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Abstract In placebo hypoalgesia research, the strength of treatment expectations and

experiences are key components. However, the reliability or precision of expectations had been

mostly ignored although being a likely source for interindividual differences. In the present study,

we adopted a Bayesian framework, naturally combining expectation magnitudes and precisions.

This postulates that expectations (prior) are integrated with incoming nociceptive information

(likelihood) and both are weighted by their relative precision to form the pain percept and placebo

effect. Sixty-two healthy subjects received heat pain during fMRI. Placebo effects were more

pronounced in subjects with more precise treatment expectations and correlated positively with

the relative precision of the prior expectation. Neural correlates of this precision were observed in

the periaqueductal gray and the rostral ventromedial medulla, indicating that already at the level of

the brainstem the precision of an expectation can influence pain perception presenting strong

evidence for Bayesian integration in placebo hypoalgesia.

DOI: https://doi.org/10.7554/eLife.32930.001

Introduction
Placebo effects and concomitant hypoalgesia in the pain context exemplify the substantial influence

that expectation and experience can have on treatment outcomes and have therefore been intensely

investigated over the last decades (Atlas et al., 2010; Colloca and Benedetti, 2006; de la Fuente-

Fernández et al., 2001; Enck et al., 2013; Kirsch, 1999; Reicherts et al., 2016; Rief et al., 2011;

Schenk et al., 2014; Stone et al., 2005; Wager et al., 2004). Various studies have identified factors

that modulate these effects such as value (Geuter et al., 2013; Waber et al., 2008), treatment his-

tory (Kessner et al., 2014; Kessner et al., 2013), doctor-patient relationship (Benedetti, 2013), and

context effects (Blasi et al., 2001). Importantly, these modulators are likely to affect the precision or

inverse variance of those expectations, which might explain – at least in part – the large interindivid-

ual differences observed in placebo hypoalgesia studies (Vase et al., 2009; Wager et al., 2011). For

that reason, it is presumed that different precision levels in expectations and prior treatment experi-

ence seem to potentially change treatment outcomes (Büchel et al., 2014). Pollo and colleagues

presented different verbal instructions to manipulate patients’ treatment response expectancies and

observed the largest analgesic effect in the ‘sure treatment’ group compared to two other groups

being either non-informed or having only a 50% chance of receiving a painkiller (Pollo et al., 2001).

This manipulation of the probability of treatment indicates that this is likely to have an effect on the

ensuing placebo response. The more precise expectations are the more probable a specific treat-

ment outcome might be presumed. More recent approaches or frameworks in pain research already

focused on accounting for several modulating factors influencing pain perception to provide a

broader view on this very subjective topic (Anchisi and Zanon, 2015; Büchel et al., 2014;

Petzschner et al., 2017; Wager et al., 2013; Wiech et al., 2014).

For that reason, this was a starting point to formally develop a model which adequately combines

the precision and magnitude of prior expectations on placebo effects (Büchel et al., 2014) and test
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this in a group of individuals. At the heart of this model is optimal Bayesian integration (Knill and

Pouget, 2004; Körding and Wolpert, 2004; O’Reilly et al., 2012), a framework that explicitly

accounts for variability of prior information such as expectations and might thus be helpful to explain

the integration of expectations and sensory information in placebo hypoalgesia (Büchel et al.,

2014). Implicit in this idea is the assumption, that the brain constantly integrates incoming sensory

input with expectations and, as a consequence, generates new expectations about the environment

to minimize future surprise (Feldman and Friston, 2010; Friston, 2010; Friston and Kiebel, 2009).

In essence, Bayesian integration optimally integrates previous expectations (prior) with incoming

sensory information (likelihood) and makes a prediction about the outcome of a certain event (poste-

rior): the posterior is proportional to the product of prior and likelihood. Importantly, in this frame-

work, both terms are weighted by their relative precision to estimate the posterior. Putting this into

the placebo context, previous treatment experience and expectations serve as the Bayesian prior

being illustrated by a probability distribution reflecting pain relief as well as treatment efficacy preci-

sion. A new incoming untreated pain experience reflects the likelihood distribution. By integrating

the two Bayesian key components, prior and likelihood, this framework (Büchel et al., 2014) offers

the opportunity to explain the outcome of a new treatment experience, including the placebo effect,

by predicting ones perceived pain as the model posterior (Figure 1A,B):

pðpainjsensory inputÞ / pðpainÞ*pðsensory inputjpainÞ (1)

A highly precise prior treatment expectation should lead to a stronger placebo effect as com-

pared to a highly variable expectation. By collecting subjective pain perception in the form of

explicit ratings (visual analogue scale, VAS), both, the mean and precision level (reflected by the

eLife digest On a battlefield in World War II, surgeon Henry Beecher ran out of morphine. To

his surprise, he found that replacing the missing morphine with saltwater allowed him to continue

operating on wounded soldiers. Although saltwater contains no active pain-relieving ingredients, it

reduced the soldiers’ pain. This is an example of the placebo effect. Placebos have been shown to

reduce autonomic responses to pain, such as sweating. They also modulate activity in brain regions

that process pain. But why do some of us experience larger placebo effects than others?

Grahl et al. propose that the size of the placebo effect depends on our expectations about a

treatment. More specifically, it depends on how precise those expectations are. Imagine two people

who have taken the same treatment many times, and who have experienced the same average

reduction in pain. But for one person, the treatment reduced their pain by roughly the same amount

each time. For the other, the treatment sometimes reduced their pain by a large amount and other

times hardly at all. The first person will have more precise expectations than the second about how

effective the treatment will be in future. Grahl et al. propose that the first person will thus

experience a greater placebo effect in response to a ‘fake’ version of the treatment.

To test this idea, Grahl et al. applied painful heat to the forearms of healthy volunteers lying

inside a brain scanner. On half the trials, the volunteers were told that they would also receive an

electrical pain-relieving therapy. In reality, this treatment was never applied. After each trial, the

volunteers rated the intensity of the pain they had experienced. As expected, the volunteers

reported less pain when they thought they were receiving a pain-relieving treatment. Moreover,

those volunteers with more precise expectations about the treatment reported greater pain relief

than volunteers with less precise expectations. The former group also showed less activity in one of

the brain’s major pain-processing centers, the periaqueductal gray.

These findings help shed light on why some people experience larger placebo effects than

others. They suggest that helping patients form precise expectations about their treatment, by

giving them precise information about its likely effectiveness, may boost the placebo effect. Further

studies are needed to determine whether this phenomenon also occurs in patients with pain

disorders. If it does, it could help such patients manage their pain using fewer active painkillers.

