
*For correspondence:

patrick.ganzer.neuro@gmail.com

(PDG);

renn@utdallas.edu (RLRII)

Competing interest: See

page 17

Funding: See page 16

Received: 16 September 2017

Accepted: 26 January 2018

Published: 13 March 2018

Reviewing editor: Heidi

Johansen-Berg, University of

Oxford, United Kingdom

Copyright Ganzer et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Closed-loop neuromodulation restores
network connectivity and motor control
after spinal cord injury
Patrick D Ganzer1,2*, Michael J Darrow1, Eric C Meyers1,2, Bleyda R Solorzano2,
Andrea D Ruiz2, Nicole M Robertson2, Katherine S Adcock3, Justin T James2,
Han S Jeong2, April M Becker4, Mark P Goldberg4, David T Pruitt1,2,
Seth A Hays1,2,3, Michael P Kilgard1,2,3, Robert L Rennaker II1,2,3*

1Erik Jonsson School of Engineering and Computer Science, The University of Texas
at Dallas, Richardson, United States; 2Texas Biomedical Device Center, Richardson,
United States; 3School of Behavioral Brain Sciences, The University of Texas at
Dallas, Richardson, United States; 4Department of Neurology and
Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas,
United States

Abstract Recovery from serious neurological injury requires substantial rewiring of neural

circuits. Precisely-timed electrical stimulation could be used to restore corrective feedback

mechanisms and promote adaptive plasticity after neurological insult, such as spinal cord injury

(SCI) or stroke. This study provides the first evidence that closed-loop vagus nerve stimulation

(CLV) based on the synaptic eligibility trace leads to dramatic recovery from the most common

forms of SCI. The addition of CLV to rehabilitation promoted substantially more recovery of

forelimb function compared to rehabilitation alone following chronic unilateral or bilateral cervical

SCI in a rat model. Triggering stimulation on the most successful movements is critical to maximize

recovery. CLV enhances recovery by strengthening synaptic connectivity from remaining motor

networks to the grasping muscles in the forelimb. The benefits of CLV persist long after the end of

stimulation because connectivity in critical neural circuits has been restored.

DOI: https://doi.org/10.7554/eLife.32058.001

Introduction
Recovery from serious neurological injury requires substantial rewiring of neural circuits. Many meth-

ods have been developed to enhance synaptic plasticity in hopes of enhancing recovery. Unfortu-

nately, these methods have largely failed in the clinic likely due to the challenge of precisely

targeting specific synapses and absence of testing in clinically-relevant models (Gladstone et al.,

2006; Levy et al., 2016). Real-time control of neural activity provides a new avenue to promote syn-

aptic plasticity in specific networks and restore function after injury (Engineer et al., 2011;

Nishimura et al., 2013; McPherson et al., 2015; Guggenmos et al., 2013).

Human and animal studies demonstrate that precisely timed vagus nerve stimulation (VNS) can

improve recovery of sensory and motor function. VNS engages neuromodulatory networks and trig-

gers release of pro-plasticity factors including norepinephrine, acetylcholine, serotonin, brain-derived

neurotrophic factor, and fibroblast growth factor (Hays, 2016; Hulsey et al., 2017; Hulsey et al.,

2016). This in turn influences expression and phosphorylation of proteins associated with structural

and synaptic plasticity, including Arc, CaMKII, TrkB, and glutamate receptors (Alvarez-Dieppa et al.,

2016; Furmaga et al., 2012). Engagement of neuromodulatory networks activates a transient synap-

tic eligibility trace to support spike-timing-dependent plasticity (STDP) (He et al., 2015), thus raising
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the prospect that closed-loop neuromodulatory strategies may provide a means to direct specific,

long-lasting plasticity to enhance recovery after neurological injury. Indeed, in the absence of neuro-

logical damage, repeatedly pairing sensory or motor events with brief bursts of VNS yields robust

plasticity in sensory or motor cortex that is specific to the paired experience (Engineer et al., 2011;

Hulsey et al., 2016). Moreover, the addition of VNS to rehabilitative training improves recovery in

rodent models of unilateral brain injury and in chronic stroke patients, highlighting the clinical poten-

tial of closed-loop neuromodulatory strategies (Hays, 2016; Khodaparast et al., 2016; Pruitt et al.,

2016; Hays et al., 2014a; Dawson et al., 2016).

We tested the hypothesis that closed-loop VNS (CLV) could be harnessed to enhance recovery

after spinal cord injury (SCI). To do so, we developed a real-time closed-loop neuromodulation para-

digm based on the synaptic eligibility trace to deliver VNS immediately after the most successful

forelimb movements during motor rehabilitation. The strategy uses a control algorithm that adap-

tively scales stimulation threshold to trigger a brief 0.5 s train of VNS on trials in which pull forces fall

within the top quintile of previous trials (Top 20% CLV; Figure 1a,b, and Figure 1—figure supple-

ment 1a). To test the hypothesis that temporal precision is required for VNS-dependent effects, we

employed a similar algorithm in which stimulation was delivered on the weakest quintile of trials

(Bottom 20% CLV; Figure 1b and Figure 1—figure supplement 1g). Both algorithms deliver the

same amount of VNS during rehabilitative training, but Bottom 20% CLV results in a significant delay

between VNS and the most successful trials.

eLife digest The spine houses a network of neurons that relays electric signals from the brain

cells to the muscles. When the spine is injured, some of these neurons may be damaged and their

connections to the muscles broken. As a result, the muscles they command become weak, and

movement is impaired. It is possible to strengthen the remaining neural connections with physical

rehabilitation, but the results are limited.

Vagus nerve stimulation, VNS for short, is a new technique that could help people recuperate

better after their spine is injured. The vagus nerve controls the heart, lungs and guts, and it reports

the state of the body to the brain. When this nerve is electrically stimulated, it releases chemicals

that can strengthen the neural connections between brain, spine and muscles, and even create new

ones. This rewiring process is essential to repair or bypass the broken neural connections caused by

a spine injury. However, it is still not clear how best to use VNS to optimize recovery.

Here, Ganzer et al. study how VNS helps rats whose forelimbs are weakened after a spine injury.

Three groups of rats go through physical rehabilitation, using their affected front paws to pull a

handle and feed themselves. Two of these groups also receive VNS: their vagus nerve is stimulated

either after the best trials (strongest pulls) or worst trials (weakest pulls).

Compared to the rehab-only and the worst trials-VNS animals, the rats that receive VNS on the

best trials while using their affected paw have many more neuronal connections between their brain

and the muscles in this limb. These muscles also become much stronger. VNS during the movement

improves recovery whether the rodents have one or two front limbs injured, and the benefits are

long lasting.

