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Single-exposure visual memory judgments
are reflected in inferotemporal cortex
Travis Meyer, Nicole C Rust*

Department of Psychology, University of Pennsylvania, Philadelphia, United States

Abstract Our visual memory percepts of whether we have encountered specific objects or

scenes before are hypothesized to manifest as decrements in neural responses in inferotemporal

cortex (IT) with stimulus repetition. To evaluate this proposal, we recorded IT neural responses as

two monkeys performed a single-exposure visual memory task designed to measure the rates of

forgetting with time. We found that a weighted linear read-out of IT was a better predictor of the

monkeys’ forgetting rates and reaction time patterns than a strict instantiation of the repetition

suppression hypothesis, expressed as a total spike count scheme. Behavioral predictions could be

attributed to visual memory signals that were reflected as repetition suppression and were

intermingled with visual selectivity, but only when combined across the most sensitive neurons.

DOI: https://doi.org/10.7554/eLife.32259.001

Introduction
The everyday act of viewing the things around us leaves us with memories of the things that we have

encountered. Under the right conditions, this type of ‘visual recognition memory’ can be quite

remarkable. For example, after viewing thousands of images, each only once and only for a few sec-

onds, we can determine with high accuracy the specific images that we have viewed (Brady et al.,

2008; Standing, 1973). Additionally, we can remember not just the objects that we’ve seen, but

also the specific configurations and contexts we saw them in (Brady et al., 2008), suggesting that

our brains store these memories with considerable visual detail. Where and how are visual memories

stored and where and how is the percept of visual memory signaled?

One candidate mechanism for signaling visual memory percepts is the adaptation-like response

reduction that occurs in high-level visual brain areas with stimulus repetition, known as ‘repetition

suppression’ (Fahy et al., 1993; Li et al., 1993; Miller and Desimone, 1994; Riches et al., 1991;

Xiang and Brown, 1998). Consistent with that proposal, individual viewings of a novel image pro-

duce response reductions in inferotemporal cortex (IT) that can last tens of minutes to hours

(Fahy et al., 1993; Xiang and Brown, 1998). Signaling visual memories in this way is attractive from

a computational perspective, as it could explain how IT supports visual identity and visual memory

representations within the same network. That is, insofar as visual representations of different

images are reflected as distinct patterns of spikes across the IT population (Figure 1; DiCarlo et al.,

2012; Hung et al., 2005), this translates into a population representation in which visual information

is reflected by the population vector angle (Figure 1). If it were the case that visual recognition

memories were reflected by changes in the total numbers of spikes or equivalently population

response vector length, this could minimize interference when superimposing visual memories and

visual identity representations within the same network (Figure 1).

While attractive, there are also reasons to question whether visual memory percepts manifest

purely as repetition suppression in IT cortex. For example, following many repeated image expo-

sures (e.g. hundreds to thousands), IT neurons exhibit tuning sharpening (Anderson et al., 2008;

Freedman et al., 2006), and a subset of neurons reflect tuning peak enhancement (Lim et al., 2015;

Woloszyn and Sheinberg, 2012), and these changes could happen during single-exposure memory
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as well. Similarly, in the case of highly familiar images, neurons in a brain area that lie beyond IT,

perirhinal cortex, are reported to signal familiarity with increases (as opposed to decreases) in firing

rate (Tamura et al., 2017) and highly familiar faces produce larger perirhinal fMRI BOLD responses

as compared to faces that are unfamiliar (Landi and Freiwald, 2017). In humans, tests of the hypoth-

esis that limited-exposure visual memory percepts are supported by repetition suppression signals

have produced mixed results, with some studies providing support (Gonsalves et al., 2005; Turk-

Browne et al., 2006) and others refuting the hypothesis (Ward et al., 2013; Xue et al., 2011). Addi-

tionally, studies have implicated factors beyond overall response strength in limited-exposure famil-

iarity, including the repeatability of human fMRI response patterns across exposures

(LaRocque et al., 2013; Xue et al., 2010) and synchronization between gamma band oscillations

and spikes in monkey hippocampus (Jutras et al., 2013). Notably, while a number of studies have

investigated limited-exposure repetition suppression effects in IT at the resolution of individual-units

(De Baene and Vogels, 2010; Li et al., 1993; McMahon and Olson, 2007; Ringo, 1996;

Sawamura et al., 2006; Verhoef et al., 2008; Xiang and Brown, 1998), no study to date has

attempted to determine whether these putative visual memory signals can in fact account for visual

memory behaviors.

To evaluate the hypothesis that repetition suppression in IT accounts for familiarity judgments

during a visual memory task, we trained two monkeys to view images and report whether they were

novel (had never been seen before) or were familiar (had been seen exactly once), across a range of

delays between novel and familiar presentations. To explore the IT representation of visual memory

on both correct and error trials, we parameterized the task such that visual memories were remem-

bered over a timescale of minutes within experimental sessions that lasted approximately one hour.

We found that while both monkeys displayed characteristic forgetting functions and reaction time

patterns, these behavioral patterns were not well-predicted by a spike count decoder that embodied

the strictest interpretation of the repetition suppression hypothesis. These behavioral patterns were

eLife digest As we go about our daily lives, we store visual memories of the objects and scenes

that we encounter. This type of memory, known as visual recognition memory, can be remarkably

powerful. Imagine viewing thousands of images for only a few seconds each, for example. Several

days later, you will still be able to distinguish most of those images from previously unseen ones.

How does the brain do this?

Visual information travels from the eyes to an area of the brain called visual cortex. Neurons in a

region of visual cortex called inferotemporal cortex fire in a particular pattern to reflect what is

being seen. These neurons also reflect memories of whether those things have been seen before, by

firing more when things are new and less when they are viewed again. This decrease in firing, known

as repetition suppression, may be the signal in the brain responsible for the sense of remembering.

Meyer and Rust have now tested this idea by training macaque monkeys to report whether

images on a screen were new or familiar. The monkeys were very good at remembering the images

they had seen more recently, although they tended to forget some of the images with time. Then,

the rate at which the monkeys forgot the images was compared with the rate at which repetition

suppression disappeared in inferotemporal cortex. The results showed that the total number of

firing events in this region was not a great predictor of how long the monkeys remembered images.

However, a decrease in the number of firing events for a particular subset of the neurons did predict

the remembering and forgetting. Repetition suppression in certain inferotemporal cortex neurons

can thus account for visual recognition memory.

Brain disorders and aging can both give rise to memory deficits. Identifying the mechanisms

underlying memory may lead to new treatments for memory-related disorders. Visual recognition

memory may be a good place to start because of our existing knowledge of how the brain

processes visual information. Understanding visual recognition memory could help us understand

the mechanisms of memory more broadly.

DOI: https://doi.org/10.7554/eLife.32259.002
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better accounted for by a linear read-out that

weighted each neuron proportional to the

amount of visual memory information reflected in

its responses.

Results

The single-exposure visual memory
task
While compelling, the robustness with which

visual memories are stored also presents a chal-

lenge to investigating their underlying neural cor-

relates. Ideally, investigations of the neural

signals supporting a behavior are made in a con-

text where a task is parametrically varied from

easy-to-challenging, and one can evaluate the

degree to which behavioral sensitivities and

behavioral confusions are reflected in neural

responses (Parker and Newsome, 1998). Follow-

ing on visual recognition memory studies that

demonstrate a relationship between the time that

images are viewed and how well they are remem-

bered (Brady et al., 2009; Potter and Levy,

1969), we increased task difficulty by reducing

image viewing time from the 2–3 s used in the

classic human visual recognition memory studies

to 400 ms. To titrate task difficulty within this

regime, we explored a range of delays between

novel and repeated presentations.

In these experiments, two monkeys performed

a task in which they viewed images and indicated

whether they were novel or familiar with an eye

movement response. Monkeys initiated each trial

by fixating a point at the center of the screen, and this was followed by a brief delay and then the

presentation of an image (Figure 2a). After 400 ms of fixating the image, a go cue appeared, indi-

cating that the monkeys were free to make their selection via a saccade to one of two response tar-

gets (Figure 2a). Correct responses were rewarded with juice. While the first image presented in

each session was always novel, the probability of subsequent images being novel versus familiar

quickly converged to 50%. Novel images were defined as those that the monkeys had never viewed

before (in the entire history of training and testing) whereas familiar images were those that had

been presented only once, and earlier in the same session. A representative set of images can be

found in Figure 2—figure supplement 1. Delays between novel and familiar presentations

(Figure 2b) were pseudorandomly selected from a uniform distribution, in powers of two (n-

back = 1, 2, 4, 8, 16, 32 and 64 trials corresponding to mean delays of 4.5 s, 9 s, 18 s, 36 s, 1.2 min,

2.4 min, and 4.8 min, respectively). To prevent confusion, we emphasize that our usage of the term

‘n-back’ refers to the numbers of trials between novel and familiar presentations, in contrast to the

usage of this term in other studies that required a same/different comparison between the current

stimulus and a stimulus presented a fixed number of trials back (e.g. 2-back) in a block design (e.g.

Cornette et al., 2001).