DOI: https://doi.org/10.7554/eLife.32930.002
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variance) of these subjective reports translate into predictable changes in the pain percepts. These

pain ratings are the basis of the aforementioned probability distributions.

Furthermore, numerous imaging studies identified brain regions being involved in processing pla-

cebo hypoalgesia (for a review see Wager and Atlas, 2015) highlighting the need for a multidimen-

sional approach to investigate the underlying mechanisms. Models that can parsimoniously account

Figure 1. Hypotheses and experimental design. (A) and (B) Hypothesized posterior prediction per group illustrated by Gaussian probability density

functions. The different prior distributions (blue) reflect precise (A) and variable (B) treatment expectations both around the conditioned VAS mean of

30 (�prior ) but with different standard deviations (sprior ) due to the experimental manipulation. The likelihood distribution (red) was not manipulated and

is therefore displayed identical for both groups. The posterior distribution (dashed green) reflects the model prediction of the perceived pain of a new

treatment experience. In Bayesian integration, prior and likelihood are weighted by their relative precision which draws the respective prediction into

the direction of the more precise distribution. The hypothesized placebo effect (�like � �post ) is therefore larger for higher (A) compared to lower (B)

treatment expectation precision. (C) Stimulation patches on the left arm including electrode positions for the sham TENS treatment and one

experimental trial. (D) Conditioning and test phase pain intensities including the experimental prior manipulation of the two groups (see also

Figure 1—source data 1 and Figure 1—figure supplement 1 for exit questionnaire information). An example is displayed representing a calibrated

intensity of 30% pain tolerance at a temperature of 44.5˚C. No variability was induced for the precise treatment expectation group (orange) compared

to induced variability of SD 0.55˚C for each subject of the variable treatment expectation group (turquoise). Mean temperature was the same for all

participants irrespective of the group assignment. The heat pain intensity of conditioning control, test placebo as well as test control were always

presented without induced variability in both groups. HTP, high treatment precision; LTP, low treatment precision; pdf, probability density function; m,

mean; s, standard deviation; VAS, visual analogue scale; ITI, inter-trial-interval; ctrl, control condition; plac, placebo condition.

DOI: https://doi.org/10.7554/eLife.32930.003

The following source data and figure supplement are available for figure 1:

Source data 1. Post-experimental TENS-exit-questionnaire (prior to debriefing).

DOI: https://doi.org/10.7554/eLife.32930.005

Figure supplement 1. Frequencies of post-experimental TENS-questionnaire.

DOI: https://doi.org/10.7554/eLife.32930.004
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for several modulating factors (Anchisi and Zanon, 2015; Büchel et al., 2014; Wager et al., 2013;

Wiech et al., 2014) are essential to better understand and relate behavioral as well as neuronal

aspects of sensory processing such as pain. This can be achieved through model-based functional

magnetic resonance imaging, fMRI (Gläscher and O’Doherty, 2010) by using various features of

these models to identify related neural correlates.

In the present study, we directly tested the hypothesis that Bayesian optimal integration is a pos-

sible mechanism by which expectation is integrated with sensory information in the context of pla-

cebo hypoalgesia. To test this framework, we investigated the naturally occurring variability in

expectations and also explicitly varied levels of expectation precision in two experimental groups

(Figure 1A,B). This manipulation especially addressed the fact, that a pain treatment experience is

usually not (only) verbally induced or influenced by a physician but mostly experienced by the per-

ceived pain relief of the individual compared to the untreated nociceptive sensation. Therefore,

treatment instructions had been identical for both groups but the treated painful sensation was

manipulated in terms of the precision levels of prior treatment expectation. Signaled by two visual

cues, participants of both groups received heat pain in a placebo treatment and untreated control

condition (Figure 1C,D). Via different temperature variations across trials during a conditioning

phase (Figure 1D), one group experienced the placebo treatment as variable (low treatment preci-

sion), whereas the other group experienced it as constant (high treatment precision). Assuming

these two different priors represent different precision levels concerning expected treatment out-

comes, we are able to compare them in terms of behavioral influences on observed placebo treat-

ment outcomes. Importantly, we used fMRI to also investigate neural correlates of this mechanism in

the brain adopting a model-based fMRI approach (Gläscher and O’Doherty, 2010). With this com-

bined approach, we not only sought to better explain placebo treatment outcomes on a behavioral

level, but also identify neural correlates which contribute to Bayesian integration of treatment

expectations.

We focused our fMRI analysis primarily on the periaqueductal gray (PAG) and the underlying

processing concerning the influence of precision levels of prior expectations on placebo treatment

outcomes. This a priori region of interest (ROI) hypothesis was especially based on a previous study

that implicated the PAG in processing of the precision of vicarious information (Yoshida et al.,

2013). Supporting this, another study investigated pain avoidance prediction error coding

(Roy et al., 2014) and showed that the PAG, among others, was involved in the modulation of

expected probability of pain in this context. Combining this finding with the assumption that predic-

tion error and precision level coding are distinct but share related aspects of modulatory functions,

this is also hinting to the PAG being involved in the processing of prior treatment precision levels in

a hypoalgesia context. Although the literature discusses several other regions such as lateral orbito-

frontal (OFC) and rostral anterior cingulate cortex (rACC) to be involved in aversive prediction error

coding (Seymour et al., 2004, 2005; Shackman et al., 2011; Zeidan et al., 2015), yet, no other

regions were specifically related to precision level or variability processing. For that reason, this

study focused the imaging analysis on the PAG.