As the rats pull the handle, the neurons involved in the movement get activated: they then carry a

molecular ‘signature’ that lasts for a short time. When VNS is applied during that window, it appears

to help these neurons form new connections with each other, as well as strengthen existing ones.

These improved connections mean the brain can communicate better with the muscles: movement is

enhanced, which results in greater functional recovery compared to rehabilitation alone.

VNS is already trialed in stroke patients, who have weakened muscles because their brain

neurons are damaged. The work by Ganzer et al. provides crucial information on how VNS could

ultimately improve the recovery and quality of life of people with spine injuries.

DOI: https://doi.org/10.7554/eLife.32058.002
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Figure 1. Precisely-timed closed-loop vagus nerve stimulation based on the synaptic eligibility trace enhances recovery after spinal cord injury. (a)

Closed-loop neuromodulation to deliver vagus nerve stimulation to reinforce the most successful trials during rehabilitative training after SCI. (b) Top

20% CLV received a 0.5 s train of VNS on trials in which pull force falls within the highest quintile of previous pull forces. The Bottom 20% CLV group

received VNS on trials in which pull force falls within the lowest quintile. Rehab alone performed equivalent rehabilitative training without VNS. Each

circle represents peak pull force on an individual trial. Inset shows an animal performing the isometric pull task. See Figure 1—figure supplement 1 for

more detail. (c) Top 20% CLV significantly improves forelimb function after SCI compared to Bottom 20% CLV and Rehab alone, indicating that

precisely-timed VNS enhances recovery. (d,e) Differences in the intensity of rehabilitative training or the amount of stimulations cannot account for

improved recovery. A significant increase in recovery is observed with Top 20% CLV after correcting for number of trials and number of stimulations

(ANCOVA, effect of group; number of trials: F[1,1]=11.89, p=0.0031; number of stimulations: F[1,1]=9.57, p=0.0066). Gray circles denote individual

subjects. (f) CLV delivered within 2 s of successful trials increases recovery, whereas CLV separated 25 s from successful trials fails to yield substantial

benefits. This time window is consistent with the synaptic eligibility trace hypothesis. Horizontal error bars for Top 20% CLV and Delayed Top 20% CLV

are not visible because of their small size. In panel c, **p<0.01, *p<0.05 for t-tests across groups at each time point. The color of the asterisk denotes

the group compared to Top 20% CLV. Error bars indicate S.E.M.

DOI: https://doi.org/10.7554/eLife.32058.003

The following figure supplements are available for figure 1:

Figure supplement 1. Adaptive Thresholding and Stimulation Timing.

DOI: https://doi.org/10.7554/eLife.32058.004

Figure supplement 2. Distribution of Pull Forces after SCI.

DOI: https://doi.org/10.7554/eLife.32058.005

Ganzer et al. eLife 2018;7:e32058. DOI: https://doi.org/10.7554/eLife.32058 3 of 19

Research article Neuroscience

https://doi.org/10.7554/eLife.32058.003
https://doi.org/10.7554/eLife.32058.004
https://doi.org/10.7554/eLife.32058.005
https://doi.org/10.7554/eLife.32058


Results
To test whether CLV could improve recovery of motor function after SCI, rats were trained to per-

form an automated reach-and-grasp task measuring volitional forelimb strength (Figure 1b, Video 1)

(Hays et al., 2013). Once proficient, rats received a right unilateral impact at spinal level C6 to

impair function of the trained forelimb and underwent implantation of a bipolar cuff electrode on

the left cervical vagus nerve (Ganzer et al., 2016a). SCI resulted in a 77% reduction in volitional fore-

limb strength, consistent with paresis observed in many cervical SCI patients (Figure 1c, PRE v. Wk

8, Paired t-test, t(29) = 37.34, p=4.4�10�26, Video 2). Top 20% CLV substantially boosted recovery

of volitional forelimb strength compared to equivalent rehabilitative training without CLV (Rehab

alone), demonstrating that CLV enhances recovery of motor function after SCI (Figure 1c; Two-way

repeated measures ANOVA, Interaction; F[6,120]=3.88, p=1.43�10�3; Videos 3–4). CLV resulted in

lasting recovery after the cessation of stimulation after week 11, consistent with the notion that CLV

restores function in critical motor networks (Top 20% CLV; Wk 11 v. Wk 12; Paired t-test, t(12) =

�0.89, p=0.38). Despite equivalent rehabilitation and a comparable number of stimulations deliv-

ered during task performance (Figure 1d,e), Bottom 20% CLV resulted in substantially diminished

recovery compared to Top 20% CLV (Figure 1c, Two-way repeated measures ANOVA, Interaction; F

[6,114]=2.40, p=0.03, Video 5) and failed to improve forelimb strength compared to Rehab alone.

Together, these findings demonstrate that closed-loop neuromodulation paired with the most suc-

cessful movements during rehabilitation improves recovery of motor function after cervical SCI.

The synaptic eligibility trace theory posits that neuromodulatory reinforcement must occur within

seconds after neural activity to drive plasticity (He et al., 2015). To clarify how temporally precise

CLV must be, a subset of rats received VNS delayed approximately 1.5 s after the top 50% most suc-

cessful trials (Delayed Top 20% CLV, Figure 1—figure supplement 1d). This short delay resulted in

comparable recovery to stimulation delivered immediately after a successful trial in the Top 20%

CLV group (Figure 1f). Stimulation in the Bottom 20% CLV group was separated by 25 ± 5 s from

the most successful trials and failed to drive substantial benefits (Figure 1f, Figure 1—figure sup-

plement 1g). This absence of enhanced recovery despite delivery of CLV may be attributed to either

the long delay or greater variance in the timing

between stimulation and the most successful tri-

als. These findings support a temporal precision

limit for CLV near 10 s, consistent with the synap-

tic eligibility trace hypothesis (He et al., 2015).

To determine whether more pairings of VNS

with successful trials would improve recovery, we

utilized an adaptive algorithm in which VNS was

delivered on at least the top 50% most successful

trials, resulting in 2.5 times more stimulation pair-

ings (Top 50% CLV, Figure 1—figure supple-

ment 1j). Top 50% CLV substantially improved

recovery of forelimb function compared to Rehab

alone, which provides an independent confirma-

tion that CLV enhances recovery after SCI

(Figure 2a, Two-way repeated measures

ANOVA, Interaction; F[6,174]=3.56,

p=2.38�10�3). The rate and degree of recovery

were comparable in the Top 50% CLV and the

Top 20% CLV groups (Figure 2—figure supple-

ment 1), suggesting that timing is more impor-

tant than quantity of stimulation.