The monkeys’ performance on this task was systematic, as illustrated by smoothly declining ‘for-

getting functions’, plotted as the proportion of trials that images were reported familiar as a function

of n-back (i.e. the number of trials between novel and familiar presentations; Figure 3a,c). When

familiar images were immediately repeated (n-back = 1), both monkeys most often called them

familiar (proportion chose familiar = 0.98 and 0.94; Figure 3a,c). Similarly, when images were novel,

monkeys were unlikely to call them familiar (proportion chose familiar = 0.13 and 0.07; Figure 3a,c).
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Figure 1. Multiplexing visual and visual memory

representations. Shown are the hypothetical population

responses to two images (A and B), each presented as

both novel and familiar, plotted as the spike count

response of neuron 1 versus neuron 2. In this scenario,

visual information (e.g. image or object identity) is

reflected by the population response pattern, or

equivalently, the angle that each population response

vector points. In contrast, visual memory information is

reflected by changes in population vector length (e.g. a

multiplicative rescaling with stimulus repetition).

Because visual memory does not impact vector angle

in this hypothetical scenario, superimposing visual

memories in this way would mitigate the impact of

single-exposure plasticity on the underlying perceptual

representation.
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Meyer and Rust. eLife 2018;7:e32259. DOI: https://doi.org/10.7554/eLife.32259 3 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.32259.003
https://doi.org/10.7554/eLife.32259


Between these two extremes, the proportion of familiar reports systematically decreased as a func-

tion of n-back (Figure 3a,c). In monkey 1, performance at 32 and 64 back fell below chance (32-

back = 0.46, 64-back = 0.27, chance = 0.50), indicating that this animal most often reported that

familiar images repeated after these longer delays were novel (Figure 3a). In monkey 2, perfor-

mance at 32 and 64 back remained above chance (32-back = 0.76, 64-back = 0.54), indicating higher

performance in this animal as compared to monkey 1 (Figure 3c).

We also analyzed reaction times for novel and familiar trials, parsed by correct and error trial out-

comes. Reaction times were measured relative to the onset of the go cue (which appeared 400 ms

after stimulus onset). We found that mean reaction times on correctly reported familiar trials system-

atically increased as a function of n-back, or equivalently, reaction times on correct trials increased

with increasing difficulty (Figure 3b,d red). Conversely, reaction times on error trials decreased as a

function of n-back, or equivalently, reaction times on error trials decreased with increasing difficulty

(Figure 3b,d, cyan). In both animals, this led to an x-shaped pattern in the mean reaction times on

Figure 2. Single-exposure visual memory task. In this task, monkeys viewed images and reported whether they

were novel (i.e. had never been encountered before) or were familiar (had been encountered once and earlier in

the same session) across a range of delays between novel and repeated presentations. (a) Each trial began with

the monkey fixating for 200 ms. A stimulus was then shown for 400 ms, followed by a go cue, reflected by a

change in the color of the fixation dot. Targets, located above and below the image, were associated with novel

and familiar selections, and differed for each monkey. The image remained on the screen until a fixation break was

detected. Successful completion of the trial resulted in a juice reward. (b) Example sequence where the upward

target was associated with novel images, and the downward target with familiar images. Familiar images were

presented with n-back of 1, 2, 4, 8, 16, 32, and 64 trials, corresponding to average delays of 4.5 s, 9 s, 18 s, 36 s,

1.2 min, 2.4 min, and 4.8 min, respectively. Additional representative images can be found in Figure 2—figure

supplement 1.

DOI: https://doi.org/10.7554/eLife.32259.004

The following figure supplement is available for figure 2:

Figure supplement 1. Representative images used in the experiment, sampled from http://commons.wikimedia.

org/wiki/Main_Page under the Creative Commons Attribution 4.0 International Public License https://

creativecommons.org/licenses/by/4.0/.
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familiar trials when plotted as a function of n-back. On novel trials, reaction times mimicked the pat-

tern observed for the low n-back familiar cases in that reaction times were faster on correct as com-

pared to error trials (Figure 3b,d).

From what underlying process might these x-shaped reaction time patterns arise? As is the case

for nearly any task, behavioral performance can be thought of as the outcome of passing a signal (in

this case a memory signal) through a decision process. The x-shaped patterns that we observed dif-

fer from the patterns reported for tasks that are well-accounted for by the standard drift diffusion

model (DDM) of decision making, such as the dot-motion-direction task (Gold and Shadlen, 2007).

In agreement with standard DDM predictions, reaction times on correct trials increased as task per-

formance decreased (i.e. with n-back). However, reaction times on error trials decreased with n-back

whereas the standard DDM predicts that reaction times will be matched on correct and error trials

Figure 3. Behavioral performance of two monkeys on the single-trial visual recognition memory task. (a,c)

‘Forgetting functions’, plotted as the proportion of trials that each monkey reported images as familiar as a

function of the number of trials between novel and repeated presentations (n-back). Novel trials are indicated by

‘N’ and a break in the x-axis. The dotted line indicates chance performance on this task, 50%. Error bars depict

97.5% confidence intervals of the per-session means. (b,d) Mean reaction times, parsed according to trials in which

the monkeys answered correctly versus made errors. Reaction times were measured relative to onset of the go

cue, which was presented at 400 ms following stimulus onset. Error bars depict 97.5% confidence intervals

computed across all trials.

DOI: https://doi.org/10.7554/eLife.32259.006
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(and thus reaction times on error trials should increase with n-back as well). While it is the case that

extensions to this framework can predict reaction time asymmetries (Ratcliff and McKoon, 2008),

additional parameters are required for it to do so, and these additions make it less well-suited for

the purposes of this study (focused on evaluating the plausibility that IT visual memory signals can

quantitatively account for visual memory behavior). We have, however, determined that these

x-shaped reaction time patterns can be captured by a very simple, low-parameter extension to the

signal detection theory framework, as proposed by ‘strength theory’ (Murdock, 1985; Norman and

Wickelgren, 1969). Like signal detection theory, strength theory proposes that a noisy internal vari-

able (‘memory strength’) is compared to a criterion to determine whether an image is novel or famil-

iar (Figure 4, left). Strength theory also predicts that during a visual memory task, reaction times will

be inversely related to the distance of this variable from the criterion, loosely analogous to a process

in which increased certainty produces faster responses (Figure 4, middle). This leads to the qualita-

tive prediction that when images are repeated with short n-back, memories are strong, and this will

produce reaction times that are faster on correct as compared to error trials (Figure 4, red vs. blue).

In contrast, at long n-back, memories are weak, and this will produce reaction times that are slower

on correct as compared to error trials (Figure 4, green vs. purple). The combined consequence of

strong and weak memories is an x-shaped pattern.

In sum, the reproducible patterns reflected in both monkeys’ forgetting functions, along with

their reaction time patterns, place non-trivial constraints on the candidate neural signals that account

for single-exposure visual memory behavior. The x-shaped patterns of reaction times that we

observe cannot be accounted for by a standard drift diffusion process, but they can, in principle, be

captured by the predictions of strength theory. However, a successful description of the neural sig-

nals supporting single-exposure visual memory behavior requires identifying a neural signal whose

sensitivity to the elapsed time between initial and repeated presentations of an image matches the

sensitivity reflected in the monkeys’ behavior.
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Figure 4. Strength theory qualitatively predicts x-shaped reaction time patterns. Like signal detection theory,

strength theory proposes that the value of a noisy internal variable, memory strength, is compared to a criterion to

differentiate novel versus familiar predictions. Left: shown are the hypothetical distributions of memory strengths

across a set of images presented as novel (dashed lines) and as familiar (black), repeated after a short (top) versus

long (bottom) delay. The colored portions of each familiar distribution indicate the proportion of trials

corresponding to correct reports and errors, based on the position of the distribution relative to the criterion. In

the case of short n-back, memory strength is high, the proportion correct is high, and the proportion wrong is low.

In the case of long n-back, memory strength is low, the proportion correct is low and the proportion wrong is

high. Middle: strength theory proposes an inverted relationship between proportion and mean reaction times,

depicted here as linear. Right: passing the distributions on the left through the linear function in the middle

produces an x-shaped reaction time pattern.

DOI: https://doi.org/10.7554/eLife.32259.007

Meyer and Rust. eLife 2018;7:e32259. DOI: https://doi.org/10.7554/eLife.32259 6 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.32259.007
https://doi.org/10.7554/eLife.32259


Single-exposure visual memory signals in IT cortex
As monkeys performed this task, we recorded neural responses from IT using multi-channel probes

acutely lowered before the beginning of each session. For quality control, recording sessions were

screened based on their neural recording stability across the session, their numbers of visually

responsive units, and the numbers of behavioral trials completed (see Materials and methods). The

resulting data set included 15 sessions for monkey 1 (n = 403 units), and 12 sessions for monkey 2

(n = 396 units). Both monkeys performed many hundreds of trials during each session (~600–1000,

corresponding to ~300–500 images each repeated twice). The data reported here correspond to the

subset of images for which the monkeys’ behavioral reports were recorded for both novel and famil-

iar presentations (e.g. trials in which the monkeys did not prematurely break fixation during either

the novel or the familiar presentation of an image).