Results

Behavioral results
In a first step, we compared VAS ratings between the two groups during the conditioning and test

phase respectively using a mixed-effects analysis. In this analysis, it was focused on the experimen-

tally induced precision level of prior treatment expectation resulting in the use of a subset of partici-

pants (Nsub = 49) ensuring that the intended conditioning manipulation of high vs. low prior

treatment precision was induced according to the respective group assignment of subjects (high

treatment precision - HTP: nsub-HTP = 23, low treatment precision - LTP: nsub-LTP = 26, see Material

and methods for further description and generating procedure of sub-samples). As expected, for

the conditioning phase (Figure 2A), a main effect of condition (placebo vs. control) was observed (F

(2,1172) = 24.55, p<0.001) reflecting the two distinct temperatures used for creating the treatment

experience. Neither a main effect of group (p=0.963) nor an interaction effect of group and condi-

tion (p=0.885) was revealed indicating that the conditioning procedure did not differ between the

two groups. Subject-specific standard deviations for placebo conditioning ratings (Figure 2B) and
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therefore the variability (i.e. inverse precision) of prior treatment expectations was larger for the LTP

compared to the HTP group (LTP 22.46 ± 5.33 vs. HTP 13.63 ± 4.76, t(47) = 6.12, p<0.001) reflecting

that in their levels of placebo treatment precision the two groups differed. It is important to note

that this effect of group differences concerning precision levels was driven by the use of a sub-sam-

ple in this analysis. This served as a proof of concept for the conditioning manipulation and was

done to then investigate the precision level effect on the test phase placebo response (in other

words, precision level being the independent compared to placebo effect being the dependent vari-

able). Concerning the test phase (Figure 2C,D), in which all subjects received identical heat stimuli

for both conditions, again, a main effect of condition was observed (F(2,1172) = 4.49, p<0.001). This

reflects the significant placebo effect by indicating less painfulness for treatment compared to con-

trol stimuli even though participants received identical heat stimulation in both conditions. Impor-

tantly, the interaction between group and condition in the test phase reflects group differences

concerning the placebo effect by accounting for possible confounding inter-individual differences

(e.g. pain sensitivity). This interaction of group and condition became significant (F(2,1172) = 2.72,

p=0.007) revealing, as hypothesized, that the HTP group (mean VAS difference of the two conditions

6.95 ± SD 11.31) showed a larger placebo effect than the LTP group (1.16 ± 25.43). These results

suggest that levels of prior treatment precision modulate the placebo effect. No main effect of

group was observed (p=0.240).

Integration of expectation and sensory observation
To evaluate the Bayesian framework, we modeled distributions of subjective ratings for every subject

separately. Maximum likelihood estimates for the Bayesian model parameters of prior and likelihood

were obtained by fitting Gaussian density functions to the data resulting in predictions of the test

phase placebo ratings as displayed in Equation (2). By integrating the model parameters of prior

and likelihood a prediction of the test phase placebo ratings is presented not only involving the

mean but, more importantly, including the respective precision level of prior treatment expectations

and sensory inputs reflected in the variance of both normal distributions. As our Bayesian framework

incorporates prior and likelihood precisions in a continuous manner, the whole sample (ignoring

experimental groups) was analyzed. As expected, the predicted placebo effect

Figure 2. Behavioral results of pain ratings. (A) Conditioning phase pain ratings reflecting the two distinct temperatures for the control (ctrl) and

placebo (plac) condition. (B) Boxplot of single subject standard deviations of pain ratings of the conditioning phase. Note the higher variability within

the LTP group’s placebo condition (turquoise). (C) Test phase pain ratings reflecting the analgesic effect of the treatment. The significant interaction

effect revealed a larger placebo effect for the HTP compared to the LTP group. Note that the temperature for all trials of the two conditions was

identical and constant for both groups. (D) Boxplot of single subject standard deviations of pain ratings of the test phase. Variability levels across

conditions do not differ (D). HTP, high treatment precision (nsub-HTP = 23); LTP, low treatment precision (nsub-LTP = 26); sem, standard error of mean.

DOI: https://doi.org/10.7554/eLife.32930.006
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(likelihood �� posterior �) correlated significantly with the observed placebo effect

(mean testcontrol � mean testplacebo) with r = 0.441, p<0.001. To explain placebo treatment outcomes, the

Null model (see Materials and methods) assumed no influence of the treatment experience during

conditioning. This was contrasted to the Bayesian integration model hypothesizing the integration of

prior expectations and experiences with the new incoming sensory observations (likelihood). By

using a random effects (RFX) Bayesian model selection approach (Rigoux et al., 2014;

Stephan et al., 2009) to estimate the overall posterior model probability across subjects, the better

explanation of the given data was provided by the Bayesian integration model, reflected in a greater

posterior model probability (Figure 3A and B, see also Figure 3—figure supplements 1 and 2 for

single subject fits). The RFX conditional expectations of model probabilities of 0.913 (exceedance

probability j1 » 100%) for the Bayes model compared to 0.087 (exceedance probability j0 » 0%)

for the Null model reflect this result (Figure 3B). This finding indicates that the model incorporating

the variance of treatment expectation performed better than the Null model.

In more detail, 31 subjects (HTP 17, LTP 14) showed a Bayes factor (BF10) larger than three in

favor of the Bayesian integration model (Figure 3A), indicating at least a moderate evidence

(Kass and Raftery, 1995; Lee and Wagenmakers, 2013). Concerning the Null model, seven sub-

jects showed a Bayes factor (BF01) larger than three (HTP 4, LTP 3). This led to a positive evidence

ratio of PER10 = 31/7 = 4.43. Importantly, no difference between the groups was observed meaning

that in both groups, a comparable number of model fits was significantly better described by the

Bayesian integration model in contrast to the Null model. In 24 subjects, none of the two models

was favored significantly over the other model.

Investigating the mean of treatment expectations (�prior) and the relationship with placebo effect

magnitudes, we did not observe a correlation (p=0.997) which makes it more likely that differences

in treatment precision levels are a possible modulator of placebo treatment outcomes. To investi-

gate this further, we used attraction weight wprior(see Materials and methods, Equation (3)), a

parameter that considers the precision level (i.e. inverse variance) of both, prior and likelihood, irre-

spective of the influence of the mean parameters of the two. Importantly, the attraction weight

reflects a relative, integrated precision measure of prior and likelihood and includes the assumption

that a certain level of treatment variability is necessary to induce a placebo effect as full predictabil-

ity of a treatment outcome would not induce expectation processes (de la Fuente-Fernández et al.,

2004). In other words, it reflects the relative influence of prior and likelihood on the posterior.

Attraction weight was positively correlated with the placebo effect (r = 0.306, p=0.016, Figure 3C).

