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Abstract The basidiomycete yeast Rhodosporidium toruloides (also known as Rhodotorula

toruloides) accumulates high concentrations of lipids and carotenoids from diverse carbon sources.

It has great potential as a model for the cellular biology of lipid droplets and for sustainable

chemical production. We developed a method for high-throughput genetics (RB-TDNAseq), using

sequence-barcoded Agrobacterium tumefaciens T-DNA insertions. We identified 1,337 putative

essential genes with low T-DNA insertion rates. We functionally profiled genes required for fatty

acid catabolism and lipid accumulation, validating results with 35 targeted deletion strains. We

identified a high-confidence set of 150 genes affecting lipid accumulation, including genes with

predicted function in signaling cascades, gene expression, protein modification and vesicular

trafficking, autophagy, amino acid synthesis and tRNA modification, and genes of unknown

function. These results greatly advance our understanding of lipid metabolism in this oleaginous

species and demonstrate a general approach for barcoded mutagenesis that should enable

functional genomics in diverse fungi.

DOI: https://doi.org/10.7554/eLife.32110.001

Introduction
Rhodosporidium toruloides (also known as Rhodotorula toruloides [Wang et al., 2015]) is a basidio-

mycete yeast (subdivision Pucciniomycotina). Rhodotorula/Rhodosporidium species are widely dis-

tributed in the phyllosphere and diverse soils (Rosa and Peter, 2006; Sláviková et al., 2009;

Butinar et al., 2005; Pulschen et al., 2015). They accumulate high concentrations of carotenoid pig-

ments (Mata-Gómez et al., 2014; Lee et al., 2014), giving their colonies a distinctive orange, red,

or pink hue. When R. toruloides is cultured under nitrogen (Zhu et al., 2012), sulfur (Wu et al.,
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2011), or phosphorus (Wu et al., 2010) limitation, it can accumulate as much as 70% of cellular bio-

mass as lipids (Wiebe et al., 2012), primarily as triacylglycerides (TAG).

Eukaryotes accumulate neutral lipids in complex, dynamic organelles called lipid droplets. Lipid

droplets emerge from the endoplasmic reticulum (ER) membrane as a core of TAG surrounded by

sterol esters, a phospholipid monolayer derived from ER phospholipids, and a targeted ensemble of

proteins mediating inter-organelle interaction, protein trafficking, cellular lipid trafficking and regu-

lated carbon flux in and out of the lipid droplet (Walther and Farese, 2012; Farese and Walther,

2009; Gao and Goodman, 2015). Aberrant lipid droplet formation contributes to many human dis-

eases (Krahmer et al., 2013a; Welte, 2015) and impacts cellular processes as diverse as autophagy

(Shpilka et al., 2015) and mitosis (Yang et al., 2016). The propensity of R. toruloides to form large

lipid droplets under a variety of conditions makes it an attractive platform to study conserved

aspects of the cellular biology of these important organelles across diverse eukaryotes.

Rhodosporidium toruloides is also an attractive host for production of sustainable chemicals and

fuels from low-cost lignocellulosic feedstocks. Wild isolates of R. toruloides can produce lipids and

carotenoids from a wide variety of carbon sources including glucose (Wiebe et al., 2012), xylose

(Wiebe et al., 2012), and acetate (Huang et al., 2016), as well as complex biomass hydrolysates

(Fei et al., 2016). They are relatively tolerant to many forms of stress including osmotic stress

(Singh et al., 2016) and growth-inhibiting compounds in biomass hydrolysates (Hu et al., 2009;

Kitahara et al., 2014). Rhodosporidium toruloides has been engineered to produce lipid-derived

bioproducts such as fatty alcohols (Fillet et al., 2015) and erucic acid (Fillet et al., 2017) from

eLife digest The fungus Rhodosporidium toruloides can grow on substances extracted from

plant matter that is inedible to humans such as corn stalks, wood pulp, and grasses. Under some

growth conditions, the fungus can accumulate massive stores of hydrocarbon-rich fats and pigments.

A community of scientists and engineers has begun genetically modifying R. toruloides to convert

these naturally produced fats and pigments into fuels, chemicals and medicines. These could form

sustainable replacements for products made from petroleum or harvested from threatened animal

and plant species.

Fungi, plants, animals and other eukaryotes store fat in specialized compartments called lipid

droplets. The genes that control the metabolism – the production, use and storage – of fat in lipid

bodies have been studied in certain eukaryotes, including species of yeast. However, R. toruloides is

only distantly related to the most well-studied of these species. This means that we cannot be

certain that a gene will play the same role in R. toruloides as in those species.

To assemble the most comprehensive list possible of the genes in R. toruloides that affect the

production, use, or storage of fat in lipid bodies, Coradetti, Pinel et al. constructed a population of

hundreds of thousands of mutant fungal strains, each with its own unique DNA ‘barcode’. The

effects that mutations in over 6,000 genes had on growth and fat accumulation in these fungi were

measured simultaneously in several experiments. This general approach is not new, but technical

limitations had, until now, restricted its use in fungi to a few species.

Coradetti, Pinel et al. identified hundreds of genes that affected the ability of R. toruloides to

metabolise fat. Many of these genes were related to genes with known roles in fat metabolism in

other eukaryotes. Other genes are involved in different cell processes, such as the recycling of waste

products in the cell. Their identification adds weight to the view that the links between these cellular

processes and fat metabolism are deep and widespread amongst eukaryotes. Finally, some of the

genes identified by Coradetti, Pinel et al. are not closely related to any well-studied genes. Further

study of these genes could help us to understand why R. toruloides can accumulate much larger

amounts of fat than most other fungi.

The methods developed by Coradetti, Pinel et al. should be possible to implement in many

species of fungi. As a result these techniques may eventually contribute to the development of new

treatments for human fungal diseases, the protection of important food crops, and a deeper

understanding of the roles various fungi play in the broader ecosystem.

DOI: https://doi.org/10.7554/eLife.32110.002

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 2 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.32110.002
https://doi.org/10.7554/eLife.32110


synthetic pathways. To enable more efficient production of terpene-derived and lipid-derived chemi-

cals, it has also been engineered for enhanced carotenoid (Lee et al., 2016) and lipid (Zhang et al.,

2016a) production. These efforts, while promising, have for the most part employed strategies

adapted from those demonstrated in evolutionarily distant species such as Saccharomyces cerevisiae

and Yarrowia lipolytica. To truly tap the biosynthetic potential of R. toruloides, a better understand-

ing of the unique aspects of its biosynthetic pathways, gene regulation and cellular biology will be

required.

Recently, transcriptomic and proteomic analysis of R. toruloides in nitrogen limited conditions

(Zhu et al., 2012) identified over 2,000 genes with altered transcript abundance and over 500 genes

with altered protein abundance during lipid accumulation. These genes included many enzymes

involved in the TCA cycle, a putative PYC1/MDH2/Malic Enzyme NADPH conversion cycle

(Wynn et al., 1999), fatty acid synthesis, fatty acid beta-oxidation, nitrogen catabolite repression,

assimilation and scavenging, autophagy, and protein turnover. Proteomics of isolated lipid droplets

(Zhu et al., 2015) identified over 250 lipid droplet-associated proteins including fatty acid synthesis

genes, several putative lipases, a homolog of the lipolysis-regulating protein perilipin (Bickel et al.,

2009), vesicle trafficking proteins such as Rab GTPases and SNARE proteins, as well as several mito-

chondrial and peroxisomal proteins.

While these studies were unambiguous advances for the field, significant work remains to estab-

lish the genetic determinants of lipid accumulation in R. toruloides. Differential transcript or protein

abundance under nitrogen limitation is suggestive of function in lipid accumulation, but transcrip-

tional regulation and gene function are often poorly correlated in laboratory conditions (Price et al.,

2013). Similarly, sequestration in the lipid droplet may help regulate availability of some proteins for

functions not necessarily related to lipid metabolism (Cermelli et al., 2006). More direct functional

data would help the R. toruloides community prioritize this extensive list of genes for more detailed

study and identify additional genes not identifiable by proteomic and transcriptomic methods.

Finally, these studies highlighted dozens of genes with no known function, and hundreds more with

only limited functional predictions. A more functional approach may yield more insights into unique

aspects of R. toruloides biology.

Fitness analysis of gene deletion or disruption mutants within pooled populations is a flexible,

powerful approach for elucidating gene function. In these experiments the relative growth rate of

thousands of mutant strains are simultaneously measured by tracking the relative abundance of

unique sequence identifiers for each mutant. These identifying sequences could be short sequence

‘barcodes’ inserted into targeted deletion mutants (Giaever et al., 2002), or genomic DNA flanking

random transposon insertions (Sassetti et al., 2001). Early fitness experiments tracked strain abun-

dance by hybridization of identifier sequences to DNA micro-arrays (Giaever et al., 2002;

Sassetti et al., 2001). The advent of high-throughput sequencing and the development of broad

host range transposons enabled more widespread use of fitness analysis in bacteria by direct

sequencing of transposon insertion sites (TnSeq) (Gawronski et al., 2009; Langridge et al., 2009).

The scalability and precision of TnSeq is improved when random sequence barcodes are added to

each randomly integrated transposon (RB-TnSeq) (Wetmore et al., 2015). Once insertions sites have

been mapped, strain abundance can then be more accurately measured with a simple, consistent

PCR amplification of the barcode sequences from known priming sites (BarSeq).

TnSeq and RB-TnSeq have been employed extensively in bacteria (Kwon et al., 2016), and in a

few eukaryotic species (Michel et al., 2017; Pettitt et al., 2017). Although some of the first bar-

coded fitness experiments were performed on mutant pools of S. cerevisiae (Giaever et al., 2002)

and advances in TnSeq methods continue in that species (Michel et al., 2017), to date relatively low

transformation efficiencies and a lack of functional transposon systems has limited the application of

TnSeq and RB-TnSeq in most fungal species. Random mutagenesis of fungi by the bacterium Agro-

bacterium tumefaciens is one route to overcome these technical barriers. Agrobacterium tumefa-

ciens, an opportunistic plant pathogen, has evolved an efficient system to transfer virulence genes

into eukaryotic cells (Gelvin, 2003). Once in the host cell, these transfer DNAs (T-DNAs) integrate

randomly into the genome (Bundock et al., 2002). Agrobacterium tumefaciens-mediated transfor-

mation (ATMT) has been used extensively in plants (Gelvin, 2003) and to transform diverse fungi at

high efficiency (Bundock et al., 2002; Michielse et al., 2005; Walton et al., 2005; Kunitake et al.,

2011; Sullivan et al., 2002; Blaise et al., 2007). Recently, Esher et al. used ATMT followed by

mutant selection and high-throughput sequencing to identify several mutants with altered cell wall
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biosynthesis in the basidiomycete yeast Cryptococcus neoformans (Zhang et al., 2016a). The meth-

ods they employed were only viable for characterization of a small pool of highly enriched mutants,

but they demonstrated an effective paradigm to bring high-throughput functional genomics to

diverse fungi.

In this study, we demonstrate the construction of a randomly barcoded, random insertion library

in R. toruloides by ATMT and its application for functional genomics (RB-TDNAseq). We report a list

of 1,337 genes, including 36 unique to basidiomycetes, that were recalcitrant to T-DNA insertion,

the first full genome survey of putatively essential genes in a basidiomycete fungus. We use our bar-

coded mutant library to explore fatty acid catabolism in R. toruloides, demonstrating its utility in rap-

idly assessing mutant phenotypes. We show that mitochondrial beta-oxidation is important for fatty

acid utilization in this species and that some members of its expanded complement of peroxisomal

acyl-CoA dehydrogenases are necessary for growth on different fatty acids, suggesting substrate

specificity or conditional optimality for each enzyme. We investigate perturbed lipid accumulation in

the mutant pool by fractionation of the population by buoyancy and fluorescence activated cell sort-

ing. We identify 150 genes with significant roles in lipid accumulation, notably genes involved in sig-

naling cascades (28 genes), gene expression (15 genes), protein modification or trafficking (15

genes), ubiquitination or proteolysis (nine genes), autophagy (nine genes), and amino acid synthesis

(eight genes). We also find evidence that tRNA modification affects lipid accumulation in R. toru-

loides, identifying five genes with likely roles in thiolation of tRNA wobble residues. These results

significantly advance our understanding of lipid metabolism in R toruloides; identify key biological

processes that should be explored and optimized in any oleaginous yeast engineered for lipid pro-

duction; support emerging evidence of deep connections between lipid droplet dynamics, vesicular

trafficking, and protein sorting; and demonstrate a general approach for barcoded mutagenesis that

should enable functional genomics in a wide variety of fungal species.

Results

A functional genomics platform for R. toruloides
To enable functional genomics in R. toruloides IFO 0880, we first improved the existing genome

assembly and annotation (Zhang et al., 2016a) using a combination of long-read PacBio sequencing

for a more complete de novo assembly, a more comprehensive informatics approach for gene model

predictions and functional annotation, and manual refinement of those models using evidence from

mRNA sequencing (Genbank accession LCTV02000000), also available at the Mycocosm genome

portal (Grigoriev et al., 2014) (see Appendix 1 for details). Summary tables of gene IDs, predicted

functions, and probable orthologs in other systems are included in Supplementary file 1. For brev-

ity, we will refer to R. toruloides genes by the common name for their Saccharomyces cerevisiae

orthologs (e.g. MET2) when such orthologous relationships are unambiguous. Otherwise, we will

give the Mycocosm protein ID, e.g. RTO4_12154 and RTO4_14576 are both orthologs of GPD1.

Because no method existed for high-throughput genetics in R. toruloides, we adapted estab-

lished protocols for mapping barcoded transposon insertions (RB-TnSeq) (Wetmore et al., 2015), to

mapping barcoded T-DNA insertions introduced with Agrobacterium tumefaciens-mediated trans-

formation (ATMT). We call this method RB-TDNAseq (Figure 1A). In brief, we generated a diverse

library of binary ATMT plasmids bearing nourseothricin resistance cassettes with ~10 million unique

20 base-pair sequence ‘barcodes’ by efficient Type IIS restriction enzyme cloning (Engler et al.,

2008), introduced the library into A. tumefaciens EHA105 by electroporation, then transformed R.

toruloides with ATMT. Using a TnSeq-like protocol, we mapped the unique locations of 293,613 indi-

vidual barcoded T-DNA insertions in the R. toruloides genome (see Appendix 1 for details). Once

insertion sites were associated with their barcodes, pooled fitness experiments were performed

using a simple, scalable BarSeq protocol as previously described (Wetmore et al., 2015).

Insertions were sufficiently well dispersed to map at least one T-DNA in 93% of nuclear genes,

despite some local and fine-scale biases in insertion rates (see Appendix 1 for details). Insertion den-

sity in coding regions followed an approximately normal distribution (as expected for random inte-

gration) centered on nine inserts per thousand base pairs, except for a subpopulation of genes with

fewer than two inserts/kb (Figure 1B). These very low-insertion genes were highly enriched for

orthologs of genes reported as essential in Aspergillus nidulans (Arnaud et al., 2012), Cryptococcus
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neoformans (Ianiri and Idnurm, 2015), Saccharomyces cerevisiae (Cherry et al., 2012), or Schizosac-

charomyces pombe (Wood et al., 2012), or for which only heterokaryons could be obtained in the

Neurospora crassa deletion collection (Colot et al., 2006). We therefore infer that the majority of

these genes recalcitrant to T-DNA insertion are likely essential in our library construction conditions,

or at least that mutants for these genes have severely compromised growth. Based on the above cri-

terion, we identified 1,337 probable essential genes, which we report in Supplementary file 1. This

list includes over 400 genes not reported as essential in the above-mentioned model fungi and is

enriched for genes with homologs implicated in mitochondrial respiratory chain I assembly and func-

tion, dynein complex, the Swr1 complex, and mRNA nonsense mediated decay. For a full list of GO

term enrichments see Supplementary file 1. This list also includes 36 genes unique to

basidiomycetes.

Mapping biosynthetic pathways using RB-TDNAseq
Before investigating more novel aspects of R. toruloides’ biology, we tested if RB-TDNAseq could

be used to correctly identify gene function in well-conserved amino acid biosynthetic pathways. We

cultured the mutant pool in defined medium (DM), consisting of glucose and yeast nitrogen base

without amino acids and in DM supplemented with ‘drop-out mix complete’ (DOC), a mix of amino

acids, adenine, uracil, p-aminobenzoic acid, and inositol. To establish if RB-TDNAseq could produce

statistically robust results with minimal experimental replication, we recovered three independent

starter cultures from frozen aliquots of the mutant pool and used each replicate to inoculate both
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Figure 1. Overview of RB-TDNAseq and T-DNA insert density in R. toruloides coding regions. (A) General strategy of RB-TDNAseq. A library of binary

plasmids bearing an antibiotic resistance cassette (NATR) and a random 20 base-pair sequence ‘barcode’ (N20) flanked by specific priming sites (P1/P2)

is introduced into a population of A. tumefaciens carrying a vir helper plasmid. A. tumefaciens efficiently transforms a T-DNA fragment into the target

fungus (ATMT). NATR colonies are then combined to make a mutant pool. T-DNA-genome junctions are sequenced by TnSeq, thereby associating

barcodes with the location of the insertion (Map). The mutant pool is then cultured under specific conditions and the relative abundance of mutant

strains is measured by sequencing a short, specific, PCR on the barcodes (BarSeq) and counting the occurrence of each sequence (Count). Finally, for

each gene, count data is combined across all barcodes mapping to insertions in that gene to obtain a robust measure of relative fitness for strains

bearing mutations in that gene (Fitness Estimation). (B) Histogram of insert density in coding regions (start codon to stop codon) for all genes, and

genes with orthologs reported to be essential in A. nidulans, C. neoformans, N. crassa, S. cerevisiae, or S. pombe. The following figure supplements are

available for Figure 1.

DOI: https://doi.org/10.7554/eLife.32110.003

The following figure supplements are available for figure 1:

Figure supplement 1. Schematic of TnSeq and BarSeq libraries generated using RB-TDNAseq.

DOI: https://doi.org/10.7554/eLife.32110.004

Figure supplement 2. Complexities of T-DNA insertions.

DOI: https://doi.org/10.7554/eLife.32110.005

Figure supplement 3. Observed biases in T-DNA insertion locations.

DOI: https://doi.org/10.7554/eLife.32110.006
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supplemented and non-supplemented cultures. We grew these cultures for seven generations and

measured fitness across the mutant pool with BarSeq.

Secondary mutations are prevalent even in well-curated mutant collections (Comyn et al., 2017)

and ATMT can introduce several types of confounding mutations (see Appendix 1 for details). To

mitigate the influence of such mutations on our analysis, we adapted the established methods and

software of Wetmore et al. (Wetmore et al., 2015; Price et al., 2016; Cole et al., 2017;

Sagawa et al., 2017) for our BarSeq analysis. These algorithms compute a fitness score for each

mutant strain as a log2 ratio of abundance in the experimental condition to abundance in a ‘Time 0’

sample from its seed culture. A composite fitness score (F) is then computed for each gene by com-

bining multiple fitness scores from strains bearing insertions in that gene. A ‘moderated T-statistic’

calculated from the average and variance of strain fitness scores indicates the consistency of F across

strains and experiments. See the Materials and methods section and (Wetmore et al., 2015) for

more information on how these metrics are calculated. For more information on sequencing depth,

behavior of T-statistics and detailed examples of how individual strain fitness scores contribute to F,

see Appendix 1. All fitness scores and T-statistics (combined across biological replicates) are avail-

able in Supplementary file 2 and online in a dynamic fitness browser, adapted from (Price et al.,

2016): http://fungalfit.genomics.lbl.gov/.

Different aliquots of the mutant pool have subtly different starting compositions and experience

stochastic variations in the length of lag phase as they recover from frozen stocks. Subtle variations

in Illumina library preparation and sequencing for samples processed at different times may add fur-

ther batch-specific biases to count data. For these reasons, direct comparisons of BarSeq counts

between conditions tested in different batches and seeded from different starter cultures are not

advisable. Expressing the data as F and T relative to Time 0 reduces it to a more portable format,

allowing for comparisons of mutant fitness across conditions not necessarily tested in the same

experiment. Given F and T in two different conditions (FC1, TC1 and FC2, TC2), we calculate relative

fitness FC1-C2 = FC1-FC2 and relative T-statistics TC1-C2 = (FC1-FC2)/sqrt(var(FC1)+var(FC2)).

Fitness scores for 6,558 genes in cultures grown on DM and DM supplemented with DOC are

shown in Figure 2A. Mutants for 28 genes had fitness scores suggesting auxotrophy: fitness defects

in non-supplemented media (FDM < �1) with consistently different scores in supplemented versus

non-supplemented media (TDM-DOC < �3). When we grew the mutant pool in defined media with

methionine or arginine supplementation (Figure 2B), the 28 auxotrophic mutants partitioned into 11

mutants rescued by methionine, eight mutants rescued by arginine, seven mutants rescued by nei-

ther amino acid and two mutants rescued by both amino acids. All of the identified methionine and

arginine auxotrophic mutants have orthologous genes for which mutants are auxotrophic for methio-

nine/cysteine or arginine, respectively, in S. cerevisiae or A. nidulans. Alternatively, when we hierar-

chically clustered the fitness scores for genes with F < �1 and T < �3 versus Time 0 in any

supplementation condition (Figure 2C), the resulting clusters included twelve and nine mutants res-

cued by methionine and arginine respectively; this was a nearly complete recovery of genes with

predicted functions in this pathway (shown in Figure 2D–E with additional discussion in Appendix 1).

Based on these data, we chose |T| > 3 as a conservative threshold for consistent, reliable fitness

scores in further BarSeq experiments.