We began by considering the proposal that the signals differentiating novel versus familiar pre-

sentations of images were systematically reflected as response decrements with stimulus repetition

(i.e. ‘repetition suppression’). As a first, simple illustration of the strength of these putative single-

exposure memory signals, shown in Figure 5a is a plot of the grand mean firing rate response of all

799 units parsed by n-back, plotted as a function of time relative to stimulus onset. This plot reveals

a fairly systematic decrement in the response with repetition that diminished with time since the

novel presentation. We quantified the magnitude of suppression as the decrement in the area under

each n-back trace relative to the novel trace, computed 150–400 ms after stimulus onset

(Figure 5b). Consistent with a visual memory signal that degrades (or forgets) with time, immediate

stimulus repetition resulted in a decrement in the response of ~11% and suppression magnitudes

decreased systematically with n-back. Also, qualitatively consistent with the repetition suppression

hypothesis was the finding that when the same analysis was isolated to the units recorded from each

monkey individually, repetition suppression was stronger in the monkey that was better at the task

(monkey 2; Figure 5c–d).

Predicting behavioral response patterns from neural signals
To quantitatively assess whether IT neural signals could account for the monkeys’ behavioral reports,

we applied two types of linear decoding schemes to the IT data. The first, a spike count classifier

(SCC), is an instantiation of the strictest form of the repetition suppression hypothesis in that it dif-

ferentiated novel versus familiar responses based on the total number of spikes across the IT popula-

tion (i.e. every unit in the population received a weight of 1). The second, a Fisher Linear

Discriminant (FLD), is an extension of the SCC that allows for IT units to be differentially weighted

and allows for weights to be positive as well as negative (corresponding to repetition suppression

and enhancement, respectively).

Because the neural data collected in any individual recording session had too few units to fully

account for the monkeys’ behavior (e.g. near 100% correct for 1-back familiar images), we

concatenated units across sessions to create a larger pseudopopulation, where responses were

quantified 150–400 ms following stimulus onset. When creating this pseudopopulation, we aligned

data across sessions in a manner that preserved whether the trials were presented as novel or famil-

iar as well as their n-back separation. More specifically, the responses for each unit always contained

sets of novel/familiar pairings of the same images, and pseudopopulation responses across units

were always aligned for novel/familiar pairs that contained the same n-back separation. Because dif-

ferent images were used in each session, aligning images this way implicitly assumes that the total

numbers of spikes are matched across different images, the data recorded in any one session is a

representative sample of those statistics, and that the responses of the units recorded in different

sessions are uncorrelated. When the number of images in a session exceeded the number required

to construct the pseudopopulation, a subset of images were selected randomly, and we confirmed

that our main results did not change for different random selections. In the case of the pooled data,

the resulting pseudopopulation consisted of the responses from 799 neurons to 107 images pre-

sented as both novel and familiar (i.e. 15, 15, 16, 17, 17, 15 and 12 trials at 1, 2, 4, 8, 16, 32 and 64-

back, respectively).

We begin by illustrating our procedure for computing neural predictions of the behavioral for-

getting functions and reaction time patterns with the FLD weighted linear read-out, applied to the

data pooled across the two subjects. We then present a more systematic comparison between
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different decoders applied to each monkey’s individual data. To compute neural predictions for

behavioral forgetting functions, we began by training an FLD linear decoder to discriminate the

same images presented as novel versus as familiar (Figure 6a) using the data corresponding to all

n-backs simultaneously. The FLD training procedure assigned a weight to each neuron proportional

to the amount of linearly-separable visual memory information reflected in its responses (i.e. it’s d’;

see Materials and methods), and a single criterion value to parse the combined, weighted popula-

tion responses for novel versus familiar predictions. A final parameter specified the size of the IT

population under consideration (detailed below). Shown in Figure 6b are the neural estimates of the

distributions of memory signal strength at each n-back, computed across many iterations of the

Figure 5. Average IT repetition suppression magnitudes. (a) Grand mean firing rates for all units, plotted as a

function of time aligned to stimulus onset, parsed by images presented as novel (black) versus familiar at different

n-back (rainbow). Traces were computed in 1 ms bins and smoothed by averaging across 50 ms. The dotted box

indicates the spike count window corresponding to the analysis presented in panels (b–d). The absence of data at

the edges of the plot (�50:�25 ms and 375:400 ms) reflects that the data are plotted relative to the centers of

each 50 ms bin and data were not analyzed before �50 ms or after the onset of the go cue at 400 ms. (b) The

calculation of suppression magnitude at each n-back began by quantifying the grand mean firing rate response to

novel and familiar images within a window positioned 150 ms to 400 ms after stimulus onset. Suppression

magnitude was calculated separately for each n-back as (novel – familiar)/novel. (c–d) Suppression magnitudes at

each n-back, computed as described for panel b but isolated to the units recorded in each monkey individually.

Error reflects SEM.

DOI: https://doi.org/10.7554/eLife.32259.008
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Figure 6. Transforming IT neural data into behavioral predictions. In all panels, behavioral and neural data correspond to the data pooled across the

two monkeys and methods are illustrated through application of only one linear decoder (the FLD). (a) A cartoon depiction of how memory strength

was measured for each n-back. Shown are the hypothetical population responses of 2 neurons to different images (represented by different shapes)

shown as novel (black) versus as familiar (gray). The line depicts a linear decoder decision boundary optimized to classify images as novel versus as

familiar. Distributions across images within each class are calculated by computing the linearly weighted sum of each neuron’s responses and

Figure 6 continued on next page
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cross-validated linear classifier training and testing procedure for the best sized population (n = 799

units). As expected, we found that the weighted population response strengths were largest for

novel images (Figure 6b, black) and were weakest for familiar images presented as immediate

repeats (Figure 6b, red). Between these two extremes, we observed a continuum of strengths

loosely organized according by n-back (Figure 6b, rainbow). Finally, a neural prediction for the for-

getting function was computed as the fraction of each distribution that fell on the ‘familiar’ side of

the criterion differentiating novel versus familiar predictions (Figure 6c). This analysis revealed a high

degree of alignment between the neural prediction at each n-back and behavior, including high per-

formance for familiar images presented at low n-back, performance at mid-range n-back that fell off

with a similar sensitivity, and performance at the longest n-back (64) that fell below chance

(Figure 6c). Similarly, neural predictions for novel images were well-aligned with the monkeys’

behavioral reports (Figure 6c, ‘N’).

To produce neural predictions for reaction times, we turned to strength theory (Figure 4). Shown

in Figure 6d is the first step required for making those predictions: a plot of the neural predictions

for the proportions of ‘correct’ and ‘error’ trials, plotted as a function of n-back. Note that the cor-

rect predictions simply replicate the forgetting function shown in Figure 6c, and the error predic-

tions are simply those same values, subtracted from 1. While these plots directly follow from

Figure 6c, we include them to illustrate that they qualitatively reflected an inverted version of the

monkeys’ behavioral reaction time plots, including an x-shaped pattern. To determine the degree to

which these qualitative relationships quantitatively predict the monkeys’ reaction times, we exam-

ined the relationship between the proportions plotted in Figure 6d and the monkeys’ mean reaction

times, and found it to be approximately linear (Figure 6e). We thus fit a two parameter linear func-

tion to convert the neural predictions of these proportions into reaction times (Figure 6e, black

line). The resulting neural predictions were largely aligned with the monkeys’ mean reaction times

(Figure 6f), including increasing reaction times as a function of n-back on correctly reported familiar

trials, decreasing reaction times as a function of n-back on familiar trials in which the monkeys’ made

errors, and the characteristic x-shaped pattern. Additionally, shorter mean reaction times for novel

images on correct versus error trials were largely well-predicted by the neural data.

One important step in the procedure, not detailed above, involved determining the appropriate

IT population size for making neural and behavioral comparisons. Because there really wasn’t a way

Figure 6 continued

subtracting a criterion. (b) Distributions of the linearly weighted IT population response, as a measure of memory strength, shown for novel images

(black dotted) and familiar images parsed by n-back (rainbow), for a population of 799 units. To compute these distributions, a linear decoder was

trained to parse novel versus familiar across all n-back via an iterative resampling procedure (see Materials and methods). (c) Black: the neural

prediction of the behavioral forgetting function, computed as the fraction of each distribution in panel b that fell on the ‘familiar’ (i.e. left) side of the

criterion. Behavioral data are plotted with the same conventions as Figure 3a,c. Prediction quality (PQ) was measured relative to a step function

benchmark (gray dotted) with matched average performance (see text). (d) The first step in the procedure for estimating reaction times, shown as a plot

of the proportions of each distribution from panel b predicted to be correct versus wrong, as a function of n-back. Solid and open circles correspond to

novel and familiar trials, respectively. Note that the red curve (correct trials) simply replots the predictions from panel c and the blue curve (error trials)

simply depicts those same values, subtracted from 1. (e) A plot of the proportions plotted in panel d versus the monkeys’ mean reaction times for each

condition, and a line fit to that data. (f) The final neural predictions for reaction times, computed by passing the data in panel d through the linear fit

depicted in panel e. Behavioral data are plotted with the same conventions as Figure 3b,d. Also shown are the benchmarks used to compute PQ

(labeled), computed by passing the benchmark values showing in panel c through the same process. (g) Mean squared error between the neural

predictions of the forgetting function and the actual behavioral data, plotted as a function of population size. Solid lines correspond to the analysis

applied to recorded data; the dashed line corresponds to the analysis applied to simulated extensions of the actual data (see Figure 6—figure

supplement 1). Insets indicate examples of the alignment of the forgetting function and FLD neural prediction at three different population sizes,

where green corresponds to the actual behavioral forgetting function and black corresponds to the neural prediction. PCF = proportion chose familiar.