Plasticity in remaining networks could be har-

nessed to support recovery after SCI (Fink and

Cafferty, 2016; Manohar et al., 2017). Unilateral

SCI resulted in extensive damage to gray matter,

rubrospinal pathways, and propriospinal path-

ways in the right hemicord while largely sparing

Video 1. Forelimb motor performance prior to SCI.

Representative example of a rat performing the

isometric pull task prior to lesion. Note that the rat is

highly proficient and displays clear forelimb motor

control. (A) The plot on the bottom left displays pull

force applied to the handle on an individual trial. The

green line indicates force threshold to trigger delivery

of a reward pellet. Note that the threshold adaptively

scales based on the median peak force of the ten

antecedent trials. The triangle indicates peak pull force

on a trial. (B) The plot on the bottom right shows

performance over the course of the session. Each circle

indicates peak force from an individual trial. Green

circles indicate trials in which pull force exceeded the

reward threshold. White circles indicate trials in which

peak force did not exceed the reward threshold.

DOI: https://doi.org/10.7554/eLife.32058.006
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the right dorsal corticospinal tract (CST) (Figure 2b and Figure 2—figure supplement 2). Thus, we

used intracortical microstimulation to test the hypothesis that CLV enhances output from the cortico-

spinal circuits to the impaired forelimb. CLV resulted in eight times more motor cortex sites that

generated grasp movements in the impaired forelimb compared to Rehab alone (Figure 2c and Fig-

ure 2—figure supplement 4, Unpaired t-test, t(10) = 2.28, p=0.04), providing the first evidence that

CLV induces large-scale plasticity in corticospinal networks after neurological injury.

We next tested the hypothesis that CLV improves recovery by increasing synaptic connections

within the motor network controlling grasping muscles of the forelimb. We injected the retrograde

transsynaptic tracer pseudorabies virus (PRV-152) into flexor digitorum profundus and palmaris lon-

gus and counted labeled neurons six days later. CLV resulted in a five-fold increase in labeled neu-

rons in motor cortex compared to Rehab alone (Figure 2d and Figure 2—figure supplement 5,

Unpaired t-test, t(9) = 7.63, p=3.2�10�5). The magnitude of this increase in synaptic connectivity is

comparable to the seven-fold increase in the number of motor cortex sites that produce grasp. CLV

failed to increase neuronal labeling of spinal motor neurons, red nucleus neurons or propriospinal

neurons (Figure 2d). Additionally, CLV did not influence lesion extent (Figure 2e, Figure 2—figure

supplement 2). Together, these results are consistent with anatomical plasticity in the spared corti-

cospinal network contributing to enhanced recovery when CLV is added to rehabilitative training

after SCI (Figure 3).

The observation that CLV improves recovery and enhances functional and anatomical plasticity in

corticospinal networks suggests that CLV may prove ineffective if the CST is destroyed. Given the

severity and anatomical heterogeneity of damage observed in SCI patients (Sekhon and Fehlings,

2001), such a finding would limit the clinical utility of CLV. We therefore evaluated motor recovery in

a bilateral injury model that virtually eliminates the CST on both sides of the cord (Figure 4b).

Despite profound damage, CLV more than doubled the degree of forelimb motor recovery com-

pared to Rehab alone (Figure 4a, Two-way repeated measures ANOVA, Interaction; F[6,144]=5.29,

p=7.62�10�5). The observation that CLV can improve recovery following bilateral SCI suggests CLV

could be clinically useful. We hypothesized that CLV enhances recovery by promoting plasticity in

the rubrospinal and propriospinal pathways, which were damaged, but not eliminated, by this injury

(Figure 4b and Figure 4—figure supplement 1). Indeed, CLV doubled the number of labeled red

nucleus neurons and C3/4 propriospinal neurons compared to Rehab alone (Figure 3d and Fig-

ure 4—figure supplement 3, Unpaired t-test, Red Nucleus: t(4) = 3.89, p=0.018; Propriospinal: t(4)

= 2.77, p=0.05). Consistent with the extensive damage to the corticospinal pathway, CLV had no

effect on reorganization of motor cortex (Figure 4c and Figure 4—figure supplement 4, Unpaired

t-test, t(12) = �0.13, p=0.90) and failed to increase the number of labeled neurons in the motor cor-

tex (Figure 3d, Unpaired t-test, t(4) = 0.83, p=0.45). These results suggest that CLV is capable of

supporting recovery following SCI by strengthening anatomical connectivity within remaining path-

ways (Figure 4—figure supplement 5).

Discussion
In this study, we developed a novel closed-loop neuromodulation strategy to make use of the high

temporal precision of the synaptic eligibility trace. We demonstrate that activation of the vagus

nerve improves recovery when reliably delivered within seconds of a successful movement, and we

provide the first evidence that CLV enhances reorganization of synaptic connectivity in remaining

networks in two non-overlapping models of SCI. The flexibility to promote reorganization in a range

of pathways is a critical benefit of CLV, given the great heterogeneity in the etiology, location, and

extent of damage present in SCI patients.

Classical studies by Skinner demonstrate that adaptive reinforcement of successive approxima-

tions, or shaping, drives behavior toward a desired response (Skinner, 1953). This principle has

been adopted for use in rehabilitation, with the intention to reinforce successively better movements

(Wood, 1990). We made use of this concept by applying an adaptively-scaled stimulation threshold

to deliver CLV with the most successful forelimb movements during rehabilitation. Enhanced recov-

ery was observed only when CLV was paired with trials that approximated the desired outcome,

highlight the importance of timing for closed-loop stimulation to shape behavioral outcomes and

maximize recovery.
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The magnitude of neuromodulatory activation elicited by an event is directly proportional to the

surprise, or unpredictability, of the event (Hangya et al., 2015; Hollerman and Schultz, 1998;

Sara and Segal, 1991). This phenomenon is ascribed to reward prediction error (Schultz, 2002).

Unsurprising events fail to activate neuromodulatory systems, and even rewarding events fail to trig-

ger neuromodulator release if they are expected. We posit the predictability and accompanying

tedium of long, frustrating rehabilitation and the minimal reinforcement of practicing a previously

simple motor task blunts plasticity and limits recovery after SCI. The closed-loop neuromodulation

strategy developed here circumvents this by artificially engaging neuromodulatory networks and

providing a repeated, non-adapting reinforcing signal typically associated with surprising conse-

quences (Hays, 2016; Hulsey et al., 2017; Hulsey et al., 2016). CLV drives temporally-precise neu-

romodulatory release to convert the synaptic eligibility trace in neuronal networks that generate

optimal motor control to long-lasting plasticity (He et al., 2015).