This positive relationship indicates that in subjects with higher precision (i.e. less variability) in prior

treatment expectation a larger placebo effect magnitude was observed, whereas subjects with

higher precision for the perceived sensory inputs (likelihood) showed smaller magnitudes. Using a

multiple linear regression approach, our analysis showed that the placebo effect was better pre-

dicted by the precision of treatment expectations (sprior) compared to the precision of perceived

sensory inputs (slike) (F(2,59) = 6.83, p=0.002, R2=0.188). The prediction of subjects’ placebo effect

magnitude was equal to 15.005–0.883*(sprior)+0.562*(slike). A negative regression weight for sprior

indicates that the placebo effect magnitude is expected to decrease for subjects with less precise

(more variable) prior treatment expectations, after controlling for the precision level of sensory

inputs (slike). Precision of prior treatment expectation was a significant predictor of placebo effect

magnitudes (b = �0.883, t(59) = 3.642, p=0.001) and precision of sensory inputs showed a trend

effect (b = 0.562, t(59) = 1.842, p=0.070). Only including precision of prior treatment expectation

explained less variance (R2=0.141, adj. R2=0.117) than entering both attraction weight components

(R2=0.188, adj. R2=0.161). This suggests that higher precision or less variability within individual

treatment expectations (prior) compared to perceived sensory inputs (likelihood) leads to greater

placebo effects.

Neural correlates of treatment precision
In a next step, we investigated how precision-related treatment outcomes are reflected at the neural

level. As we had a strong hypothesis concerning the periaqueductal gray (PAG) (Roy et al., 2014;

Yoshida et al., 2013), we specifically looked for brain activity associated with Bayesian integration

parameters within this area. Most importantly, we were interested in the neural correlates of the

attraction weight (wprior) as this value reflects the relative precision of both, expectations and
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incoming sensory inputs, without any influence of simple intensity coding of pain (no involvement of

the mean). By using wprior as a covariate for the test phase placebo condition, we observed an activa-

tion in the PAG (coordinates [2 -26 -8], kE = 8, t(60) = 4.16, pFWE = 0.001; Figure 4 and Figure 4—

figure supplement 1). Higher BOLD signals in the PAG were related to smaller attraction weight val-

ues (r = �0.457). This more detailed description of the PAG finding is visualized in Figure 4B. In

other words, the less precise prior treatment expectations are relative to sensory inputs, the stronger

the PAG BOLD signal. Interestingly, the same contrast also revealed a cluster in the rostral ventro-

medial medulla (RVM) but this was not significant when correcting the p-value for the entire volume

(coordinates [2 -36 -46], kE = 16, t(60) = 4.06, puc <0.001). Here, also a negative correlation with the

Figure 3. Posterior model probabilities given the observed data (N = 62) and relationship between the attraction weight and the placebo effect. (A)

Single subjects posterior model probabilities for the Bayesian and Null model. The data is sorted by the Bayesian model posterior probability of each

subject. (B) Random effects overall posterior model probability for the two models. (C) Positive correlation between the placebo effect and the Bayesian

integrated treatment variability (attraction weight – relative variability of prior and likelihood, see Materials and methods Equation (3)). This is implying

that higher treatment precision (prior) compared to higher variability in new sensory inputs (likelihood) may lead to larger placebo effects. See also

Figure 3—figure supplements 1 and 2 for single subject fits. RFX, random effects; r, correlation coefficient.

DOI: https://doi.org/10.7554/eLife.32930.007

The following figure supplements are available for figure 3:

Figure supplement 1. Integration of prior and likelihood of single subjects including predictions for the Bayesian and Null model: high treatment

precision subjects (HTP group).

DOI: https://doi.org/10.7554/eLife.32930.008

Figure supplement 2. Integration of prior and likelihood of single subjects including predictions for the Bayesian and Null model: low treatment

precision subjects (LTP group).

DOI: https://doi.org/10.7554/eLife.32930.009
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relative precision was observed (r = �0.451). Additional, more explorative, results reflecting the neu-

ral correlates of �prior, log sprior

� �

, and the posterior model probability for the Bayesian over the Null

model (Figure 3A, blue bars) can be found in the Supplement (Figure 4—figure supplements 2,

3 and 4).

Discussion
Our results provide evidence that a Bayesian integration mechanism in the context of placebo hypo-

algesia can account for placebo effects on a behavioral level. More importantly, our fMRI data

Figure 4. Model-based fMRI approach of PAG signal and Bayesian integrated treatment variability. (A) One sample t test of the test phase placebo

condition with the attraction weight as covariate. Beside the PAG activation, a cluster in the rostral ventromedial medulla (RVM) was observed.

Visualization was set to puc <0.001, see also Figure 4—figure supplement 1 for a more detailed visualization and Figure 4—source data 1 as well as

Figure 4—source data 2 for first level con-images of the test phase placebo condition. (B) Detailed visualization of the negative relationship between

PAG BOLD signal and Bayesian attraction weight as depicted in A, implying increased PAG signal being associated with higher variability in placebo

treatment expectations (prior) and lower variability in new sensory inputs (likelihood). Subject’s PAG parameter estimates of the displayed cluster were

small volume corrected, extracted per voxel and averaged to result in a mean parameter estimate. (C) Single subject examples of the Bayesian

integration for a high and low prior treatment subject. Markers (blue – prior, red – likelihood, green – observed data) represent single trial ratings of the

respective fitted Gaussian probability density function (pdf). The predicted posterior displays the integrated Bayesian model prediction of the observed

data (dashed light green). L, left; R, right; a.u., arbitrary units; PAG, periaqueductal gray; pdf, probability density function; VAS, visual analogue scale.

DOI: https://doi.org/10.7554/eLife.32930.010

The following source data and figure supplements are available for figure 4:

Source data 1. First-level con-images of Figure 4—figure supplement 1 to 4 (HTP group).

DOI: https://doi.org/10.7554/eLife.32930.016

Source data 2. First-level con-images of Figure 4—figure supplement 1 to 4 (LTP group).

DOI: https://doi.org/10.7554/eLife.32930.017

Figure supplement 1. Sagittal slices of test phase placebo treatment with the attraction weight as covariate (relative precision of prior and likelihood).

DOI: https://doi.org/10.7554/eLife.32930.011

Figure supplement 2. Sagittal slices of test phase placebo treatment with the prior m as covariate (mean of prior treatment expectation).

DOI: https://doi.org/10.7554/eLife.32930.012

Figure supplement 3. Sagittal slices of test phase placebo treatment with the log-transformed prior s as covariate (log-transformed standard deviation

of prior treatment expectation).

DOI: https://doi.org/10.7554/eLife.32930.013

Figure supplement 4. Exploratory results of test phase placebo treatment with the posterior model probability of Bayes over Null model as covariate

(blue bars of Figure 3A).

DOI: https://doi.org/10.7554/eLife.32930.014

Figure supplement 5. Main pain and placebo effect of the test phase.

DOI: https://doi.org/10.7554/eLife.32930.015
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revealed that key parameters of this mechanism are represented in the periaqueductal gray (PAG).