The red dot indicates the population size with the lowest error (n = 799 units). (h) Overall population d’ for the novel versus familiar task pooled across

all n-back, plotted as a function of population size with the highlighted points from panel g indicated. (i) The analysis presented in panel g was

repeated for spike count windows 150 ms wide shifted at different positions relative to stimulus onset. Shown is the minimal MSE for each window

position. All other panels correspond to spikes counted 150–400 ms.

DOI: https://doi.org/10.7554/eLife.32259.009

The following figure supplement is available for figure 6:

Figure supplement 1. Extrapolating SCC and FLD predictions to larger sized populations.

DOI: https://doi.org/10.7554/eLife.32259.010
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to do this a priori, we applied a fitting approach in which we computed the mean squared error

(MSE) between the actual forgetting functions and their neural predictions at a range of population

sizes, including simulated extensions of our population up to sizes 50% larger than the maximal size

we recorded (Figure 6—figure supplement 1). The existence of a minimum in these plots follows

from the fact that they depict the error between the neural prediction and the behavioral forgetting

function (as opposed to overall neural population d’ for this task, which continued to increase with

increasing population size; Figure 6h). When too few units were included in the population, neural

d’ was too low and high performance at low n-back was underestimated (Figure 6g, left inset). In

contrast, when too many units were included in the population, neural population d’ was too high

and performance at low n-back was over-saturated (Figure 6g, right inset). Additionally, for popula-

tions that were too large, performance fell off with n-back with a slope that was too steep. Of inter-

est was the question of whether a global alignment of behavioral and neural sensitivity produced an

accurate neural prediction of the shape for forgetting function with n-back. In the case of the FLD

applied to the pooled data, the best population size fell near the maximal size of the total number

of units that we recorded (n = 799, Figure 6g, red dot). The analyses presented thus far were com-

puted based on spike count windows 150–400 ms following stimulus onset. A complementary plot

illustrates how the position of the spike count window relative to stimulus onset impacted the best

MSE (across all population sizes) for spike count windows 150 ms wide (Figure 6i). Consistent with

the arrival of a visual memory signal that is delayed relative to onset but remains relatively constant

thereafter, error was high for windows that began earlier than 150 ms following stimulus onset and

then saturated. This suggests that the 150–400 ms position of the spike count window used to ana-

lyze the data throughout this report was a reasonable selection.

As a final step for our procedure, we determined a measure of prediction quality for both the for-

getting function and reaction time patterns. Our measure benchmarked the MSE between the

behavioral patterns and neural predictions by the worst-possible fit given that our procedure

involves a global alignment of behavioral and neural data (Figure 6g). The upper bound of our mea-

sure, 100% ‘prediction quality’ (PQ), reflects a neural prediction that perfectly replicates the behav-

ioral data. The lower bound (0% PQ) was computed as the MSE between the actual behavioral

function and a predicted forgetting function that took the shape of a step, matched for global per-

formance (percent correct across all conditions; Figure 6c,f, dotted). The rationale behind the step

is that under a reasonable set of assumptions (i.e. that performance as a function of n-back should

be continuous, have non-positive slope, and be centered around chance), a step reflects the worst

possible fit of the data. Finally, PQ was calculated as the fractional distance of the MSE between

these two benchmarks. In the case of the FLD applied to the pooled data, PQ was 94% for the for-

getting function and 86% for the reaction time data (Figure 6c,f). We emphasize that these numbers

reflect the quality of generalized neural predictions to the behavioral reports, as these neural predic-

tions were not fit directly to the behavioral data in a manner not already accounted for by the PQ

measure.

A weighted linear read-out of IT more accurately predicted behavior
than a total spike count decoding scheme
Our methods for determining predictions of the SCC decoder differed only in the algorithm used to

combine the spike counts across the population into a measure of memory strength (Figure 6b). In

the case of the SCC, the weight applied to each unit was 1, and the training procedure determined

a single criterion value to parse the total population spike counts into novel versus familiar predic-

tions. The same cross-validated procedure used for the FLD was applied to the SCC to determine

distributions analogous to those depicted in Figure 6b. When applied to the data pooled across the

two monkeys, the best sized SCC decoded population was 559 units (Figure 7a). Additionally, we

found that while the SCC was a better predictor of behavior than the FLD for smaller sized popula-

tions (less than 400 neurons), the FLD was a better predictor of behavior overall (Figure 7a). Exami-

nation of a plot of overall population d’ as a function of population size (Figure 7b) reveals that the

minimal error fell at the same population d’ for both decoding schemes, consistent with the notion

that our procedure involved a global matching of overall performance between the behavioral and

neural data. The fact that the lowest MSE differed between the two decoding schemes reflects dif-

ferences in the shapes of the neural predictions following global performance matching. Figure 7b

also reveals systematically better global performance of the SCC as compared to the FLD for

Meyer and Rust. eLife 2018;7:e32259. DOI: https://doi.org/10.7554/eLife.32259 11 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.32259


matched sized populations, which is likely a consequence of the fact that a smaller number of param-

eters are fit with the SCC read-out and the estimation of FLD weights is a noisy process.

A comparison of SCC and FLD MSE plots isolated to each monkey’s data revealed that the FLD

decoder was a better predictor of behavior in both individuals (Figure 7c–d). Why was the FLD

weighted linear decoder a better predictor of the behavioral forgetting function? This was because

the spike count decoding scheme under-predicted memory strength, particularly at the longest

Figure 7. The FLD decoder is a better predictor of behavioral performance than the SCC. (a) Plot of mean square error as a function of population size,

computed as described for Figure 6g for the data pooled across both monkeys, and shown for both the FLD (black) and SCC (red) decoders. Dots

correspond to the population size with the smallest error (FLD = 799 units; SCC = 625 units). (b) Plot of overall population d’ computed as described in

Figure 6h but shown for both the FLD and SCC decoders. Dots correspond to the same (optimal) population sizes indicated in panel a. (c–d) The same

analysis shown in panel a, but isolated to the data collected from each monkey individually. Best population sizes, Monkey 1: FLD = 800 units;

SCC = 625 units; Monkey 2: FLD = 525 units; SCC = 316 units. (e) Gray: predicted forgetting functions, computed as described for Figure 6c, but

plotted after subtracting the false alarm rate for novel images (i.e. a single value across all n-back). Red: the actual forgetting functions, also plotted

after subtracting the novel image false alarm rate. These plots are a revisualization of the same data plotted before false alarm rate subtraction in

Figure 7—figure supplement 1a-b. PQ: prediction quality, computed as described in panel 6 c.

DOI: https://doi.org/10.7554/eLife.32259.011

The following figure supplement is available for figure 7:

Figure supplement 1. FLD and SCC predictions for each monkey.

DOI: https://doi.org/10.7554/eLife.32259.012
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delays. While this is discernable in plots of the raw alignment of the behavioral and neural data for

each monkey plotted with the same conventions as Figure 6f (Figure 7—figure supplement 1a–b),

it is more easily observed in a visualization of the data in which the proportion of familiar choices for

both the behavioral data and neural predictions are plotted after subtracting the false alarm rate for

the novel images (Figure 7e), thus producing plots analogous to the suppression plots presented in

Figure 5c–d. For example, in monkey 1, the SCC decoder predicted that the monkey would report

64-back familiar images as familiar at a rate lower than the false alarm rate for novel images, whereas

the actual forgetting function reflected a small amount of remembering after a 64-back delay

(Figure 7e). Similarly, in monkey 2, the SCC predicted rate of remembering at 64-back under-pre-

dicted the actual rate reflected in the behavior (Figure 7e). In contrast, the FLD better predicted the

behavior across all n-back in both animals (Figure 7e). Lower MSE for the FLD as compared to SCC

translated into higher neural PQ in each monkey (Figure 7e – labeled; not shown for the pooled

data: SCC PQ = 83%, FLD PQ = 94%). The same behavioral and neural comparisons, plotted with

the same conventions as Figure 6c and Figure 6f, are shown in Figure 7—figure supplement 1.

We note that while the FLD PQ was lower in monkey two as compared to monkey 1 (monkey 1 FLD

PQ = 92%, monkey 2 FLD PQ = 70%), this was not due to a lower MSE of the fits in monkey 2

(Figure 7c–d) but rather due to the fact that the forgetting function for monkey two better resem-

bled the step benchmark for computing PQ, thus reducing the PQ dynamic range (Figure 7—figure

supplement 1a–b).

Together, these results suggest that a weighted linear read-out was a better description of the

transformation between IT neural signals and single-exposure visual memory behavior than a total

spike count decoding scheme.