CLV is a minimally-invasive, safe strategy to provide precisely-timed engagement of multiple neu-

romodulatory networks to boost plasticity during rehabilitation (Hays, 2016). Preliminary results in

chronic stroke and tinnitus patients highlight the clinical potential of CLV, while delivering less than

1% of the total FDA-approved amount of stimulation (Dawson et al., 2016; De Ridder et al., 2014;

Ben-Menachem, 2001). Moreover, the flexibility to deliver stimulation with a variety of rehabilitative

exercises raises the possibility to design CLV-based to target motor dysfunction of the lower limbs,

somatosensory loss, and bowel and bladder issues, all of which are prevalent in SCI patients. Delin-

eation of the timing requirements and documentation of neuronal changes driven by CLV in this

study provide a framework for development of this strategy for a range of neurological conditions,

including stroke, peripheral nerve injury, and post-traumatic stress disorder (Hays, 2016;

Lozano, 2011).

Video 2. Forelimb motor performance after unilateral

SCI. Representative example of a rat performing the

isometric pull task four weeks after unilateral SCI. The

rat displays a notable reduction in peak pull force,

consistent with forelimb paresis, and clear deficits in

motor control. (A) The plot on the bottom left displays

pull force applied to the handle on an individual trial.

The green line indicates the adaptive-scaled force

threshold to trigger delivery of a reward pellet. Note

that the threshold adaptively scales based on the

median peak force of the ten antecedent trials. The

triangle indicates peak pull force on a trial. (B) The plot

on the bottom right shows performance over the

course of the session. Each circle indicates peak force

from an individual trial. Green circles indicate trials in

which pull force exceeded the reward threshold. White

circles indicate trials in which peak force did not

exceed the reward threshold.

DOI: https://doi.org/10.7554/eLife.32058.007

Video 3. Performance after Rehabilitation Alone.

Representative example of a unilateral SCI rat

performing the isometric pull task at the conclusion of

six weeks of rehabilitative training alone. Note the

sustained impairments in forelimb pull force generation

and motor control despite intensive rehabilitative

training. (A) The plot on the bottom left displays pull

force applied to the handle on an individual trial. The

green line indicates the adaptive-scaled force threshold

to trigger delivery of a reward pellet. Note that the

threshold adaptively scales based on the median peak

force of the ten antecedent trials. The triangle indicates

peak pull force on a trial. (B) The plot on the bottom

right shows performance over the course of the

session. Each circle indicates peak force from an

individual trial. Green circles indicate trials in which pull

force exceeded the reward threshold. White circles

indicate trials in which peak force did not exceed the

reward threshold.

DOI: https://doi.org/10.7554/eLife.32058.008
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Materials and methods

Key resources table

Reagent type (species) or resource Designation Source or reference Identifiers

Pseudorabies Virus Bartha Strain
containing the CMV-EGFP reporter
cassette

PRV-152 NIH Center for Neuroanatomy
with Neurotropic Viruses (CNNT)

PRV-152

Experimental Design
All procedures performed in the study were approved by the University of Texas at Dallas Institu-

tional Animal Care and Use Committee (Protocols: 14–10 and 99–06). Adult female Sprague Dawley

rats (N = 181) used in this study were housed one per cage (12 hr light/dark cycle). Twelve experi-

mentally naı̈ve rats were used for control experiments. One hundred and sixty-nine rats were trained

to proficiency on the isometric pull task as in our previous studies (Khodaparast et al., 2016;

Pruitt et al., 2016; Hays et al., 2013; Sloan et al., 2015; Hays et al., 2014b; Hays et al., 2016;

Khodaparast et al., 2013; Pruitt et al., 2014; Meyers et al., 2017). Sample sizes were based esti-

mated effect size determined in our initial pilot studies and are consistent with comparable previous

studies. Trained rats were food restricted Monday-Friday to provide task motivation (ad libitum

access to water). Because of the cage geometry, only the right forelimb can be used to reach the

pull handle to trigger a food reward. After reaching task proficiency (85% success rate on ten conse-

cutive sessions), rats received a unilateral contusive injury (N = 128) or bilateral contusive injury

(N = 41) of the cervical spinal cord. After recovery, rats received a vagus nerve cuff electrode and

resumed training on the isometric pull task. In addition to the food reward, rats were dynamically

allocated to balanced groups to receive a brief burst of vagus nerve stimulation (VNS) on appropri-

ate trials. Rehabilitative training, consisting of freely performing the task, continued for six weeks.

No VNS was delivered in any group on the final week of rehabilitative training, to allow assessment

of lasting effects of stimulation. Terminal motor cortex mapping or transsynaptic tracing experiments

occurred the week following the end of therapy in a subset of unilateral (N = 23) and bilateral SCI

rats (N = 20). Eighty-seven rats were excluded from the study due to mortality (N = 20), inability to

perform the task after injury (N = 25), or VNS device failure (N = 42). Device failure included mechan-

ical failure of the headmount or loss of stimulation efficacy, determined by a cuff impedance >25 kW

or by the absence of a reduction in blood oxygenation in response to a train of VNS while under

anesthesia (described below). This is a standard method to evaluate VNS efficacy (Loerwald et al.,

2017; Borland et al., 2018). Animals that failed to demonstrate a reliable drop in oxygen saturation

at the end of therapy were excluded. Bilateral SCI rats were given two additional weeks of recovery

time due to their larger spinal lesion and slower return to recumbency (Figure 4—figure supple-

ment 6). Other than therapy start time (6 vs. 8 weeks post-SCI), all training and assessment was

identical for unilateral and bilateral SCI rats. All source data indexed across animals can be found in

Supplementary file 1–4.

