normalization constant. For simplicity, we approximated this truncated

Gaussian distribution with a delta function:

p xtjyt ; �̂t<t
� �

»d xt � yit
� �

(26)

We verified numerically that this approximation did not impact our results.

B.4.3. Determining the optimal response levels
At each point in time, the optimal set of response levels yit

� 	*
was found by minimizing the following

equation:

yit
� 	*¼

fyitg
argmin E xt; yit

� 	� �
 �

p xt j�̂t�1ð Þ (27)
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subject to a hard constraint on the number of response levels. When optimizing for mean-switching

environments, we defined the error function with respect to the raw stimulus and neural response

(i.e. E¼ E x;yð Þ). When optimizing for variance-switching environment, we defined the error function

with respect to the absolute value of the stimulus and neural response (i.e. E¼ E jxj; jyjð Þ). We com-

puted hE xt; yit
� 	� �

i numerically; see Section C.3.1.

B.5. Limited gain and temporal acuity: encoding via temporal filtering
B.5.1. Encoder
In this encoding scheme, we consider a simple temporal filter parameterized by the coefficient at.

This filter linearly combines current (xt) and past (xt�1) stimuli:

yt ¼ atxt þ 1�atð Þxt�1 (28)

The encoding distribution is then given by:

p ytjxt�t; �̂t<t

� �

¼ d yt � atxt þ 1�atð Þxt�1ð Þð Þ; (29)

where the filtering coefficient at implicitly contains the dependence on �̂t�1.

B.5.2. Decoder
The encoding is a function of both current and past stimuli. The decoder, however, only has access

to the current response yt. In order to estimate the probability that this response was generated by

the stimulus xt, the decoder must first use the internal estimates �̂t<t to marginalize over uncertainty

in past stimuli xt<t. This was first outlined in Equation 5, which reduces here to:

p ytjxt; �̂t<t
� �

¼
Z

dxt<t p ytjxt;xt<t; �̂t<t
� �

p xt<tj�̂t<t
� �

¼
Z

dxt�1 p ytjxt ;xt�1; �̂t�1

� �

p xt�1j�̂t�1

� �

¼
Z

dxt�1 d yt � atxt þ 1�atð Þxt�1ð Þð ÞN xt�1; �̂t�1
; ŝ2

t�1

� �

¼ 1

1�atð ÞN
yt �atxt

1�atð Þ ; �̂t�1
; ŝ2

t�1

� �

¼N yt;atxt þ 1�atð Þ�̂t�1
; 1�atð Þ2ŝ2

t�1

� �

(30)

The decoder can then use Bayes’ rule to invert this distribution and determine the probability of

the stimulus xt given the response yt:

p xtjyt; �̂t<t
� �

¼
p ytjxt; �̂t<t
� �

p xtj�̂t<t
� �

Z yt ; �̂t<t

� �

¼ 1

Z yt; �̂t<t

� �N yt;atxt þ 1�atð Þ�̂t�1; 1�atð Þ2ŝ2

t�1

� �

N xt; �̂t�1; ŝ
2

t�1

� �

(31)

In its current form, this decoding distribution is written as a Gaussian over the variable yt. Ulti-

mately, the observer must use this decoding distribution to marginalize over uncertainty in xt. In

Appendix I, we walk through the algebra needed to rewrite this distribution as Gaussian over xt. The

final form of this distribution in given by:

p xt jyt; �̂t<t
� �

¼N xt;
atyt � 1�atð Þ 2at � 1ð Þ�̂t�1

1� 2at þ 2a2
t

;
1�atð Þ2

1� 2at þ 2a2
t

 !

ŝ2

t�1

 !

(32)

B.5.3. Determining the optimal filter coefficient
The optimal filtering coefficient a*

t was found by minimizing the following equation:

a*
t ¼

at

argmin E xt;ytð Þh i
p xt j�̂t�1ð ÞþbH yt;ytþ1j�̂t<t

� �

(33)
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The error term, hE xt;ytð Þi, was computed numerically; see Section C.3.2. The entropy term,

H yt;ytþ1j�̂t<t
� �

, can be computed analytically (see Appendix 2 for details):

H yt ;ytþ1j�̂t<t
� �

¼H ytþ1jyt; �̂t<t
� �

þH ytj�̂t<t
� �

¼ 1

2
log 4p2e2 a2

t ŝ
2

t�1
þ 1�atð Þ4
1� 2at þ 2a2

t

ŝ2

t�1

 !

a2

t ŝ
2

t�1
þ 1�atð Þ2ŝ2

t�1

� �
 !