The single-unit correlates of the weighted linear decoding scheme
The results presented above suggest that the SCC under-predicted memory strength as a function

of n-back whereas the FLD prediction was more accurate. At least two different scenarios might lead

to this result. First, it could be the case that visual memory may be reflected as net repetition sup-

pression in some units and net repetition enhancement in others (across all n-back). In this scenario,

the FLD would preserve both types of memory information (by assigning positive and negative

weights for enhancement and suppression, respectively), whereas these two types of effects would

cancel in a SCC decoding scheme, resulting in information loss. Alternatively, it might be the case

that the repetition suppression hypothesis is approximately correct insofar as the IT units that carry

visual memory signals systematically reflect visual memory with net repetition suppression, however,

repetition suppression may be stronger at longer n-back for some units than others. In this scenario,

better FLD behavioral predictions would result from preferentially weighting the neurons with the

strongest (by way of longest lasting) visual memory signals. As described below, our results suggest

that the latter scenario is a better description of our data.

To distinguish between these two scenarios, we began by examining the distributions of unit d’

as a proxy for the FLD decoding weights. In both monkeys, the unit d’ means were significantly

shifted toward positive values (Figure 8a–b; Wilcoxon sign rank test, monkey one mean = 0.05,

p=6.8*10�17; monkey two mean = 0.12, p=1.9*10�41). In both monkeys, units with negative d’ were

also present (proportion of negative units for monkey 1 = 32%; monkey 2 = 19%), although from

raw d’ values alone, the degree to which negative d’ resulted from reliable net repetition enhance-

ment versus from noise is unclear. A comparison of the mean responses to novel as compared to

familiar images for each unit revealed that very few units with negative d’ had statistically distin-

guishable responses (bootstrap statistical test; criterion p<0.01; monkey 1: positive d’ units = 14;

negative d’ units = 3; monkey 2: positive d’ units = 75; negative d’ units = 2). While a screen of

p<0.01 can under-estimate the contributions of a unit to population performance, additional analy-

ses, described below, confirm that negative d’ units made a measurable but modest contribution to

the differences between the SCC and FLD behavioral predictions.

To understand how these unit d’ measures combined to determine behavioral predictions, we

performed an analysis to determine the minimal number of ‘best’ d’ IT units required to predict

behavior. The general idea behind this analysis is that if it were the case that strong signals were car-

ried by a small subpopulation of units, error should plateau quickly when only best units are

included. We thus compared FLD behavioral prediction error trajectories for the pooled data (to

maximize the numbers of directly measured units) when subsets of units were randomly sampled
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Figure 8. The single-unit correlates of the weighted linear decoding scheme. (a–b) Distributions of unit d’,

computed for each monkey. Arrows indicate means. (c) Left, Comparison of behavioral prediction error trajectories

for an FLD decoder applied to randomly selected units (replotted from Figures 6g and 7a) versus when the top-

ranked units for each population size were selected before cross-validated testing. Dots correspond to population

sizes with lowest error. Right, Conversion of behavioral error predictions (MSE) into prediction quality (PQ). Dots

indicate PQ for the best sized population and for all units. (d) Left, Comparison of behavioral prediction error

trajectories for an SCC decoder applied to randomly selected units (replotted from Figure 7a) versus when the

top-ranked units for each population size were selected before cross-validated testing. Dots correspond to

population sizes with lowest error. Right, Conversion of MSE into PQ. Black dot indicates PQ for the best sized

Figure 8 continued on next page
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(our typical procedure) versus when the top-ranked d’ units were selected via a cross-validated pro-

cedure (i.e. based on the training data; Figure 8c, left). We also converted these MSE measures into

prediction quality estimates (Figure 8d, right). We found that 400 top-ranked IT units were required

to achieve the same prediction quality as 800 randomly sampled units, suggesting that FLD behav-

ioral predictions rely on visual memory signals that are distributed across approximately half of the

IT population. The absence of a contribution from the lower-ranked 50% of the IT population could

not be attributed to non-responsiveness, as nearly all the units (759/799, 95%) produced statistically

significant stimulus-evoked responses that differed from the pre-stimulus baseline period (bootstrap

statistical test; criterion p<0.01; comparison of spike count windows (�150–0) ms versus (75 – 225)

ms relative to stimulus onset).

Why did the FLD produce better behavioral predictions than the SCC (Figure 7a)? To address

this question, we repeated the top-ranked analysis for the SCC. Specifically, we performed a cross-

validated procedure in which units were ranked by their signed d’ as described above for the ranked

FLD, but within the top-ranked units, spikes were summed to produce behavioral predictions

(Figure 8d). One can envision this as a binary classifier where the top-ranked units each receive a

weight of 1 whereas the remaining units each receive a weight of 0. Surprisingly, the ranked-SCC

decoder also peaked at 400 units and performed nearly as well as the ranked-FLD (ranked SCC PQ

for 400 units = 91%, Figure 8d; ranked FLD PQ for 400 units = 94%, Figure 8d). This suggests that

within the subset of 50% top-ranked IT units, spikes could largely be summed to make behavioral

predictions.

What happens when the 50% bottom-ranked units are added to each type of decoder? Addition

of bottom-ranked units had no impact on the ranked-FLD (Figure 8c right, ‘All units’). This suggests

that the FLD largely disregards the lower 50% ranked units when making behavioral predictions. In

contrast, the introduction of the lower 50% ranked units detrimentally impacted ranked-SCC behav-

ioral predictions (ranked SCC PQ for best 50% of units = 91%; for all units = 76%; Figure 8d, right).

This is presumably because the SCC does not have a weighting scheme and was thus forced to

incorporate them. When parsed by the sign of d’ for the lower-ranked units, addition of lower-

ranked, positive d’ units reduced ranked-SCC behavioral predictions from 91% to 81%, and further

addition of negative d’ units reduced behavioral predictions to 76% (Figure 8d, right). Returning to

the two scenarios presented at the beginning of this section, these results suggest that better FLD

as compared to SCC behavioral predictions could largely be attributed to the FLD preferentially

weighting the neurons with the strongest (by way of longest lasting) visual memory signals, as

opposed to the inability of the SCC to appropriately weight reliable, mixed sign modulation (i.e.

mixtures of repetition suppression and enhancement).

Together, these results suggest that largely accurate behavioral predictions could be attributed

to ~50% of IT units whose memory signals were reflected as repetition suppression, and within this

top-ranked subpopulation, spike counts could largely be summed. These results also show that while

the lower ranked units had a detrimental impact on the ability of the spike count decoder to pro-

duce accurate behavioral predictions, a weighted linear decoder largely disregarded these otherwise

confounding responses.

The impact of visual selectivity on population size
As a complementary consideration, we also examined the impact of visual selectivity on the size of

the population required to account for behavior. Hypothetically, if only a small fraction of IT units

were activated in response to any one image, a large population would be required to support

robust visual memory behavioral performance. Because our data only include the response to each

image twice (once as novel and repeated as familiar), and measures of visual selectivity (e.g. ‘sparse-

ness’) produce strongly biased estimates with limited samples (Rust and DiCarlo, 2012), we applied

Figure 8 continued

population for randomly selected units. Red dots indicate PQ for the 400 top-ranked, positive sign (d’>0) units, all

positive sign units, and all units.

DOI: https://doi.org/10.7554/eLife.32259.013
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a simulation-based approach to determine how visual selectivity impacted the population size

required to make accurate behavioral predictions.

The general idea behind this analysis is to compare the best population size for our intact data

with a simulated version of our data in which visual memory signals have been kept intact but visual

selectivity has been removed. To perform this analysis, we began by creating a simulated ‘replica-

tion’ population designed to match the image selectivity, memory signal strength, and grand mean

spike count response for each unit we recorded, followed by the introduction of Poisson trial vari-

ability (see Materials and methods). This simulated population produced FLD behavioral prediction

error trajectories that were highly similar to the intact population, both when computed with the

regular FLD (Figure 9a, gray versus black), as well as with the ranked-FLD (Figure 9b, gray versus

black), suggesting that the simulation was effective at capturing relevant aspects of the raw data.

Next, we created a simulated ‘visual-modulation-removed’ version of each unit in which the memory

signal strength (as a function of n-back) and the grand mean spike count response (across all condi-

tions) were preserved, but visual selectivity was removed (see Materials and methods). Conceptually,

one can think about this simulation as creating a version of each unit with pure selectivity for visual

memory in the absence of visual modulation. The FLD behavioral prediction error trajectory of the

visual-modulation-removed population fell faster than the replication population and took on

approximately the same MSE as the intact population with only 479 (as compared to 800) units for

the regular FLD (Figure 9a, red) and only 159 (as compared to 400) units for the ranked-FLD

(Figure 9b, red). These results suggest that visual selectivity resulted in a substantial increase in the

number of units required to account for behavioral performance within the FLD decoding scheme.

In sum, at least two factors combined to determine that a large number of FLD decoded IT units

(~800) were required to accurately predict single-exposure behavioral performance. First, the visual

memory signals that combined to produce largely accurate behavioral predictions were limited

to ~50% of the IT population. Second, as a consequence of visual selectivity, the presentation of an

image only activated a subset of units, thus increasing the population size required for robust neural

performance that was capable of generalizing to new images.

Individual behavioral patterns were reflected in the IT neural data
As a final, complementary set of analyses, we focused on the neural correlates of the differences in

behavioral patterns reflected between the two animals. From the results presented above, we can

infer that this is not a straightforward relationship: while the animal that was better at the task

Figure 9. The impact of visual selectivity. (a) FLD behavioral prediction error trajectories for the actual data (gray,

replotted from Figure 6g), a simulated replication of the data in which both the visual selectivity and the visual

memory signals for each unit were replicated (black), and a simulated version of the data in which the visual

memory signals were preserved for each unit but visual selectivity was removed (see Materials and methods). (b)

The same three FLD behavioral prediction error trajectories, computed with a ranked-FLD.