Volitional forelimb Force Generation Assessment
The isometric pull task is a fully automated and quantitative assay to measure multiple parameters of

forelimb force generation and was performed similar to previous descriptions (Khodaparast et al.,

2016; Pruitt et al., 2016; Hays et al., 2013; Sloan et al., 2015; Hays et al., 2014b,

2016; Khodaparast et al., 2013; Pruitt et al., 2014; Meyers et al., 2017). Isometric pull training

sessions consisted of two 30 min sessions (separated by at least 2 hr) five days per week. Experi-

menters were blind to treatment group at all times throughout behavioral testing. Early in training,

rats were encouraged to interact with the pull handle by dispensing pellets (45 mg chocolate-fla-

vored pellets, Bio-Serv; Flemington, NJ) when they approached or touched the lever. The pull han-

dle was initially located inside the test chamber and then slowly retracted outside of the behavioral

chamber to encourage reaching with the right paw. A trial was initiated when the rats exerted at

least 10 g of force on the pull handle. A trial window of 2 s started after trial initiation where the ani-

mal could receive a reward by pulling with a force exceeding a reward threshold. The reward thresh-

old was scaled adaptively based on the median peak force of the 10 preceding trials, with a fixed

bounded minimum of 10 grams and maximum of 120 g based on previous studies (Figure 1—figure
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Figure 2. CLV enhances plasticity in spared corticospinal networks and improves functional recovery after unilateral SCI. (a) Top 50% CLV significantly

improved recovery of forelimb function compared to Rehab alone. Sustained recovery was observed on week 12 after the cessation of stimulation,

indicating lasting benefits. (b) Unilateral SCI caused substantial damage to gray matter, rubrospinal, and propriospinal tracts in the right hemicord,

while largely sparing the right corticospinal tract and the entirety of the left hemicord. (c) ICMS reveals that Top 50% CLV significantly increases the area

Figure 2 continued on next page
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supplement 1) (Ganzer et al., 2016a; Meyers et al., 2017). Thus, rats received rewards on trials

that exceeded either the median peak force from the previous 10 trials or 120 g. The reward thresh-

old was set to 10 g for the first 10 trials of a training session and adaptive scaled for the remaining

trials (Figure 1—figure supplement 1). This reward threshold paradigm was used for all groups at

all timepoints during the study.

Rats were trained until they reached proficiency, defined as a 10 consecutive sessions in which

greater than 85% of trials exceeded 120 g. After reaching isometric pull task proficiency, rats were

given a cervical unilateral or bilateral SCI at spinal level C6. Post-injury baseline force generation

assessment occurred on week six for unilateral SCI and week eight for bilateral contusion SCI and

consisted of 2 � 30 min sessions per day across two consecutive days (POST; Figures 1C and

2A, and 3A). Random group assignment was used to determine which rats received VNS for the first

75% of group assignment decisions. To ensure well-balanced treatment groups, the final 25% of rats

were assigned to groups based on their post-injury performance. Rehabilitative training continued

for 6 weeks with VNS delivered when appropriate. MotoTrak Software (Vulintus, Inc.) was used to

record and display experimental data during the performance of the isometric pull task similar to

previous studies (Hays et al., 2013; Ganzer et al., 2016a; Sloan et al., 2015; Pruitt et al., 2014;

Meyers et al., 2016). A microcontroller board (Vulintus, Inc.; Dallas Texas USA) sampled the force

transducer every 10 ms and relayed information to the MotoTrak software for offline analysis. For

rats receiving VNS, stimulation was triggered by the behavioral software on appropriate trails during

rehabilitative training. Peak pull force (maximum force generated in a trial, g) was calculated for

every rat for every week of behavior. A Two-way repeated measures ANOVA was used to compared

peak pull forces in each treatment condition across time, followed by post hoc Bonferroni-corrected

unpaired t-tests where appropriate (Figures 1C, 2A and 4A). Percent benefit over Rehab alone was

calculated as the recovery of peak pull force after therapy normalized to the average recovery

observed in the Rehab alone group (Figure 1J). The distribution of pull forces after injury is shown in

Figure 1—figure supplement 2. Behavioral data for each week for all individual subjects is available

in Supplementary file 1.

Cervical Spinal Cord Injury (SCI) Surgery
Experimenters were blind to the group of the rat during surgery. All surgeries were performed using

aseptic technique under general anesthesia. Rats were anesthetized with ketamine (50 mg/kg), xyla-

zine (20 mg/kg), and acepromazine (5 mg/kg) for all procedures (i.p.). Heart rate and blood oxygen-

ation was monitored during surgery. After achieving isometric pull task proficiency, rats received

either a right side (unilateral) or midline (bilateral) C6 spinal cord contusive impact using surgical

technique from previous studies (Ganzer et al., 2016a). A right side or bilateral dorsal C5

Figure 2 continued

of the forelimb motor cortex evoking rehabilitated grasping movements compared to Rehab alone (N = 6,6). (d) Retrograde transneuronal tracing with

PRV-152 was performed to evaluated anatomical connectivity from the left motor cortex neurons, left red nucleus neurons, and right C3/4 propriospinal

neurons to grasping muscles in the trained (right) forelimb. Top 50% CLV restores connectivity and results in a significant increase in labeled neurons in

the motor cortex compared to Rehab alone (N = 5,6). No changes were observed in red nucleus or C3/4 propriospinal neurons. Black boxes indicate

ROIs; gray dot indicates lesion epicenter; inset shows injected muscles. (e) CLV does not affect lesion size. In all panels, gray circles denote individual

subjects. In all panels, ***p<0.001, **p<0.01, *p<0.05 for t-tests across groups. Error bars indicate S.E.M.

DOI: https://doi.org/10.7554/eLife.32058.011

The following figure supplements are available for figure 2:

Figure supplement 1. Top 20% CLV and Top 50% CLV display comparable recovery.

DOI: https://doi.org/10.7554/eLife.32058.012

Figure supplement 2. CLV does not affect lesion size after Unilateral SCI.

DOI: https://doi.org/10.7554/eLife.32058.013

Figure supplement 3. CLV does not influence the number of trials performed during rehabilitative training.

DOI: https://doi.org/10.7554/eLife.32058.014

Figure supplement 4. Motor Cortex Movement Representations.

DOI: https://doi.org/10.7554/eLife.32058.015

Figure supplement 5. Distribution of eGFP+ neurons with Rehabilitation alone or Top 50% CLV after Unilateral SCI.

DOI: https://doi.org/10.7554/eLife.32058.016
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Figure 3. Schematic of CLV-dependent recovery after unilateral SCI. (a) After unilateral SCI, loss of motor out from rubrospinal and propriospinal

networks results in forelimb paresis and impairments in motor control. (b) The addition of CLV provides temporally-precise feedback on the most

successful trials to facilitate training-dependent plasticity in remaining motor networks. (c) The benefits of CLV persist after the cessation of closed-loop

stimulation because connectivity in critical neural circuits has been restored.