Fatty acid catabolism in R. toruloides
We next sought to understand how R. toruloides utilizes distinct fatty acids as growth substrates, as

a window onto the complex lipid metabolism in this fungus. For this purpose, we used RB-TDNAseq

to measure mutant fitness on three fatty acids as the sole carbon source: oleic acid (the most abun-

dant fatty acid in R. toruloides [Li et al., 2007]) ricinoleic acid (a high-value fatty acid produced natu-

rally in plants (Dyer et al., 2008) and synthetically in fungi [Holic et al., 2012]), and methyl ricinoleic

acid (a ricinoleic acid derivative used in lactone production [Endrizzi et al., 1996]). A total of 129

genes had consistently low fitness scores on one or more fatty acids including genes implicated in

beta-oxidation of fatty acids, gluconeogenesis, mitochondrial amino acid metabolism, and several

other aspects of cellular metabolism and gene regulation (See Figure 3—figure supplement 1 and

Appendix 1 for a clustering analysis of fitness scores for these genes and Supplemental file 2 for a

complete list).

We were particularly interested in beta-oxidation of fatty acids in the peroxisome and mitochon-

dria, as these pathways are critical for lipid homeostasis (Kohlwein et al., 2013; Rambold et al.,
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Figure 2. Confirmation of amino acid biosynthetic genes with high-throughput fitness experiments. (A) Fitness scores for 6,558 genes in media with and

without amino acid supplementation (drop-out complete mix). Gene fitness scores are log ratios of final versus starting abundance averaged over

multiple barcoded insertions per gene across three biological replicates. Genes that had consistently different enrichment scores between treatments

(DF > 1, |T| statistic >3) are highlighted and represent genes for which mutant strains are auxotrophic for one or more amino acids, nucleotides, or

vitamins present in the drop-out complete mixture. (B) Fitness scores in media supplemented with arginine or methionine. Highlighted genes are the
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2015), with major implications for both human health (Houten et al., 2016; Waterham et al., 2016)

and metabolic engineering in fungi (Dulermo and Nicaud, 2011; Beopoulos et al., 2014). Fitness

scores for R. toruloides genes homologous to enzymes with known roles in beta-oxidation of fatty

acids are shown in Figure 3A. The localization for these enzymes is inferred mostly from observa-

tions in distantly related species, but orthologs of five enzymes localized to the predicted compart-

ments in the basidiomycete yeast Ustilago maydis (Camões et al., 2015) adding some confidence to

these predicted locations.

Mutants for mitochondrial enzymes had the most consistent fitness scores across all three fatty

acids, whereas mutants for the peroxisomal enzymes and peroxins had more variable fitness scores

among fatty acids. Mutants for seven peroxisomal beta-oxidation enzymes and three peroxins had

different fitness scores on oleic acid versus ricinoleic acid and methylricinoleic acid (listed in Appen-

dix 1, full fitness scores in Supplementary file 2), while 11 other predicted peroxisomal beta-oxida-

tion enzymes had no consistent fitness scores at all. These results demonstrate how RB-TDNAseq

can be used to rapidly identify condition-specific phenotypes among closely related members of a

gene family. All together our data are consistent with a model of fatty acid beta-oxidation in R. toru-

loides in which diverse long-chain fatty acids are shortened in the peroxisome and a less structurally

diverse set of short-chain fatty acids are oxidized to acetyl-CoA in the mitochondria (Figure 3—fig-

ure supplement 2).

To validate our fitness data on fatty acids, we made targeted deletion mutants for several pre-

dicted peroxisomal and mitochondrial proteins by homologous recombination into a non-homolo-

gous end joining deficient YKU70D strain (also known as KU70) (Ninomiya et al., 2004;

Zhang et al., 2016b). We grew these mutant strains on oleic or ricinoleic acid media and compared

their growth to the parental YKU70D strain in mid-log phase. Relative growth for the deletion strain

for each gene is compared to its fitness scores in the BarSeq experiment in Figure 3B and

Figure 3C. The PEX7D mutant had similar fitness defects on both fatty acids, but mutants for

RTO4_8673 (similar to PEX11) and RTO4_14567 (similar to H. sapiens ACAD11), had stronger fitness

defects on ricinoleic acid, and the mutant for acyl-CoA dehydrogenase RTO4_8963 had stronger fit-

ness defects on oleic acid as predicted from fitness scores. Over a 96 hr time course, the

RTO4_14567D mutant failed to grow at all on ricinoleic acid, whereas the RTO4_8963D mutant and

the PEX11 homolog RTO4_8673D mutant had more subtle phenotypes, approaching the same final

density of the YKU70D control strain after a longer growth phase (Figure 3—figure supplement 3).

Figure 2 continued

same as highlighted in (A). Deletion strains for circled or boxed genes are auxotrophic for methionine or arginine, respectively, in S. cerevisiae or A.

nidulans. See Supplementary file 2 for full fitness data. (C) Hierarchical clusters of fitness scores in supplemented and non-supplemented media.

Fitness scores for each biological replicate versus its Time 0 replicate for genes with a consistent fitness defect (F < �1, T < �3) in one or more of the

following conditions: Yeast extract/Peptone/Dextrose media (YPD) or defined media (DM, composed of yeast nitrogen base plus glucose) with or

without the following supplements: (+DOC), arginine (+ARG), or methionine (+MET). (D) Sulfur amino acid biosynthesis in R. toruloides as inferred from

fitness experiments. CysA/CysB are named according to their A. nidulans orthologs, all others by orthologs in S. cerevisiae. Auxotrophic mutants had F

< �1 in non-supplemented media (DM) and T < �3 in DM versus supplemented media (DOC). Multiple insertions were mapped in STR3, suggesting

non-essentiality, but strain abundance was too low to estimate fitness in BarSeq data. *MET16 had fitness scores that clustered with the other

auxotrophic mutants, but TDM-DOC was �2.7. **Fitness scores for insertions in MET8 were not inconsistent with auxotrophy, but only two insertions were

abundant enough to be tracked. 5MTHTG: 5-methyltetrahydropteroyltri-L-glutamate, THTG: tetrahydropteroyltri-L-glutamate, SAM: S-adenosyl-L-

methionine, SAH: S-adenosyl-homocysteine, APS: adenylyl-sulfate, PAPS: 3’-phosphoadenylyl-sulfate. (E) Arginine biosynthesis in R. toruloides as

inferred from fitness experiments. *ARG8 had fitness scores that clustered with the other auxotrophic mutants, but TDM-DOC was �2.9. NAG:

N-acetylglutamate, NAGSA: N-acetylglutamate semialdehyde, NAAO: N-alpha-acetylornithine. The following figure supplements are available for

Figure 2.

DOI: https://doi.org/10.7554/eLife.32110.007

The following figure supplements are available for figure 2:

Figure supplement 1. Barcode abundance in BarSeq experiments.

DOI: https://doi.org/10.7554/eLife.32110.008

Figure supplement 2. Contributions of individual strains to gene-level fitness scores.

DOI: https://doi.org/10.7554/eLife.32110.009

Figure supplement 3. Properties of T-statistics.

DOI: https://doi.org/10.7554/eLife.32110.010
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These data showed that BarSeq fitness scores

were reliable predictors of significant growth

defects for mutants in pure culture.

Functional genomics of lipid
accumulation in R. toruloides
To dissect the genetic basis of lipid accumulation

in R. toruloides, we induced lipid accumulation

by nitrogen limitation (R. toruloides lipid droplets

visualized in Figure 4A), and used two measures

of cellular lipid content to fractionate the mutant

pool (Figure 4B and Appendix 1). We used the

neutral-lipid stain BODIPY 493/503 (Bozaquel-

Morais et al., 2010) and fluorescence activated

cell sorting (FACS) to enrich populations with

larger/more or smaller/fewer lipid droplets

(Terashima et al., 2015). We also used buoyancy

separation on sucrose gradients to enrich for

populations with higher or lower total lipid con-

tent (Eroglu and Melis, 2009; Kamisaka et al.,

2006; Liu et al., 2015). Because many mutations

can affect cell buoyant density independent of

lipid accumulation (Novick et al., 1980;

Bryan et al., 2010), we also grew the mutant

pool in rich media (YPD) and subjected it to

sucrose gradient separation as a control for lipid-

independent buoyancy phenotypes. For each pair

of high and low lipid fractions, we then calculated

an ‘enrichment score’, E, and T-statistic for each

gene. E is analogous to our fitness scores based

on growth, except that it is the log2 ratio of

abundance in the high lipid fraction to the low

lipid fraction, whereas F is the log2 ratio of final

to initial abundance. Hierarchical clusters of

enrichment scores for 271 genes for which

mutants have consistently altered lipid accumula-

tion (|E| > 1 and |T| > 3) are shown in Figure 5A.

Enrichment scores and T-statistics for all 6,558

genes with sufficient BarSeq data are reported in

Supplementary file 2.

To assess the reliability of these enrichment

scores in predicting phenotypes for null mutants,

we constructed 29 single gene deletion mutants

by homologous recombination in a YKU70D strain

of IFO 0880 and measured lipid accumulation by

average BODIPY fluorescence for 10,000 cells

from each strain using flow cytometry. Figure 5B

and C show relative BODIPY signal for targeted

deletion mutants versus the YKU70D parental

strain (see Appendix 1 for more information on

normalization and power analysis). When enrich-

ment scores from both assays were strongly posi-

tive (LA1), we found that 7 of 8 deletion mutants

had the expected phenotype (i.e. increased lipid

accumulation). When only one assay yielded a

strongly positive score (clusters LA2 and LA3),
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Figure 3. Genes with fitness defects on fatty acids. (A)

Heatmap of fitness scores for R. toruloides genes with

predicted roles in beta-oxidation of fatty acids. Enzyme

classes and predicted locations were inferred from

homologous proteins in Ustilago maydis as reported by

Camões et al. (Camões et al., 2015). See

Supplementary file 2 for full fitness data. (B)

Log2 optical density ratio for single deletion mutants

versus the YKU70D control strain at mid-log phase on

1% oleic acid as carbon source are plotted against the

Figure 3 continued on next page
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only 3 of 5 mutants had apparent increases in

lipid content as measured by flow cytometry.

Further, for the two mutants for genes in cluster

LA3 with the greatest apparent increase in lipid

content (PMT4 and RTO4_10302, similar to C.

neoformans CMT1) that measurement was likely

an artifact of incomplete cell separation. Both

mutants formed long chains of cells (see Fig-

ure 7—figure supplement 1 for microscopy

images), which would be analyzed as a single

cell by our FACS assay. Genes in clusters LA4

and LA5 had conflicting enrichment scores

between the two assays. Of three targeted dele-

tion strains for genes in these clusters, only one

(CCC1D) had a statistically significant phenotype,

with decreased lipid accumulation. When the

FACS assay gave a strongly negative score and

there was no strong contrary buoyancy score

(clusters LA6, LA7, and LA8), 11 of 13 mutants

had reduced lipid accumulation. These data con-

firm that both separation techniques are funda-

mentally sound, though in isolation each method

has a significant rate of false positives. In combi-

nation, the two assays identified a large set of

high-confidence candidate genes with important

roles in lipid accumulation.

Diverse predicted functions for lipid accumulation mutants
We manually curated homology-based predicted functions for the 393 genes with consistent fitness

or enrichment scores in this study (Supplementary file 1). An overview of predicted localizations

and functions for genes we identified with roles in fatty acid utilization or lipid accumulation is shown

in Figure 6, with more detail for mutants with increased and decreased lipid accumulation in

Tables 1 and 2, respectively. Note that we have excluded genes for which only one enrichment tech-

nique indicated altered lipid accumulation from this analysis.

Mutants with increased lipid accumulation (cluster LA1, 56 genes) were most notably enriched for

genes involved in signaling cascades, post-translational protein modification and trafficking, and in

amino acid biosynthesis. Genes involved in signaling cascades included several homologs to G-pro-

teins such as RAS1 and mammalian RAC1 and their effectors, as well as several kinases, indicating a

complex signaling network regulating lipid accumulation. Genes involved in protein trafficking

included P24 adapter proteins, suggesting they play an important role in delivering lipid-mobilizing

genes to the lipid droplet or removing lipid biosynthesis genes from the endomembrane network.

Mutants for several genes identified in our auxotrophy experiments also had increased lipid accumu-

lation, most notably genes involved in sulfate assimilation for cysteine and methionine biosynthesis.

Not all auxotrophic mutants had altered lipid accumulation, suggesting that arrested protein synthe-

sis is not necessarily sufficient to increase lipid accumulation.

Mutants with decreased lipid accumulation (clusters LA6, LA7, and LA8, 94 genes) were most

notably enriched for genes with roles in autophagy, protein phosphorylation, and tRNA-modifcation.

Mutants in nine core components of autophagy were deficient for lipid accumulation, consistent with

previous findings that chemical inhibition of autophagy reduced lipid accumulation in Y. lipolytica

(Qiao et al., 2015). Mutants in several proteases and ubiquitin ligases also had reduced lipid accu-

mulation, highlighting the importance of efficient recycling of cellular materials to refactor the cell

for high lipid accumulation. Mutants in at least nine protein kinases, three phosphatases or their

binding partners had reduced lipid accumulation; likely these genes mediate nutrient sensing cas-

cades that stimulated lipid accumulation. Several genes with likely roles in thiolation of tRNA wobble

residues had lower lipid accumulation. Though these mutants also had apparent buoyancy pheno-

types on YPD, two deletion strains (NCS6D and NCS2D) had reduced lipid content in pure culture

Figure 3 continued

fitness scores for each gene from BarSeq experiments

on 1% oleic acid. (C) Log2 optical density ratio for

single deletion mutants versus the YKU70D control

strain at mid-log phase on 1% ricinoleic acid as carbon

source are plotted against the fitness scores for

mutants in each gene from BarSeq experiments on 1%

ricinoleic acid. See Supplementary file 2 for a

statistical summary for all strains shown in (B) and (C),

including P values and effect sizes. The following figure

supplements are available for Figure 3.

DOI: https://doi.org/10.7554/eLife.32110.011

The following figure supplements are available for

figure 3:

Figure supplement 1. K-means clusters of fitness

scores for 129 genes for which mutants have specific

fitness defects on fatty acids.

DOI: https://doi.org/10.7554/eLife.32110.012

Figure supplement 2. Model for beta-oxidation of

fatty acids in R. toruloides.

DOI: https://doi.org/10.7554/eLife.32110.013

Figure supplement 3. Extended growth curves for

deletion mutants on fatty acids.

DOI: https://doi.org/10.7554/eLife.32110.014
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(Figure 5C). They may play a role in regulating global carbon metabolism (Laxman et al., 2013).

RTO4_16381, a distant homolog of H. sapiens PLIN1 (perilipin), was also necessary for high lipid

accumulation, consistent with its homolog’s known roles in lipid body maintenance and regulation of

Figure 4. Detecting mutants with altered lipid accumulation. (A) Lipid accumulation in R. toruloides under

nitrogen limitation. DIC microscopy of R. toruloides grown in low nitrogen media for 40 hr and stained with

BODIPY 493/503 to label lipid droplets. (B) Two strategies to enrich populations for high or low TAG content cells.

(Top) Buoyant density separation on sucrose gradients. Lipid accumulated cells are loaded onto a linear sucrose

gradient and centrifuged. Cells settle at their neutral buoyancy, with the size of the low-density lipid droplet as the

main driver of buoyancy differences. The gradient is then split into several fractions, and fractions representing the

most and least buoyant 5–10% of the population, as well as a no-separation control are subjected to DNA

extraction and strain quantification with BarSeq. For each gene an enrichment score is calculated as the log2 ratio

of mutant abundance in the high buoyancy versus low buoyancy fractions. (Bottom) FACS sorting on BODIPY

signal. Cells cultured in lipid accumulation conditions (limited nitrogen) are stained with BODIPY 493/503, then

sorted in a FACS system. The 10% of the population with the highest and lowest BODIPY signal are sorted into

enriched populations, as well as non-gated control. These small populations (10 million cells each) are then

cultured for additional biomass and subjected to DNA extraction and strain quantification with BarSeq. For each

gene, a FACS enrichment score is calculated as the log2 ratio of mutant abundance in the high BODIPY versus low

BODIPY fractions. The following figure supplements are available for Figure 4.

DOI: https://doi.org/10.7554/eLife.32110.015

The following figure supplements are available for figure 4:

Figure supplement 1. Measuring lipid accumulation under nitrogen limitation.

DOI: https://doi.org/10.7554/eLife.32110.016

Figure supplement 2. Lipid accumulation and buoyancy changes under nitrogen limitation.

DOI: https://doi.org/10.7554/eLife.32110.017
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triglyceride hydrolysis (Bickel et al., 2009) and previous observations that it localized to lipid drop-

lets in R. toruloides (Zhu et al., 2015).

Diverse morphological phenotypes for lipid accumulation mutants
To further characterize the phenotypes of our lipid accumulation mutants, we performed differential

interference contrast (DIC) and fluorescence microscopy. The mutants showed a variety of pheno-

types with respect to both cellular and lipid droplet morphology. Eight examples are highlighted in

Figure 7. While wild type cells most commonly had two lipid droplets of similar size, several high

lipid accumulation mutants had qualitatively more cells with three or more lipid droplets (e.g.

MET14D, Figure 7)) or cells with a single dominant droplet (e.g. RAC1D, Figure 7). RAC1D also had

qualitatively larger, more spherical cells. A KDELC-likeD mutant with increased lipid accumulation

also showed a defect in cell separation likely reflective of combined defects in lipid accumulation,

secretion, and cell wall/septum formation. All strains had a wide cell-to-cell variation in lipid droplet

size, consistent with high variance in BODIPY intensity measured by flow cytometry (Figure 4—fig-

ure supplement 2A). Most low-lipid strains appeared morphologically similar to wild type with

smaller lipid bodies (Figure 7—figure supplement 1). However, a BSCL2-likeD (seipin) mutant

showed an even larger variation in droplet size than wild type, consistent with observations in S. cer-

evisiae mutants for the homolog SEI1/FLD1 (Fei et al., 2008) and likely reflective of a conserved

Figure 5. RB-TDNAseq on enriched populations identifies genes affecting lipid accumulation. (A) Hierarchical clusters of enrichment scores for 271

genes with consistent enrichment (|E| > 1, |T| > 3) in high/low fractions separated by buoyant density or FACS sorting of BODIPY stained cells after lipid

accumulation on low nitrogen media. Enrichment scores for individual biological replicates (three per condition) were clustered in this analysis. Eight

major clusters were identified (LA1-LA8). See Supplementary file 2 for full enrichment data. (B and C) Relative BODIPY signal for deletion mutants.

Points are the average BODIPY/cell for 10,000 cells from independent biological replicate cultures normalized to three control YKU70D cultures

processed on the same day. Three biological replicates were processed for each strain in any given experiment and each strain was included in at least

two experiments processed on different days (N � 6). A statistical summary for all strains including N, P values, and effect sizes is included in

Supplementary file 2. **p<0.01, *p<0.05 by homoscedastic T-test versus YKU70D. 1Human homolog, 2C. neoformans homolog, 3A. nidulans homolog.

The following figure supplements are available for Figure 5.

DOI: https://doi.org/10.7554/eLife.32110.018

The following figure supplement is available for figure 5:

Figure supplement 1. tRNA thiolation in S. cerevisiae versus lipid accumulation in R. toruloides.

DOI: https://doi.org/10.7554/eLife.32110.019
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function in lipid droplet formation and efficient delivery of lipid biosynthetic proteins to the growing

lipid droplet (Wang et al., 2016; Pagac et al., 2016; Salo et al., 2016). Autophagy mutants

(ATG2D) had the most uniformly small lipid droplets in elongated cells with enlarged vacuoles. Over-

all, the morphological phenotypes we observed in R. toruloides are similar to a number of previous

microscopic screens for altered lipid accumulation in diverse eukaryotes (Fei et al., 2008;

Szymanski et al., 2007; Guo et al., 2008; Zehmer et al., 2009; Ashrafi et al., 2003).

Recycled

Fatty Acids

Citrate

Acetyl-CoA

Carnitine

Shuttle

TCA

β-OX Autophagy (11)

Glucose

Glycolysis

TAG

Triacylglyceride

Synthesis (7)

Propionyl-CoA

Amino Acid 

Synthesis (9)

Lipophagy

Lipolysis

G Protein Switches (15)

Kinases & Phosphatases (26)

Translation (3)

tRNA Modification (6)

Sulfur

Nitrogen

Ubiquitination

& Proteolysis (13)

Gene

 Expression (27)

Lipid

Droplet (12)

Aspartate Shuttle (3)

Methylcitrate Cycle (2)

Mitochondrial

Beta-oxidation (4)

Electron Transport

& Redox Balance (13)

Glucose &

Energy Metabolism (11)

Peroxisomal

Beta-oxidation (7)

Glyoxylate Cycle (2)

Carnitine Shuttle (2)

Peroxins (4)

+4 +2+1 -1+3 -2 -3 -4

-1 -2 -3 -4

Average Enrichment Score

Fitness Score on Fatty Acids

High Lipid Low Lipid

Other ER/Golgi

Proteins (6)

Protein Trafficking (10)

Protein Modification (6)

Transporters (11)

Mitochondrial Amino

Acid Metabolism (5)

Unknown (48)

MacroautophagyCytoplasm-to-vacuole

Other (14)

Figure 6. Overview of R. toruloides lipid metabolism. Key metabolic pathways and cellular functions mediating lipid metabolism as identified from

fitness scores on fatty acid and enrichment scores from lipid accumulation screens. Fitness and/or enrichment scores for individual genes are depicted

graphically by relative size of hexagonal, circular or star icons respectively. Only fitness scores for genes with consistent growth defects on at least one

fatty acid (see Supplementary file 2) and enrichment scores from high confidence clusters (see Figure 5 and Supplementary file 2) are shown.

Enrichment scores were averaged between buoyancy and FACS experiments, except for genes with confounding enrichment scores in rich media

conditions, for which only FACS data were averaged. Positive scores (orange circles) represent genes for which mutants have increased lipid

accumulation. Negative fitness scores (blue stars) represent genes for which mutants have decreased lipid accumulation. Genes detected in proteomics

of R. toruloides lipid droplets by Zhu et al. (RAC1, GUT2, PLIN1, EGH1, RIP1, MGL2, AAT1, CIR2, MLS1, and RTO4_8963) or found in lipid droplets of

many organisms (DGA1 and BSCL2) (see Supplementary file 5) are depicted under ‘Lipid Droplet’ and also their molecular functions, e.g. ‘G Protein

Switches’ for RAC1. The following figure supplements are available for Figure 6.