DOI: https://doi.org/10.7554/eLife.32259.014
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(monkey 2, Figure 3a,c) had stronger average repetition suppression (Figure 5c–d), fewer units

were also required to account that animal’s behavior (500 versus 800, Figure 7c–d). This suggests

that differences in behavioral performance between the two monkeys does not simply reflect two

populations that are matched in size but contain neurons whose visual memory signals differ in aver-

age strength. For deeper insights into the differences between animals, we performed an analysis in

which we attempted to predict each monkey’s behavioral forgetting functions from the other mon-

key’s neural data using the FLD decoder (Figure 10a–b). For both monkeys, the minimal error (as a

function of population size) was lower when behavioral and neural data came from the same monkey

as compared to when they were mixed between monkeys (Figure 10a–b, red versus black dots) and

this translated to better PQ when behavioral and neural data came from the same animal versus

when they came from different animals (Figure 10c).

Figure 10c illustrates the alignment of the behavioral forgetting functions and their neural predic-

tions, after subtracting the false alarm rate for novel images (similar to 7e), shown for the cases in

which behavioral and neural data came from the same animal and when they were crossed. In the

case of monkey 1, the neural prediction from the same animal largely captured the pattern of for-

getting with n-back, whereas the neural data from monkey two predict a shape that was too flat. In

other words, FLD applied to the neural data from monkey two predicted a similar amount of for-

getting across a wide range of n-back and this pattern was inconsistent with the steeper fall-off in

that same range reflected in the behavior of monkey 1 (Figure 10c, monkey 1 ‘Cross’). Similarly, the

neural data collected from monkey one reflected a considerable amount of forgetting at higher

n-back, whereas the behavioral data from monkey two were more flat in this range. This led to a dis-

crepancy between the behavioral data and neural predictions when aligned around the novel image

prediction (Figure 10c, monkey 2 ‘Cross’).

While our study was limited to only two subjects and thus lacked the power to establish individual

differences, the better alignment of behavioral and neural data within subjects versus across subjects

Figure 10. Alignment of individual behavioral and neural data. (a–b) Plot of mean squared error as a function of population size, computed as

described for Figure 6g but compared when behavioral and neural data come from the same monkey (black) versus when behavioral and neural data

are crossed between monkeys (red). (c) Comparison of predicted and forgetting functions, plotted after subtracting the false alarm rate for novel

images as in Figure 7e, for population sizes indicated by the dots in panels a-b. PQ = prediction quality.

DOI: https://doi.org/10.7554/eLife.32259.015
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is an effective demonstration that signal strength and population size cannot simply be traded off to

fit any possible behavioral function. Additionally, these results provide added support of the hypoth-

esis that single-exposure visual memory behaviors are in fact reflected in the neural responses of IT

cortex.

Discussion
This study was designed to test the hypothesis that the signals supporting single-exposure visual rec-

ognition memories, or equivalently answers to the question, ‘Have I seen that image before?”, are

reflected as decrements in the responses of neurons in IT with stimulus repetition (Fahy et al., 1993;

Li et al., 1993; Miller and Desimone, 1994; Riches et al., 1991; Xiang and Brown, 1998). Prior to

this study, this hypothesis had received mixed support from human fMRI studies (Gonsalves et al.,

2005; Turk-Browne et al., 2006; Ward et al., 2013; Xue et al., 2011) and was largely untested at

the resolution of individual neurons. We found that a strict interpretation of the repetition suppres-

sion hypothesis in the form of counting the total numbers of spikes across the IT population pro-

vided an incomplete account of single-exposure visual memory behavior (Figure 7), whereas a

weighted linear read-out of IT provided reasonably accurate predictions of the rates of forgetting as

a function of time (Figure 6c, Figure 7e), as well as mean reaction time patterns (Figure 6f; Fig-

ure 7—figure supplement 1). Additionally, behavioral predictions could be attributed to IT visual

memory signals that were reflected as repetition suppression (Figure 8) and were intermingled with

visual selectivity (Figure 9), but only when combined across the most sensitive 50% of IT units

(Figure 8c–d).

Our study was focused on changes in IT that follow a single image exposure, and the net repeti-

tion suppression that we observed is qualitatively consistent with earlier reports (Fahy et al., 1993;

Li et al., 1993; Miller and Desimone, 1994; Riches et al., 1991; Xiang and Brown, 1998). Net rep-

etition suppression has also been reported following exposure of IT neurons to the same images

hundreds or thousands of times (Anderson et al., 2008; Baker et al., 2002; Freedman et al., 2006;

Lim et al., 2015; Meyer et al., 2014; Woloszyn and Sheinberg, 2012). However, the suppression

that we observed was transient (~5 min), whereas the suppression that follows many repeated image

exposures is much longer lasting. Some studies have reported repetition enhancement in IT for

images that are highly familiar, particularly when an image falls at the peak of a neuron’s tuning func-

tion and the neuron in question is excitatory (Lim et al., 2015; Woloszyn and Sheinberg, 2012). In

our study, we found no evidence that net repetition enhancement contributed to behavioral predic-

tions. At the next stage of processing in the medial temporal lobe, perirhinal cortex, there are indi-

cations that following many repeated exposures, the sign of familiarity modulation may flip from net

suppression to net enhancement (Landi and Freiwald, 2017; Tamura et al., 2017). In contrast, fol-

lowing a limited number of exposures, neurons in a region now attributed to perirhinal cortex have

been reported to exhibit repetition suppression (Li et al., 1993; Miller et al., 1991). Future work

will be required to determine the effects of image familiarity in IT and perirhinal cortex as images

transition from novel to highly familiar.

Notably, when monkeys are engaged in a task that involves both stimulus repetition as well as a

same/different judgment about repeated stimuli, heterogeneous combinations of repetition

enhancement and suppression are observed in IT and perirhinal cortex (Miller and Desimone, 1994;

Pagan et al., 2013; Vogels and Orban, 1994). These results may reflect the fact that the responses

of neurons in these brain areas reflect mixtures of the signals supporting visual memory, attention,

and decision processes. In fact, considerable evidence supports the notion that the task a subject is

engaged in at the time of viewing will have an impact on what will be remembered (reviewed by

Chun and Turk-Browne, 2007). In our study, the targets were present at stimulus onset for the first

monkey but delayed until the go cue (400 ms) in the second animal, and poorer performance of

monkey one in this task may reflect divided attention between the visual image and the targets.

The neural correlates of explicit visual memory reports have been investigated in the human brain

using PET (Vandenberghe et al., 1995) and fMRI (Gonsalves et al., 2005; Turk-Browne et al.,

2006; Ward et al., 2013; Xue et al., 2010). A number of factors might contribute to the discrep-

ancy between our study and human fMRI studies that fail to find a relationship between repetition

suppression magnitudes in high-level visual brain areas and explicit visual memory reports

(Ward et al., 2013; Xue et al., 2011). For example, one implication of our results is that near-single
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unit resolution is required to determine how to appropriately weight IT units to account for single-

exposure visual memory behaviors. In contrast, measures that average the responses across large

numbers of neurons result in an information loss that cannot fully be recovered (e.g. via a multi-voxel

pattern analysis). Another factor that may contribute to differences between our results and those

studies is a distinct difference in experimental design: our study correlates repetition suppression

and behavioral reports on the same trial, whereas these studies correlate repetition suppression to a

second viewing of an image with the behavioral report about remembering during a third viewing.

The rationale behind the fMRI design is a desire to dissociate memory processes from the processes

involved in decision making and response execution. In our study, we were focused on evaluating

the plausibility that the signal supporting visual memory behavioral reports is reflected in IT cortex,

as opposed to the plausibility that memory signals are reflected in IT in the absence of a subject

being engaged in a memory task. The consistent (positive) sign of the linear weights recovered

across IT units suggests that our results cannot be accounted for by motor responses, as the task

required the monkeys to saccade to two different targets to report novel versus familiar predictions

and a motor account would require that all the IT neurons were tuned for the same target (e.g.

‘upward’ for monkey one and ‘downward’ for monkey 2). Finally, differences between our study and

those reports could also arise from differences between species, analogous to the differences

reported between monkey IT and human LOC for changes in the representations of highly familiar

images as measured with fMRI (Op de Beeck et al., 2006; Op de Beeck et al., 2008).

Our results suggest that visual memory signals are reflected as repetition suppression in the

majority of IT units and that reports of whether an image has been seen before can be predicted by

counting the numbers of spikes across the top half of the repetition suppressed IT subpopulation

(Figure 8e). One question not addressed in our experiments is how this type of decoding scheme

could tease apart changes in total numbers of spikes due to stimulus repetition from changes in

spike numbers due to other variables, such as contrast, luminance, object size, and potentially object

identity (Chang and Tsao, 2017). In principle, the brain could address this by relying on neurons

that are sensitive to visual memory but insensitive to these other types of variables. Future work will

be required to investigate these issues.