DOI: https://doi.org/10.7554/eLife.32058.017
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Figure 4. CLV enhances synaptic plasticity and recovery after bilateral SCI. (a) After bilateral SCI, Top 50% CLV substantially enhanced recovery of

volitional forelimb strength compared to Rehab alone. Improved function was maintained on week 14 after the cessation of CLV, indicative of lasting

recovery. (b) Bilateral SCI resulted in virtually complete bilateral ablation of the corticospinal tract and substantial damage to gray matter. The

rubrospinal and propriospinal tracts were lesioned, but partially remaining. (c) Unlike after unilateral SCI, Top 50% CLV failed to increase the area of the

Figure 4 continued on next page
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laminectomy was performed for rats receiving a unilateral or bilateral SCI, respectively. The vertebral

column was stabilized using spinal microforceps. For unilateral SCI, the right spinal hemicord was

contused using the Infinite Horizon Impact Device with a force of 200 kilodynes and zero dwell time

as previously reported (Precision Systems and Instrumentation, Lexington, KY; impactor tip diame-

ter = 1.25 mm) (Ganzer et al., 2016a). For bilateral SCI rats, the midline of the spinal cord was con-

tused with a force of 225 kilodynes and zero dwell time (impactor tip diameter = 2.5 mm). The skin

overlying the exposed vertebrae was then closed in layers and the incised skin closed using surgical

staples. All rats received buprenorphine (s.c., 0.03 mg/kg, 1 day post-op), enrofloxacin (s.c., 10 mg/

kg, 3 days post-op) and Ringer’s solution (s.c., 10 mL, 3 days post-op) immediately after surgery and

continuing post-operatively. All rats were monitored daily for at least 1 week post-injury. We docu-

mented time to return to recumbency, defined as the return of the righting reflex and ability to self-

feed, and plantar placement following SCI. After bilateral SCI, rats took significantly longer to return

to recumbency and forepaw plantar placement compared to unilateral SCI rats (Figure 4—figure

supplement 6). Therefore, bilateral SCI rats started therapy 2 weeks later. After injury, rats were

hand fed twice daily and given Ringer’s solution (s.c., 10 mL) for up to 1 week post-injury to maintain

a healthy diet.

Vagus nerve stimulation cuff implantation surgery
A two-channel connector headmount and vagus nerve stimulating cuff were implanted on post-injury

week six for unilateral and week eight for bilateral SCI rats similar to previous studies

(Engineer et al., 2011; Khodaparast et al., 2016; Pruitt et al., 2016; Hays et al., 2014a;

Hays et al., 2014b; Hays et al., 2016; Khodaparast et al., 2013; Khodaparast et al., 2014;

Borland et al., 2016). Regardless of group assignment, all rats underwent implantation of the head-

mount and cuff. Stimulation of the left cervical branch of the vagus nerve was performed using low

current levels to avoid cardiac effects (Engineer et al., 2011). Incised skin was closed using suture.

All rats received enrofloxacin (s.c., 10 mg/kg) following surgery and as needed at the sign of infec-

tion. To confirm cuff functionality and proper placement, heart rate, respiration, and blood oxygen-

ation saturation during VNS (0.8 mA, 30 Hz, 100 ms pulse width, 1–5 s train duration) were

monitored under anesthesia via pulse oximetry after cuff implant and at the end of therapy. Animals

that failed to demonstrate a reliable drop in oxygen saturation at the end of therapy were excluded.

Stimulation under anesthesia briefly suppressed cardiopulmonary function and was not more severe

or lower threshold in SCI rats compared to intact rats.

Figure 4 continued

motor cortex evoking rehabilitated grasping movements compared to Rehab alone (N = 7,7). (d) CLV significantly increased synaptic connectivity from

the left red nucleus neurons and right C3/4 propriospinal neurons to grasping muscles compared to Rehab alone (N = 3,3). Black boxes indicate ROIs;

gray dot indicates lesion epicenter; inset shows injected muscles. In all panels, gray circles denote individual subjects. In all panels, **p<0.01, *p<0.05,

+P = 0.05 for t-tests across groups. Error bars indicate S.E.M.

DOI: https://doi.org/10.7554/eLife.32058.018

The following figure supplements are available for figure 4:

Figure supplement 1. CLV does not affect lesion size after Bilateral SCI.

DOI: https://doi.org/10.7554/eLife.32058.019

Figure supplement 2. CLV does not influence the number of trials performed during rehabilitative training after bilateral SCI.

DOI: https://doi.org/10.7554/eLife.32058.020

Figure supplement 3. Distribution of eGFP+ neurons with Rehabilitation alone or Top 50% CLV after Bilateral SCI.

DOI: https://doi.org/10.7554/eLife.32058.021

Figure supplement 4. Motor Cortex Movement Representations.

DOI: https://doi.org/10.7554/eLife.32058.022

Figure supplement 5. CLV drives plasticity in remaining motor networks to support recovery after bilateral SCI.

DOI: https://doi.org/10.7554/eLife.32058.023

Figure supplement 6. Post-SCI Time until Recumbency and Paw Placement.

DOI: https://doi.org/10.7554/eLife.32058.024
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Vagus nerve stimulation parameters
VNS was triggered by the behavioral software during rehabilitative training based on the stimulation

threshold for each group, similar to previous studies (Khodaparast et al., 2016; Pruitt et al., 2016;

Hays et al., 2014b, 2016; Khodaparast et al., 2013). Each stimulation train consisted of 16 � 100

msec 0.8 mA biphasic pulses delivered at 30 Hz. An adaptive stimulation threshold specific to each

CLV group was used to determine stimulation delivery during rehabilitative training (Figure 1—fig-

ure supplement 1). The stimulation threshold was adaptively scaled based on the 10 antecedent tri-

als, with each group receiving VNS triggered on trials which fall into the appropriate range. Rats in

the Top 20% CLV group (N = 13) received VNS on trials in which pull force exceeded the top quintile

of the previous ten trials, with no minimum or maximum. In the majority of these subjects (N = 9),

VNS was delivered immediately (~50 msec) after pull force exceeded the stimulation threshold (Fig-

ure 1—figure supplement 1A). No stimulation was delivered on the first 10 trials during a training

session. In a different subset of subjects (Delayed Top 20% CLV, N = 4), VNS was delivered at the

end of the 2 s trial window on trials in which exceeded the stimulation threshold, independent of the

when the threshold was crossed (Figure 1—figure supplement 1D). These groups displayed compa-

rable performance (Top 20% CLV v. Top 20% CLV Delay, Week 12, Unpaired t-test, p=0.78) and

were thus combined for analysis in Figure 1C–E. Rats in the Bottom 20% CLV group (N = 8) received