(34)

B.6. Limited neural activity: encoding via dynamic stimulus selection
B.6.1. Encoder
In this encoding scheme, the encoder uses the misalignment signal Mt to determine whether or not

to encode and transmit the stimulus xt. If the magnitude of the misalignment signal exceeds the

threshold V , the stimulus is encoded and transmitted. Otherwise, the stimulus is not encoded, and a

‘null symbol’ is transmitted to the observer. For the purposes of computing the encoding and

decoding distributions, we use yt ¼ 0 to denote the null symbol (in the main text, we denoted the

null symbol by yt ¼ �).

This encoding is a deterministic mapping of the stimulus xt onto the response yt, dependent upon

the misalignment signal Mt. The encoding distribution can thus be written in a probabilistic form as a

mixture of two delta functions:

p ytjxt ; �̂t<t
� �

¼ d yt � xtð Þ; jMtj>V
d ytð Þ; jMtj � V

�

(35)

where Mt implicitly contains the dependence on �̂t�1.

B.6.2. Decoder
In this scheme, the form of the decoding distribution depends on whether or not the encoder trans-

mits the stimulus xt. If the stimulus was encoded and transmitted, there is no uncertainty in its value,

and the decoding distribution is a delta function about yt. If the stimulus was not encoded and the

null symbol was instead transmitted, the decoder can only assume that the stimulus came from the

estimated stimulus distribution p xtj�̂t�1

� �

.

The decoding distribution therefore takes the following form:

p xtjyt; �̂t<t
� �

¼
d xt � ytð Þ; yt 6¼ 0

p xtj�̂t�1

� �

; yt ¼ 0

(

(36)

B.6.3. Determining the misalignment signal
In defining this encoding scheme, our aim was to construct a heuristic ‘misalignment’ signal that

would alert the encoder to a change in the stimulus distribution. One candidate is a signal that tracks

the average surprise of incoming stimuli, given the internal estimate of the environmental state.

The surprise associated with a single stimulus xt is equal to the negative log probability of the

stimulus given the estimate �̂t�1:

S xtð Þ ¼� log p xtj�̂t�1

� �h i

(37)

The average surprise of incoming stimuli, obtained by averaging over the true stimulus distribu-

tion p xtj�tð Þ, is equal to cross-entropy between the true and estimated stimulus distributions:

H xt ;�t; �̂t�1

� �

¼
Z

dxt S xtð Þp xt j�tð Þ (38)

¼H xt;�tð ÞþDKL p xtj�tð Þkp xtj�̂t�1

� �h i

; (39)

where the second term in Equation 39 is the Kullback-Leibler divergence of the estimated stimulus

distribution from the true stimulus distribution.
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The cross-entropy is equal to the entropy of the true stimulus distribution when the observer’s

estimate is accurate (i.e., when �̂t�1 ¼ �t), and increases with the inaccuracy of the observer’s esti-

mate. To construct a signal that deviates from zero (rather than from the entropy of the stimulus dis-

tribution) whenever observer’s estimate is inaccurate, we subtract the estimated entropy H xt; �̂t�1

� �

from the cross-entropy to define the ‘misalignment signal’:

Mt ¼H xt;�t; �̂t�1

� �

�H xt ; �̂t�1

� �

(40)

¼H xt;�tð ÞþDKL p xtj�tð Þkp xtj�̂t�1

� �h i

�H xt; �̂t�1

� �

(41)

The magnitude of this signal is large whenever the average surprise of incoming stimuli differs

from the estimated surprise, and monotonically increases as a function of the difference between

the true and estimated states of the environment. In the case of a Gaussian distribution, the mis-

alignment signal reduces to:

Mt ¼
1

2
log 2pes2

t

� �
þ log

ŝt�1

st

� �

þs2

t þ �t � �̂t�1ð Þ2
2ŝ2

t

� 1

2

 !

� 1

2
log 2peŝ2

t�1

� �
(42)

where �t and st are the mean and standard deviation of the true stimulus distribution, respectively,

and �̂t�1
and ŝt�1 are the estimated values of the same parameters. The analytical values of this mis-

alignment signal are plotted in Figure 2I–J.

In practice, the encoder does not have access to the parameters of the true stimulus distribution,

and must therefore estimate the misalignment signal directly from incoming stimulus samples. This is

discussed in more detail in Section C.3.3.