These results add to other approaches also proposing alternative ways of analyzing perceptual expe-

riences such as pain (Anchisi and Zanon, 2015; Büchel et al., 2014; Wager et al., 2013;

Wiech et al., 2014) indicating the need for models that can parsimoniously account for several mod-

ulating factors. Through model-based fMRI, these models allow to identify neural correlates of vari-

ous aspects of pain perception and placebo hypoalgesia.

On the behavioral level, we observed that placebo effects were smaller in subjects with less preci-

sion in their prior treatment experience (higher variability) and more pronounced for those who per-

ceived the treatment as more constant (higher precision) relative to the incoming sensory stimuli.

The observed placebo effect did not correlate with the simple mean of prior treatment expectations

which reflects the pain intensity during treatment conditioning. This intensity mean of the prior was

not able to describe the strength of the placebo effect via a correlative relationship, whereas the

precision level of the prior was. By showing that, we were able to present a framework that indicates

strong evidence for placebo effects being explained by optimal Bayesian integration (Anchisi and

Zanon, 2015; Büchel et al., 2014).

Also, our results showed that Bayesian integration predicted placebo treatment outcome based

on various individual prior and likelihood distributions. The framework did not favor high over low

prior precision or vice versa and predicted the different cases equally well. As placebo effect magni-

tudes are often highly variable (Vase et al., 2009) our results reflect the usefulness of a Bayesian

approach that can account for variable as well as precise prior treatment expectations. In some sub-

jects, the Bayesian integration approach did not describe the treatment outcome significantly better

than the Null model. Reasons for that are highly speculative and include, for example, that not all

individuals may combine information of prior experiences and new sensory inputs in an optimal way.

Finding markers to predict which individual uses optimal Bayesian integration and which does not

would be a subject for future research.

Additionally, the experimental manipulation used in this study provides new insights in the modu-

lation of different levels of precision of prior treatment expectations by holding the test phase stim-

uli constant in both groups. The present study used test phase stimuli matching prior expectations

concerning treatment precision levels in the HTP but not in the LTP group as induced by the differ-

ent conditioning procedures. This was done to investigate the specific effect of precision levels of

prior treatment expectations without interfering variability of the test phase stimulation. However,

for that reason, our study cannot answer the question whether a modulation of precision levels of

the test phase stimuli may influence the placebo effect and pain perception in a different way. This

might be answered in future studies with both matching or mismatching conditioning and test phase

precision levels.

Our fMRI data indicated that the PAG signal change represents relative expectation precision of

the Bayesian integration process in a placebo hypoalgesia study. This brainstem area is part of the

ascending and descending pain system and is crucial for pain modulation (Fairhurst et al., 2007),

pain avoidance prediction error coding (Roy et al., 2014), and the processing of precision of vicari-

ous information (Yoshida et al., 2013). The PAG is not only known to mediate pain inhibition

(Jones and Gebhart, 1988), but also involved in pain facilitatory processes (Vanegas and Schaible,

2004) which makes it a key structure of anti- as well as pro-nociceptive effects. Our behavioral data

shows that pain modulation underlying placebo hypoalgesia depends on the precision of the prior

expectation. Therefore, our data suggests that the PAG is an area crucially involved in precision

biased integration processes due to its opposing modulatory properties. Previous research already

hinted at a representation of uncertainty in the PAG during a painful vicarious observation task

(Yoshida et al., 2013). They observed a potent hyperalgesia effect during this vicarious observation

task in subjects who showed high susceptibility to induced variability and related this to an increased

BOLD signal in the periaqueductal gray (PAG). In this study, the results of the winning uncertainty-

hyperalgesia model suggested a strong effect of social assimilation and hyperalgesic uncertainty,

but were not able to clearly determine whether this was driven by an underlying linear mean effect

of pain or the uncertainty that was induced during the observation task. By using an optimally inte-

grated precision weight to explicitly investigate the influence of variability irrespective of the mean

intensity of pain in the placebo treatment context, our data indicates a significant influence of the

PAG in variability coding. However, our data does not negate the influence of the mean intensity of
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pain as the significant behavioral main effect of condition during our placebo test phase illustrates a

clear relationship.

We additionally observed that the rostral ventromedial medulla (RVM) is involved in this process.

Again, facilitatory as well as inhibitory projections from the PAG relay in the RVM (Vanegas and

Schaible, 2004) which underpins and adds to the relationship of variability coding in the PAG as

both brainstem areas are involved in opposing modulatory processes during pain. In both, PAG and

RVM, a stronger activation was observed when the treatment expectation was less precise (i.e. high

variability) relative to the precision of the incoming sensory stimuli. Dependent on the context,

including anticipatory and/or direct responses to nociceptive stimuli, the placebo effect literature

reports PAG activation patterns being both, increased or decreased in placebo hypoalgesia reflect-

ing the mediating effect of this area (Eippert et al., 2009; Geuter et al., 2013; Peciña et al., 2013;

Scott et al., 2008; Wager et al., 2004; Wager et al., 2007; Wager and Atlas, 2015; Zubieta et al.,

2005), whereas the RVM shows mainly increased activation in placebo hypoalgesia (Eippert et al.,

2009). These activation patterns are likely being related to variability coding as seen in our results.

Variability during pain most probably introduces uncertainty about future painfulness (Seidel et al.,

2015). In this context, our data suggests that less precise prior treatment expectations based on

missing information lead to higher activation in the PAG probably due to processing less predictable

(Fairhurst et al., 2007) outcomes. It seems that the PAG’s modulatory processing (Jones and Geb-

hart, 1988; Linnman et al., 2012; Vanegas and Schaible, 2004) is reflected by this signal increase

in the presence of non-precise information about a treatment. Also, some studies were able to show

that PAG placebo-induced signal increases were related to the strength of the analgesic effect con-

necting this to the opioidergic descending pain control system (Eippert et al., 2009; Peciña et al.,

2013; Wager et al., 2004). Our results additionally indicate that PAG signal increase is related to

less precise prior treatment expectations (prior) compared to more precise incoming sensory stimuli

(likelihood) during a placebo treatment, importantly not being related to simple pain intensity but

rather optimally integrated variability coding. Therefore, an influence of prior treatment precision

levels on opioidergic descending pain modulations is speculated as we also observed the same

trend-wise activation pattern in the RVM. This is supported by a previous finding of the anticipated

analgesic effect being positively correlated with a signal increase in the PAG (Scott et al., 2008),

reflecting the responsiveness of this brainstem area to placebo-induced expectations. In both areas,