VNS on trials in which pull force failed to exceed the bottom quintile of the previous ten trials, with

no minimum or maximum. VNS was delivered at the end of the 2 s trial window if pull force was

below the threshold (Figure 1—figure supplement 1G). Rats in the Top 50% CLV group received

Video 4. Performance after Top 20% CLV

Representative example of a unilateral SCI rat

performing the isometric pull task at the conclusion of

six weeks of Top 20% CLV therapy. Note the

improvements in motor control and increase in

forelimb pull force compared to after SCI. (A) The plot

on the bottom left displays pull force applied to the

handle on an individual trial. The green line indicates

the adaptive-scaled force threshold to trigger delivery

of a reward pellet. Note that the threshold adaptively

scales based on the median peak force of the ten

antecedent trials. The red line denotes the stimulation

threshold based on the top 20% of peak pull force

from the preceding 10 trials. Vertical red lines indicate

VNS delivery when pull force exceeds the stimulation

threshold. The triangle indicates peak pull force on a

trial. (B) The plot on the bottom right shows

performance over the course of the session. Each circle

indicates peak force from an individual trial. Green

circles indicate trials in which pull force exceeded the

reward threshold. Green circles with a red border

indicate trials on which VNS was delivered (the top 20%

of trials). White circles indicate trials in which peak

force did not exceed the reward threshold.

DOI: https://doi.org/10.7554/eLife.32058.009

Video 5. Performance after Bottom 20% CLV

Representative example of a unilateral SCI rat

performing the isometric pull task at the conclusion of

six weeks of Bottom 20% CLV therapy. Note the

remaining deficits in forelimb weakness and reduced

motor control compared to Top 20% CLV. (A) The plot

on the bottom left displays pull force applied to the

handle on an individual trial. The dashed line indicates

the adaptive-scaled force threshold to trigger delivery

of a reward pellet. Note that the threshold adaptively

scales based on the median peak force of the ten

antecedent trials. The red line denotes the stimulation

threshold based on the bottom 20% of peak pull force

from the preceding 10 trials. Vertical red lines indicate

VNS delivery when pull force fails to exceed the

stimulation threshold. The triangle indicates peak pull

force on a trial. (B) The plot on the bottom right shows

performance over the course of the session. Each circle

indicates peak force from an individual trial. Green

circles indicate trials in which pull force exceeded the

reward threshold. White circles indicate trials in which

peak force did not exceed the reward threshold. White

circles with a red border indicate trials on which VNS

was delivered (the bottom 20% of trials).

DOI: https://doi.org/10.7554/eLife.32058.010
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VNS on trials that exceeded the median pull force of the previous 10 trials or exceeded 120 g. VNS

was delivered immediately (~50 msec) after pull force exceeded the stimulation threshold Figure 1—

figure supplement 1J). No groups received VNS on the final week of rehabilitative training (Week

12 for unilateral and Week 14 for bilateral SCI) to assess effects lasting after the cessation of stimula-

tion. These parameters do not cause discomfort and do not alter reaching behavior (Hulsey et al.,

2016; Porter et al., 2012).

Intracortical Microstimulation Mapping
Terminal intracortical microstimulation mapping (ICMS) of motor cortex was performed in a subset

of unilateral SCI (Rehab alone, N = 6; Top 50% CLV, N = 6) and bilateral SCI (Rehab alone, N = 7;

Top 50% CLV, N = 7) rats at the end of therapy. A group of uninjured rats were used for control

(Naı̈ve, N = 7). Rats were anesthetized with and injection (i.p.) of ketamine (50 mg/kg), xylazine (20

mg/kg), and acepromazine (5 mg/kg). A cisternal drain was performed to reduce ventricular pressure

and cortical edema during mapping (Hulsey et al., 2016; Porter et al., 2012). A craniotomy was

then performed to expose left motor cortex. Intracortical microstimulation (ICMS) was delivered in

motor cortex at a depth of 1.75 mm using a low impedance tungsten microelectrode with an inter-

penetration resolution of 500 mm (100 kW – 1 MW electrode impedance; FHC Inc., Bowdin, MD;

biphasic ICMS at 333 Hz, 50 ms train duration, 200 msec pulse width, 0–200 mA current). Mapping

experiments were performed blinded with two experimenters similar to previous studies

(Hulsey et al., 2016; Porter et al., 2012). The first experimenter positioned the electrode for ICMS

and recorded movement data. The second experimenter, blind to the experimental group of the ani-

mal and electrode position, delivered ICMS and classified movements. Movement threshold was first

defined. ICMS current was then increased by no more than 50% to facilitate movement classification

using visual inspection. Movements were classified into the following categories similar to previous

studies: vibrissae, neck, jaw, digit, wrist, elbow, shoulder, hindlimb and trunk (Brown and Teskey,

2014; Ganzer et al., 2016b). The cortical area (mm [Levy et al., 2016]) and movement threshold

(mA) for each movement category was calculated for each group (Figure 2—figure supplement 4

and Figure 4—figure supplement 4). Based on the 500 mm inter-electrode spacing, each stimula-

tion site eliciting a movement was counted as 0.25 mm2. Movement area and threshold was

assessed using One-way ANOVA and unpaired t-tests. Data for all movement classifications for each

subject is available in Supplementary file 2.

Pseudorabies virus retrograde transneuronal tracing
Transsynaptic tracer injections using pseudorabies virus 152 (PRV-152) were performed in a subset

of unilateral SCI (Rehab, n = 6; VNS + Rehab, n = 5) and bilateral SCI (Rehab, n = 3; VNS + Rehab,

n = 3) rats following the respective end of therapy. A group of uninjured rats were used for control

(Naı̈ve, n = 5). PRV-152 was a generous gift from the lab of Dr. Lynn Enquist and colleagues at

Princeton University and was grown using standard procedures (Card and Enquist, 2014). An inci-

sion was made over the medial face of the radius and ulna of the trained limb to expose the forelimb

grasping muscles flexor digitorum profundus and palmaris longus. 15 mL of PRV-152 (~8.06 ± 0.49 x

108 plaque-forming units) was injected into the belly of each muscle across three separate sites. The

incision was then closed with non-absorbable suture. We conducted detailed pilot studies to deter-

mine the optimal time of viral infection to allow for layer five cortical labeling. At 5–5.5 days post-

infection we observed little to no cortical labeling for injured or uninjured animals. At 6–6.5 days

post-infection we observed consistent layer five cortical labeling across injured or uninjured animals.