C. Numerical simulations
C.1. Environment parameters
All results were generated using a probe environment in which the state �t switched between two

fixed values, �L and �H , every 100 time samples (corresponding to a hazard rate of h ¼ 0:01). A single

cycle of this probe environment consists of 200 time samples, for which the environment is in the

low state �t ¼ �Lð Þ for the first 100 time samples and in the high state �t ¼ �Hð Þ for the second 100

time samples. In the main text, we averaged results over multiple cycles of the probe environment.

For the mean-switching environment, the state �t parametrized the mean of the stimulus distribu-

tion and switched between � ¼ �L ¼ �1 and � ¼ �H ¼ 1. The standard deviation was fixed to s ¼ 1.

For the variance-switching environment, �t parametrized the standard deviation of the stimulus distri-

bution and switched between s ¼ �L ¼ 1 and s ¼ �H ¼ 2. The mean was fixed to � ¼ 0.

C.2. Updating the posterior
On each timestep, a single stimulus xt was drawn randomly from p xtj�tð Þ. The stimulus was encoded,

decoded, and used to update the posterior PL
t . Updating the posterior requires marginalizing over

the decoding distribution p xt jyt; �̂t<t
� �

(as given by Equation 11). We approximated this marginaliza-

tion numerically via Monte-Carlo simulation. At each time step, we generated 200 samples from the

decoding distribution specified by each encoding scheme (for reference, the decoding distributions

are given in Equations 26, 32, and 36). Individual samples were then used to compute separate

estimates of the posterior, and the resulting set of estimates was averaged over samples. Results

were robust to the number of samples used, provided that this number exceeded 50. In the case of

encoding via discretization, we found that results were not sensitive to the inclusion of this marginali-

zation step. We therefore computed all results for the discretization encoding scheme in the absence

of marginalization by using the neural response yt to directly update the posterior. This posterior

forms the basis of all estimates �̂t and predictions ~�tþ1.

C.3. Optimizing the encoding
For two of the three encoding schemes (discretization and temporal filtering), the estimate �̂t�1 was

used to optimize a set of encoding parameters (the set of neural response levels yit
� 	

in the case of
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discretization, and the filtering coefficient at in the case of temporal filtering). To perform these opti-

mizations, we discretized the posterior PL
t into 100 values equally spaced between 0 and 1. This

resulted in a set of 100 discretized values of the estimated state �̂bin. We found the optimal encoding

parameters for each value of �̂bin (described in detail in the following sections); this resulted in 100

sets of optimal response levels (given a fixed number of levels), and 100 values of the filtering coeffi-

cient a (given a fixed constraint strength b). On each timestep of the simulation, the true estimate �̂t

was mapped onto the closest discretized value �̂bin. The corresponding encoding parameters were

then used to encode the incoming stimulus xt. Additional details of each optimization procedure are

described in the following sections.

C.3.1. Limited neural response levels: encoding via discretization
Response levels were chosen to optimize the following objective function:

yit
� 	*¼

fyitg
argmin E xt; yit

� 	� �
 �

p xt j�̂t�1ð Þ (43)

The optimal set of response levels yit
� 	*

was found numerically using Lloyd’s algorithm

(Cover and Thomas, 2012) (often referred to as K-means clustering). The algorithm takes the follow-

ing as inputs: a set of points to be clustered xf g (corresponding to stimulus samples), a number of

quantization levels N (corresponding to the number of neural response levels), and a distortion mea-

sure d x;yð Þ (corresponding to the error function E x;yð Þ). The goal of the algorithm is to find a quanti-

zation (what we referred to as a discretization of the stimulus space) that minimizes the average

value of the distortion.

The values of the quantization levels, y1; . . . ; yN , are first randomly initialized. The algorithm then

proceeds in two steps:

1. Each point x is assigned to a quantization level yi that yields the smallest distortion d x; yið Þ.
2. Each quantization level is replaced by the average value of the points assigned to it.

The two steps are iterated until convergence.

We computed a set of optimal quantization levels (optimal response levels) for each of the 100

discretized values of �̂bin (described above). For each value of �̂bin, we generated a training dataset

xf g consisting of 50,000 values drawn from the estimated stimulus distribution p xtj�̂bin
� �

. We deter-

mined the boundaries of each quantization level (i.e., the values yi;L and yi;H that bounded the set of

stimuli that were mapped to the same quantization level) by assigning points in the training dataset

to the quantization level yi that minimized d x; yið Þ.
To compute optimal quantization levels for stimulus reconstruction, we used the standard distor-

tion measure d x; yð Þ ¼ x� yð Þ2; in this case, the algorithm is guaranteed to converge to the global

optimum. To compute optimal quantization levels for inference, we defined the distortion measure

to be d x; yð Þ ¼ �̂x � �̂y

� �2

. The algorithm is not guaranteed to converge to a global optimum in this

case, but we found empirically that the algorithm converged to a local optimum (Figure 3—figure

supplement 1). Moreover, the two distortion measures did not produce equivalent results.