PAG and RVM, placebo-induced BOLD-activations can be significantly reduced by naloxone

(Eippert et al., 2009), an opioid-antagonist known to impair placebo-dependent pain reduction

(Amanzio and Benedetti, 1999; Grevert et al., 1983; Levine and Gordon, 1984; Levine, 1978),

which reflects their involvement in the opioidergic descending pain control system. As these are the

two brain regions we also observed during the coding of expectation precision under a placebo

treatment condition, an involvement of the opioidergic descending pain system is likely. Addition-

ally, the PAG-RVM circuit is known to be involved in the aforementioned anti- but also in pro-noci-

ceptive responses such as cholecystokinin (CCK) antagonizing opiate analgesia (Watkins et al.,

1984), nocebo hyperalgesia (Benedetti et al., 2006), opiate hyperalgesia (Xie et al., 2005), and

safety signal-mediated hyperalgesia (Wiertelak et al., 1992). As it was previously speculated that

the PAG-RVM modulation in pro-nociceptive responses may likely by involved in the generation and

maintenance of discomforting and painful functional disorders such as chronic pain, irritable bowel

syndrome, and fibromyalgia (Tracey and Dunckley, 2004), a substantial relevance of our findings

also connecting the PAG-RVM circuit to treatment precision level coding may shed more light on

presumably important aspects of these disorders. A neuronal modulation via the precision level of

prior treatment expectation concerning these disorders could generate new hypotheses about inter-

individual differences between patients. At this point, these interpretations are highly speculative

though and need further investigation in the future.

Due to the study’s specific experimental manipulation, the current findings suggest a strong influ-

ence of perceptual modulations concerning different levels of prior treatment precision. However,

this does not limit the interpretation of the results to only a perceptual but also possible changes in

homeostatic regulatory actions as a recent probabilistic model suggested (Petzschner et al., 2017;

Stephan et al., 2016). The authors propose that belief updates are constantly influencing the perfor-

mance of the interoceptive-allostatic circuit (allostatic self-efficacy) which might be able to better

explain differential diagnosis in disorders such as fatigue and depression. This model supports the

findings of our study in a way that the precision of prior beliefs predicted placebo treatment
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outcomes better than the precision of sensory inputs relating a stronger influence of expectations

compared to new sensory information to these disorders.

To summarize, our results add to the existing literature and frameworks, as we observed that not

in the cortex but already at the brainstem level, Bayesian integration was able to explain signal

changes in placebo hypoalgesia. This nicely compliments previous research suggesting that Bayesian

integration during the processing of placebo treatments already takes place at a very basic level of

pain perception (Anchisi and Zanon, 2015), but, as investigated in a behavioral study, was not able

to reveal the underlying neural mechanisms.

In a clinical context, our data clearly indicates that the level of precision of prior treatment experi-

ences and associated expectations is a crucial determinant of placebo effects in treatment out-

comes. This mechanism can clinically be exploited by providing precise a priori information

concerning a treatment, which will help to create precise prior expectations. Additionally, as there is

growing evidence that the chronification of pain may be related to a dysregulation of the descend-

ing pain modulatory system (for a review see Ossipov et al., 2014), our Bayesian framework and the

related neural findings not only add to the placebo literature but also inform other clinical areas

investigating disruptions of the modulatory circuits during pain processing.

Materials and methods

Participants
Seventy healthy male right-handed subjects with no history of psychiatric or neurological illness were

assigned to two groups using a randomized double-blind allocation. Eight subjects had to be

excluded due to incomplete data collection or technical difficulties (four in each group). Data analy-

sis was performed on the remaining 62 participants (mean age ± SD: 24.60 ± 3.77 years, range: 19–

34 years). Both groups only differed in variability levels within the placebo treatment conditioning

(high treatment precision - HTP, no induced variability; low treatment precision - LTP, high induced

variability, n = 31 each). The groups did not differ significantly in age (years: HTP 24.71 ± 3.88; LTP

24.48 ± 3.71; t(60) = 0.234, p=0.816) or basic pain thresholds (just painful ˚C: HTP 44.0 ± 2.4; LTP

44.0 ± 2.3; t(60) = 0.005, p=0.996). They were tested on 2 days with an average break of approxi-

mately 5 days between testing (days: HTP 4.55 ± 3.33; LTP 5.03 ± 3.74; t(60) = 0.593, p=0.592). The

study was approved by the Ethics Committee of the Medical Board Hamburg, Germany. All subjects

were remunerated for participation and gave written informed consent in accordance with the Decla-

ration of Helsinki prior to the experiment. This included information about exclusion criteria (neuro-

logical and/or pain related diseases, psychological disorders, skin afflictions, substance abuse,

current medication, physical and/or emotional stress) and all experimental procedures such as MRI

measurements, thermal and electrical stimulation as well as possible adverse reactions. They were

not informed about the purpose of the study investigating placebo hypoalgesia until post-experi-

mental debriefing. Each subject signed a second informed consent after debriefing that the acquired

data was not withdrawn from the study.

Thermal and electrical stimulation
Thermal stimulation
To evoke painful sensations, a contact heat stimulator (CHEPS thermode, Medoc, Ramat Yishai,

Israel) with a stimulation diameter of 27 mm was used. The thermode was attached to one of four

skin patches (Figure 1C) of the left volar forearm respectively using a Velcro strap. Each heat stimu-

lus lasted 8 s starting at 32˚C baseline, reaching the corresponding target temperature with a rapid

heating rate of 70˚C/s and returning to baseline by a cooling rate of 40˚C/s. After a 2 s delay after

stimulus offset, participants rated each stimulus on a visual analogue scale (VAS) with ‘no pain’ as

the left and ‘unbearable pain’ as the right visual anchor points (corresponding to a VAS of 0 to 100).

‘Unbearable pain’ was instructed being as painful as subjects would like to remove the thermode

from the arm because of too intense heat sensations.

Electrical stimulation
As the putative treatment, transcutaneous electrical nerve stimulation (TENS) was introduced. To

boost treatment expectations, subjects were told that their individual TENS threshold had to be
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detected, as the stimulation in this study needs to be slightly below perceptual threshold. For the

actual experimental procedure those thresholds were never used or of any interest. Electrical stimu-

lation was presented using a constant current high-voltage stimulator (DS7A, Digitimer Ltd, Welwyn

Garden City, England). By delivering single pulses of 2 ms duration, the individual electrical thresh-

old was acquired on day 2 prior to scanning (all: 0.42 mA; HTP: 0.45 mA; LTP: 0.40 mA). The electri-

cal threshold was defined as a non-painful only just perceptible tickling. During the fMRI experiment

each run started with a 2 ms electrical pulse between 0.8 to 0.9 mA and was stated as a resistance

measurement of the device to let the subjects experience the putative electrical treatment. After

that, the Digitimer was switched off. Post-experimental interviewing affirmed that all subjects sensed

the electrical sensation but did not rate it as painful.