Therefore, 6–6.5 days was used as our PRV-152 infection duration for our transsynaptic tracing stud-

ies. Rats were anesthetized with sodium pentobarbital (50 mg/kg, i.p.) and transcardially perfused

with 4% paraformaldehyde in 0.1 M PBS (pH 7.5) at 6–6.5 days after injection. The brain and spinal

cord were removed. Spinal roots were kept for anatomical reference. Tissue was then post-fixed

overnight and cryoprotected in 30% sucrose.

Quantification was limited to the spinal motor neurons, C3/4 cervical propriospinal neurons, red

nucleus neurons, and cortical layer five neurons because these regions exhibited consistent labeling

and were specifically related to our hypotheses. The whole neuraxis from the rostral tip of the fore-

brain to spinal level T3 was blocked and frozen at �80 C in Shandon M1 embedding matrix (Thermo

Fisher Scientific; Waltham, MA). Coronal forebrain and midbrain sections were sliced and slide-
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mounted at 35 mm using a cryostat (from the rostral tip of forebrain to 13 mm caudal). Coronal spinal

cord sections were sliced and slide mounted at 50 mm (from C4 – T3). After coverslipping, slides

were scanned and digitized using the NanoZoomer 2.0-HT Whole Slide Scanner (Hamamatsu Pho-

tonics; Japan). Tissue images were exported to a custom software program for cell counting

(https://github.com/davepruitt/PRV-Cell-Counting; copy archived at https://github.com/elifescien-

ces-publications/PRV-Cell-Counting). PRV-152 infected neurons expressed enhanced green fluores-

cent protein. PRV-152 neuron counts were made on every other forebrain and midbrain section (35

mm inter-slice interval) and every third spinal cord section (100 mm inter-slice interval). Experimenters

performing analysis were blind to the group of each rat. Cortical neuron counts were restricted to

layer 5 of sensorimotor cortex (Bareyre et al., 2004). We defined motor cortex using standard ana-

tomical reference (Paxinos and Watson, 2007). Our ICMS mapping studies confirm that these

regions contain the cortical forelimb sensorimotor circuitry. Red nucleus neuron counts were made

using standard anatomical reference (Paxinos and Watson, 2007). Propriospinal neuron counts

were made from spinal level C3 – C4 in Rexed lamina VI, VII, VIII and IX using standard anatomical

reference similar to previous studies (Watson et al., 2009; Gonzalez-Rothi et al., 2015). Back-

labeled putative spinal motor neurons were located in Rexed lamina IX and counted identical to pre-

vious studies (Watson et al., 2009; Gonzalez-Rothi et al., 2015). Sensorimotor cortex, red nucleus

and cervical propriospinal neuron counts were normalized within rats to the number of putative spi-

nal motor neurons in the lower cervical and upper thoracic spinal cord to control for any differences

in injection efficacy. No differences in spinal neuron labeling were observed between CLV and Rehab

alone (Figures 2E and 4E). Sensorimotor cortex, red nucleus and putative spinal motor neuron

counts were analyzed separately using unpaired t-tests. Data representing raw neuron counts in

each ROI is available in Figure 2—figure supplement 5, Figure 4—figure supplement 3, and

Supplementary file 3.

Lesion Histology and Analysis
At the completion of experimental testing, rats were anesthetized with sodium pentobarbital (50

mg/kg, i.p.) and transcardially perfused with 4% paraformaldehyde in 0.1 M PBS (pH 7.5). The spinal

cord was removed and spinal roots were kept for anatomical reference. Spinal tissue was then post-

fixed overnight, cryoprotected in 30% sucrose for 48 hr, blocked and frozen at �80 C in Shandon

M1 embedding matrix (Thermo Fisher Scientific; Waltham, MA). Spinal tissue was sliced at 50 mm

using a cryostat, slide mounted and stained for Nissl (gray matter) and myelin (white matter) sub-

stance similar to previous studies (Ganzer et al., 2016a; Ganzer et al., 2016b). Photomicrographs

were taken at 600 mm intervals to quantify gray and white matter lesion metrics using Image J. For

unilateral SCI, the rostral and caudal extent of spinal gray and white matter damage was expressed

as the percentage of spared gray and white matter of the right hemicord with respect to the left

hemicord (Figure 2—figure supplement 2 and Figure 4—figure supplement 1). For bilateral SCI

rats, the rostral and caudal extent of spinal damage was expressed as the percentage of spared gray

and white matter for each hemicord with respect to an unlesioned rostral and caudal tissue reference

within animals (Anderson et al., 2009). Smallest and largest lesion areas were fitted to a schematic

of spinal level C6 (Figures 2E and 3E). To calculate damage to fiber tracts, two experimenters blind

to group assignment evaluated the percentage of lesioned tissue to the dorsal corticospinal tract,

dorsolateral corticospinal tract, ventral corticospinal tract, rubrospinal tract, propriospinal tract, and

gray matter at the lesion epicenter. The dorsal, dorsolateral, and ventral corticospinal tracts were

combined to calculate total CST damage based on the proportion of fibers in each tract

(Bareyre et al., 2005). Data representing the damage estimates is available in Supplementary file

4.

Data Availability
All source data supporting the findings of this study are available in the online version of the paper.
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Additional files

Supplementary files
. Supplementary file 1. Volitional Forelimb Strength Behavioral Data The values in the table below

represent the average peak pull force for all rats included in the study at each week during therapy.

Empty cells correspond to weeks in which data was not collected, based on the design of the experi-

ment. All rat IDs are consistent for individual subjects throughout Supplementary file 1–4.

DOI: https://doi.org/10.7554/eLife.32058.025

. Supplementary file 2. Intracortical Microstimulation Data The values in the table below represent

the area of motor cortex in mm (Levy et al., 2016) evoking movements in each of the categories. All

rat IDs are consistent for individual subjects throughout Supplementary file 1–4.

DOI: https://doi.org/10.7554/eLife.32058.026

. Supplementary file 3. Pseudorabies Virus Labeling Data The values in the table below represent

the total number of labelled eGFP+ neurons in each of the ROIs below. For rostrocaudal distribution

of labeled neurons, see Figure 2—figure supplement 3 and Figure 4—figure supplement 5. All rat

IDs are consistent for individual subjects throughout Supplementary file 1–4.

DOI: https://doi.org/10.7554/eLife.32058.027

. Supplementary file 4. Lesion Metrics The values in the table below represent the estimated percent

damage to gray matter and white matter tracts. All rat IDs are consistent for individual subjects

throughout Supplementary file 1–4.

DOI: https://doi.org/10.7554/eLife.32058.028

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.32058.029
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