C.3.2. Limited gain and temporal acuity: encoding via temporal filtering
The optimal filtering coefficient was chosen to minimize the following objective function:

a*
t ¼

at

argmin E xt;ytð Þh i
p xt j�̂t�1ð ÞþbH yt;ytþ1j�̂t<t

� �

; (44)

where as before, we choose E x;yð Þ ¼ �̂x� �̂y

� �2

when optimizing for inference, and E x;yð Þ ¼ x� yð Þ2

when optimizing for reconstruction.

The joint entropy H yt; ytþ1j�̂t<t
� �

can be determined analytically, as derived in Section B.5.3. We

approximated the error term, E xt; ytð Þh i
p xt j�̂t�1ð Þ, numerically. To do so, we first discretized a into 50

values evenly spaced between 0 and 1 (corresponding to 50 discrete values of abin). As described
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above, we also discretized the posterior PL
t into 100 values (corresponding to 100 discrete values of

�̂bin). For each combination of abin and �̂bin, we generated 50,000 pairs of stimulus samples xt�1; xtð Þ
from the distribution p xtj�̂t�1

� �

. Each sample was used to compute values of the estimates �̂x and �̂y.

The errors �̂x � �̂y

� �2

and xt � ytð Þ2 were then averaged over all 50,000 stimulus pairs.

The optimal value a*
t was then chosen as the value of abin that minimized the objective in Equa-

tion 44 for a given choice of the error function E x; yð Þ and constraint strength b.

C.3.3. Limited neural activity: encoding via dynamic stimulus selection
The misalignment signal, derived in Section B.6.3, was defined in terms of the relative alignment

between the true stimulus distribution, p xtj�tð Þ, and the estimated stimulus distribution, p xt j�̂t�1

� �

.

When the parameters of the true stimulus distribution are known, the value of this signal can be

computed analytically via Equation 40. However, when the system does not have access to the stim-

ulus distribution (as is the case here), this signal must be estimated directly from incoming stimulus

samples. We consider a scenario in which the encoder can approximate Equation 40 by computing

a running-average of the stimulus surprise:

Mt ¼� 1

T

XT

t¼0

log p xt�tj�̂t�1

� �h i

�H xtj�̂t�1

� �

; (45)

where T specifies the number of timebins used to estimate the average surprise. All results in the

main text were generated using T ¼ 10 timebins.

C.4. The role of surprise and uncertainty
Figure 1B–D illustrated the relative impact of different stimuli on the observer’s estimate of an envi-

ronmental state �, which is modulated by the observer’s uncertainty and the surprise of incoming

stimuli (for numerical values of the color ranges in Figure 1B–D, see Figure 1—figure supplement

2).

To illustrate this, we considered optimal Bayesian estimation of the location � and scale a2=2 of a

generalized Gaussian stimulus distribution:

p x;�;a;bð Þ ¼ b

2aG 1=bð Þexp � jx��j
a

� �b
" #

(46)

Our derivation is analogous to that outlined in Murphy (2007) for estimating the mean of a

Gaussian stimulus distribution.

We consider a snapshot of the inference process, when the observer’s prior is centered around a

fixed estimate of the location (�̂ ¼ 0) or scale (â2=2 ¼ 1). When estimating location, we fix the scale

parameter to be a ¼
ffiffiffi

2
p

(corresponding to a Gaussian distribution with variance s2 ¼ a2=2 ¼ 1 when

b ¼ 2). When estimating scale, we fix the location parameter to be � ¼ 0. In both cases, we consider

three different values of the shape parameter: b ¼ 1; 2; 10.

The surprise of a single stimulus observation is quantified by the negative log probability of the

stimulus value given the observer’s estimate. We consider 100 evenly-spaced values of surprise

between 1 and 10. For each value of surprise, we compute the value of the stimulus x*t that elicits a

given surprise.