Study design
A between-subjects design was used to create an overall sample that shows sufficient variability of

prior precision concerning placebo treatment expectations. All subjects were told that TENS is well-

established and known to reduce pain and that the aim of this study was to investigate the underly-

ing neural mechanisms of TENS. To create treatment expectation and let the subjects experience

the analgesic effect, both verbal suggestion and conditioning components were used similar to

other placebo studies (Colloca and Benedetti, 2006; Montgomery and Kirsch, 1997; Price et al.,

1999; Wager et al., 2004). Experimental instructions and suggestions concerning the putative treat-

ment were identical for both groups and delivered in written and oral format by an experimenter

unaware of the individual’s group assignment. The experimenter always presented herself wearing a

white coat.

Day 1 was only used to identify potential abnormal pain perception and familiarize the subject

with the painful heat stimulation and the VAS rating procedure as well as to check the subject’s MR

applicability by a physician. First, basic pain thresholds were assessed performing a limits procedure

by slowly increasing temperature until the heat was reported as just painful by the subject. This was

done three times and the mean was used as an anchor point for the actual calibration procedure tri-

als. Heat calibration consisted of 16 different intensity trials presented in a pseudorandomized order

on the right volar forearm. Trials and rating procedure were presented as explained above. To calcu-

late individual temperatures for corresponding VAS ratings of 30, 50, and 70, a sigmoidal function

was fitted to the ratings. This ensured that individual pain ratings, despite different intensities, were

comparable across participants. The whole procedure during day 1 lasted about 1 hr.

On day 2, the fMRI experiment was performed including a conditioning and test phase. The four

skin patches and two TENS electrode positions (Figure 1C) were marked on the left volar forearm

using a stencil. Each position was used for one of the four experimental sessions (Figure 1D) in a

pseudorandom order during scanning. Two electrodes for the sham TENS were placed beside the

four skin patches. Before going into the scanner, all subjects answered a mood (Steyer et al., 1997)

and TENS questionnaire to assess their possible foreknowledge regarding TENS as a medical treat-

ment. To account for possible context effects of the MR environment (Ellerbrock and May, 2015),

the 16-trial-calibration procedure from day one was repeated on the right volar forearm with the

subject laying in the scanner without acquiring BOLD data. The new calculated temperatures corre-

sponding to 30 (in ˚C mean ± SD: HTP 44.4 ± 0.7; LTP 44.3 ± 0.6), 50 (HTP 44.9 ± 0.6; LTP 45.0 ±

0.6), and 70 (HTP 45.5 ± 0.6; LTP 45.7 ± 0.6) VAS were used for scanning which immediately started

after pain calibration. For every trial of the whole experiment, all subjects expected a painful heat

intensity of 70% of their pain tolerance. During the conditioning phase, all participants underwent

two sessions (placebo ‘TENS on’ skin patch and control ‘TENS off’ skin patch) with 12 trials each.

The order of stimulation (placebo or control session first) and patch position were counterbalanced

across participants and matched for the two groups to minimize possible order confounds.

Unbeknownst to the participants, for both groups, the average placebo treatment temperature

was set to 30% pain tolerance. Despite that, only within this placebo condition, the two groups dif-

fered from each other regarding the level of treatment variability (Figure 1D). The HTP group expe-

rienced the placebo treatment as consistently effective meaning that they were always presented

with the same pain intensity of VAS 30. In contrast, the LTP group received a pain relieving placebo

treatment with varying temperatures (SD = 0.55˚C; mean VAS 30; range around 30 VAS tempera-

ture: ± 0˚ to ± 0.8˚C) across placebo treatment trials. Importantly, during the conditioning, the

untreated control stimuli were identical for both groups and included heat stimulation of 70% pain
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tolerance intensity without any induced variability across trials. This manipulation procedure served

to enhance expectations regarding the placebo treatment and its effectiveness concerning heat pain

relief.

Each trial (Figure 1C) consisted of an inter-trial-interval (ITI, 12–20 s), followed by an anticipation

phase (5.5–8 s), the painful heat stimulation (8 s), a delay (2 s), and the VAS rating procedure (7 s).

The ITI was represented by a white fixation cross. For the anticipation cue, either a red fixation cross

(control condition) or a red fixation cross surrounded by a yellow circle (placebo condition) was pre-

sented. The respective cue remained during heat stimulation and disappeared after cooling down

leaving a blank screen for the post-stimulus delay. Subsequently, the VAS appeared and subjects

rated and confirmed their perceived painfulness. At the end of each session, participants additionally

rated the subjective average painfulness of all trials received during this session.

The conditioning phase was directly followed by the test phase in which the created treatment

expectation was compared to the non-manipulated control condition. Importantly, during the test

phase, 12 identical heat stimuli of 50% pain tolerance intensity were applied for both placebo and

control session, respectively (Figure 1D). As stimulation was physically identical in both sessions, pla-

cebo effects were assessed by directly comparing VAS ratings of the two conditions. Ratings were

expected to be decreased in the placebo compared to the control condition and even more reduced

in the HTP compared to the LTP group. Outside the scanner, participants completed several ques-

tionnaires to assess personality dimensions and mood components. This also included a post-experi-

mental TENS questionnaire assessing the subject’s experience during the treatment prior to

debriefing (see Figure 1—source data 1 and Figure 1—figure supplement 1). The whole experi-

mental procedure during day 2 lasted about 3 hr.

Data acquisition
For stimulus presentation, triggering and, recording of pain ratings, Matlab (Mathworks, Natick, MA)

and the open-source Matlab based Psychophysics Toolbox 3 (Brainard, 1997; Pelli, 1997) was used.