Analysis of our reaction time patterns parsed by trial outcome (correct/error) revealed a charac-

teristic x-shaped pattern (Figure 3) at odds with the predictions of standard models of decision mak-

ing such as standard instantiations of the drift diffusion model. Extensions of the drift diffusion

framework have been proposed in which reaction time asymmetries on correct versus error trials can

be accounted for by adding per-trial noise in the decision variable drift rate or the decision variable

start position (Ratcliff and McKoon, 2008). Our task was not designed to differentiate between

these and other similar models, but rather to test the hypothesis that signals reflecting single-expo-

sure visual memories are found in IT cortex. As such, we opted for the much simpler, lower-parame-

ter description suggested by strength theory (Murdock, 1985; Norman and Wickelgren, 1969).

The inverted relationship between proportion correct and reaction time captured by strength theory

can loosely be thought of as a signature of confidence (e.g. when performance is higher, reaction

times are faster), however, the drawback of strength theory is that it lends little biophysical insight

into how this process might happen in the brain. Our study provides important constraints on mod-

els of the decision making process for single-exposure memory tasks, and should constrain future

work in which this process is investigated more completely.

In this study, we adjusted the task parameters such that images were forgotten over minutes

within sessions that lasted approximately one hour. This included reducing the viewing time from

the longer durations used in previous human behavioral experiments (2–3 s) to ~400 ms. Our results

suggest that forgetting rates are well-aligned between behavioral reports and IT neural signals

within this regime. Will longer timescale memories be reflected by signals in IT as well? That remains

to be seen. It could be the case that IT reflects single-exposure visual memories across all behavior-

ally-relevant timescales, alternatively, it could be the case that the signals reflecting single-exposure

memories across longer timescales (e.g. hours and days) are only reflected in higher brain areas such

as perirhinal cortex and/or the hippocampus.

A related issue is the question of where and how single-exposure visual memories are stored in

the brain. Crucially, it is important to recognize that it does not necessary follow from the fact that a

particular brain area reflects a memory signal, that it must be the locus at which storage occurs. It is

likely the case that the visual memory signals that we observe are at least partially the consequence
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of the cumulative adaptation-like processes that happen within IT and within brain areas preceding

IT. What is less clear is whether these signals also reflect contributions from higher brain areas as

well. Similarly, a computational description of the learning rule(s) that accurately capture the changes

in the brain that follow a single image exposure remain to be determined. While important first steps

toward those computational descriptions have been proposed (Androulidakis et al., 2008;

Lulham et al., 2011) they have yet to be tested in deep neural network architectures that approxi-

mate the patterns of neural activity reflected in the visual system (e.g. Yamins et al., 2014).

Materials and methods
Experiments were performed on two adult male rhesus macaque monkeys (Macaca mulatta) with

implanted head posts and recording chambers. All procedures were performed in accordance with

the guidelines of the University of Pennsylvania Institutional Animal Care and Use Committee under

protocol 804222.

The single-exposure visual memory task
All behavioral training and testing was performed using standard operant conditioning (juice

reward), head stabilization, and high-accuracy, infrared video eye tracking. Stimuli were presented

on an LCD monitor with an 85 Hz refresh rate using customized software (http://mworks-project.

org).

As an overview of the monkeys’ task, each trial involved viewing one image for at least 400 ms

and indicating whether it was novel, (never seen before) or familiar (seen exactly once prior) with an

eye movement to one of two response targets. Images were never presented more than twice (once

as novel and then as familiar) during the entire training and testing period of the experiment. Trials

were initiated by the monkey fixating on a red square (0.25˚) on the center of a gray screen, within a

square window of ±1.5˚, followed by a 200 ms delay before a 4˚ stimulus appeared. The monkeys

had to maintain fixation of the stimulus for 400 ms, at which time the red square turned green (go

cue) and the monkey made a saccade to the target indicating that the stimulus was novel or familiar.

In monkey 1, response targets appeared at stimulus onset; in monkey 2, response targets appeared

at the time of the go cue. In both cases, targets were positioned 8˚ above or below the stimulus.

The association between the target (up vs. down) and the report (novel vs. familiar) was swapped

between the two animals. The image remained on the screen until a fixation break was detected.

The images used in these experiments were collected via an automated procedure that explored

and downloaded images from the internet, and then scrubbed their metadata. Images smaller than

96*96 pixels were not considered. Eligible images were cropped to be square and resized to

256*256 pixels. An algorithm removed duplicate images. The resulting database included 89,787

images. Within the training and testing history for each monkey, images were not repeated. A repre-

sentative sample of a subset of 49 images are presented in Figure 2—figure supplement 1.

The specific random sequence of images presented during each session was generated offline

before the start of the session. The primary goal in generating the sequence was to select trial loca-

tions for novel images and their repeats with a uniform distribution of n-back (where n-back = 1, 2,

4, 8, 16, 32 and 64). This was achieved by constructing a sequence slightly longer than what was

anticipated to be needed for the day, and by iteratively populating the sequence with novel images

and their repeats at positions selected from all the possibilities that remained unfilled. Because the

longest n-back locations (64) were the most difficult to fill, a fixed number of those were inserted

first, followed by systematically working through the insertion of the same fixed number at each con-

secutively shorter n-back (32, 16 . . .). In the relatively rare cases that the algorithm could not produce

that fixed number at each n-back, it was restarted. The result was a partially populated sequence in

which 83% of the trials were occupied. Next, the remaining 17% of trials were examined to deter-

mine whether they could be filled with novel/familiar pairs from the list of n-back options (64, 32, 16-

back . . .). For the very small number of trials that remained after all possibilities had been extin-

guished (e.g. a 3-back scenario), these were filled with ‘off n-back’ novel/familiar image pairs and

these trials were disregarded from later analyses.

‘Forgetting functions’ (Figure 3a,c and Figure 6c) were computed as the mean proportion of tri-

als each monkey selected the familiar target, across all trials and all sessions. Because behavioral out-

come is a binary variable, error was estimated by computing the mean performance trace for each
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session, and then computing the 97.5% confidence interval as 2.2*standard error of those traces.

Mean reaction times (Figure 3b,d and Figure 6f) were computed as means across all trials and ses-

sions, and 97.5% confidence intervals were computed as 2.2*standard error of those same values.

Neural recording
The activity of neurons in IT was recorded via a single recording chamber in each monkey. Chamber

placement was guided by anatomical magnetic resonance images in both monkeys. The region of IT

recorded was located on the ventral surface of the brain, over an area that spanned 5 mm lateral to

the anterior middle temporal sulcus and 14–17 mm anterior to the ear canals. Recording sessions

began after the monkeys were fully trained on the task and after the depth and extent of IT was

mapped within the recording chamber. Combined recording and behavioral training sessions hap-

pened 4–5 times per week across a span of 5 weeks (monkey 1) and 4 weeks (monkey 2). Neural

activity was recorded with 24-channel U-probes (Plexon, Inc, Dallas, TX) with linearly arranged

recording sites spaced with 100 mm intervals. Continuous, wideband neural signals were amplified,

digitized at 40 kHz and stored using the Grapevine Data Acquisition System (Ripple, Inc., Salt Lake

City, UT). Spike sorting was done manually offline (Plexon Offline Sorter). At least one candidate unit

was identified on each recording channel, and 2–3 units were occasionally identified on the same

channel. Spike sorting was performed blind to any experimental conditions to avoid bias. A multi-

channel recording session was included in the analysis if: (1) the recording session was stable, quanti-

fied as the grand mean firing rate across channels changing less than 2-fold across the session; (2)

over 50% of neurons were visually responsive (a loose criterion based on our previous experience in

IT), assessed by a visual inspection of rasters; and (3) the number of successfully completed novel/

familiar pairs of trials exceeded 100. In monkey 1, 21 sessions were recorded and 6 were removed (2

from each of the 3 criterion). In monkey 2, 16 sessions were recorded and 4 were removed (1, 2 and

1 due to criterion 1, 2 and 3, respectively). The sample size (number of successful sessions recorded)

was chosen to approximately match our previous work (Pagan et al., 2013).

Neural predictions of behavioral performance
Because the data recorded in any individual session (on 24 channels) corresponded to a population

too small to provide a full account of behavioral performance, we combined data across sessions

into a larger pseudopopulation (see Results). We compared the ability of four different linear

decoders to predict the monkeys’ behavioral responses from the IT pseudopopulation data. Spikes

were counted in a window 150–400 ms following stimulus onset with the exception of Figure 6i,

where spikes were counted in a 150 ms bin at sliding positions relative to stimulus onset.

For all decoders, the population response x was quantified as the vector of simultaneously

recorded spike counts on a given trial. To ensure that the decoder did not erroneously rely on visual

selectivity, the decoder was trained on pairs of novel/familiar trials in which monkeys viewed the

same image (regardless of behavioral outcome and for all n-back simultaneously). Here we begin by

describing each decoder, followed by a description of the cross-validated training and testing proce-

dure that was applied in the same manner to each one.

All four decoders took the general form of a linear decoding axis:

f xð Þ ¼ w
T
xþ b (1)

where w is an N-dimensional vector (and N is the number of units) containing the linear weights

applied to each unit, and b is a scalar value. What differed between the decoders was how these

parameters were fit.