The observer’s uncertainty is captured by the entropy of the prior distribution. When estimating

the location parameter, the natural conjugate prior is the Gaussian distribution N �;�0;s
2

0

� �
with

mean �0 ¼ �̂ (we take this mean to be the observer’s point estimate of the environmental state

before observing a stimulus sample x*t , that is, �̂t�1 ¼ �̂). The entropy of the prior distribution

depends only on its variance: H ¼ 1

2
log 2pes2

0

� �
. We consider 100 evenly-spaced values of the entropy

between 0 and 0.7. For each value of entropy, we compute the value s2

0
¼ exp 2Hð Þ=2pe that elicits a

given entropy.

When estimating the scale parameter, the natural conjugate prior is the inverse gamma function

p a;a0;b0ð Þ with mean â ¼ b0= a0 � 1ð Þ (we take �̂t�1 ¼ â2=2 to be the observer’s estimate of
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the environmental state before observing x*t ). The entropy of the prior depends on both a0 and b0:

H ¼ a0 þ log b0G a0ð Þð Þ � 1þ a0ð Þ	 a0ð Þ. We fix b0 ¼ â a0 � 1ð Þ. We note that the entropy is non-

monotonic in a0; we restrict our analysis to values a0>2 where both the mean and the variance of

the prior are well-defined, and the entropy is monotonic. We again consider 100 evenly-spaced val-

ues of the entropy between 0 and 0.7. For each value of entropy, we compute the value a0 that elic-

its a given entropy.

For each combination of prior uncertainty and surprise, we computed the posterior either over

the location parameter, or over the scale parameter. We then computed the squared difference

between the average value of the prior and the average value of the posterior ( �̂t�1 � �̂t x*t
� �� �2

in

the case of location estimation, and â2

t�1
=2� ât x*t

� �2
=2

� �2

in the case of scale estimation), and we

used this squared difference as a measure of the impact of a single stimulus observation on the

observer’s estimate of location or scale. When reporting the results in Figure 1B–D, we separately

scaled heatmaps for each stimulus distribution (Laplace, Gaussian, and flat) and for each estimated

parameter (location and scale); numerical ranges of these heatmaps are given in Figure 1—figure

supplement 2.

C.5. Generating spike rasters
Figure 6A showed simulated spike rasters for an encoding scheme with limited neural response lev-

els. To generate these rasters, a stimulus sample xt was randomly drawn from the true stimulus distri-

bution p xt j�tð Þ. This stimulus was then mapped onto one of N ¼ 4 neural response levels. Each

response level was assigned a binary spike pattern from the set 00½ �; 10½ �; 01½ �; 11½ �f g, where 1 or 0 cor-

respond to presence or absence of a spike, respectively. Patterns were assigned to response levels

yit
� 	

according to the probability p yitj�t
� �

that a particular level would be used to encode incoming

stimuli. In this way, the pattern with the fewest spikes ( 00½ �) was assigned to the response level with

the highest probability, and the pattern with the most spikes ( 11½ �) was assigned to the level with the

lowest probability. This strategy (called ‘entropy coding’) achieves the shortest average encoding of

the input by using the fewest number of spikes (Cover and Thomas, 2012). We simulated spike pat-

terns for 800 cycles of the probe environment using the set of response levels optimized for infer-

ence or stimulus reconstruction.

C.6. Computing metamer probabilities
We estimated the probability of a metamer as a function of the alignment between the true state of

the environment � and the observer’s prediction ~�. We say that two stimuli x1t and x2t are metamers (i.

e., they are indistinguishable to the observer) if in the process of encoding they become mapped on

the same neural response level yM (i.e., y1t ¼ y2t ¼ yM ). The probability of a metamer,

p y1t ¼ y2t j�t; �̂t�1

� �

, depends on both the true and predicted states of the environment. We numeri-

cally estimated this probability for a mean-switching environment in the low state (� ¼ �L). We gener-

ated 100 values of �̂t�1, evenly spaced between �L and �H . For each value of �̂t�1, we drew 100,000

pairs of samples from the stimulus distribution p xtj�t ¼ �Lð Þ. We encoded each stimulus by mapping

it onto the corresponding response level yt (using an encoder with eight response levels, optimized

as described in Section C.3.1). If both stimuli in the pair were mapped on the same response level,

we counted the trial as a metamer. The total probability of a metamer was computed as the propor-

tion of all trials that resulted in metamers.