DOI: https://doi.org/10.7554/eLife.32110.020

The following figure supplement is available for figure 6:

Figure supplement 1. Genes directly effecting TAG biosynthesis in R. toruloides.

DOI: https://doi.org/10.7554/eLife.32110.021
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Table 1. Predicted gene function: Mutants with increased lipid accumulation.

Predicted functions for genes for which mutants were high-confidence candidates for increased lipid accumulation (enrichment scores

clustered in LA1, Figure 5).

Gene ID
Short
name

Annotation
from Description

Enrichment

BD FACS

G Protein Switches

* RTO4_15883 RAS1 S. cerevisiae GTPase 2.0 2.3

RTO4_14088 RAC1 H. sapiens GTPase 2.0 0.9

* RTO4_16215 GNAI1-like H. sapiens GTPase 1.6 1.0

RTO4_11402 gapA A. nidulans GTPase-activating protein 0.6 1.4

RTO4_13336 RIC8A H. sapiens Guanine nucleotide exchange factor 1.3 1.4

RTO4_16170 sif-like D. melanogaster Guanine nucleotide exchange factor 1.5 0.9

RTO4_16644 BMH1 S. cerevisiae 14-3-3 protein 1.3 2.2

RTO4_16068 BMH1 S. cerevisiae 14-3-3 protein 0.7 1.2

Kinases and Phosphatases

RTO4_13246 CNA1 S. cerevisiae Phosphatase (Calcineurin catalytic subunit) 0.8 1.2

RTO4_11675 CNB1 S. cerevisiae Phosphatase (Calcineurin regulatory subunit) 1.1 1.2

RTO4_11667 PTC1 S. cerevisiae Phosphatase 0.9 1.2

RTO4_10638 CLA4 S. cerevisiae Kinase 3.4 4.5

* RTO4_16605 TPK1 S. cerevisiae Kinase 1.1 0.5

Gene Expresssion

RTO4_10333 SET1 S. cerevisiae Chromatin modifying 3.0 1.1

RTO4_10279 BRE2 S. cerevisiae Chromatin modifying 2.5 1.0

RTO4_12689 SPP1 S. cerevisiae Chromatin modifying 2.0 1.3

RTO4_15412 RCO1 S. cerevisiae Chromatin modifying 3.5 1.6

RTO4_10209 MIT1-like S. cerevisiae Transcripition factor 1.4 0.3

RTO4_14550 CYC8 S. cerevisiae Transcription factor 3.7 3.8

RTO4_10274 SKN7-like S. cerevisiae Transcription factor 2.2 1.5

RTO4_13346 CBC2 S. cerevisiae RNA splicing factor 1.6 1.2

Protein Modification

RTO4_11272 ALG12 S. cerevisiae Alpha-1,6-mannosyltransferase 3.5 1.7

RTO4_14881 CAP10-like C. neoformans Xylosyltransferase 1.5 2.0

RTO4_16598 LARGE1 H. sapiens N-acetylglucosaminyltransferase-like protein 1.8 1.3

Protein Trafficking

RTO4_12145 ERP1 S. cerevisiae COPII cargo adapter protein (p24 family) 2.4 2.7

RTO4_16731 ERP2 S. cerevisiae COPII cargo adapter protein (p24 family) 1.7 2.0

RTO4_12521 EMP24 S. cerevisiae COPII cargo adapter protein (p24 family) 1.9 2.4

RTO4_14054 BST1 S. cerevisiae GPI inositol-deacylase 1.5 0.2

* RTO4_15883 RAS1 S. cerevisiae GTPase 2.0 2.3

Other ER/Golgi Proteins

RTO4_10371 KDELC1-like H. sapiens Endoplasmic reticulum protein EP58 3.1 6.0

Table 1 continued on next page
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Table 1 continued

Gene ID
Short
name

Annotation
from Description

Enrichment

BD FACS

RTO4_15763 SH3 Domain-containing ER Protein 1.0 1.5

Amino Acid Biosynthesis

RTO4_11050 MET1 S. cerevisiae Uroporphyrinogen III transmethylase 3.8 2.0

RTO4_8744 MET5 S. cerevisiae Sulfite reductase 4.4 2.1

§ RTO4_10374 MET10 S. cerevisiae Sulfite reductase 2.5 1.3

RTO4_8709 MET14 S. cerevisiae Adenylylsulfate kinase 4.1 1.1

RTO4_11741 MET16 S. cerevisiae Phosphoadenosine phosphosulfate reductase 1.7 1.1

RTO4_12031 cysB A. nidulans Cysteine synthase A 3.3 2.1

* RTO4_16196 ARG1 S. cerevisiae Argininosuccinate synthase 1.3 1.8

Translation

RTO4_12273 MRN1 S. cerevisiae RNA-binding protein 2.5 1.6

RTO4_8595 EIF4E2 H. sapiens Translation initiation factor 2.0 0.5

Ubiquitination and Proteolysis

RTO4_11150 Mub1-like S. cerevisiae Ubiquitin ligase complex member 3.8 2.0

RTO4_15576 CDC4 S. cerevisiae Ubiquitin ligase complex member 1.7 1.8

Triacylglyceride Synthesis

† RTO4_8972 NDE1 S. cerevisiae NADH dehydrogenase 1.6 1.9

Lipid Droplet Associated

RTO4_14088 RAC1 H. sapiens GTPase 2.0 0.9

Mitochondrial Beta-oxidation

RTO4_16284 HSD17B10 H. sapiens 3-hydroxyacyl-CoA dehydrogenase 1.6 0.5

Other

RTO4_12175 mesA A. nidulans Myosin binding protein 1.3 1.8

RTO4_8401 SHE4 S. cerevisiae Transmembrane protein involved in cell polarity 1.0 1.3

Unknown Function

RTO4_16524 Protein of unknown function 3.1 1.9

RTO4_11613 Protein of unknown function 2.5 1.7

RTO4_12505 Protein of unknown function 2.1 2.1

RTO4_13512 Protein of unknown function 1.5 1.9

RTO4_10805 Protein of unknown function 1.2 1.8

RTO4_15251 Protein of unknown function 1.6 1.3

RTO4_15358 Protein of unknown function 2.0 0.5

RTO4_13513 Protein of unknown function 1.3 1.2

RTO4_12461 Protein of unknown function 1.5 0.8

RTO4_13351 Protein of unknown function 1.2 1.0
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Discussion

Bringing functional genomics to non-model fungi with RB-TDNAseq
We employed an established method, Agrobacterium tumefaciens-mediated transformation, to

extend barcoded insertion library techniques (Wetmore et al., 2015) into a non-model basidiomyce-

tous fungus. The efficiency of A. tumefaciens transformation in diverse fungal species

(Michielse et al., 2005; Martı́nez-Cruz et al., 2017; Wu et al., 2016; Zhang et al., 2015; Liu et al.,

2013; Zhang et al., 2014; Li et al., 2013; Han et al., 2012; Muniz et al., 2014; Rodrigues et al.,

2013; Celis et al., 2017) will enable use of RB-TDNAseq in many fungal species with limited genetic

tools. We used RB-TDNAseq to simultaneously track mutants in over 6,500 genes for altered lipid

catabolism and neutral lipid accumulation using a simple, scalable BarSeq protocol. The phenotypes

measured in our high-throughput experiments were consistent with those observed for single gene

deletion strains, demonstrating the reliability of this approach. In some respects R. toruloides was an

ideal species to develop these methods. The R. toruloides genome is relatively compact (just over

20% of the sequence is predicted to be intergenic), and it grows as a haploid yeast. Effective BarSeq

analysis on species with larger, less dense genomes will require greater sequence depth per sample.

Typical fungal genomes are only modestly larger, though, around 35–45 Mb (Mohanta and Bae,

2015) vs 20 Mb for R. toruloides. Sequencing limitations are thus already minimal and will only

decrease in the foreseeable future. A greater challenge will be adapting this technology in fungi that

grow mainly as diploids or in filamentous, multicellular, or multinucleate forms harboring genetically

distinct nuclei. Many of those species also produce haploid, uninucleate spores for sexual reproduc-

tion, asexual dispersal, or both. RB-TDNAseq can be applied to study the germination of these

spores and their growth into nascent, isogenic colonies prior to their fusion into more physiologically

and genetically complex networks of mycelia and fruiting bodies.

We found that genes recalcitrant to T-DNA insertion were highly enriched in orthologs for known

essential genes, suggesting that most genes with very low insertion rates were likely essential in our

mutagenesis conditions. Previous studies employing high-density transposon mutagenesis in fungi

and bacteria have demonstrated the general utility of this approach (Michel et al., 2017; Le Breton

et al., 2015). The high efficiency of A. tumefaciens-mediated transformation in diverse fungi should

enable similar surveys in many poorly annotated fungi. We hope the provisional list of essential

genes identified here will serve as a useful resource for genetics in R. toruloides and related species.

In particular, orthologs to these genes may be potential targets for new antifungal strategies against

basidiomycete pathogens, such as the closely related rusts of the Pucciniomycotina subphylum

(Singh et al., 2015; Park et al., 2015) and the more distantly related human pathogen Cryptococcus

neoformans (May et al., 2016).

New insights into fatty acid catabolism in R. toruloides
The presence of a probable mitochondrial fatty acid beta-oxidation pathway in R. toruloides has

been noted previously (Zhu et al., 2012). Our results confirm that this pathway is functional and

essential for fatty acid utilization and add to mounting evidence that mitochondrial beta-oxidation is

widespread in fungi (Khan et al., 2012). In mammals, some branched long-chain fatty acids are

shortened in the peroxisome, then transferred via the acylcarnitine shuttle to the mitochondria for

complete oxidation (Wanders et al., 2015; Swigonová et al., 2009), while other long-chain fatty

acids are metabolized solely in the mitochondria (Chegary et al., 2009). Rhodosporidium toruloides

has orthologs to the mammalian mitochondrial short, branched-chain and medium-chain acyl-CoA

dehydrogenases ACADSB and ACADM, but not to the long-chain and very long-chain acyl-CoA

dehydrogenases ACADL and ACADVL. Rhodosporidium toruloides also has several homologs to

peroxisomal long chain acyl-CoA dehydrogenases ACAD10 and ACAD11. In our experiments, both

peroxisomal and mitochondrial beta-oxidation were necessary for robust growth on fatty acids and

peroxisomal beta-oxidation enzymes had more variable fitness scores between different fatty acids.

Cellular processes grouped as in Figure 6. BD: Enrichment score from buoyant density separation. FACS: Enrichment score from fluorescence activated

cell sorting.

Protein abundance under nitrogen limitation: * increased; † increased 10-fold or more; ‡ decreased; § decreased 10-fold or more (Zhu et al., 2012).

DOI: https://doi.org/10.7554/eLife.32110.022
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Table 2. Predicted gene function: Mutants with decreased lipid accumulation.

Predicted functions for genes for which mutants were high-confidence candidates for decreased lipid accumulation (enrichment scores

clustered in LA6 - LA8, Figure 5).

Gene ID
Short
name

Annotation
from Description Cluster

Enrichment

BD FACS

tRNA thiolation

RTO4_10764 NCS2 S. cerevisiae tRNA 2-thiolation protein LA7 0.5 �2.3

RTO4_12817 NCS6 S. cerevisiae tRNA 2-thiolation protein LA7 0.7 �2.6

RTO4_14918 ELP2 S. cerevisiae Elongator complex protein LA7 0.7 �1.2

RTO4_14716 IKI3 S. cerevisiae Elongator complex protein LA7 0.4 �1.1

RTO4_11341 UBA4 S. cerevisiae Adenylyltransferase and sulfurtransferase LA7 0.6 �2.6

G Protein Switches

† RTO4_15198 Rab6 H. sapiens GTPase LA6 �1.3 �1.6

RTO4_14622 RGP1 H. sapiens Guanine nucleotide exchange factor LA6 �1.4 �1.5

Kinases and Phosphatases

RTO4_10698 VHS1 S. cerevisiae Kinase LA6 0.8 �3.7

RTO4_16375 HRK1 S. cerevisiae Kinase LA6 0.4 �2.2

* RTO4_11453 GLC7 S. cerevisiae Kinase LA8 �1.2 �0.9

RTO4_16810 KIN1 S. cerevisiae Kinase LA6 0.1 �1.1

RTO4_10025 SAT4 S. cerevisiae Kinase LA7 1.6 �3.6

RTO4_13327 ATG1 S. cerevisiae Kinase LA6 0.1 �2.5

RTO4_14907 SCH9 S. cerevisiae Kinase LA6 �0.6 �2.0

RTO4_14906 kinase-like S. cerevisiae Kinase LA6 �0.3 �1.8

RTO4_13290 YAK1 S. cerevisiae Kinase LA8 �1.1 �0.9

RTO4_11732 PPH3 S. cerevisiae Phosphatase 4 catalytic subunit LA6 0.9 �3.6

RTO4_12586 PSY2 S. cerevisiae Phosphatase 4 regulatory subunit LA6 0.2 �1.2

RTO4_16463 PTC7-like S. cerevisiae Phosphatase LA6 0.1 �2.0

Autophagy

RTO4_13327 ATG1 S. cerevisiae Kinase LA6 0.1 �2.5

RTO4_13598 ATG2 S. cerevisiae Membrane protein LA6 �0.6 �3.4

RTO4_12968 ATG3 S. cerevisiae Ubiquitin-like-conjugating enzyme LA6 �0.8 �4.5

RTO4_13496 ATG4 S. cerevisiae Cysteine protease LA6 �0.1 �2.3

RTO4_11901 ATG7 S. cerevisiae Ubiquitin-like modifier-activating enzyme LA6 �0.8 �4.2

RTO4_13543 ATG8 S. cerevisiae Ubiquitin-like protein LA6 �1.0 �4.2

RTO4_11326 ATG9 S. cerevisiae Membrane protein LA6 0.0 �1.3

RTO4_9008 ATG14 S. cerevisiae Autophagy-specific subunit of PtdIns3P-kinase complex LA6 0.0 �5.0

RTO4_16723 ATG18 S. cerevisiae Phosphoinositide binding protein LA6 �0.9 �5.8

Ubiquitination and Proteolysis

† RTO4_16672 PRB1 S. cerevisiae Vacuolar proteinase LA6 �0.2 �1.7

RTO4_15345 SIS1 S. cerevisiae Protein chaperone LA6 �0.4 �1.2

RTO4_10423 RMD5 S. cerevisiae GID complex E3 ubiquitin ligase LA6 �0.4 �2.0

RTO4_11737 GID8 H. sapiens GID complex member LA6 �0.1 �1.5
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Table 2 continued

Gene ID
Short
name

Annotation
from Description Cluster

Enrichment

BD FACS

RTO4_9816 LONRF1 H. sapiens E3 ubiquitin ligase LA6 �0.5 �4.5

RTO4_15320 USP48 H. sapiens Ubiquitin carboxyl-terminal hydrolase LA6 0.0 �1.2

RTO4_9600 COPS3 H. sapiens COP9 signalosome complex subunit LA1 1.4 0.6

RTO4_11569 GPS1 H. sapiens COP9 signalosome complex subunit LA6 0.7 �2.1

Triacylglyceride Synthesis

† RTO4_12154 GPD1 S. cerevisiae Glycerol-3-phosphate dehydrogenase LA6 �1.7 �4.0

RTO4_11043 BCSL2-like H. sapiens Seipin LA6 �0.8 �2.9

RTO4_16460 DGA1 H. sapiens Diacylglycerol acyltransferase LA6 �0.7 �4.0

RTO4_14597 ACS1 S. cerevisiae Acetyl-CoA synthetase LA8 �1.7 �1.0

RTO4_10182 YEF1 S. cerevisiae NAD+/NADH kinase LA6 �0.1 �1.6

‡ RTO4_11039 GUT2 S. cerevisiae Glycerol-3-phosphate dehydrogenase LA6 �0.2 �1.1

Lipid Droplet Associated

RTO4_16381 PLIN1-like S. cerevisiae Perilipin LA6 �1.7 �4.3

‡ RTO4_11039 GUT2 S. cerevisiae Glycerol-3-phosphate dehydrogenase LA6 �0.2 �1.1

RTO4_15372 EGH1 S. cerevisiae Steryl-beta-glucosidase LA6 0.7 �2.5

RTO4_13614 RIP1 S. cerevisiae Mitochondrial complex III iron-sulfur protein LA6 �0.5 �2.8

RTO4_11043 BCSL2-like H. sapiens Seipin LA6 �0.8 �2.9

RTO4_16460 DGA1 H. sapiens Diacylglycerol acyltransferase LA6 �0.7 �4.0

Protein Modification

RTO4_12670 B3GALT1-like H. sapiens Beta-1,3-Galactosyltransferase LA6 �0.9 �3.1

Protein Trafficking

† RTO4_15198 Rab6 H. sapiens GTPase LA6 �1.3 �1.6

Other ER/Golgi Proteins

RTO4_8838 DNAJC4 H. sapiens DnaJ family chaperone LA6 �0.8 �1.3

RTO4_13971 DNAJC3 H. sapiens DnaJ family chaperone LA6 �1.1 �2.2

Gene Expression

RTO4_11333 KLF18-like H. sapiens Transcription factor LA6 �0.2 �1.1

RTO4_15641 SKN7 S. cerevisiae Transcription factor LA6 0.9 �2.9

RTO4_14676 LHX5-like H. sapiens Transcription factor LA6 �0.2 �2.8

RTO4_11891 HAP2 S. cerevisiae Transcription factor LA6 �0.8 �2.4

RTO4_12420 OPI1-like S. cerevisiae Transcription factor LA6 0.0 �3.7

RTO4_14100 HAPX C. neoformans Transcription factor LA8 �1.2 �1.7

RTO4_13255 SGF73 S. cerevisiae SAGA-associated factor LA6 0.4 �1.5

Methylcitrate Cycle

RTO4_14162 ICL2 S. cerevisiae 2-methylisocitrate lyase LA6 �0.3 �1.8

RTO4_12642 PDH1 S. cerevisiae 2-methylcitrate dehydratase LA6 �0.1 �1.7
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Table 2 continued

Gene ID
Short
name

Annotation
from Description Cluster

Enrichment

BD FACS

Electron Transport and Redox Balancing

RTO4_11165 CBP4 S. cerevisiae Mitochondrial complex III assembly factor LA6 �0.4 �2.5

RTO4_13614 RIP1 S. cerevisiae Mitochondrial complex III iron-sulfur protein LA6 �0.5 �2.8

RTO4_13902 AFG1 S. cerevisiae Mitochondrial complex IV assembly factor LA6 �0.3 �1.3

‡ RTO4_10010 NDUFS4 H. sapiens Mitochondrial complex I accessory factor LA8 �1.3 �0.1

RTO4_13925 NDUFAF3 H. sapiens Mitochondrial complex I assembly factor LA8 �1.0 �1.6

Amino Acid Biosynthesis

† RTO4_12302 CPA2 S. cerevisiae Large subunit of carbamoyl phosphate synthetase LA6 �0.4 �2.4

Glucose and Energy Metabolism

RTO4_10423 RMD5 S. cerevisiae GID complex E3 ubiquitin ligase LA6 �0.4 �2.0

RTO4_11737 GID8 H. sapiens GID complex member LA6 �0.1 �1.5

RTO4_12034 TPS2 S. cerevisiae Trehalose 6-phosphate synthase LA6 0.0 �3.8

* RTO4_10264 GLK1 S. cerevisiae Hexokinase LA7 2.1 �2.0

Transporters

† RTO4_12909 OAT1 C. neoformans Nucleobase transporter LA6 �0.2 �1.1

RTO4_11397 COT1 S. cerevisiae Vacuolar zinc transporter LA6 �0.2 �1.1

RTO4_11924 SNF3 S. cerevisiae Plasma membrane low glucose sensor LA6 0.0 �2.8

Other

RTO4_12512 cry N. crassa Blue-light photoreceptor cryptochrome LA7 0.6 �1.6

RTO4_14974 Steroidogenesis/phosphatidylcholine transfer domain LA6 �0.3 �1.2

RTO4_15889 MAEA H. sapiens EMP macrophage erythroblast attacher LA6 �0.1 �1.7

RTO4_16287 CDD1 S. cerevisiae Cytidine deaminase LA6 0.3 �2.3

RTO4_15247 WDR26 H. sapiens WD repeat protein LA6 �0.9 �1.3

RTO4_8764 MGS1 S. cerevisiae DNA-dependent ATPase and ssDNA annealing protein LA6 0.2 �1.2

Unknown

RTO4_10431 Protein of unknown function LA6 0.7 �1.6

RTO4_8973 Protein of unknown function LA8 �0.2 �1.1

RTO4_13195 Protein of unknown function LA6 �0.2 �1.1

RTO4_10367 Protein of unknown function LA6 �0.1 �1.3

RTO4_10102 Protein of unknown function LA6 �0.3 �1.2

RTO4_14926 Protein of unknown function LA6 0.2 �1.7

RTO4_12045 Protein of unknown function LA6 0.0 �1.5

RTO4_13600 Protein of unknown function LA6 �0.3 �1.3

RTO4_10976 Protein of unknown function LA6 �0.2 �1.5

RTO4_9970 LDB17 S. cerevisiae Protein of unknown function LA8 �1.3 �0.5

RTO4_13435 Protein of unknown function LA7 0.2 �2.0

RTO4_9692 Protein of unknown function LA6 �0.5 �1.4

RTO4_15521 Protein of unknown function LA6 0.2 �2.2

RTO4_8769 Protein of unknown function LA6 �0.5 �1.6
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These observations are consistent with a model of beta-oxidation in which a large ensemble of per-

oxisomal enzymes shorten diverse long-chain fatty acids in the peroxisome and a smaller ensemble

of enzymes metabolize short-chain fatty acids in the mitochondria. Our results demonstrate how a

barcoded insertion library can accelerate discrimination of function between closely related mem-

bers of a diversified gene family. Fitness assays on a much larger panel of substrates should yield fur-

ther insights into the individual functions of R. toruloides’ diverse complement of peroxisomal

enzymes and guide experimental design for their biochemical characterization.