Fisher Linear Discriminant variants (FLD, ranked FLD)
In the case of the FLD, the vector of linear weights was calculated as:

w¼ S�1 �1 ��2ð Þ (2)

and b was calculated as:

b¼w �
1

2
�1þ�2ð Þ ¼

1

2
�T
1
S�1�1 �

1

2
�T
2
S�1�2 (3)
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Here �1and�2 are the means of the two classes (novel and familiar, respectively) and the mean

covariance matrix is calculated as:

S¼
S1 þS2

2
(4)

where S1 and S2 are the covariance matrices of the two classes with the off-diagonal entries set to

zero. We set these terms to zero (as opposed to regularization) because we found that the off-diag-

onal terms were very poorly estimated for our data set. Calculating FLD weights in this manner is

thus equivalent to weighting each unit by its d’ alone (while ignoring any optimization that considers

correlated activity between units).

In the case of the regular FLD (e.g. Figure 6), units were randomly selected for populations

smaller than the full population size recorded. In the case of the ranked-FLD (Figures 8c and

9b), weights were computed for each unit as described by Equation 2 and then ranked by sign

(such that positive weights were ranked higher than negative weights), and the top N units with the

largest magnitude weights were selected for different population size N.

Spike count classifier variants (SCC, ranked SCC)
For the SCC, the weight applied to each neuron was 1/N where N corresponded to the population

size under consideration. The criterion was then computed as described above for the FLD. In the

case of the regular SCC, units were randomly selected for populations smaller than the full popula-

tion size recorded. In the case of the ranked-SCC (Figure 9d), weights were computed for each unit

and ranked as described for the ranked FLD, and the top N units with the largest magnitude weights

were selected for different population size N.

Cross-validated training and testing
We applied the same, iterative cross-validated linear decoding procedure for each decoder. On

each iteration of the resampling procedure, the responses for each unit were randomly shuffled

within the set of matched n-back to ensure that artificial correlations (e.g. between the neurons

recorded in different sessions) were removed. Each iteration also involved setting aside the

responses to two randomly selected images at each n-back (presented as both novel and familiar,

for four trials in total) for testing classifier performance. The remaining trials were used to train one

of the four linear decoders to distinguish novel versus familiar images, where the novel and familiar

classes included the data corresponding to all n-backs and all trial outcomes. Memory strength was

measured as the dot product of the test data vectors x and the weights w, adjusted by b (Equa-

tion 1). Histograms of these distributions for the FLD decoder are shown in Figure 6b across 1000

resampling iterations. A neural prediction of the proportion of trials on which ‘familiar’ would be

reported was computed as the proportion of each distribution that took on a value less than the cri-

terion (Figure 6c). This process was repeated for a broad range of population sizes and for each

size, the mean squared error between the actual and predicted forgetting functions were computed

to determine the best sized population (e.g. Figure 6g).

To compute predictions of reaction times on correct and error trials, we began by considering

the proportion of the distributions shown in Figure 6b predicted to be reported ‘correct’ versus

‘wrong’, as a function of n-back, for both novel and familiar presentations (Figure 6d). Examination

of these proportions plotted against the monkeys’ reaction times that they map onto revealed a lin-

ear relationship (Figure 6e), which we fit with a line by minimizing mean squared error. The final neu-

ral predictions for reaction times were produced by passing the predicted proportions for correct

and error trials through the resulting linear equation (Figure 6f).

Estimating performance for larger-sized populations
To estimate performance for larger sized populations than those we recorded, we computed quanti-

fied how the mean and standard deviation of the distributions depicted in Figure 6b, as well as the

value of the criterion, grew as a function of population size (Figure 6—figure supplement 1). For

both the SCC and FLD, the trajectories of the means and the criterion were highly linear as a func-

tion of population size (Figure 6—figure supplement 1a–b, left), whereas the standard deviations

plateaued (Figure 6—figure supplement 1a–b, right). We modeled the population response
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distributions at each n-back (Figure 6b) as Gaussian, and we estimated the means and standard

deviations of each distribution at different population sizes by extending the trajectories computed

from our data to estimates at larger population sizes (Figure 6—figure supplement 1 dotted lines).

This process was similar in spirit but differed in detail for each decoder.

In the case of the SCC, the mean population response was computed as the grand mean spike

count across the population, and consequently did not grow with population size (Figure 6—figure

supplement 1a, left). We extended these trajectories with a simple linear fit to the values computed

from the data. In contrast, the trajectory corresponding to standard deviation decreased as a func-

tion of population size (Figure 6—figure supplement 1a, right) and to extend these trajectories, we

fit a two-parameter function:

SCC sd xð Þ ¼
X

x

1

ab

 !1=b

(5)

where x corresponds to population size and the parameters a and b were fit to the data.

In the case of the FLD, the population mean was computed as a weighted sum and grew linearly

with population size (Figure 6—figure supplement 1b, left). We extended these trajectories with a

linear fit to the values computed from the data. In contrast, the trajectories corresponding to the

population standard deviations for each n-back grew in a nonlinear manner (Figure 6—figure sup-

plement 1b, right), and we extend them by fitting the 2-parameter function:

FLD sd xð Þ ¼ axð Þb (6)

where x corresponds to population size and the parameters a and b were fit to the data.

For both the SCC and FLD decoders and their threshold variants, we computed behavioral pre-

dictions for larger sized populations by replacing the histograms in Figure 6b with Gaussians

matched for the means and standard deviations determined by the extended trajectories, relative to

the extended estimate for the criterion.

Prediction quality:
To measure the prediction quality of the neural predictions for both the forgetting function and reac-

tion time patterns, we developed a measure that benchmarked the MSE between the behavioral

patterns and neural predictions by the worst-possible fit given that our procedure involves a global

alignment of behavioral and neural data (Figure 6g). The worst-possible fit was computed as a step

function, under the assumptions that performance as a function of n-back should be continuous,

have non-positive slope, and be centered around chance. For example, the average proportion cor-

rect for the monkey’s pooled behavioral forgetting function (Figure 6g) was 84%, and the bench-

mark was thus assigned as 84% proportion chose familiar for every n-back, and 16% for the novel

images. Prediction quality was computed as:

PQ¼ 100 �
MSEneural�MSEbenchmark

MSEneural

(7)

where MSEneural and MSEbenchmark correspond to the MSE between the actual behavioral forgetting

function and the neural prediction or the benchmark, respectively.

To produce prediction quality estimates for reaction times (Figure 6f), the benchmark forgetting

function was passed through the same procedure as the neural prediction to produce benchmarked

reaction time predictions (Figure 6f, dotted). PQ was then computed as described in Equation 7.

Simulation to estimate the impact of visual selectivity on population
size
To estimate the impact of visual selectivity on population size (Figure 9c), we compared FLD and

ranked-FLD behavioral prediction error trajectories (as a function of population size) for two simu-

lated versions of our data: one that ‘replicated’ each unit and another that corresponded to ‘visual

modulation removed’ (Figure 9). For these simulations, the strength of the visual memory signal for

each unit was measured at each n-back as the mean proportional change in the spike count

response for the same images presented as novel versus as familiar across all image pairs, and visual
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memory modulation was modeled as multiplicative. In the case of the ‘replicated’ simulation, the

novel and familiar responses to each image were determined by considering the average response

to that image when it was novel versus familiar, and adjusting that quantity based on the propor-

tional decrement computed for each n-back. For example, if the proportional decrement at 1-back

for a unit was 10% and the unit responded to one image with an average (across the novel/familiar

presentations) of 6 spikes, the replicated prediction for the novel and familiar presentation would be

6.32 spikes and 5.69 spikes, respectively (for a total difference of 0.63 spikes). If the same unit

responded to a different image at 1-back with an average of 3 spikes, the replicated prediction

would be 3.16 spikes and 2.84 spikes for novel and familiar images, respectively (for a total differ-

ence of 0.32 spikes). The process was repeated for each image by applying the proportional decre-

ment determined for the n-back at which it was presented. These predictions were then converted

into spike counts by applying Poisson trial variability. As a verification that this simulation captured

the relevant aspects of the data, we compared its FLD behavioral prediction error trajectory to the

error trajectory of the intact data (Figure 9c, gray versus black).

In the case of the ‘visual modulation removed’ simulation, the process was similar but instead of

considering the actual response of the unit to a particular image, visual memory modulation was

applied to the grand mean spike count across all images for that unit. A response prediction for

each image was determined by applying the proportional decrement determined for the n-back at

which it was presented around the grand mean spike count. These predictions were then converted

into spike counts by applying Poisson trial variability.

Unit d’
Unit d’ was calculated, for each unit, as the difference in the mean responses to the set of images

presented as novel versus the set presented as familiar, divided by the average standard deviation

across the two sets (Figure 8a–b).

Bootstrap statistical testing
To determine the fraction of units that produced responses that differed between novel versus famil-

iar images or between the pre-stimulus and stimulus-evoked period, we computed p-values to evalu-

ate the statistical significance of the observed differences in the mean values via a bootstrap

procedure. On each iteration of the bootstrap, we randomly sampled the true values from each pop-

ulation, with replacement, and we computed the difference between the means of the two newly

created populations. We computed the p value as the fraction of 1000 iterations on which the differ-

ence was flipped in sign relative to the actual difference between the means of the full data set

(Efron and Tibshirani, 1998).
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