C.7. The role of transmission noise
To better understand the influence of noise on the inference process, we analyzed the behavior of

the discretization encoding scheme in the presence of noise. Gaussian noise with variance s2

n was

added to the response yt of the encoder prior to computing the estimate �̂t (Figure 3—figure sup-

plement 2A–B). This form of noise can be viewed as neuronal noise introduced in the transmission

of the stimulus representation to downstream areas. The performance of the optimal observer (Fig-

ure 3—figure supplement 2C) was relatively robust at low noise levels (up to s2

n ¼ 0:4), but
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decreased substantially at high noise levels. A more thorough investigation of the role of noise on

optimal inference and encoding strategies is a subject of future work.

C.8. Measuring speed and accuracy of inference
Figure 6D-E compared the accuracy and speed of inference across different encoding schemes and

environments. Accuracy was computed separately for the high and low states (� ¼ �H and � ¼ �L,

respectively) using the posterior PL
t . For each time point, we first computed the average value of PL

t

across many cycles of the probe environment (500 cycles for discretization, and 800 cycles for filter-

ing and thresholding, corresponding to the average trajectories of �̂ shown in Figures 3–5).

If the observer’s estimate is accurate, PL
t should be close to one when the environment is in the

low state, and 1� PL
t

� �
should be close to one when the environment is in the high state. We there-

fore computed the time-averaged values PL
t


 �

t
and 1� PL

t

� �
 �

t
to measure the accuracy in the low

and high states, respectively. Time-averages were computed over the final 10 timesteps in the high

or low state, respectively, corresponding to the adapted portion of the inference process.

Speed was computed separately for downward versus upward switches in the environment by

measuring the number of time samples required for the posterior to stabilize after a switch. We

used the time-averaged value PL
t


 �

t
(again averaged over the final 10 timesteps) as a measure of the

final value of the posterior in the low state. We then counted the number of timesteps after a switch

downward before the posterior came within 0.05 of this value, and we used the inverse of this time

as a measure of speed. We computed the speed of response to an upward switch in an analogous

manner.

C.9. Natural image simulation
Figure 7 illustrated a model visual inference task performed on natural images. Within this model,

the encoder implemented a sparse encoding of individual image patches (Olshausen and Field,

1996) using 32 basis functions fi. The basis functions were chosen to minimize the following cost

function:

X

n

xt;n �
X

i

yi;tfi;n

 !2

þl
X

i

jyi;tj; (47)

where~xt is an image patch,~yt is the neural population response, n indexes pixels in an image patch,

and i indexes neurons in the population. The first term imposes a cost on reconstruction error

between the image patch ~xt and the reconstructed patch x̂t ¼
P

yi;tfi. The second term imposes a

penalty for large population responses. The parameter l imposes a constraint on the fidelity of the

encoding by controlling the overall sparsity of the population response.

The set of basis functions was trained on 50,000 image patches of size 16� 16 pixels. Image

patches were drawn randomly from the van Hateren database (van Hateren and Ruderman, 1998).

During training, the value of the sparsity parameter l was set to 0.1.

A sparse representation~yt was inferred for each image patch ~xt via gradient-descent on the cost

function in Equation 47 (Olshausen and Field, 1996). An image reconstruction x̂t was computed

from the sparse representation (Figure 7—figure supplement 1A). The reconstructed patch was

contrast normalized by dividing each pixel value by the standard deviation across the set of pixel val-

ues. The normalized image patch was projected onto four curvature filters Cj, resulting in four curva-

ture coefficients vj;t. Curvature filters were hand-designed to bear coarse, qualitative resemblance to

curvature-selective receptive fields in V2. The set of four curvature coefficients was used to update

the posterior distribution over variance, analogous to the Bayesian estimation of variance described

in Section C.4.

Image areas 1 (low curvature) and 2 (high curvature) in Figure 7 were chosen to be 200� 200 pix-

els in size. For illustrative purposes, they were selected to generate a relatively large difference in

the variance of curvature filters, which would require a substantial update of the Bayesian estimate.

During all simulations, the mean of the prior (corresponding to the observer’s point estimate �̂t�1)

was fixed to 5.3, equal to the variance of filter outputs in image area 1.
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To numerically compute the impact of a stimulus on the estimate as a function of observer’s

uncertainty (prior variance) and centered surprise (Figure 7D), a set of 5,000 image patches was

drawn randomly from image area 2. Image patches were then sorted according to their

centered surprise and divided into 5 groups that uniformly spanned the range of centered surprise

in the set. The variance of the prior was chosen to be one of 5 equally spaced values between 0.018

and 0.18. For each value of prior variance and for each group of stimuli with a given

centered surprise, we computed the change in the observer’s estimate before and after incorporat-

ing the population response~yt: �̂t�1 � �̂t ~ytð Þ
� �2

.