Extending high-throughput fitness techniques to lipid production
While pooled fitness experiments have been used extensively to identify novel gene function, work

so far has primarily focused on growth-based phenotypes, with only limited exploration of other

phenotypes (Sliva et al., 2016; Hassan et al., 2016; Tyo et al., 2009). In this study we used two

proven strategies for differentiating between cells with altered lipid accumulation, buoyant density

centrifugation (Eroglu and Melis, 2009; Kamisaka et al., 2006; Liu et al., 2015) and FACS

(Terashima et al., 2015; Xie et al., 2014), and applied them to our barcoded mutant pool. Inconsis-

tencies between the two assays and with respect to independent BODIPY staining of targeted dele-

tion strains suggests significant false positive rates for each assay in isolation. When both assays

were in agreement, however, 18 of 21 deletion mutants had the expected phenotype in indepen-

dent experiments. This approach identified 150 high confidence candidate genes with strong

impacts on lipid accumulation under nitrogen limitation. While this set is likely incomplete, it comple-

ments previous transcriptional and proteomic studies to establish critical genes and cellular pro-

cesses supporting lipid accumulation that deserve more intensive study. As has been noted in

previous functional screens (Smith et al., 2006), there was limited overlap between genes for which

mutants had a detectable lipid accumulation phenotype in our study and genes with altered protein

abundance in R. toruloides during lipid accumulation (Zhu et al., 2012) (14 genes) or genes that co-

purified with R. toruloides lipid droplets (five genes) (Zhu et al., 2015). The different ensembles of

genes identified by each technique illustrate that these systems-level approaches complement each

other.

New insights into regulation of lipid metabolism in R. toruloides
Proteomic, transcriptomic, mutagenic and over-expression surveys of lipid metabolism have been

carried out in several model eukaryotic systems including S. cerevisiae (Bozaquel-Morais et al.,

2010; Fei et al., 2008; Szymanski et al., 2007; Grillitsch et al., 2011; Fei et al., 2011;

Ruggles et al., 2014; Currie et al., 2014; Bouchez et al., 2015), C. elegans (Ashrafi et al., 2003;

Zhang et al., 2010; Liu et al., 2014; Lee et al., 2014; Lapierre et al., 2011), D. melanogaster

(Cermelli et al., 2006; Guo et al., 2008; Beller et al., 2006; Beller et al., 2008; Krahmer et al.,

2013b), various mammalian cell lines (Zehmer et al., 2009; Nishino et al., 2008; Tu et al., 2009),

Table 2 continued

Gene ID
Short
name

Annotation
from Description Cluster

Enrichment

BD FACS

RTO4_8770 Protein of unknown function LA6 �0.5 �1.9

RTO4_11259 Protein of unknown function LA7 0.7 �3.3

RTO4_9490 Protein of unknown function LA6 �0.6 �2.4

RTO4_15520 Protein of unknown function LA6 �0.5 �2.5

RTO4_8771 Protein of unknown function LA6 �0.6 �2.5

RTO4_13452 Protein of unknown function LA6 �1.3 �4.0

RTO4_15211 Protein of unknown function LA8 �1.1 �1.5

Cellular processes grouped as in Figure 6. BD: Enrichment score from buoyant density separation. FACS: Enrichment score from fluorescence activated

cell sorting.

Protein abundance under nitrogen limitation: * increased; † increased 10-fold or more; ‡ decreased; § decreased 10-fold or more (Zhu et al., 2012).
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Figure 7. Light and fluorescence microscopy images of selected lipid accumulation mutants. DIC microscopy on eight deletion mutants for lipid

accumulation genes. All deletion mutants (C–J) were constructed in a YKU70D background to enable homologous recombination at the targeted locus.

Cells were grown 40 hr in low nitrogen lipid accumulation media. DIC, BODIPY 493/503 fluorescence, and composite images are shown for ten strains.

(A) R. toruloides IFO 0880 (WT). (B) RTO4_11920D ortholog of YKU70. (C) RTO4_11043D similar to H. sapiens BSCL2. (D) RTO4_14088D ortholog of H.

Figure 7 continued on next page
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and Y. lipolytica (Athenstaedt et al., 2006; Pomraning et al., 2017; Silverman et al., 2016) (see

Supplementary file 5 for a summary of genes identified in 35 studies). These studies employed dif-

ferent analytical techniques and culture conditions, and identified many genes without clear ortho-

logs across the different species used, making a granular meta-analysis extremely difficult. A few

broad themes are apparent, however. Protein trafficking and organelle interaction are inextricably

linked with lipid body formation, growth and mobilization. Membrane-bound G proteins in the endo-

membrane network have conserved roles regulating trafficking and cellular morphology in response

to metabolic states. A complex network of signaling cascades, protein modifications and transcrip-

tion factors mediate the transition to lipid accumulation or lipid mobilization. A major output of this

regulation is amino acid metabolism. Lipid metabolism and autophagy are deeply linked in a com-

plex manner. Our findings were consistent with these general themes, including some orthologs to

genes identified in the studies above, but the importance of general functions was more conserved

across species than the roles of specific orthologous gene sets. The genes and processes we identify

here should be considered in any strategy to optimize lipid metabolism in R. toruloides specifically

or oleaginous yeasts in general. Comparative study of these processes across diverse species in stan-

dardized conditions will likely be required to uncover which aspects are fundamental to lipid droplet

accumulation, maintenance and variation, and which processes are integrated by specific regulatory

circuits in a given organism. See Appendix 1 for a deeper discussion of the individual genes for

which mutants had altered lipid accumulation in our experiments and how those observations relate

to previous work.

Uncovering function for novel genes
In this study, we identified 46 R. toruloides genes with no functional predictions (Supplementary file

1), but which had important functions in lipid metabolism as evidenced by reduced fitness when

grown on fatty acids or altered lipid accumulation. These included nine genes with broad conserva-

tion across ascomycete and basidiomycete fungi and seven genes with conservation across several

basidiomycete species. These genes are of particular interest for further study into their specific

functions in lipid metabolism. Moreover, the mutant pool generated in this study should be an excel-

lent tool to assign functions for uncharacterized R. toruloides genes. Cofitness analysis is a particu-

larly powerful method for uncovering the function of novel genes in pathways and processes for

which one or more well-characterized genes is also required (Hillenmeyer et al., 2010). Closely

interacting genes exhibit strongly correlated fitness scores across large panels of diverse conditions.

Because the T-DNA insertions in the mutant pool are barcoded, fitness experiments are inherently

scalable to a large number of conditions. Because the analytical methods we employed maximize

portability and scalability across large compendiums of experiments (Wetmore et al., 2015), individ-

ual experiments can be conducted at different times under specialized culture conditions, at differ-

ent scales, and even by different laboratories, yet the data can be effectively compared, maximizing

the power of cofitness analysis. We encourage the R. toruloides community and the broader fungal

community to make use of this new resource and collaborate with us to maximize its potential.

Conclusions
In conclusion, we believe that RB-TDNAseq holds great promise for rapid exploration of gene func-

tion in diverse fungi. Because ATMT has been demonstrated in numerous, diverse fungi, we expect

this method will be portable to many non-model species. Because the fitness analysis is inherently

scalable, it will enable rapid fitness analysis over large compendia of conditions. Cofitness analysis of

Figure 7 continued

sapiens RAC1. (E) RTO4_10371D similar to H. sapiens KDELC1. (F) RTO4_16215D similar to H. sapiens GNAI1. (G) RTO4_8709D ortholog of MET14. (H)

RTO4_16381D similar to H. sapiens PLIN1. (I) RTO4_13598D ortholog of ATG2. (J) RTO4_12154D ortholog of GPD1. The following figure supplements

are available for Figure 7.

DOI: https://doi.org/10.7554/eLife.32110.024

The following figure supplement is available for figure 7:

Figure supplement 1. Additional light and fluorescence microscopy images.

DOI: https://doi.org/10.7554/eLife.32110.025
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such compendia will accelerate the annotation of new genomes and identify new classes of genes

not abundant in established model fungi. In this study, we demonstrated the application of RB-

TDNAseq to the study of lipid metabolism in an oleaginous yeast that has significant potential to

become a new model system for both applied and fundamental applications. We identified a large

set of genes from a wide array of subcellular functions and compartments that impact lipid catabo-

lism and accumulation. These processes and genes must be considered and addressed in any meta-

bolic engineering strategy to optimize lipid metabolism in R. toruloides and other oleaginous yeasts.

Deeper understanding of the extreme cell-to-cell variation in lipid accumulation seen across eukar-

yotes will likely require deeper mechanistic understanding of these processes and their interaction

with the lipid droplet. The principles learned from exploring lipid metabolism and storage across

diverse eukaryotes will inform biotechnological innovations for the production of biofuels and bio-

products, as well as new therapies for metabolic disorders.

Materials and methods

Strains
We used R. toruloides IFO 0880 (also called NBRC 0880, obtained from Biological Resource Center,

NITE (NBRC), Japan) as the starting strain for all subsequent manipulations. We used Agrobacterium

tumefaciens EHA 105 and plasmids derived from pGI2 (Abbott et al., 2013) for A. tumefaciens-

mediated transformation (ATMT) of R. toruloides (strain and plasmid kindly provided by Chris Rao,

UIUC). The barcoded mutant pool was constructed by ATMT. We made all gene deletions in a non-

homologous end-joining deficient YKU70D background (Zhang et al., 2016b) by homologous

recombination of a nourseothricin resistance cassette introduced by either ATMT or electroporation

of a PCR product. For deletions made by ATMT we used flanking arms of ~1000–1500 bp for homol-

ogous recombination. We found that as few as 40 bp of flanking sequence were sufficient for homol-

ogous recombination of PCR products at many loci. All strains used in this study, and primers used

for strain construction and verification are listed in Supplementary file 4.

Culture conditions
For most experiments, we used optical density (OD) as measured by absorbance at 600 nm on a

GENESYS 20 spectrophotometer (Thermo Fisher Scientific, 4001–000, Waltham, MA) as a metric for

growth and to control inoculation density. For IFO 0880 grown in rich media, 1 OD unit represents

approximately 30 million cells/mL. Unless otherwise noted, cultures were grown at 30˚C in 100 mL

liquid media in 250 mL baffled flasks (Kimble Chase, 25630250, Vineland, New Jersey) with 250 rpm

shaking on a New Brunswick Innova 2300 platform shaker (Eppendorf, M1191-0000, Hauppauge,

New York) with constant illumination using a LUMAPRO 6W LED lamp (Grainger, 33L570, San Lean-

dro, CA). We used yeast-peptone-dextrose (YPD) media (BD Biosciences, BD242820, San Jose, CA)

for general strain maintenance and rich media conditions. For auxotrophy experiments we used

0.67% w/v yeast nitrogen base (YNB) w/o amino acids (BD Biosciences, BD291940) with 111 mM glu-

cose (Sigma-Aldrich, G7528, St. Louis, MO) as our defined media and supplemented with 75 mM

L-methionine (Sigma-Aldrich, M9625), 75 mM L-arginine (Sigma-Aldrich, A5006), or 0.2% w/v drop-

out mix complete (DOC), which contains all 20 amino acids, adenine, uracil, p-aminobenzoic acid,

and inositol (US Biological, D9515, Salem, MA). To test growth and fitness on oleic acid (Sigma-

Aldrich, O1008 and 364525), ricinoleic acid (Sigma-Aldrich, R7257), and methyl ricinoleic acid

(Sigma-Aldrich, R8750), we used this same defined media formulation with 1% fatty acid (by volume)

instead of glucose. For lipid accumulation experiments, we pre-cultured strains for two generations

in YPD (OD 0.2 to OD 0.8) then washed them twice and resuspended them at OD 0.1 in low nitro-

gen medium; 0.17% w/v yeast nitrogen base (YNB) w/o amino acids or ammonium sulfate

(BD Biosciences, BD233520), 166 mM D-glucose, 7 mM NH4Cl (Thermo Fisher Scientific, S25168A),

25 mM KH2PO4 (Thermo Fisher Scientific, P285-3), and 25 mM Na2HPO4 (Sigma-Aldrich, S0876).

This is the C:N 120 formulation from Nicaud et al. (Nicaud et al., 2014). Unless otherwise specified,

cultures were harvested for lipid quantification or fractionation after 40 hr of growth and lipid accu-

mulation. In all experiments biological replicates refer to samples from independent cultures in the

experimental condition. Biological replicates processed on the same day were usually inoculated

from the same YPD pre-culture, except for BarSeq experiments. For BarSeq experiments we seeded
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independent starter cultures in YPD and collected a ‘Time 0’ reference sample after two generations.

In downstream fitness or enrichment analysis, we explicitly paired each sample from an experimental

condition with the Time 0 sample from the starter culture replicate from which it was seeded.

Genome sequencing and de novo assembly
To generate an improved genome assembly for IFO 0880 we prepared genomic DNA for PacBio RS

II sequencing (Pacific Biosciences, Menlo Park, CA). Genomic DNA was purified using a two-step

protocol, first using glass bead lysis and phenol-chloroform extraction, as previously described

(Zhang et al., 2016a), followed by a QIAGEN Genomic-tip 100/G method (QIAGEN, 10243, German-

town, MD). All QIAGEN buffers were obtained from a Genomic DNA Buffer Set (QIAGEN, 19060).

Briefly, the dry genomic DNA pellet was first resuspended in G2 buffer supplemented with 200 mg/

mL RNase A (QIAGEN, 19101) and 13.5 mAU/ml Proteinase K (QIAGEN, 19131), incubated at 50˚C
for one hour, and then loaded on a Tip-100 column. After three washes with QC buffer and elution

with QF buffer, the DNA was precipitated with isopropanol and removed by spooling using a glass

Pasteur pipet. The genomic DNA was washed with 70% ethanol and after air-drying, resuspended in

EB buffer (pH 7.5). DNA concentration was determined using a Qubit 3.0 fluorometer

(Thermo Fisher Scientific, Q33218) and submitted to University of Maryland Genomics Resource

Center for library preparation and sequencing. A 10 kb insert, size selected (BluePippin, Sage

Science, Beverly, MA) SMRTbell library was prepared and sequenced on a PacBio RS II platform

using P4C2 chemistry and 10 SMRT cells. De novo assembly of 610,663 polymerase reads (mean

subread length of 5,193 bp) was performed using SMRT Analysis version 2.3.0.140936 (http://www.

pacb.com/support/software-downloads/) and the RS_HGAP_Assembly.3 protocol (HGAP3) using

default settings except for a genome size of 20,000,000 bp. The final assembly contained 30 pol-

ished contigs (mean coverage of 131-fold) with a total genome size of 20,810,536 bp. Paired-end

Illumina data (17,817,326 PE100 reads, [Zhang et al., 2016a]) was used for error correction using

Pilon version 1.13 (https://github.com/broadinstitute/pilon). As expected, the most common type of

correction (569 in total) was insertion or deletion of a nucleotide in homopolymer regions. The final

error corrected scaffolds were annotated by JGI and submitted to Genbank under the accession

LCTV02000000. Raw sequence data (PacBio and Illumina) has been deposited in the NCBI SRA

(SRP114401 and SRP058059, respectively).

RNA sequencing and analysis
To harvest RNA for improved gene model prediction, we inoculated R. toruloides into 50 mL cul-

tures in M9 Minimal Salts Solution (BD Biosciences, BD248510), 2 mM MgSO4 (Sigma-Aldrich,

M7506), 100 mM CaCl2 (Sigma-Aldrich, C5670), and Yeast Trace Elements Solution (88 mg/mL nitrilo-

triacetic acid, 175 mg/mL MgSO4 7H2O, 29 mg/mL MnSO4 H2O, 59 mg/mL NaCl, 4 mg/mL FeCl2, 6

mg/mL CoSO4, 6 mg/mL CaCl2 2H2O, 6 mg/mL ZnSO4 7H2O, 0.6 mg/mL CuSO4 5H2O, 0.6 mg/mL KAl

(SO4)2 12H2O, 6 mg/mL H3BO3, 0.6 mg/mL Na2MoO4 H2O), pH 7.0, with 2% glucose (Sigma-Aldrich,

D9434) or 10 mM p-coumaric acid (trans-4-hydroxycinnamic acid; Alfa Aesar, A15167, Tewksbury,

MA), and incubated overnight at 30˚C with 200 rpm shaking. We harvested cultures at mid-log

phase, centrifuged at 3,000 RCF for 10 min at room temperature, removed the supernatant and

flash-froze the cell pellet in an ethanol/dry ice bath and stored at �80˚C. We lyophilized pellets over-

night in a FreeZone-12 freeze dry system (Labconco, 7754030, Kansas City, MO) and extracted total

RNA with a Maxwell RSC Plant RNA Kit (Promega, AS1500, Madison, WI) using a Maxwell RSC

instrument (Promega, AS4500). RNA was sequenced and mapped to the R. toruloides IFO 0880

genome at the Department of Energy Joint Genome Institute (JGI) in Walnut Creek, CA with in-

house protocols.

Gene model predictions and curation
The improved genome assembly was annotated using the JGI Annotation pipeline (Grigoriev et al.,

2014). Owing to relatively small intergenic spacing in the R. toruloides genome, fused gene models

were a common problem. We hand curated over 500 gene models by searching for homology to

unrelated proteins at each end of the automated gene models and inspecting agreement with

assembled transcripts from our RNAseq experiments. Briefly, for all protein models over 400 amino

acids long, we used the N-terminal and C-terminal 30% of each sequence in separate BLAST queries
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(NCBI BLAST-plus software 2.2.30) to a custom database of proteins from 22 other eukaryotic

genomes (see Orthology relationships, below). We then compared the significant alignments for

each terminus of a given gene and scored them for disagreement in regards to the respective orthol-

ogy groups to which each target sequence belonged with a custom Python script

(Coradetti, 2018a; copy archived at https://github.com/elifesciences-publications/fusedgenemo-

dels). The top-scoring 500 gene models were manually inspected for uncharacteristically long introns

and for predicted introns and exons not supported by RNAseq reads and modified as required using

the Mycocosm genome browser. The current genome annotation is publicly available at the JGI

Mycocosm web portal (Grigoriev et al., 2014): http://genome.jgi.doe.gov/Rhoto_IFO0880_4

Orthology relationships
We predicted orthologous proteins for our R. toruloides gene models in H. sapiens, D. mela-

nogaster, C. elegans, A. thaliana, C. reinhartii, S. cerevisiae, and 16 other fungi with the orthomcl

software suite version 2.0.9 (Li et al., 2003). See Supplementary file 1 for a full list of ortholog

groups and details on the genomes used in this analysis.

Vector library construction
To efficiently construct a large and diverse mutant pool of barcoded mutants we first constructed a

large library of barcoded vectors with an optimized Type IIS endonuclease cloning strategy

(Engler et al., 2008). We modified the ATMT vector pGI2 (Abbott et al., 2013) to act as a barcode

receiving vector by first removing the two pGI2 SapI sites already present on the vector backbone

through SapI restriction digestion, treatment with T4 DNA polymerase for blunt end formation and

subsequent blunt end ligation. Next, we introduced two divergent SapI recognition sites just inside

the right border of the T-DNA (vector pDP11) as the integration site for random barcoding. We

added the barcodes by synthesizing the oligonucleotide GATGTCCACGAGGTCTC

TNNNNNNNNNNNNNNNNNNNNCGTACGCTGCAGGTCGAC and amplifying with primers TCA-

CACAAGTTTGTACAAAAAAGCAGGCTGGAGCTCGGCTCTTCGCCCGATGTCCACGAGGTCTCT

and CTCAACCACTTTGTACAAGAAAGCTGGGTGGATCCGCTCTTCAATTGTCGACCTGCAGCG

TACG. We then combined 4 mg of vector and 140 ng of barcode fragments in a 50 ml reaction with 5

ml 10x T4 ligase buffer, 5 ml 10x NEB CutSmart buffer (NEB, B7204S, Ipswich, MA), 2.5 ml T7 ligase

(NEB, M0318L), and 2.5 ml of SapI (NEB, R0569S). We incubated the reaction at 37˚C for 5 min, then

25 cycles of 37˚C for 2 min and 20˚C for 5 min, before denaturing the enzymes for 10 min at 65˚C.
Without cooling the product, we added 1 ml SapI and incubated for 30 min at 37˚C to digest any

uncut vector, then cooled to 10˚C. We purified the barcoded plasmids using a Zymo DNA clean and

concentrator kit (Zymo Research, D4014, Irvine, CA), eluting in 15 ml of elution buffer and pooled 10

barcoding reactions. We then transformed E. coli electrocompetent 10-beta cells (NEB, C3019I)

according to the manufacturers specifications in 30 independent transformations. We estimated the

diversity of the barcoded vector pool by performing barcode sequencing as described below,

sequencing on an Illumina MiSeq system and estimating the true pool size by the relative proportion

of barcodes with 1 or 2 counts. See the script Multicodes.pl from Wetmore et al. (Wetmore et al.,

2015) for details. This yielded a barcoded pool estimated to consist of ~100 million clones.

Agrobacterium mediated transformation of R. toruloides
We transformed the barcoded vector pool into A. tumefaciens EHA 105 with a protocol adapted

from established methods (Mersereau et al., 1990). We diluted a stationary phase starter culture

1:100 in 500 ml Luria-Bertani broth (BD Biosciences, BD244620) and cultured for 6 hr at 30˚C. We

pelleted cells at 3,000 RCF for 10 min at 4˚C, washed pellets in ice-cold 1 mM HEPES

(Thermo Fisher Scientific, BP310), pH 7.0, then washed them in ice-cold 10% glycerol 1 mM HEPES,

suspended cells in 5 ml ice-cold 10% glycerol 1 mM HEPES, and flash froze 50 ml aliquots in liquid

nitrogen. To produce a large transformant pool of A. tumefaciens bearing millions of unique bar-

code sequences, we electroporated 5 ml of competent cells with 50 mg of plasmid DNA (50 ml per

well) in a HT100 96-well plate chamber (BTX, 45-0400, Holliston, MA) with a 2.5 kV pulse, 400 ohm

resistance and 25 mF capacitance from an ECM 630 wave generator (BTX, 45-0051). We recovered

cells in LB for 2 hr at 30˚C, and plated on LB agar with 50 mg/ml kanamycin (Sigma-Aldrich, K4000).
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Approximately 14 million transformation events were scraped and collected into a mixed pool for

transformation of R. toruloides.

We grew the barcoded A. tumefaciens pool to OD 1 in 50 mL YPD in a baffled flask at 30˚C, then
pelleted the cells and suspended in 10 mL induction medium (1 g/L NH4Cl, 300 mg/L MgSO4 7H2O,

150 mg/L KCl (Thermo Fisher Scientific, P267-500), 10 mg/L CaCl2 (VWR, 0556, Radnor, PA), 750

mg/L FeSO4 7H2O (Thermo Fisher Scientific, AC423731000), 144 mg/L K2HPO4 (VWR, 0705), 48

mg/L NaH2PO4 (Thermo Fisher Scientific, BP329), 2 g/L D-Glucose, 10 mg/L thiamine (Sigma-Aldrich,

T4625), 20 mg/L acetosyringone (Sigma-Aldrich, D134406), and 3.9 g/L MES (Sigma-Aldrich, 69892),

adjusted to pH 5.5 with KOH) and incubated 24 hr at room temperature in culture tubes on a roller

drum. We cultured R. toruloides in 10 mL YPD to OD 0.8, then pelleted the cells and suspended in

the induced A. tumefaciens culture for 5 min at room temperature. We filtered the mixed culture on

a 0.45 mm membrane filter (EMD Millipore, HAWP04700, Bedford, MA) then transferred the filter to

induction media 2% agar (BD Biosciences, BD214010) plates for incubation at 26˚C for 4 days. We

then washed the filters in YPD and plated on YPD 2% agar with 300 mg/ml cefotaxime (Sigma-

Aldrich, C7039) and 300 mg/ml carbenicillin (Sigma-Aldrich, C1389) and incubated at 30˚C for two

days. We scraped these plates to collect transformed R. toruloides, recovered the mutant pool in

YPD plus cefotaxime and carbenicillin for 24 hr, added glycerol to 15% by volume and stored at

�80˚C. We repeated this protocol 40 times to recover approximately 2 million transformation

events. In some rounds of transformation, we also included 0.05% casamino acids (BD Biosciences,

BD223120) or 1% CD lipid concentrate (Thermo Fisher Scientific,11905–031) in the induction media

plates to promote recovery of mutants with impaired amino acid or lipid biosynthesis. We then

recovered each of these transformation subpools on YPD plus cefotaxime and carbenicillin 12 hr to

clear residual A. tumefaciens and combined them into one master pool, divided it into 1 ml aliquots

in YPD 15% glycerol and stored them at �80˚C. Laboratories with an interest in experimenting with

this mutant pool should contact the corresponding authors.

TnSeq library preparation
To isolate high quality genomic DNA we harvested ~108 cells from a fresh YPD culture of the mutant

pool, washed the pellet in water and suspended in 200 ml TSENT buffer (2% Triton X-100 (Sigma-

Aldrich, T8787), 1% SDS (Thermo Fisher Scientific, AM9820), 1 mM EDTA (Sigma-Aldrich, ED2SS),

100 mM NaCl (Sigma-Aldrich, S5150), 10 mM Tris-HCl, pH 8.0 (Invitrogen, 15568–025, Carlsbad

CA)). We then added the sample to 200 ml 25:24:1 phenol/chloroform/isoamyl alcohol (Invitrogen,

15593–031) in screw-top tubes with glass beads (Sigma-Aldrich, Z763748) on ice and vortexed for

10 min at 4˚C. We added 200 ml TE buffer (Thermo Fisher Scientific, AM9858), centrifuged at 21,000

RCF for 20 min at 4˚C, removed the aqueous phase to 1 mL 200 Proof ethanol (Koptec, V1016, King

of Prussia, PA) and centrifuged at 21,000 RCF for 20 min at 4˚C to pellet DNA. DNA was dried and

suspended in 200 ml TE, treated with 0.5 ml RNase A (Qiagen, 19101), then purified with a Genomic

DNA Clean and Concentrator Kit (Zymo Research, D4064). We checked DNA quality on a 0.8% aga-

rose E-Gel (Thermo Fisher Scientific, G51808) and quantified with a Qubit 3.0 fluorometer using the

dsDNA HS reagent (Invitrogen, 1799096).

To sequence sites of genomic insertions we followed the TnSeq protocol of Wetmore et al.

(Wetmore et al., 2015), using their Nspacer_barseq_universal primer and P7_MOD_TS_index pri-

mers for final amplification (Supplementary file 4). Because we found a high proportion of non-spe-

cific products in our TnSeq mapping and highly variable recovery of the same insertions between

technical replicates, we sequenced multiple replicates for each batch of ATMT mutants (around

10,000–100,000 mutants per batch) and used at least two annealing temperatures for the final PCR

enrichment for each batch. In total, we sequenced about 900 million reads from 64 independent

TnSeq libraries. A full summary of TnSeq libraries used to map the mutant pool is listed in

Supplementary file 4. Libraries were submitted for single-end 150 bp Illumina sequencing on a

HiSeq 2500 platform at the UC Berkeley Vincent J. Coates Genomics Sequencing Laboratory, except

for a subset of smaller runs on an Illumina MiSeq platform as indicated in Supplementary file 4.

Sequence data have been submitted to the NCBI Short Read Archive (SRP116146).
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Mapping insertion locations
We used a similar strategy as Wetmore et al. (Wetmore et al., 2015) to map the location of each

barcoded T-DNA insertion, with minor alterations (Coradetti, 2018b).

MapTnSeq_trimmed.pl processes the TnSeq reads to identify the barcode sequence and is a

modified version of MapTnSeq.pl (Wetmore et al., 2015), with three minor alterations. We ignore

the last 10 bases of the T-DNA sequence, as the length of T-DNA border sequence included in the

final insertion is variable. We also allow for barcode sequences of 17–23 base pairs instead of exactly

20. We relaxed this restriction because on manual inspection of our TnSeq data we found that

approximately 10% of barcodes appeared to be slightly shorter or longer than 20 base pairs, likely a

result of imperfect PAGE purification after oligonucleotide synthesis. We report all TnSeq reads in

which sequence past the end of the expected T-DNA insert aligns with other regions of the T-DNA

sequence, or with the outside vector as ‘past end’ reads. These are mappings of junctions between

concatemeric T-DNA inserts and unprocessed T-DNA vectors, respectively.

RandomPoolConcatemers.py is a custom script that associates barcode sequences mapped in

MapTnSeq_trimmed.pl with genomic locations and then filters those barcodes for insertions at

unique, unambiguous locations. First, for all barcodes sequenced, the number of reads mapping to

any genomic location and the number of reads mapping to concatemeric junctions are tabulated.

Any barcodes that only differ by a single base pair from a barcode with 100 times more reads are

removed as likely sequencing errors and reported as ‘off by one’ barcodes. Any barcode for which

there are more than seven times as many ‘past end’ reads as reads mapping to genomic locations as

‘past-end’ barcodes. The past-end barcodes are further characterized as ‘head-to-tail’ concatemers

(majority of Tnseq reads map to the left border T-DNA sequence), ‘head-to-head’ concatemers

(majority of the reads map to the right border T-DNA sequence), or ‘Run-on’ insertions (majority of

reads map to pGI2 outside the T-DNA sequence). Any barcodes for which the majority of TnSeq

reads map ambiguously to the genome are removed and reported as ambiguous barcodes. Any

barcodes for which 20% or more of the TnSeq reads map to a different location than the most com-

monly observed location are removed and reported as ‘multilocus’ barcodes. Finally, any barcodes

mapped within 10 bases of a more abundant barcode for which there is a Levenshtein edit distance

(Levenshtein, 1966) less than five are removed as likely sequencing errors and reported as ‘off by

two’ barcodes. The remaining unfiltered barcodes are reported as the mutant pool.

InsertionLocationJGI.py is a custom script to match the genomic locations of barcodes in the

mutant pool to the nearest gene in the current JGI R. toruloides gene catalog and report whether

the insertion is in a 5-prime intergenic region, a 5-prime UTR, an exon, an intron, a 3-prime UTR, or

a 3-prime intergenic region of that gene.

InsertBias.py is a custom script to analyze potential biases in T-DNA insertion rates. The script

tracks number of insertions versus scaffold length for all scaffolds in the genome, GC content in the

local regions of insertion, and insertion rates in promoter regions, 5-prime untranslated mRNA,

exons, introns, 3-prime untranslated mRNA, and terminator regions. To assess fine-scale biases in

insertion locations, all locations in the genome are apportioned to one of the above feature types,

then for each feature type, the same number of insertions as were observed for that feature type in

the mutant pool are sampled at random (without replacement) from all the genomic locations

assigned to that feature type.

Barcode sequencing
We isolated genomic DNA with a Fungal/Bacterial DNA MiniPrep kit (Zymo Research, D6005). We

used Q5 high-fidelity polymerase with GC-enhancer (NEB, M0491S) to amplify unique barcode

sequences flanked by specific priming sites, yielding a 185 bp Illumina-sequencing-ready product

(Figure 1—figure supplement 1). We used BarSeq primers from Wetmore et al. (de Hoon et al.,

2004) (Supplementary file 4), except we replaced primer P1 with a mix of primers with 2–4 random

bases to improve nucleotide balance for optimal sequencing of low-diversity sequences (Illu-

mina, 2013). We cleaned PCR products with a DNA clean and concentrator kit

(Zymo Research, D4014). We quantified product yield with a Qubit 3.0 fluorometer system and

mixed as appropriate for sequencing as multiplexed libraries. We sequenced libraries on an Illumina

HiSeq 4000 system at the UC Berkeley Vincent J. Coates Genomics Sequencing Laboratory.

If necessary, libraries were purified further with a Pippin Prep system (Sage Biosciences) before
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loading with 15% PhiX DNA as a phasing control for low diversity samples (Illumina, 2013). We

sequenced each biological replicate to a depth of at least 20 million reads. We counted occurrences

of T-DNA barcodes in each sample with the script MultiCodes_Variable_Length.pl, a modified ver-

sion of MultiCodes.pl from Wetmore et al. (Wetmore et al., 2015) that allows for barcodes of 17–23

base pairs.

Fitness analysis
For all BarSeq experiments, we thawed frozen aliquots of the mutant pool on ice and inoculated

them into YPD at OD 0.2. Cultures were recovered for about 12 hr until OD 600 was approximately

0.8. Cultures were pelleted at 3,000 RCF for 5 min, washed twice in the appropriate media, and

transferred to the condition of interest. Samples were taken from the YPD starter cultures (Time 0)

and after 5–7 doublings in the experimental condition. Average fitness scores and T-like statistics as

metrics for consistency between individual insertion mutants in each gene were calculated with the

scripts combineBarSeq.pl and FEBA.R from Wetmore et al. (Wetmore et al., 2015).

Briefly, for each biological replicate and condition, for any barcode with an average of at least

three counts in Time 0 samples, a strain fitness score is calculated as Fstrain = log2(Ccondition +sqrt(P))

– log2(CTime0 +1/sqrt(P)), where C is the raw counts for the barcode and P is a gene-specific ‘pseudo-

count’ added to reduce noise in fitness scores for low-count strains. These strain fitness scores are

then normalized such that the median score is 0 to correct for coverage differences between the

samples. The strain fitness scores are then assigned a weight proportional to the harmonic mean of

counts at Time 0 and in the condition sample. For any one barcode, the weighting mean is capped

at 20 reads, which has the effect of limiting the influence of generally more abundant outlier strains

(Wetmore et al., 2015). T is calculated as the gene fitness divided by the square root of the variance

in strain fitness scores. This variance is estimated as the maximum value of a naı̈ve estimate based

on Poisson noise or the observed variance (a weighted sum squares of differences in strain fitness

versus gene fitness scores plus an estimate of global variance in gene fitness scores calculated by

comparing fitness scores in the first and second half of every gene). See the methods subsection

‘BarSeq data analysis and calculation of gene fitness’ in the original publication by Wetmore et al.

(Wetmore et al., 2015) for more detail on these algorithms. Wetmore et al. limited their analysis to

genes with an average of at least 30 total counts at Time 0, spread across three strains. Because the

list of genes satisfying this requirement can change from experiment to experiment, we established

a list of genes that met this requirement in any of our experiments and used that list for our analysis.

As a result, a minority of genes (649) have fitness scores based on data from one or two barcodes.

The number of barcodes used in fitness analysis of each gene is listed in all relevant tables in

Supplementary file 2. In general, genes with data from only one or two barcodes had smaller T-sta-

tistics and thus were filtered out in later analyses.

Because Wetmore et al.’s software does not consider biological replication between independent

cultures, we then averaged fitness scores for each condition and combined T-statistics across repli-

cates with the script AverageReplicates.py, treating them as true T-statistics. That is: Tcondition = Sum

(Treplicates)/Sqrt(Nreplicates). To assess consistency of differences in observed fitness between growth

conditions we computed Tc1 – c2 = (Fc1 – Fc2)/Sqrt ((Fc1/ Tc1)
2 + ((Fc2/ Tc2)

2) with the script Results-

Summary.py. We generated K-means clusters of fitness scores using Pearson correlation as the simi-

larity metric using Cluster 3.0 (de Hoon et al., 2004). For comparing enrichment in density and

FACS separated fractions we computed F and T for each fraction versus the T0 control. The enrich-

ment score E and T between fractions was then calculated as E = Fhigh lipid – Flow lipid and Thigh lipid –

low lipid = (Fhigh lipid – Flow lipid)/Sqrt ((Fhigh lipid/ Thigh lipid)
2 + ((Flow lipid/ Tlow lipid)

2) with the script

ResultsSummary.py. We generated hierarchical clusters of enrichment scores using Pearson correla-

tion as the similarity metric and average linkage as the clustering method. All fitness data are avail-

able in Supplementary file 2 and the fitness browser (http://fungalfit.genomics.lbl.gov/). Custom

Python scripts are available at (Coradetti, 2018b; copy archived at https://github.com/elifesciences-

publications/rb-tdnaseq). Sequence data have been submitted to the NCBI Short Read Archive

(SRP116193)

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 28 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://fungalfit.genomics.lbl.gov/
https://github.com/elifesciences-publications
https://github.com/elifesciences-publications
https://doi.org/10.7554/eLife.32110


Transformation of R. toruloides by electroporation
We cultured R. toruloides overnight in 10 mL YPD on a roller drum to an OD 600 of 2, then pelleted

cells at 3,000 RCF for 5 min at 4˚C in a benchtop centrifuge (Eppendorf, 5810 R). Cells were kept at

4˚C from this point. We transferred the pellets to 1.5 mL tubes and washed them four times with ice

cold 0.75 M D-sorbitol (Sigma-Aldrich, S1876), centrifuging each wash 30 s at 8,000 RCF, 4˚C
(Eppendorf, 5424). After the final wash, we removed excess D-sorbitol and added 35 ml of cell pellet

to 10 ml of fresh 0.75 M D-sorbitol and ~1 mg of PCR product in 5 ml water in a chilled 0.1 cm cuvette.

We electroporated cells at 1.5 kV, 200 ohms and 25 mF with an ECM 630 (BTX) electroporation sys-

tem. We then added 1 mL cold 1:1 mixture of YPD and 0.75 M D-sorbitol and transferred to 14 mL

round bottom culture tubes for a 3 hr recovery culture at 30˚C with shaking at 200 rpm on a platform

shaker. We then pelleted the cultures at 8,000 RCF for 30 s, suspended in 200 ml YPD, and

then plated on YPD with 100 mg/mL nourseothricin (5.005.000, Werner Bioagents, Germany).

Gene ontology enrichment
We scored enrichment of gene ontology terms with a custom script that performs a hypergeometric

test on the frequency of each term in the genome versus the frequency in given gene set (script

GOenrich.py, available at [Coradetti, 2018b]). We corrected for multiple hypothesis testing with the

Benjamini-Hochberg correction (Benjamini and Hochberg, 1995). We extended the GO terms asso-

ciated with R. toruloides genes in the current JGI annotation by collecting terms for orthologous

genes in Arabidopsis thaliana, Aspergillus nidulans, Caenorhabditis elegans, Candida albicans,

Homo sapiens, Mus musculus, and Saccharomyces cerevisiae, obtained from the Gene Ontology

Consortium (Ashburner et al., 2000; Gene Ontology Consortium, 2015).

Total fatty acid quantification with gas chromatography
Cell lysis, extraction of total lipids, and conversion to fatty acid methyl esters (FAMEs) was based on

a published protocol (Browse et al., 1986). We cultured IFO 0880, a selection of seven targeted

deletion strains (see Supplementary file 6) and one overexpression strain (RT880-AD, [Zhang et al.,

2016a]) in low nitrogen medium for 48 or 96 hr. We collected paired 5 mL samples from each in

screw-top glass tubes (Corning, 99502–10, Corning, NY) and 15 mL polyethylene tubes (Corning,

352096) for lipid extraction and mass determination, respectively. We pelleted samples by centrifu-

gation at 2,000 RCF for 20 min at 4˚C, and washed once in water to remove salts and unused glu-

cose. We then transferred the mass determination sample to a pre-tared 1.5 mL microcentrifuge

tube. We froze both samples at �20˚C overnight, then lyophilized them 48 hr in a FreeZone freeze

dry system (Labconco, 7754042) before weighing/extraction. We added 1 mL methanol spiked with

250 mg methyl tridecanoate to each sample to serve as an internal standard (ISTD). We then resus-

pended lipid extraction samples (usually about 10–20 mg) by vortexing in 3 mL 3N methanolic HCl

(Sigma-Aldrich, 33050-U) and 200 ml chloroform (Sigma-Aldrich, 472476) and incubated at 80˚C
water bath for 1 hr. Cell lysis and conversion to FAMEs occurs during this incubation. To extract

FAMEs we then added 2 mL hexane (Sigma-Aldrich, 650552) and vortexed samples well before cen-

trifugation at 3,000 RCF for 3 min. One mL of the hexane layer was injected in split mode (1:10) onto

a SP-2330 capillary column (30 m x 0.25 mm x 0.2 mm, Sigma-Aldrich, 24019). An Agilent 7890A gas

chromatograph equipped with a flame ionization detector (FID) was used for analysis with the follow-

ing settings: Injector temperature 250˚C, carrier gas: helium at 1 mL/min, temperature program:

140˚C, 3 min isocratic, 10 ˚C/min to 220˚C, 40 ˚C/min to 240˚C, 5 min isocratic. FAME concentrations

were calculated by comparing the peak areas in the samples to the peak areas of ten commercially

available high-purity standards (C16:0, C16:1, C17:0, C18:0, C18:1, C18:2, C20:0, C20:1, C22:0,

C24:0) (Sigma-Aldrich) in known concentration relative to the internal standard, respectively.

Relative TAG measurement with BODIPY and flow cytometry
We inoculated deletion mutants and the YKU70D parental strain at OD 0.1 in low nitrogen medium

and cultured for 40 hr. We fixed samples by adding 180 ml cell culture to 20 ml 37% formaldehyde

(Electron Microscopy Sciences, Hatfield, PA) and incubating for 15 min at room temperature. We

then diluted fixed cells 1:100 in 200 ml PBS (from 10X concentrate, Thermo Fisher Scientific, 70011–

44) with 0.5 M KI and 0.25 mg/mL BODIPY 493/503 (Thermo Fisher Scientific, D-3922), then incu-

bated 30 min at room temperature. We quantified BODIPY signal for 10,000 cells per sample on a
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Guava HT easyCyte system (EMD Millipore) in the green channel (excitation 488 nm, emission 525

nm) using InCyte software (EMD Millipore). Due to logistical constraints, samples were processed in

batches of at most 30 cultures at a time. Each batch included three biological replicates of the

YKU70D parental strain as an internal reference. Distribution of mutant strains into these batches

was not explicitly randomized, but each batch included both strains expected to accumulate more

lipid and strains expected to accumulate less lipid than the parent. Each mutant was processed in at

least two different batches.

Population enrichment with FACS
We cultured the barcoded mutant pool in low nitrogen medium for 40 hr. We then diluted unfixed

cells 1:100 in 10 ml PBS with 0.5 M KI and 0.25 mg/mL BODIPY 493/503, then incubated 30 min at

30˚C with shaking. We then sorted the population on a Sony SH800 cell sorter with a 70 mM fluidic

chip, sorting in semi-purity mode. We first applied a gate for single cell events with forward scatter

height within 15% of forward scatter area. We sorted a sample of 10 million cells with the scattering

gate alone as a control population, to account for effects of growth, sorting, and collection that are

independent of lipid accumulation. Then we collected the 10% of the size-filtered population with

the highest and lowest signals in the FITC channel. We collected 10 million cells each for the high

and low signal populations. We collected all sorted cells in YPD with 300 mg/ml cefotaxime (Sigma-

Aldrich, C7039) and 300 mg/ml carbenicillin (Sigma-Aldrich, C1389), then grew them to saturation in

our standard culture conditions and pelleted 1 mL sample, and then stored at �20˚C for BarSeq

analysis.

Population enrichment with sucrose density gradients
We prepared linear sucrose gradients with the method of Luthe et al. (Luthe, 1983). For example,

to prepare a 65–35% sucrose gradient; we prepared four solutions of sucrose (Sigma-Aldrich,

G7528) at 65, 55, 45, and 35 grams per 100 mL in PBS, then successively froze 10 mL layers of each

concentration in a 50 mL conical tube (Corning, 430829) on dry ice and stored the gradient at

�20˚C. We selected appropriate gradients to maximize the physical separation of the cell population

by running trial experiments with wild type IFO 0880 cultures on a number of sucrose gradients. The

gradients used in each experiment are described in Table 3. Approximately 24 hr before performing

density separation on cell population, the appropriate step gradient was moved to 4˚C to thaw,

yielding a linear gradient (Luthe, 1983).