We used a similar approach to numerically compute the inference error as a function of the spar-

sity parameter l and the centered surprise (Figure 7F). We chose 5 equally-spaced values of l

between 0.1 and 10. We then randomly drew 5,000 image patches from image area 2. Image

patches were again sorted according to their centered surprise and were divided into 5 groups that

uniformly spanned the range of centered surprise in the set. We then computed the average infer-

ence error for each value of l and each stimulus group. An analogous procedure was used to deter-

mine the inference error as a function of the sparsity parameter l and the observer’s uncertainty

(Figure 7E).

The abrupt changes in impact and inference error that can be seen in Figure 7D–F are a result of

the coarse partitioning of the set of image patches into a small number of groups. In comparison,

the results in Figure 1B–D were computed analytically with continuous values of surprise and uncer-

tainty, and therefore show smooth variations in impact and error.

Simulated population responses (Figure 7E–F) were generated by selecting a random subset

of 45 image patches with a given centered surprise, or specified values of uncertainty. Image

patches were then encoded with a sparsity value of either l ¼ 0:1 or l ¼ 10 (corresponding to the

inference errors marked with red and white circles). 40 images patches were encoded with the

higher value of l, and 5 image patches were encoded with the lower value of l. For illustrative pur-

poses, the image patches were arranged such that the first and last 20 patches corresponded to

high values of l values (white), while the middle 5 patches correspond to low values of l (red). High

and low values of l were chosen to generate similar average inference error for the given values of

centered surprise and uncertainty.

Centered surprise was computed for each image patch~xt as follows:

X

j

H p vj;tj�̂t�1

� �h i

þ log p vj;tj�̂t�1

� �h i�
�
�

�
�
� (48)

where H vj;tj�̂t�1

� �

¼ 1

2
log 2pe�̂

2

t�1

� �

is the entropy of the Gaussian distribution of curvature coeffi-

cients given the prior estimate �̂t�1.
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Appendix 1
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Here, we provide a detailed derivation of the decoding distribution for the filtering encoder

(described in Section B.5.2).

To simplify Equation 31, we rewrite the first Gaussian as a function of atxt (for notational

simplicity, we will write s02 ¼ 1� atð Þ2ŝ2

t�1
:

N *ð Þ ¼N yt ;atxt þ 1�atð Þ�̂t�1
;s02ð Þ

¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

2ps02
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¼N atxt;yt � 1�atð Þ�̂t�1
;s02ð Þ

(49)

We can now pull out the factor of at (again, for notational simplicity, we will write

�0 ¼ yt � 1� atð Þ�̂t�1
):

N *ð Þ ¼N atxt;�
0;s02ð Þ

¼ 1
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where �00 ¼ �0=at ¼ yt � 1� atð Þ�̂t�1
ð Þ=at and s002 ¼ s02=a2

t ¼ 1� atð Þ2ŝ2

t�1
=a2

t . Equation 49 can

now be written as a Gaussian over xt:
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This allows us to combine the two distributions in Equation 31:
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where:

�A ¼ yt � 1�atð Þ�̂t�1
ð Þ=at
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Because the function f yt; �̂t<t

� �

does not depend on xt, we can trivially obtain Z yt; �̂t<t

� �

by

integrating over xt (as given by Equation 7):
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The remaining terms in Equation 52 are given by:
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Putting everything together, the final form of Equation 31 becomes:
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For 1

2
� at � 1, we can see that: 0 � 1� atð Þ 2at � 1ð Þ � 1

8
and 1

2
� 1� 2at þ 2a2

t

� �
� 1.
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Here we provide a detailed derivation of the entropy of the output of filtering encoder

(described in Section B.5.3).

To compute H yt ; ytþ1j�̂t<t
� �

, we assume that the encoder has access to the history of

estimates �̂t<t, and that it uses the most recent estimate �̂t�1 as an approximate prediction of

future states (i.e., �̂t�1 »
~�t »~�tþ1).

For reference, the entropy of a normal distribution is:

H N x;�;s2
� �� �

¼ 1

2
log 2pes2
� �

(57)

We want to compute H yt; ytþ1j�̂t<t
� �

:

H yt;ytþ1j�̂t<t
� �

¼H ytþ1jyt; �̂t<t
� �

þH yt j�̂t<t
� �

(58)

where yt ¼ atxt þ 1� atð Þxt�1 is the output of the encoder, and at 2 0:5; 1½ � is the filtering

coefficient.

To compute each of the terms in Equation 58, we need to compute p ytj�̂t<t
� �

and

p ytþ1jyt; �̂t<t
� �

. The first of these distributions is given by:

p ytj�̂t<t
� �

¼N yt;at�̂t�1
þ 1�atð Þ�̂t�1

;a2

t ŝ
2

t�1
þ 1�atð Þ2ŝ2

t�1

� �

; (59)

whose entropy is given by:

H ytj�̂t<t
� �

¼ 1

2
log 2pe a2

t ŝ
2

t�1
þ 1�atð Þ2ŝ2

t�1

� �� �

: (60)

The second of these distributions can be written as:

p ytþ1jyt; �̂t<t
� �

¼
Z

dxt p ytþ1jxt; �̂t<t
� �

p xtjyt; �̂t<t
� �

(61)

Noting that p ytþ1jxtþ1; xt; �̂t<t

� �

¼ d ytþ1 � atxtþ1 þ 1� atð Þxtð Þð Þ, the first term in the integral

in Equation 61 is given by:

p ytþ1jxt ; �̂t<t
� �

¼
Z

dxtþ1 d ytþ1 � atxtþ1þ 1�atð Þxtð Þð ÞN xtþ1; �̂t�1; ŝ
2

t�1

� �

¼ 1

at

N ytþ1 � 1�atð Þxtð Þ
at

; �̂t�1; ŝ
2

t�1

� �

¼ 1

1�atð ÞN xt;
ytþ1 �at�̂t�1ð Þ

1�atð Þ ;
a2

t

1�atð Þ2
ŝ2

t�1

 !

(62)

The second term in the integral in Equation 61 is given by:

p xtjyt; �̂t<t
� �

¼N xt;
atyt � 1�atð Þ 2at � 1ð Þ�̂t�1

a2
t þ 1�atð Þ2

;
1�atð Þ2

a2
t þ 1�atð Þ2

 !

ŝ2

t�1

 !

(63)

Combining the two terms, we have:
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p ytþ1jxt; �̂t<t
� �

p xtjyt ; �̂t<t
� �

¼ 1

1�atð ÞN xt;�A;s
2

A

� �
N xt;�B;s

2

B

� �

¼ 1

1�atð Þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p s2

A þs2
B

� �
q exp � �A��Bð Þ2

2 s2

A þs2
B

� �

 !

N xt;
s2

B�A þs2

A�B

s2

A þs2
B

;
s2

As
2

B

s2

Aþs2
B

� �

(64)

where

�A ¼ ytþ1 �at�̂t�1ð Þ
1�atð Þ

�B ¼ atyt � 1�atð Þ 2at � 1ð Þ�̂t�1

a2
t þ 1�atð Þ2

s2

A ¼ a2

t

1�atð Þ2
ŝ2

t�1

s2

B ¼ 1�atð Þ2

a2
t þ 1�atð Þ2

ŝ2

t�1

(65)

Putting these terms back into the integral in Equation 61 gives:

p ytþ1jyt; �̂t<t
� �

¼ 1

1�atð Þ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p s2

A þs2
B

� �
q exp � �A��Bð Þ2

2 s2

A þs2
B

� �

 !

¼N ytþ1;at�̂t�1 þ
1�atð Þ atyt � 1�atð Þ 2a� 1ð Þ�̂t�1

ð Þ
1� 2aþ 2a2

t

;a2

t ŝ
2

t�1
þ 1�atð Þ4
1� 2at þ 2a2

t

ŝ2

t�1

 !(66)

The conditional entropy H ytþ1jyt; �̂t<t
� �

is determined by the variance in this distribution:

H ytþ1jyt; �̂t<t
� �

¼ 1

2
log 2pe a2ŝ2

t�1
þ 1�að Þ4
1� 2aþ 2a2

ŝ2

t�1

 ! !

(67)

Combining the two entropy terms in Equations 60 and 67, we get:

H yt;ytþ1j�̂t<t
� �

¼H ytþ1jyt ; �̂t<t
� �

þH ytj�̂t<t
� �

¼ 1

2
log 4p2e2 a2

t ŝ
2

t�1
þ 1�atð Þ4
1� 2at þ 2a2

t

ŝ2

t�1

 !

a2

t ŝ
2

t�1
þ 1�atð Þ2ŝ2

t�1

� �
 !

(68)
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