To perform the separation, we centrifuged 50 mL of culture at 6,000 RCF at 4˚C for 20 min. We

then suspended the pellet in 5 ml PBS at 4˚C and carefully loaded it onto a sucrose gradient. We

centrifuged the gradients for 1 hr at 5,000 RCF at 4˚C with slow acceleration and no brake for decel-

eration in an Avanti J-26 XP centrifuge with a JS5.3 swinging bucket rotor (Beckman Coulter, Brea,

CA). To collect fractions, we pierced the bottom of each tube with the tip of a 16 gauge needle (BD

Biosciences, 305197), to slowly drain the gradient from the bottom, at 1 drop every 1–5 s. We col-

lected 2 mL fractions, estimated average fraction density by weighing a 100 ml sample and measured

the distribution of the cell population across the sample by optical density. The appropriate fractions

Table 3. Sucrose density gradients used in this study

Media Time

Sucrose
range
(Density)*

Average
density
±StDev

High buoyancy fractions
(Density)

Median buoyancy fractions
(Density)

Low buoyancy fractions
(Density)

Low
Nitrogen

40 hr 50–20%
(1.22–1.10)

1.177
±0.003

17–20
(<1.11)

6–7
(1.18–1.19)

1–2
(>1.21)

YPD 40 hr 80–50%
(1.29–1.16)

1.234
±0.012

19–22†

(<1.14)
4–8†

(1.24–1.27)
1
(>1.28)

All density measurements in g/mL

*Highest and lowest specific density measured in any collected fraction in the linear portion of the gradient.

†Some biological replicates differ in exact fractions collected. Fractions were collected within this range such that the high buoyancy fraction constituted

the most buoyant 5–10% of the population, the median buoyancy fraction constituted the median 30–50% of the population and the low buoyancy fraction

constituted the least buoyant 5–10% of the population.

DOI: https://doi.org/10.7554/eLife.32110.026

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 30 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.32110.026
https://doi.org/10.7554/eLife.32110


were then combined to sample the least buoyant (highest density) 5–10%, median buoyancy 30–

50%, and most buoyant (lowest density) 5–10% of the population. For each biological replicate, we

also collected a 1 mL sample from the culture before separation to monitor growth in the experi-

mental condition.

Microscopy
Cover slips were submerged in 0.1% v/v polylysine (Sigma-Aldrich, P8920) for 15 min. Cover slips

were removed from polylysine and blotted dry from the bottom of vertically-held slips. Slips were

then washed several times with ddH2O and rapidly dried with compressed air. Directly prior to imag-

ing, slips were visually inspected for streaks and dust and softly cleaned with lens paper. Cells were

grown 40 hr in low nitrogen medium, 1 mL of culture was transferred to 2 mL microcentrifuge tubes

with 1 mL of PBS, and tubes were mixed briefly by vortexing. Cells were pelleted at 9,000 RCF for 1

min in a microcentrifuge, and then resuspended in 100 ml of fluorescent staining solution (PBS with

0.5 M KI and 0.25 mg/mL BODIPY 493/503) to visualize intracellular lipid droplets. Four ml of stained

cells were pipetted up and down and transferred to the clean slides. Polylysine-coated cover slips

were carefully placed on the 4 ml drop to ensure even spreading of liquid. Cells were observed on an

Axio Observer microscope (Carl Zeiss Microscopy, Thornwood, NY) with a plan-apochromat 100x

DIC objective (Carl Zeiss Microscopy, 440782-9902-000), ORCA-Flash 4.0 camera (Hamamatsu,

C11440-22CU, Japan), and ZenPro 2012 (blue edition) software. For BODIPY imaging cells were illu-

minated with an X-cite Series 120 arc-lamp (EXFO Photonics Solutions, Canada) and 38HE filter set,

450–490 excitation, 500–550 emission (Carl Zeiss Microscopy, 489038-9901-000). Zvi files were con-

verted to 16 bit TIFF images and representative fields of view were cropped and channels merged

using FIJI image processing software (Schindelin et al., 2012).
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Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M, Daum G. 2011. Lipid particles/
droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets Proteome. Biochimica Et Biophysica
Acta (BBA) - Molecular and Cell Biology of Lipids 1811:1165–1176. DOI: https://doi.org/10.1016/j.bbalip.2011.
07.015

Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV. 2008.
Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–
661. DOI: https://doi.org/10.1038/nature06928, PMID: 18408709

Głowacka K, Kromdijk J, Leonelli L, Niyogi KK, Clemente TE, Long SP. 2016. An evaluation of new and
established methods to determine T-DNA copy number and homozygosity in transgenic plants. Plant, Cell &
Environment 39:908–917. DOI: https://doi.org/10.1111/pce.12693, PMID: 26670088

Hagiwara D, Sakamoto K, Abe K, Gomi K. 2016. Signaling pathways for stress responses and adaptation in
Aspergillus species: stress biology in the post-genomic era. Bioscience, Biotechnology, and Biochemistry 80:
1667–1680. DOI: https://doi.org/10.1080/09168451.2016.1162085, PMID: 27007956

Han H, Xu X, Peng Y, Kong D, Li D. 2012. Agrobacterium tumefaciens-mediated transformation as a tool for
insertional mutagenesis in thermophilic fungus Thermomyces lanuginosus. Wei Sheng Wu Xue Bao = Acta
Microbiologica Sinica 52:1449–1457. PMID: 23457794

Hassan KA, Cain AK, Huang T, Liu Q, Elbourne LD, Boinett CJ, Brzoska AJ, Li L, Ostrowski M, Nhu NT, Nhu TH,
Baker S, Parkhill J, Paulsen IT. 2016. Fluorescence-Based Flow Sorting in Parallel with Transposon Insertion Site
Sequencing Identifies Multidrug Efflux Systems in Acinetobacter baumannii. mBio 7:e01200-16. DOI: https://
doi.org/10.1128/mBio.01200-16, PMID: 27601573

Herms A, Bosch M, Ariotti N, Reddy BJ, Fajardo A, Fernández-Vidal A, Alvarez-Guaita A, Fernández-Rojo MA,
Rentero C, Tebar F, Enrich C, Geli MI, Parton RG, Gross SP, Pol A. 2013. Cell-to-cell heterogeneity in lipid
droplets suggests a mechanism to reduce lipotoxicity. Current Biology 23:1489–1496. DOI: https://doi.org/10.
1016/j.cub.2013.06.032, PMID: 23871243

Hillenmeyer ME, Ericson E, Davis RW, Nislow C, Koller D, Giaever G. 2010. Systematic analysis of genome-wide
fitness data in yeast reveals novel gene function and drug action.Genome Biology 11:R30. DOI: https://doi.org/
10.1186/gb-2010-11-3-r30, PMID: 20226027

Holic R, Yazawa H, Kumagai H, Uemura H. 2012. Engineered high content of ricinoleic acid in fission yeast
Schizosaccharomyces pombe. Applied Microbiology and Biotechnology 95:179–187. DOI: https://doi.org/10.
1007/s00253-012-3959-6, PMID: 22370951

Hopper AK, Phizicky EM. 2003. tRNA transfers to the limelight. Genes & Development 17:162–180. DOI: https://
doi.org/10.1101/gad.1049103, PMID: 12533506

Houten SM, Violante S, Ventura FV, Wanders RJ. 2016. The Biochemistry and Physiology of Mitochondrial Fatty
Acid b-Oxidation and Its Genetic Disorders. Annual Review of Physiology 78:23–44. DOI: https://doi.org/10.
1146/annurev-physiol-021115-105045, PMID: 26474213

Hu C, Zhao X, Zhao J, Wu S, Zhao ZK. 2009. Effects of biomass hydrolysis by-products on oleaginous yeast
Rhodosporidium toruloides. Bioresource Technology 100:4843–4847. DOI: https://doi.org/10.1016/j.biortech.
2009.04.041, PMID: 19497736

Huang B, Lu J, Byström AS. 2008. A genome-wide screen identifies genes required for formation of the wobble
nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. Rna 14:2183–2194.
DOI: https://doi.org/10.1261/rna.1184108, PMID: 18755837

Huang XF, Liu JN, Lu LJ, Peng KM, Yang GX, Liu J. 2016. Culture strategies for lipid production using acetic acid
as sole carbon source by Rhodosporidium toruloides. Bioresource Technology 206:141–149. DOI: https://doi.
org/10.1016/j.biortech.2016.01.073, PMID: 26851898

Hutagalung AH, Novick PJ. 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiological
Reviews 91:119–149. DOI: https://doi.org/10.1152/physrev.00059.2009, PMID: 21248164

Ianiri G, Idnurm A. 2015. Essential gene discovery in the basidiomycete Cryptococcus neoformans for antifungal
drug target prioritization. mBio 6:e02334-14. DOI: https://doi.org/10.1128/mBio.02334-14, PMID: 25827419

Illumina. 2013. Using a PhiX Control for HiSeq Sequencing Runs. Pub. No. 770-2011-041.
Izai K, Uchida Y, Orii T, Yamamoto S, Hashimoto T. 1992. Novel fatty acid beta-oxidation enzymes in rat liver
mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. The Journal of
Biological Chemistry 267:1027–1033. PMID: 1730632

Kamisaka Y, Noda N, Tomita N, Kimura K, Kodaki T, Hosaka K. 2006. Identification of genes affecting lipid
content using transposon mutagenesis in Saccharomyces cerevisiae. Bioscience, Biotechnology, and
Biochemistry 70:646–653. DOI: https://doi.org/10.1271/bbb.70.646, PMID: 16556980

Kerkhoven EJ, Pomraning KR, Baker SE, Nielsen J. 2016. Regulation of amino-acid metabolism controls flux to
lipid accumulation inYarrowia lipolytica. Npj Systems Biology and Applications 2:16005. DOI: https://doi.org/
10.1038/npjsba.2016.5, PMID: 28725468

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 37 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.1038/nature00935
http://www.ncbi.nlm.nih.gov/pubmed/12140549
https://doi.org/10.1002/cyto.990170207
http://www.ncbi.nlm.nih.gov/pubmed/7835165
https://doi.org/10.1007/978-1-62703-791-4_1
http://www.ncbi.nlm.nih.gov/pubmed/24470015
https://doi.org/10.1093/nar/gkt1183
http://www.ncbi.nlm.nih.gov/pubmed/24297253
https://doi.org/10.1016/j.bbalip.2011.07.015
https://doi.org/10.1016/j.bbalip.2011.07.015
https://doi.org/10.1038/nature06928
http://www.ncbi.nlm.nih.gov/pubmed/18408709
https://doi.org/10.1111/pce.12693
http://www.ncbi.nlm.nih.gov/pubmed/26670088
https://doi.org/10.1080/09168451.2016.1162085
http://www.ncbi.nlm.nih.gov/pubmed/27007956
http://www.ncbi.nlm.nih.gov/pubmed/23457794
https://doi.org/10.1128/mBio.01200-16
https://doi.org/10.1128/mBio.01200-16
http://www.ncbi.nlm.nih.gov/pubmed/27601573
https://doi.org/10.1016/j.cub.2013.06.032
https://doi.org/10.1016/j.cub.2013.06.032
http://www.ncbi.nlm.nih.gov/pubmed/23871243
https://doi.org/10.1186/gb-2010-11-3-r30
https://doi.org/10.1186/gb-2010-11-3-r30
http://www.ncbi.nlm.nih.gov/pubmed/20226027
https://doi.org/10.1007/s00253-012-3959-6
https://doi.org/10.1007/s00253-012-3959-6
http://www.ncbi.nlm.nih.gov/pubmed/22370951
https://doi.org/10.1101/gad.1049103
https://doi.org/10.1101/gad.1049103
http://www.ncbi.nlm.nih.gov/pubmed/12533506
https://doi.org/10.1146/annurev-physiol-021115-105045
https://doi.org/10.1146/annurev-physiol-021115-105045
http://www.ncbi.nlm.nih.gov/pubmed/26474213
https://doi.org/10.1016/j.biortech.2009.04.041
https://doi.org/10.1016/j.biortech.2009.04.041
http://www.ncbi.nlm.nih.gov/pubmed/19497736
https://doi.org/10.1261/rna.1184108
http://www.ncbi.nlm.nih.gov/pubmed/18755837
https://doi.org/10.1016/j.biortech.2016.01.073
https://doi.org/10.1016/j.biortech.2016.01.073
http://www.ncbi.nlm.nih.gov/pubmed/26851898
https://doi.org/10.1152/physrev.00059.2009
http://www.ncbi.nlm.nih.gov/pubmed/21248164
https://doi.org/10.1128/mBio.02334-14
http://www.ncbi.nlm.nih.gov/pubmed/25827419
http://www.ncbi.nlm.nih.gov/pubmed/1730632
https://doi.org/10.1271/bbb.70.646
http://www.ncbi.nlm.nih.gov/pubmed/16556980
https://doi.org/10.1038/npjsba.2016.5
https://doi.org/10.1038/npjsba.2016.5
http://www.ncbi.nlm.nih.gov/pubmed/28725468
https://doi.org/10.7554/eLife.32110


Khan BR, Adham AR, Zolman BK. 2012. Peroxisomal Acyl-CoA oxidase 4 activity differs between Arabidopsis
accessions. Plant Molecular Biology 78:45–58. DOI: https://doi.org/10.1007/s11103-011-9843-4, PMID: 2204
8901

Kitahara Y, Yin T, Zhao X, Wachi M, Du W, Liu D. 2014. Isolation of oleaginous yeast (Rhodosporidium
toruloides) mutants tolerant of sugarcane bagasse hydrolysate. Bioscience, Biotechnology, and Biochemistry
78:336–342. DOI: https://doi.org/10.1080/09168451.2014.882746, PMID: 25036690

Kleinboelting N, Huep G, Appelhagen I, Viehoever P, Li Y, Weisshaar B. 2015. The Structural Features of
Thousands of T-DNA Insertion Sites Are Consistent with a Double-Strand Break Repair-Based Insertion
Mechanism. Molecular Plant 8:1651–1664. DOI: https://doi.org/10.1016/j.molp.2015.08.011, PMID: 26343971

Kohlwein SD, Veenhuis M, van der Klei IJ. 2013. Lipid droplets and peroxisomes: key players in cellular lipid
homeostasis or a matter of fat–store ’em up or burn ’em down. Genetics 193:1–50. DOI: https://doi.org/10.
1534/genetics.112.143362, PMID: 23275493

Krahmer N, Farese RV, Walther TC. 2013a. Balancing the fat: lipid droplets and human disease. EMBO Molecular
Medicine 5:973–983. DOI: https://doi.org/10.1002/emmm.201100671, PMID: 23740690

Krahmer N, Hilger M, Kory N, Wilfling F, Stoehr G, Mann M, Farese RV, Walther TC. 2013b. Protein correlation
profiles identify lipid droplet proteins with high confidence. Molecular & Cellular Proteomics 12:1115–1126.
DOI: https://doi.org/10.1074/mcp.M112.020230, PMID: 23319140

Krismer J, Tamminen M, Fontana S, Zenobi R, Narwani A. 2017. Single-cell mass spectrometry reveals the
importance of genetic diversity and plasticity for phenotypic variation in nitrogen-limited Chlamydomonas. The
ISME Journal 11:988–998. DOI: https://doi.org/10.1038/ismej.2016.167, PMID: 27935588

Kunitake E, Tani S, Sumitani J, Kawaguchi T. 2011. Agrobacterium tumefaciens-mediated transformation of
Aspergillus aculeatus for insertional mutagenesis. AMB Express 1:46. DOI: https://doi.org/10.1186/2191-0855-
1-46, PMID: 22166586

Kwon YM, Ricke SC, Mandal RK. 2016. Transposon sequencing: methods and expanding applications. Applied
Microbiology and Biotechnology 100:31–43. DOI: https://doi.org/10.1007/s00253-015-7037-8,
PMID: 26476650

Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L, Haase J, Charles I, Maskell DJ, Peters SE, Dougan G,
Wain J, Parkhill J, Turner AK. 2009. Simultaneous assay of every Salmonella Typhi gene using one million
transposon mutants. Genome Research 19:2308–2316. DOI: https://doi.org/10.1101/gr.097097.109, PMID: 1
9826075

Lapierre LR, Gelino S, Meléndez A, Hansen M. 2011. Autophagy and lipid metabolism coordinately modulate life
span in germline-less C. elegans. Current Biology 21:1507–1514. DOI: https://doi.org/10.1016/j.cub.2011.07.
042, PMID: 21906946

Laxman S, Sutter BM, Wu X, Kumar S, Guo X, Trudgian DC, Mirzaei H, Tu BP. 2013. Sulfur amino acids regulate
translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 154:416–429.
DOI: https://doi.org/10.1016/j.cell.2013.06.043, PMID: 23870129

Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, Shirtliff ME, El-Sayed NM, McIver KS. 2015.
Essential Genes in the Core Genome of the Human Pathogen Streptococcus pyogenes. Scientific Reports 5:1.
DOI: https://doi.org/10.1038/srep09838

Lee JH, Kong J, Jang JY, Han JS, Ji Y, Lee J, Kim JB. 2014. Lipid droplet protein LID-1 mediates ATGL-1-
dependent lipolysis during fasting in Caenorhabditis elegans. Molecular and Cellular Biology 34:4165–4176.
DOI: https://doi.org/10.1128/MCB.00722-14, PMID: 25202121

Lee JJ, Chen L, Cao B, Chen WN. 2016. Engineering Rhodosporidium toruloides with a membrane transporter
facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Applied Microbiology and
Biotechnology 100:869–877. DOI: https://doi.org/10.1007/s00253-015-7102-3, PMID: 26526454

Lee JJ, Chen L, Shi J, Trzcinski A, Chen WN. 2014. Metabolomic Profiling of Rhodosporidium toruloides Grown
on Glycerol for Carotenoid Production during Different Growth Phases. Journal of Agricultural and Food
Chemistry 62:10203–10209. DOI: https://doi.org/10.1021/jf502987q, PMID: 25254328

Levenshtein VI. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics
Doklady 10:707.

Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome
Research 13:2178–2189. DOI: https://doi.org/10.1101/gr.1224503, PMID: 12952885

Li S, Ridenour JB, Kim H, Hirsch RL, Rupe JC, Bluhm BH. 2013. Agrobacterium tumefaciens-mediated
transformation of the soybean pathogen Phomopsis longicolla. Journal of Microbiological Methods 92:244–
245. DOI: https://doi.org/10.1016/j.mimet.2012.12.015, PMID: 23305924

Li Y, Zhao Zongbao (Kent), Bai F. 2007. High-density cultivation of oleaginous yeast Rhodosporidium toruloides
Y4 in fed-batch culture. Enzyme and Microbial Technology 41:312–317. DOI: https://doi.org/10.1016/j.
enzmictec.2007.02.008

Liu L, Pan A, Spofford C, Zhou N, Alper HS. 2015. An evolutionary metabolic engineering approach for
enhancing lipogenesis in Yarrowia lipolytica. Metabolic Engineering 29:36–45. DOI: https://doi.org/10.1016/j.
ymben.2015.02.003, PMID: 25724340

Liu L, Wei YM, Zhou XW, Lin J, Sun XF, Tang KX. 2013. Agrobacterium tumefaciens-mediated genetic
transformation of the Taxol-producing endophytic fungus Ozonium sp EFY21. Genetics and Molecular Research
12:2913–2922. DOI: https://doi.org/10.4238/2013.August.12.7, PMID: 24065647

Liu Z, Li X, Ge Q, Ding M, Huang X. 2014. A lipid droplet-associated GFP reporter-based screen identifies new
fat storage regulators in C. elegans. Journal of Genetics and Genomics 41:305–313. DOI: https://doi.org/10.
1016/j.jgg.2014.03.002, PMID: 24894357

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 38 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.1007/s11103-011-9843-4
http://www.ncbi.nlm.nih.gov/pubmed/22048901
http://www.ncbi.nlm.nih.gov/pubmed/22048901
https://doi.org/10.1080/09168451.2014.882746
http://www.ncbi.nlm.nih.gov/pubmed/25036690
https://doi.org/10.1016/j.molp.2015.08.011
http://www.ncbi.nlm.nih.gov/pubmed/26343971
https://doi.org/10.1534/genetics.112.143362
https://doi.org/10.1534/genetics.112.143362
http://www.ncbi.nlm.nih.gov/pubmed/23275493
https://doi.org/10.1002/emmm.201100671
http://www.ncbi.nlm.nih.gov/pubmed/23740690
https://doi.org/10.1074/mcp.M112.020230
http://www.ncbi.nlm.nih.gov/pubmed/23319140
https://doi.org/10.1038/ismej.2016.167
http://www.ncbi.nlm.nih.gov/pubmed/27935588
https://doi.org/10.1186/2191-0855-1-46
https://doi.org/10.1186/2191-0855-1-46
http://www.ncbi.nlm.nih.gov/pubmed/22166586
https://doi.org/10.1007/s00253-015-7037-8
http://www.ncbi.nlm.nih.gov/pubmed/26476650
https://doi.org/10.1101/gr.097097.109
http://www.ncbi.nlm.nih.gov/pubmed/19826075
http://www.ncbi.nlm.nih.gov/pubmed/19826075
https://doi.org/10.1016/j.cub.2011.07.042
https://doi.org/10.1016/j.cub.2011.07.042
http://www.ncbi.nlm.nih.gov/pubmed/21906946
https://doi.org/10.1016/j.cell.2013.06.043
http://www.ncbi.nlm.nih.gov/pubmed/23870129
https://doi.org/10.1038/srep09838
https://doi.org/10.1128/MCB.00722-14
http://www.ncbi.nlm.nih.gov/pubmed/25202121
https://doi.org/10.1007/s00253-015-7102-3
http://www.ncbi.nlm.nih.gov/pubmed/26526454
https://doi.org/10.1021/jf502987q
http://www.ncbi.nlm.nih.gov/pubmed/25254328
https://doi.org/10.1101/gr.1224503
http://www.ncbi.nlm.nih.gov/pubmed/12952885
https://doi.org/10.1016/j.mimet.2012.12.015
http://www.ncbi.nlm.nih.gov/pubmed/23305924
https://doi.org/10.1016/j.enzmictec.2007.02.008
https://doi.org/10.1016/j.enzmictec.2007.02.008
https://doi.org/10.1016/j.ymben.2015.02.003
https://doi.org/10.1016/j.ymben.2015.02.003
http://www.ncbi.nlm.nih.gov/pubmed/25724340
https://doi.org/10.4238/2013.August.12.7
http://www.ncbi.nlm.nih.gov/pubmed/24065647
https://doi.org/10.1016/j.jgg.2014.03.002
https://doi.org/10.1016/j.jgg.2014.03.002
http://www.ncbi.nlm.nih.gov/pubmed/24894357
https://doi.org/10.7554/eLife.32110


Luthe DS. 1983. A simple technique for the preparation and storage of sucrose gradients. Analytical
Biochemistry 135:230–232. DOI: https://doi.org/10.1016/0003-2697(83)90755-8, PMID: 6670744

Luttik MA, Kötter P, Salomons FA, van der Klei IJ, van Dijken JP, Pronk JT. 2000. The Saccharomyces cerevisiae
ICL2 gene encodes a mitochondrial 2-methylisocitrate lyase involved in propionyl-coenzyme A metabolism.
Journal of Bacteriology 182:7007–7013. DOI: https://doi.org/10.1128/JB.182.24.7007-7013.2000, PMID: 11092
862

Maeda Y, Oku M, Sakai Y. 2017. Autophagy-independent function of Atg8 in lipid droplet dynamics in yeast.
Journal of Biochemistry 161:339–348. DOI: https://doi.org/10.1093/jb/mvw078, PMID: 28003432
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Appendix 1
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Refining the R. toruloides IFO 0880 genome sequence
and annotation
An effective functional genomics approach requires high quality genomic sequence and

reliable gene models. To improve assembly, we added long-read sequencing from Pacific

Biosciences to our previously published data from Illumina sequencing (Zhang et al., 2016a).

The refined gapless assembly is high quality, consisting of 21 megabases on 30 scaffolds

(N50 = 6, L50 = 1.4 Mb) and a complete 112 Kb mitochondrial genome. Seven de novo

scaffolds have telomeric repeats (Ramirez et al., 2011) at both ends, suggesting they

represent complete chromosomes, and seven scaffolds have a telomeric repeat at one end

(Supplementary file 1). For comparison, electrophoretic karyotyping of R. toruloides NP11

indicated 16 total chromosomes (Zhu et al., 2012). We also used 100 bp paired-end Illumina

sequencing of mRNA to improve gene model prediction. The revised genome

(Rhodosporidium toruloides IFO 0880 v4.0) encoding 8,490 predicted proteins is available at

the Joint Genome Institute’s Mycocosm genome portal (Nordberg et al., 2014) and Genbank

accession LCTV02000000. While the bulk of the gene models were predicted with the JGI’s

automated protocols, erroneous fusion of neighboring genes was a significant issue. We have

manually corrected several hundred fused models not supported by RNAseq data and

encourage the R. toruloides research community to continue annotation refinement through

the JGI portal. Summary tables of gene IDs, predicted functions, and probable orthologs in

other systems are included in Supplementary file 1.

Additional detail on mapping insertion locations with RB-
TDNAseq
We adapted a high-throughput phenotyping strategy previously demonstrated in bacteria

(Wetmore et al., 2015) by employing Agrobacterium tumefaciens-mediated transformation

(ATMT) (Figure 1A). Briefly, we created a large barcoded mutant pool in which A. tumefaciens

transfer DNAs (T-DNA) bearing an antibiotic resistance cassette and a 20 base-pair random

sequence (barcode) were inserted randomly throughout the genome. We then mapped the

location of each insertion and its associated barcode with RB-TDNAseq, a variant of RB-TnSeq

(a high-throughput method to enrich and sequence a diverse pool of transposon/genome

junctions [Wetmore et al., 2015]), applied to T-DNA inserts. A more detailed view of the

junction sequence and primers used for RB-TDNAseq and BarSeq are shown in Figure 1—

figure supplement 1.

From a mutant pool of approximately two million R. toruloides colonies, we sequenced

1,391,040 unique barcoded insertions with RB-TDNAseq. We successfully mapped 293,613

barcodes (21%) to T-DNA insertions at unique, unambiguous locations in the R. toruloides

genome. The remainder of sequenced barcodes could not be mapped for several reasons

(Figure 1—figure supplement 2A). T-DNA is often inserted in concatemeric repeats

(Kunitake et al., 2011; Sullivan et al., 2002; Rolloos et al., 2014), in which case only RB-

TDNAseq reads from the terminal repeat provides mapping information. If the terminal repeat

is truncated (Bundock and Hooykaas, 1996), or if it abuts genomic sequence that is

recalcitrant to sequencing for any reason, then we are able to detect the barcode at junctions

between T-DNA repeats, but not at junctions with the genome (47% of sequenced barcodes

were not mappable for this reason). Likewise, if the terminal T-DNA is inserted in an inverted

orientation, the result is an unmappable convergent concatemer (5% of barcodes). About 16%

of barcodes were associated with vector sequence outside the T-DNA sequence, indicating

integration of unprocessed plasmid into the genome. Approximately 1% of RB-TDNAseq

reads mapped equally well to two or more highly similar sequences and thus we could not

determine which locus is the true site of insertion. Finally, another 1% of barcodes appeared in
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distinct RB-TDNAseq reads mapping to two or more sequences, suggesting two or more

different mutant strains have received the same barcode, rendering those strains

indistinguishable in BarSeq data.

T-DNA can integrate into multiple locations in the same genome, giving rise to

confounding phenotypes between different mutations. Rates of multi-locus insertion range

widely (5% to 45%) depending on transformation conditions and the targeted cell type

(Kunitake et al., 2011; Ondřej et al., 1999; De Neve et al., 1997; Choi et al., 2007;

Głowacka et al., 2016). Multi-locus insertions can be derived from multiple copies of T-DNA

from a single transformation event, or from co-transformation of distinct T-DNAs. Since only

1% of barcodes mapped to multiple locations, we inferred the former scenario was rare. To

estimate the frequency of multiple insertion events from co-transformation, we isolated single

colonies and then sequenced their barcodes using PCR amplification with Sanger sequencing.

Of 58 colonies with unambiguous sequence of the common sequence preceding the random

barcodes, 41 colonies (71%) had a single, unique sequence in the barcode region, suggesting

a single barcode was present, and 17 colonies (29%) had mixed signals in the barcode region

suggesting T-DNAs with multiple barcodes were present (example traces in Figure 2—figure

supplement 2B). This estimate may be biased by sequence artifacts and should be taken as an

upper bound. Furthermore, co-transformed T-DNAs are often integrated into a single

concatemeric repeat (De Neve et al., 1997; De Buck et al., 2009; De Block and Debrouwer,

1991). Thus, far fewer than 29% of strains may actually harbor T-DNA insertions at multiple

loci. Conversely, T-DNA insertions have been shown to cause other local mutations (6% of

insertions were associated with deletions of more than 100 bp and 0.7% with local inversions

in A. thaliana [Kleinboelting et al., 2015]). These combined sources of confounding

phenotypes highlight the importance of integrating data from multiple T-DNA insertions in

any fitness analysis. As such, our main concern in constructing our mutant pool was to

effectively probe the entire genome with multiple inserts per gene.

Fine-scale biases in T-DNA insertion sites
On a genome level, there was no significant bias in rates of T-DNA insertion, with insertion

number proportional to scaffold length (Figure 1—figure supplement 3A) and no apparent

bias in insertion rates with respect to local GC content (Figure 1—figure supplement 3B). We

did observe some bias in T-DNA insertion sites at the kilobase scale, however. T-DNAs were

mapped within intergenic regions at a higher rate than expected given the composition of the

genome (Figure 1—figure supplement 3C). For instance, 20% of T-DNA inserts were mapped

in promoter regions, even though these regions only constitute 8% of the genome. This bias

towards promoter regions is consistent with observations in Cryptococcus neoformans

(Walton et al., 2005), in Magnaporthe oryzae (Choi et al., 2007), and with the fact that 41%

of T-DNA insertions in S. cerevisiae mapped in intergenic regions (Bundock et al., 2002)

though only 27% of the S. cerevisiae genome is intergenic (Alexander et al., 2010). We also

observed further fine-scale variation in the density of mapped insertions, with dozens of

T-DNA ‘hotspots’ on each scaffold with a higher local density of T-DNA insertion that cannot

be explained by a simulated random integration with the observed biases towards promoters,

terminators and five-prime UTRs (Figure 1—figure supplement 3D). We have not explored

the mechanism of these fine scale biases, though microhomology to T-DNA borders and local

DNA bendability have been suggested as influencing T-DNA insertion into eukaryotic

genomes (Choi et al., 2007; Zhang et al., 2007a).

Additional information on strain abundance and
sequencing depth
We observed a wide range in relative abundance of individual mutant strains (i.e. relative

counts for different barcodes in BarSeq data). In a typical fitness experiment, we sequenced

each sample to a depth of 20 million reads (as opposed to 900 million reads to map insertion

locations by RB-TDNAseq). At this depth, approximately 40,000 mapped barcodes (14%) were

too rare to count. Countable barcodes ranged from 1 to 1,000 counts per sample with a mode
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around 10 (Figure 2—figure supplement 1A). Further, for estimating strain abundance in

fitness experiments we considered only insertions in the central 80% of the coding region to

avoid confounding data from incorrectly predicted gene boundaries, functional truncated

proteins, and altered expression of neighboring genes. Within these constraints, we were able

to measure fitness for 6,558 genes (92% of non-essential genes) by tracking abundance of

68,021 insertions in coding regions with a median of 7 insertions per gene (Figure 2—figure

supplement 1B). This distribution of countable barcodes and sequencing depth translated to

approximately 100–250 total usable reads per sample for estimating fitness of mutants in each

gene (Figure 2—figure supplement 1C). This depth of usable sequence on a per-gene basis

is comparable to the point at which Wetmore et al. found that additional sequence depth

gave diminishing returns in terms of reduced variance in fitness scores (Wetmore et al.,

2015).

Contributions of individual strains to gene-level fitness
scores
Examples of how fitness scores from individual barcoded insertion strains are combined to

calculate gene-level fitness scores are shown in Figure 2—figure supplement 2. ARG5

ortholog RTO4_9377 is an example of a gene with a strong, unambiguous conditional fitness

score. We mapped 47 barcoded T-DNA insertions between the start and stop codon of ARG5,

of which 21 were located in the central 80% of this coding region and were abundant enough

to be counted in BarSeq experiments. Though raw counts varied over two orders of

magnitude for these strains (Figure 2—figure supplement 2A), strain fitness scores in non-

supplemented media were similar across the entire length of the gene model, including

introns, with a sharp change in fitness scores at the gene boundaries (Figure 2—figure

supplement 2B). In supplemented media (DOC), counts for all insertions are similar to the

Time 0 samples (Figure 2—figure supplement 2C). Thus fitness scores average around zero

and few barcodes consistently have fitness scores with a magnitude >1 across replicates

(Figure 2—figure supplement 2D)

To calculate F and T for the gene, first fitness scores are averaged between insertions, with

more abundant insertions weighted more than less abundant ones (relative weights in this

average are indicated by shading of the fitness scores in panel B). This weighting serves three

purposes: (1) to privilege fitness scores with less error due to sampling and sequencing noise,

(2) to bias the average score towards that of strains with counts in both conditions, and (3) to

limit the influence of rare, high-abundance outlier strains. Intuitively, strains with more counts

will tend to have scores less affected by sequencing noise or stochastic representation of cells

in small samples from a given culture. Because the weight is based on the harmonic mean of

counts in Time 0 and the condition sample, strains with very low counts in one condition (and

thus more noisy log2 ratios) will be weighted lower than those with log2 ratios with less noise

in both the numerator and denominator. The effect of rare, high-abundance strains, which

tend to have discordant fitness scores (Wetmore et al., 2015), is reduced by capping the

weight assigned to any one insert to that given a strain with an average of 20 counts. T is

calculated as a moderated T-statistic: the gene fitness (F) is divided by the square root of a

conservative estimate of variance in F amongst strains. These statistics are first computed for

each biological replicate separately, then F is averaged across replicates and T is combined as

a true T-statistic between independent experiments, by summing T and dividing by the square

root of the number of replicates.

MET16 ortholog RTO4_11741 is an example of a gene with more ambiguous data

(Figure 2—figure supplement 2E–H). We mapped 15 barcoded T-DNA insertions between

the start and stop codon of MET16, of which seven were located in the central 80% of this

coding region and were abundant enough to be counted in BarSeq experiments. Visual

inspection of the raw reads for these barcodes at Time 0 and after growth on non-

supplemented media suggests that mutants in MET16 are deficient for growth in non-

supplemented conditions, but two of the barcodes behave differently than the others; they

show no significant reduction in counts in the non-supplemented conditions. In particular, a

single barcode that mapped near the three prime end of the gene has relatively high counts
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and fitness scores around zero, weakening the overall fitness score and yielding a marginal

T-statistic. In this particular case, restricting the region of the gene used in the analysis would

improve F and T and better capture the true phenotype of the mutants in this gene. However,

any further global restriction on the barcodes analyzed per gene would compromise the data

for other genes with fewer insertions.

In most cases, meaningful interpretation of fitness scores will require comparisons amongst

several conditions. If the conditions of interest are tested in the same experiment with

replicates inoculated from the same Time 0 samples, then direct comparison of the BarSeq

counts between conditions would be the most straightforward and statistically powerful

approach to make binary comparisons between conditions. That approach is difficult to

implement across a large panel of conditions, however, and it is not amenable to an

incremental inclusion of new experiments into an existing database. Therefore to compare

fitness between conditions we first calculate F and T versus Time 0 in all conditions, and then

compare F and T directly between conditions. We calculate relative fitness by taking the

difference in fitness scores in the two conditions. We then calculate T between conditions by

estimating the variance we would observe in the direct comparison by adding the variance

observed in both original comparisons to Time 0. As each of those variances was a

conservative estimation, this approach tends to inflate variance and conservatively bias the

relative T-statistic. Thus working directly with F and T versus Time 0 to compare conditions is

the most flexible, but often not the most sensitive approach. In the case of MET16 illustrated

in Figure 2—figure supplement 2, we calculate the relative F and T between supplemented

and non-supplemented media as F = �1.3 and T = �0.8. Because these respective samples

were seeded from the same Time 0 culture, however, we can also compare counts directly

between the two conditions and find F = �1.6 and T = �3.8. This reduced sensitivity is less

consequential for ARG5, for which relative F and T are �4.3 and �16.0, respectively, but

recalculating directly from the actual counts we find F = �4.5 and T = �21.4. Regardless of

how a direct comparison is calculated, it is only interpretable if cultures are grown the same

number of generations in both conditions. If samples have been grown a different number of

generations, the best approach to synthesize data across multiple conditions is to subject

fitness scores to clustering analysis as in Figure 2C.

T-statistics assume a normal distribution
An important assumption in our analysis is that T, our metric of consistency, should assume the

standard normal distribution when samples with no true abundance differences are compared.

We analyzed the Time 0 replicates from our initial auxotrophy experiment treating two

replicates as mock samples from an experimental condition and found that the resulting

distribution of T-statistics was indeed very similar to the normal distribution, albeit with a small

number of outliers at the tails (Figure 2—figure supplement 3A). This minor deviation was

largely eliminated when we analyzed a mock experiment with biological replication by

shuffling Time 0 samples between three independent experiments (Figure 2—figure

supplement 3B).

T-statistics have a small bias towards longer, GC rich
genes
Genes with |T| > 3 for any condition versus Time 0 had a length distribution similar to that of

the total genome, with a slight bias towards longer genes (Figure 2—figure supplement 3C).

This bias is reflective of the tendency of smaller genes to receive fewer insertions in a

randomly mutagenized mutant pool. There is a stronger bias against large T-statistics for

genes with fewer than four barcodes contributing to fitness scores (Figure 2—figure

supplement 3D), and genes with fewer than ~30 counts total across all barcodes in a typical

sample (Figure 2—figure supplement 3E). There was also a slight over-representation of

genes with greater than average GC content among genes with |T| > 3 (Figure 2—figure

supplement 3F). It is unclear if this bias towards higher GC content is the result of a technical

artifact, a reflection of lower GC content of pseudogenes and other mis-annotated features, or
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evidence that genes with less impact on fitness in most conditions are under less stringent

selection for high GC content in R. toruloides. Fitness scores are less sensitive to gene length

than T-statistics (Figure 2—figure supplement 3G). Given that a gene meets our threshold of

|T| > 3, the magnitude of the fitness score is the best measure of biological importance in a

given condition.

Methionine and Arginine biosynthesis in R. toruloides
Our fitness data were consistent with established models of arginine biosynthesis in S.

cerevisiae, as well as cysteine and methionine synthesis in A. nidulans (Figure 2D–E). Out of 13

genes required to produce methionine from sulfate, one gene (MET7) was essential in mutant

construction conditions, 10 genes (MET1, MET2, MET3, MET5, MET6, MET10, MET12, MET13,

MET14, and GDH1) had fitness scores less than �1 in non-supplemented conditions and

relative T-statistics less than �3 between supplemented and non-supplemented conditions.

Eight of nine genes expected to be required for arginine biosynthesis (ARG1-7, CPA1, and

CPA2) also fit these criteria. Mutants for three genes in these pathways (ARG8, MET8, and

MET16) had fitness scores consistent with auxotrophy, but their relative T-statistics between

supplemented and non-supplemented conditions were �2.9, –2.7, and �0.8 respectively.

Discordant fitness scores between individual mutant strains drove the relatively weak

T-statistics for ARG8 and MET16 (see Figure 2—figure supplement 2 for a full breakdown of

strain fitness scores contributing to the MET16 scores). Both ARG8 and MET16 had T < �3 in

non-supplemented conditions versus Time 0 and fitness scores that clustered with the other

genes their respective pathways. We only mapped two insertions in MET8 with sufficient

abundance for BarSeq analysis. Genes with very few insertions tend to have greater estimated

variance in fitness scores and thus have T-statistics with smaller absolute values. The fitness

scores for these two insertions in MET8 were not inconsistent with its expected function in

methionine synthesis, however. We also noted that though the transulfuration pathway and

MET17 were dispensable on non-supplemented media, RTO4_15248 and RTO4_12031

(orthologs of A. nidulans cysA and cysB) were required for robust growth, suggesting sulfur

uptake occurs primarily through cysteine. The mitochondrial ornithine transporter ORT1 was

also required for arginine prototrophy, but AGC1 was not, suggesting alternative routes for

glutamate transport.

K-means clusters of fitness scores on fatty acids
Cluster FA1 consists of 21 genes for which mutants had consistent growth defects across all

three fatty acids. These genes included three mitochondrial beta-oxidation enzymes; the acyl-

CoA dehydrogenase RTO4_14070 (ortholog of Homo sapiens ACADSB), the enoyl-CoA

hydratase RTO4_14805 (ortholog of H. sapiens ECHS1), and the hydroxyacyl-CoA

dehydrogenase RTO4_11203 (ortholog of H. sapiens HADH). Also included were the

electron transfer flavoprotein subunit AIM45 and the electron transfer flavoprotein

dehydrogenase CIR2, likely reflective of their known roles as an electron acceptor for acyl-CoA

dehydrogenases (Izai et al., 1992). The carnitine O-acetyltransferase CAT2 (involved in fatty-

acyl-CoA transfer in the mitochondria [Strijbis et al., 2010]) and PEX11 (involved in

peroxisome division and possibly interaction between peroxisomes and mitochondria

[Mattiazzi Ušaj et al., 2015]) were also in cluster FA1. Rounding out cluster FA1 were nine

genes with likely roles in gluconeogenesis, glucose homoeostasis and/or growth on non-

preferred carbon sources (FBP1, RTO4_14162 (ortholog of ICL1), MLS1, GLG1, MRK1, SNF1,

SNF3, SNF4, RTO4_11412 (similar to SWI1); two genes involved in mitochondrial amino acid

metabolism (PUT2 and AGC1); the peroxidase RTO4_10811 (ortholog of CCP1); and

RTO4_12955, a LYRM domain-containing protein with likely roles in mitochondrial electron

transport (Angerer, 2013).

Clusters FA2 through FA7 were comprised of 108 genes for which mutants had stronger

fitness defects on one or two fatty acids, primarily genes with stronger defects on

methylricinoleic acid and ricinoleic acids (FA2 and FA3, 55 genes) or on ricinoleic acid only

(FA4 and FA5, 30 genes). These clusters were comprised of genes with predicted roles in

various aspects of cellular homeostasis including amino acid metabolism, glycogen
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metabolism, phospholipid metabolism, protein glycosylation, the mitochondrial electron

transport chain, and 17 genes with no well-characterized homologs. See Supplementary file 2

for a complete list. Clusters FA2 and FA7 also included 10 genes predicted to play direct roles

in peroxisomal beta-oxidation, however. Cluster FA2 (stronger defect on methylricinoleic and

ricinoleic acid) included RTO4_10408 (ortholog of H. sapiens ACAD11), RTO4_14567 (similar

to H. sapiens ACAD11), acyl-CoA oxidase RTO4_12742 (ortholog of POX1), and RTO4_8673

(similar to PEX11). Cluster FA7 (stronger defect on oleic acid) included 3-ketoacyl-CoA thiolase

RTO4_13813 (ortholog of POT1), enoyl-CoA hydratase RTO4_11907 (ortholog of H. sapiens

ECH1), 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase FOX2, predicted acyl-CoA

dehydrogenase RTO4_8963, and peroxisomal signal receptors PEX7 and RTO4_13505 (similar

to PEX5).

BODIPY 493/503 and buoyancy as measures of lipid
content in R. toruloides
Under carbon-replete growth conditions in which nitrogen, sulfur, or phosphorus are limiting,

R. toruloides accumulates up to 70% of its dry weight in neutral lipids (Wu et al., 2011;

Wu et al., 2010; Wiebe et al., 2012; Li et al., 2007). These lipids are stored as

triacylglycerides (TAG) in specialized organelles called lipid droplets (reviewed in [Walther and

Farese, 2012; Farese and Walther, 2009; Fujimoto and Parton, 2011]) (R. toruloides lipid

droplets visualized in Figure 4A). BODIPY staining has been used extensively to label lipids

and we find that in R. toruloides cultures, average cellular BODIPY signal correlates well with

total fatty acid methyl ester content as quantified using gas chromatography with flame

ionization detection (Figure 4—figure supplement 1). Because lipid droplets have lower

density than most cell components, as cells accumulate large lipid droplets, they become

more buoyant (Figure 4—figure supplement 2).

Normalization and statistical treatment of BODIPY
measurements on targeted deletion strains
As we had no a priori estimate of how enrichment scores in FACS and buoyancy experiments

would transfer to effect sizes on BODIPY signal in pure culture, we took a pragmatic approach

to our validation experiments. We found that average BODIPY signal for a given strain could

vary by as much as 2-fold between experiments on different days. Variation was typically lower

between biological replicates performed on the same day, however, with standard deviation

typically around 10–20% of the average signal (see Supplementary file 2 for raw BODIPY

averages for all samples). To minimize these batch effects, we normalized each culture’s

average BODIPY signal to the BODIPY signal averaged across three biological replicates of

the parental YKU70D strain grown and processed at the same time as the given culture of a

targeted deletion mutant. For each mutant we processed at least six biological replicates

cultured in at least two different experiments (cultured and processed on different days). A

post-hoc power analysis of this strategy using published power analysis software (Faul et al.,

2007) calculated that for a six-sample comparison with our observed variance, a one-sided

T-test with a significance threshold of p=0.05 should have a 95% confidence of detecting a

1.6-fold difference in BODIPY signal. Increasing sample size to 9 or 12 replicates would lower

this detection threshold to 1.5-fold or 1.4-fold, respectively see Supplementary file 2). While

the considerable variation we observed between cultures limits the sensitivity of our analysis,

our candidate strains had sufficiently strong phenotypes such that 18 of our 21 strains from

our high confidence clusters of enrichment scores nonetheless had significantly altered

BODIPY signal.

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 49 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.32110


Detailed summary of mutants with altered lipid
accumulation in R. toruloides

Mutants with increased lipid accumulation
Mutants in several homologs of known signaling genes had increased lipid accumulation,

depicted in Figure 6 under ‘G Protein Switches’, ‘Kinases and Phosphatases’, and ‘Gene

Expression’. Three GTPases, a GTPase-activating protein (GAP) and two guanine nucleotide

exchange factors (GEFs) were in cluster LA1, along with two orthologs of BMH1. BMH1 is a

14-3-3 family protein, involved in G protein signaling, the RAS/MAPK signaling cascade, and

many other processes (Roberts et al., 1997; Gelperin et al., 1995). The genes encoding

calcineurin complex were also in this cluster as was another protein phosphatase and two

protein kinases. Four genes with predicted roles in histone modification were included in

cluster LA1 along with three transcription factors and the RNA splicing factor CBC2, which is

involved in mRNA processing and degradation (Das et al., 2000).

Mutants in ten genes with likely roles in protein modification, protein trafficking or other

processes in the ER and Golgi led to increased lipid accumulation (Figure 6). These genes

included three cargo adapter proteins, GPI anchor modifying protein BST1, the GTPase RAS1

(which has been implicated in regulation of vesicular trafficking), and three probable

glycosyltransferases. These results show that protein trafficking plays an important role in lipid

accumulation in R. toruloides, as has been shown in other systems (Gao and Goodman, 2015;

Beller et al., 2008; Zappa et al., 2017), though different ensembles of trafficking proteins

may be involved in different species.

Disruption of sulfur assimilation also increased lipid accumulation, with five genes involved

in sulfate conversion to sulfide clustering in LA1. The cysteine synthase cysB was also in this

cluster, though cysBD mutants did not have significantly increased lipid accumulation in our

flow cytometry assay. A MET14D mutant had significantly increased lipid content as expected

(Figure 5B). In general, the sulfate assimilation mutants had reduced growth in low nitrogen

conditions, as indicated by negative fitness scores for pre-enrichment control samples

(Supplementary file 2). As expected, the auxotrophic mutants identified in our

supplementation experiments also had compromised growth in low nitrogen conditions,

though the phenotype was generally less severe, likely reflective of slower growth of the

population generally. However, slower growth due to auxotrophy was not predictive of higher

enrichment scores even for MET2, MET6, MET12, and MET13, which are required for

methionine synthesis but not sulfate incorporation through cysteine (Figure 2—figure

supplement 2A). These data suggest that cysteine or intermediate sulfur compounds in the

assimilation of sulfate to sulfide may be involved in regulation of lipid accumulation.

Mutants with decreased lipid accumulation
We found evidence that tRNA thiolation plays a role in lipid accumulation in R. toruloides.

Enrichment scores for six genes known to be important in the thiolation of tRNA wobble

residues (Huang et al., 2008) clustered together in LA7. Though these mutants also had

apparent buoyancy phenotypes on YPD, two deletion strains (NCS6D and NCS2D) had

reduced lipid content in pure culture (Figure 5C). Furthermore, we observed that for

orthologs of S. cerevisiae genes with measured tRNA thiolation levels (Huang et al., 2008), a

decrease in tRNA thiolation corresponded to a lower enrichment score (Figure 5—figure

supplement 1). Modification of tRNA wobble positions has been implicated in regulation of

gene expression in response to heat shock (Damon et al., 2015) and sulfur availability

(Laxman et al., 2013). Our observations suggest that in R. toruloides the refactoring of the

proteome for efficient lipid accumulation requires fully functional tRNA thiolation. The role

that tRNA thiolation plays in this metabolic transition is unclear and deserves more detailed

study.

Efficient lipid accumulation also required the regulatory action of orthologs to the H.

sapiens GTPase Rab6 and the guanine nucleotide exchange factor RGP1, nine protein kinases,

three phosphatases or their binding partners. These genes are likely involved in signaling
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pathways mediating nutrient state. They include four genes with orthologs implicated in the

regulation of glucose and glycogen metabolism (VHS1, HRK1, GLC7 and KIN1) and four genes

with orthologs involved in regulation of nitrogen catabolism (PPH3, PSY2, SCH9, and ATG1).

Mutants in nine core components of autophagy were deficient for lipid accumulation. The

vacuolar protease PRB1 and SIS1 (chaperone mediating protein delivery to the proteasome)

were also required for efficient lipid accumulation, as were six genes implicated in protein

ubiquitination (Table 2). Ubiquitination can affect many aspects of gene function, but likely

most of these genes participate in regulation of proteolysis. These results show that

autophagy and recycling of cellular components are important for efficient lipid accumulation

in R. toruloides and provide direct genetic evidence for a previous observation that chemical

inhibition of autophagy using 3-methyladenine reduced lipid accumulation in the oleaginous

yeast Y. lipolytica (Qiao et al., 2015).

While most genes encoding enzymatic steps in fatty acid and TAG biosynthesis had too few

insertions to calculate reliable enrichment scores (many are probable essential genes, see

Supplementary file 1), mutants in six genes with predicted function in TAG synthesis resulted

in lower lipid accumulation (see Figure 6—figure supplement 1). Three of these genes

directly mediated reactions in TAG synthesis: RTO4_12154, RTO4_11043, and DGA1.

RTO4_12154 is one of two R. toruloides GPD1 orthologs predicted to convert

dihydroxyacetone phosphate (DHAP) into glycerol-3-phosphate (G3P) (Overkamp et al.,

2000). RTO4_11043 is a distant homolog of H. sapiens BSCL2 (seipin), which modulates the

activity of G3P acyltransferase in nascent lipid droplets (Pagac et al., 2016). DGA1 catalyzes

conversion of diacylglyceride into TAG (Sorger and Daum, 2002). Three more genes were

more peripherally involved in TAG biosynthesis: ACS1, YEF1, and GUT2. ACS1, which encodes

acetyl-CoA synthetase (De Virgilio et al., 1992), may supplement production of cytosolic

acetyl-CoA from acetate. YEF1, encodes an NADH kinase that converts cytosolic NADH to

NADPH (Shi et al., 2005). GUT2 converts G3P to DHAP and participates in the G3P shuttle for

transfer of electrons from cytosolic NADH to mitochondrial NADH (Overkamp et al., 2000).

Conversely, mutations in NDE1 (encoding an alternative enzyme for cytosol/mitochondrial

NADH exchange and known to affect activity of Gut2 [Påhlman et al., 2002]) had an apparent

increase in lipid accumulation. In sum, our fitness data are consistent with the known

importance of the precursors acetyl-CoA, G3P, and NADPH for TAG biosynthesis. However,

the interactions of NADH transfer and glycerol metabolism in R. toruloides deserve more

detailed study, as our results stand in contrast to observations in Y. lipolytica that GUT2

mutants had increased lipid accumulation (Dulermo and Nicaud, 2011).

RTO4_16381, a distant homolog of H. sapiens PLIN1 (perilipin), was also essential for high

lipid accumulation, consistent with its homolog’s known roles in lipid body maintenance and

regulation of triglyceride hydrolysis (Bickel et al., 2009). Our data are in accordance with

previous observations that protein RTO4_16381 (previously named Lpd1) localized to lipid

droplets in R. toruloides and that a GFP fusion construct localized to lipid droplets when

heterologously expressed in S. cerevisiae (Zhu et al., 2015). RTO4_16381 is depicted as

localized to the lipid droplet in Figure 6, along with 11 other lipid droplet-associated proteins

with high confidence lipid accumulation phenotypes or consistent fitness defects on fatty

acids. The products of these genes were observed in proteomic analysis of R. toruloides lipid

droplets by Zhu et al. (Zhu et al., 2015), except for RTO4_11043 (similar to human BSCL2) and

DGA1 which have been localized to the lipid droplet in many other species (Pagac et al.,

2016; Salo et al., 2016; Grillitsch et al., 2011; Athenstaedt et al., 2006).

Genes affecting cytosolic NADPH concentrations
Rhodosporidium toruloides has two predicted malic enzymes, RTO4_12761 and RTO4_13917,

which could theoretically provide NADPH for fatty acid synthesis. Their specificities for NAD+

versus NADP+, are unknown but RTO4_12761 is more closely related to the NADP-specific

malic enzyme from Mucor circinelloides (Zhang et al., 2007b) and Zhu et al. measured

increased protein for RTO4_12761 in nitrogen-limited conditions (Zhu et al., 2012). Neither

gene had high confidence enrichment scores in our lipid accumulation assays. We mapped
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very low insertion density in the major enzymes of the pentose phosphate pathway (the

primary source for NADPH in Y. lipolytica [Wasylenko et al., 2015]) in our pool, suggesting it

was essential in our library construction conditions. As such, the primary source of NADPH in

R. toruloides remains unconfirmed. Our data are consistent with recent predictions from a

simplified metabolic model for R. toruloides that during lipid production from glucose, the

pentose phosphate pathway should account for greater metabolic flux and NADPH

production than malic enzyme (Bommareddy et al., 2015).

YEF1 may also increase the supply of NADPH by phosphorylation of NADH, but

presumably this reaction could only play a significant role in fatty acid synthesis if NADP+ is

efficiently converted to NAD+ for reduction by NAD(+)-dependent enzymes. NADPH

phosphatase activity has been observed for inositol monophosphatases of archaea

(Fukuda et al., 2007), but these activities have not been well explored in fungal species.

Alternatively, YEF1 may be required for efficient lipid accumulation simply because in its

absence the total cytosolic NADPH concentration is too low for efficient fatty acid synthesis,

regardless of the balance between NADP+ and NADPH.

Detailed discussion of processes affecting lipid
accumulation in R. toruloides

Organelle interactions and protein localization
Long regarded as essentially inert spheres of lipid, eukaryotic lipid droplets have of late come

to be recognized as complex, dynamic, organelles with unique proteomic content and

regulated interaction with other organelles (Walther and Farese, 2012; Farese and Walther,

2009; Gao and Goodman, 2015). In animal cells, seipin (H. sapiens BSCL2) is thought to

mediate lipid droplet nucleation from the ER (Wang et al., 2016; Szymanski et al., 2007). The

BSCL2 homolog SEI1 was found to have conserved function in S. cerevisiae and H. sapiens

BSCL2 functionally complemented a SEI1D mutant. Cells with abnormally small and abnormally

large lipid droplets were also reported in an SEI1D mutant (Salo et al., 2016). We found

evidence that the closest R. toruloides homolog for BSCL2 (RTO4_11043) has conserved

function, as deletion mutants had quantitatively lower TAG content (as measured by flow

cytometry) and qualitatively more cell-to-cell variation in lipid droplet sizes (by microscopy)

than control strains. Perilipins (H. sapiens PLIN1-5) act as gatekeepers to the lipid droplet,

regulating access by lipases (Bickel et al., 2009) and possibly mediating interaction with

mitochondria (Mason and Watt, 2015). Accordingly, we found that mutants for an R.

toruloides perilipin homolog had reduced lipid accumulation. Protein trafficking between the

ER and Golgi has been implicated in lipid droplet accumulation in D. melanogaster, specifically

COPI retrograde transport is necessary to limit storage in lipid droplets (Beller et al., 2008).

We found that disruption of ERP1, ERP2, EMP24, or BST1 (implicated in ER to Golgi transport

in COPII vesicles [Castillon et al., 2011; Tanaka et al., 2004]) led to increased lipid

accumulation. It is unclear at this time if COPI and COPII have different functions in lipid body

formation across different eukaryotes, or if differing components of ER to Golgi trafficking are

more critical when lipids are synthesized de novo from glucose or incorporated from

exogenous fatty acids (Beller et al. [Beller et al., 2008] cultured D. melanogaster cells on oleic

acid to maximize lipid droplet size). Increased lipid accumulation in mutants with defective

COPII trafficking might also be a function of impaired protein quality control (Fujita et al.,

2006). H. sapiens DNAJC3 is implicated in regulation of the unfolded protein response by

controlling elongation factor two phosphorylation (van Huizen et al., 2003). The DNAJC3

ortholog RTO4_14088 was a high confidence candidate for decreased accumulation as well.

These data are consistent with a hypothesis that interaction between protein sorting, quality

control and the unfolded protein response play a role in regulating lipid accumulation through

modulation of protein translation. Alternatively, delivery of specific proteins to the lipid

droplet via the vesicular trafficking system may be critical to lipid droplet growth and

maintenance, or the effects of mutations in the endomembrane network on the lipid droplet

may arise from redirection of carbon flux through membrane lipids.

Coradetti et al. eLife 2018;7:e32110. DOI: https://doi.org/10.7554/eLife.32110 52 of 55

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.32110


G protein and kinase signaling cascades
We identified 28 genes with high-confidence roles in lipid metabolism that are homologous to

genes implicated in G protein–coupled kinase signaling cascades, including Rac, Ras and Rab

family G proteins. Rab GTPases are implicated in several aspects of vesicular traffic

(Hutagalung and Novick, 2011) and are also thought to mediate droplet fusion and

interaction with endosomes (Gao and Goodman, 2015). Several Rab family members have

been identified in lipid droplets in R. toruloides, S. cerevisiae, D. melanogaster, and mammals,

though their functional roles there remain unclear. 14-3-3 family proteins are known to affect

several cellular processes (Wilson et al., 2016) including protein trafficking (Bajaj Pahuja

et al., 2015) and modulate activity of both G proteins (Riou et al., 2013) and kinases

(Roberts et al., 1997). Rac and Ras G proteins have diverse roles in regulating the actin

cytoskeleton, cell proliferation, cell cycle progression and polarity (Goitre et al., 2014) and

tend to localize to cell membranes, interacting with lipid kinases and transmembrane

receptors (Campa et al., 2015). Likely both Rac1 and Ras1 interact directly with the lipid

body, as Rac1 was detected in R. toruloides lipid droplets during nitrogen starvation

(Zhu et al., 2015) and the Ras1 ortholog Ras85D was detected in D. melanogaster lipid

droplets (Krahmer et al., 2013b). We were unable to quantify fitness scores for RHO1, but

that G protein was also found associated with lipid droplets in R. toruloides (Zhu et al., 2015)

and S. cerevisiae (Bouchez et al., 2015). Undoubtedly these G proteins and downstream

kinases function in a complex network of specific interactions, likely with considerable

rearrangement of interactions from those observed in other species (Choi et al., 2015;

Nikolaou et al., 2009; Hagiwara et al., 2016). Mapping these signaling networks in R.

toruloides will require significant effort, but deep regulatory understanding will likely be

required to truly optimize engineered pathways in any oleaginous yeast.

Autophagy and protein turnover
In mammalian and fungal cells, inhibition of autophagy has been reported to both decrease

(Rambold et al., 2015; Singh et al., 2009a; Shibata et al., 2009; Shibata et al., 2010) and

increase (Singh et al., 2009b; Ouimet et al., 2011) lipid content. These discrepancies may be

reflective of competing roles in fatty acid mobilization from lipid droplets and lipid droplet

biogenesis, with different processes dominating in different cell types and under different

conditions. Mechanisms of fatty acid mobilization have been proposed involving a

macroautophagy-like process called lipophagy (Singh et al., 2009b; Ouimet et al., 2011), a

microautophagy-like process (microlipophagy) (van Zutphen et al., 2014; Seo et al., 2017),

and autophagy-independent lipolysis (Rambold et al., 2015; Dupont et al., 2014;

Maeda et al., 2017). Why autophagy might be necessary for lipid droplet biogenesis is less

clear, but autophagy-dependent recycling of membrane lipids to the lipid body has been

demonstrated in mouse hepatocytes (Rambold et al., 2015). Conversely, autophagy was also

inhibited when TAG hydrolysis was impaired in HeLa cells (Dupont et al., 2014) and when

TAG synthesis or hydrolysis was blocked in S. cerevisiae (Shpilka et al., 2015) suggesting that

these processes influence each other in a bi-directional manner. In both Y. lipolytica and R.

toruloides several autophagy genes were transcriptionally induced under nitrogen starvation,

coincident with lipid accumulation (Zhu et al., 2012; Qiao et al., 2015). Further, in Y.

lipolytica, chemical inhibition of autophagy strongly reduced lipid accumulation (Qiao et al.,

2015). In S. cerevisiae deletion of ATG8 reduced lipid content, but that effect was lipolysis-

dependent and ATG3, ATG4, and ATG7 mutants were unchanged in lipid content

(Maeda et al., 2017).

Our findings demonstrated that autophagy was required for robust lipid accumulation in R.

toruloides. While we cannot rule out a more direct role in lipid droplet growth and

maintenance, a simple theory for this requirement is that autophagy is required for extensive

recycling of cellular resources during lipid accumulation. Not only were several core

components of autophagy necessary, but also the vacuolar proteases, and several proteins

with predicted function in ubiquitination of proteins for proteosomal degradation. The
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methylcitrate cycle was required for robust lipid accumulation, which may be reflective of its

proposed role in threonine recycling (Luttik et al., 2000) or metabolism of propionyl-CoA

from released odd-chained fatty acids (Tabuchi and Serizawa, 2014). How and why the role

of autophagy in lipid droplet development varies by species and condition remains an open

question, but R. toruloides is an attractive species in which to explore and answer those

questions.

Amino acid biosynthesis and lipid accumulation
We also noted that disruption of several amino acid biosynthesis genes, particularly genes

involved in sulfate assimilation into cysteine led to increased lipid production. These data are

consistent with the repression of amino acid biosynthesis genes observed in R. toruloides

(Zhu et al., 2012) and other oleaginous fungi (Kerkhoven et al., 2016) in nutrient limited

conditions. Notably, mutants for genes involved in methionine biosynthesis but not required

for sulfate assimilation did not have enrichment scores reflective of increased lipid

accumulation, nor did several arginine biosynthesis genes, or other auxotrophic mutants such

as insertions in PHA2 or ADE5. Mutants for ARG1 had higher lipid content, but other mutants

in the arginine pathway either had mixed results between the buoyancy and FACS assays

(ARG5 and ARG7), T-statistics below our thresholds (ARG2, ARG7, and ARG8) or showed no

sign of increased lipid content (CPA1, CPA2, and ARG3). These discrepancies suggest that the

increased lipid accumulation observed for some mutants may not be simply attributable to

redirection of carbon flux from amino acid biosynthesis, but might be the result of active

regulation in response to specific amino acids or metabolic intermediates. The transcriptional

and proteomic response during nitrogen limitation in these mutants warrants deeper study.

tRNA thiolation, protein expression and carbon flux in nutrient
limited conditions
Post-translational modification of tRNAs has long been known to be critical for efficient

protein translation in general (Agris et al., 2007), but in recent years thiolation of the U34

base on tRNAs for lysine (UUU), glycine (UUG), and glutamate (UUC) has been recognized to

play an important role in fungal metabolic regulation generally (Zinshteyn and Gilbert, 2013)

and particularly in response to stress such as nutrient limitation (Laxman et al., 2013;

Hopper and Phizicky, 2003) and heat shock (Damon et al., 2015). In S. cerevisiae, defects in

tRNA thiolation significantly alter protein expression for a large number of genes, but the

mechanism of that change is disputed. Both transcriptional (Zinshteyn and Gilbert, 2013) and

translational (Laxman et al., 2013) mechanisms have been proposed. A commonality in these

studies, however, is the altered expression of genes related to amino acid biosynthesis,

protein expression and carbon metabolism. We found that any disruption in the URM1/

elongator complex or tRNA thiolation process reduced lipid accumulation in our experimental

conditions. The dramatic metabolic changes entailed in lipid accumulation under nutrient

limitation may make for an informative framework in which to explore the mechanisms by

which tRNA thiolation interacts with cellular metabolism.

Cell-to-cell variation in lipid accumulation
We noted extreme cell-to-cell variation in total lipid content in wild-type and mutant strains.

This variation was evident in BODIPY fluorescence intensities that varied over at least an order

of magnitude within any given sample (Figure 4—figure supplement 2) and a wide range of

lipid droplet sizes visible in microscopy images (Figure 7). Extreme variation in lipid

accumulation is typical across eukaryotes, and has emerged as a useful paradigm to explore

phenotypic diversity within isogenic populations (Gocze and Freeman, 1994; Herms et al.,

2013; Krismer et al., 2017; Vasdekis et al., 2015; Vasdekis et al., 2017). Our results indicate

that R. toruloides may make a convenient system to dissect the genetic basis of single-cell

phenotypic variation.
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