Skin conductance was acquired on the distal and proximal hypothenar of the left hand, placing both

electrodes on dermatome C8. Additionally during scanning, respiration and heart rate was recorded

by using the Expression patient monitoring system (Invivo Corporation, Orlando, FL). A CED 2502

(Cambridge Electronic Design Limited, Cambridge, UK) was used to amplify and a CED micro 1401

to digitalize skin conductance signal at 1000 Hz. The data was recorded by the CED software Spike

2. Magnetic resonance imaging (MRI) data were acquired using a 3T Magnetom Trio scanner (Sie-

mens, Erlangen, Germany) equipped with a 32-channel head coil. BOLD responses were measured

using a T2* sensitive echo planar imaging (EPI) sequence. Each volume consisted of 38 transversal

slices with a voxel size of 2 � 2�2 mm3 and a 1 mm gap (repetition time: 2.35 s, echo time: 26 ms,

flip angle: 80˚, field of view 224 � 224 mm, GRAPPA PAT-factor: 2, reference lines: 48). Volumes

were tilted approximately 30˚ relative to AC-PC line to allow coverage of most of the brainstem

area. Considering T1 saturation, the first 4 volumes of every session were discarded. To account for

B0 inhomogeneity, prior to each session, B0 field maps were also acquired (40 slices, voxel size: 3 �
3�3 mm3, repetition time: 398 ms, short echo time: 4.31 ms, long echo time: 6.77 ms, flip angle:

40˚, field of view 216 � 216 mm). Additionally, a high-resolution anatomical T1-weighted image was

acquired for each subject (MPRAGE sequence, voxel size: 1 � 1�1 mm3).

Data analysis: behavior and modeling
Concerning the statistical analysis, a frequentist approach was applied to test for main and interac-

tion effects of the experiment, and computational modeling was used to predict placebo treatment

outcomes and compare them with the observed data.

Behavior
Data analysis was performed using Matlab (2014a, Mathworks, Natick, MA) and SPSS 24 (IBM,

Armonk, NY). A threshold for statistical significance of p<0.05 was used. The placebo effect was cal-

culated by subtracting both means of the two test phase conditions (control - placebo). Individual

treatment variability was defined as the subject-specific standard deviation over all 12 trials of pla-

cebo ratings during conditioning. The group-specific treatment variability was obtained by averaging

over the individuals treatment variabilities. As we expected this to reflect the experimental
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manipulation of constant and variable temperatures, it was hypothesized to see higher variability in

the ratings of the LTP group compared to lower variability in the HTP group. In general, higher rat-

ing variability was assumed to entail low treatment precision and lower rating variability was

assumed to reflect higher treatment precision. In a first step, we were interested in experimentally

induced treatment variability. Testing this, linear mixed-effects models were performed for pain rat-

ings of conditioning and test phase, respectively. This provided the opportunity to test main effects

of condition (placebo vs. control) and group (HTP vs. LTP) as well as the interaction effect by addi-

tionally controlling for subject-specific random effects. The analysis was performed on a subset of

individuals (Nsub = 49). This was done to ensure that the intended manipulation of the respective

conditioning procedure of high (HTP) vs. low (LTP) prior treatment precision subjects was induced

according to the respective group assignment. To define respective cut-off values (see below), an

independent behavioral sample (Nibs = 41; HTP: nibs-HTP = 21, LTP: nibs-LTP = 20), that underwent a

similar experimental procedure, was used. We selected HTP subjects showing higher rating precision

(i.e. smaller variance) than the average LTP group of the independent sample (rating variance/SD <

384.08/19.60). Further, we selected LTP subjects showing lower rating precision (i.e. larger variance)

than the average HTP group of the independent sample (rating variance/SD > 194.90/13.96). This

led to sub-samples of nsub-HTP = 23 for the HTP and nsub-LTP = 26 for the LTP group with a total of

Nsub = 49. It is important to note that we used an independent sample to identify cut-off values for

subjects in which the experimental manipulation was correctly induced. Furthermore, these cut-off

criteria were applied to the conditioning phase data and not to the dependent variable, that is the

test phase data. These measures allowed us to avoid any bias towards the initial hypothesis. All

other analyses, including the Bayesian model selection and corresponding behavioral as well as fMRI

analysis, were performed on the entire sample (N = 62) as optimal Bayesian integration accounts for

different precision levels (ignoring experimental groups).

Computational modeling
For the Bayesian integration, the data was analyzed using a computational model of how individual

painfulness of a treatment outcome, pðpainjsensory inputÞ, is based on prior expectations and experi-

ences, pðpainÞ, as well as new perceived sensory input, pðsensory inputjpainÞ, and how this may be

related to treatment variability (Figure 1A,B). In other words, the model predicted the painfulness

of the test phase placebo outcome (posterior) by integrating both, the manipulated placebo condi-

tioning ratings (prior) and the test phase control condition ratings (likelihood) using Gaussian proba-

bility density functions (pdf):

Nð�post;s
2

postÞ /Nð�prior;s
2

priorÞ*Nð�like;s
2

likeÞ (2)

In a first step, we used an unconstrained non-linear optimization algorithm (implemented in MAT-

LAB’s fminsearch function) to fit Gaussian distributions to the rating data. Based on the parameters

of the Gaussians, we estimated the posterior according to Equation (5) and (6). We compared this

Bayesian integration model to a control model, which only differed in terms of the prior. Assuming

no influence of the treatment experience during conditioning, as it is presumed for the Null model,

subjects would expect both placebo and control stimuli of the conditioning phase to be on a level of

70% pain tolerance. For that reason, the non-manipulated conditioning control ratings (identical in

both groups) were used as a prior for the Null model. This allowed us to compare the model of inter-

est with a Null model by focusing explicitly on the influence of the prior including its precision level

(i.e. inverse variance 1

s2
). To account for individual differences, an attraction weight (wprior), as dis-

played in Equation (3), was estimated from the Bayesian integration model reflecting the relative
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This results in the following equations to estimate Bayesian posterior parameter:
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Finally, posterior model probabilities and Bayes factors were computed for the two models given

the observed data. Bayes factors represent evidence for favoring one model over another reflected

in a ratio calculated from the marginal likelihood of each model. Consequently,

BF10 ¼ p Xj�Bay;s
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, where BF10 represents the Bayes factor of the Bayes-

ian integration (1) over the Null model (0). In general, the marginal likelihood is referred to as the

model evidence representing the probability of the observed data being produced by the specific

model. In the conjugate Gaussian case, the marginal likelihood can be directly estimated

(Demichelis et al., 2006; Murphy, 2007):
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Assuming that each of the two models was equally likely a priori, the Bayes factor can be directly

converted to posterior model probabilities (Lee and Wagenmakers, 2013). This leads to a posterior

model probability of pðMBayjXÞ ¼ BF10=ðBF10 þ 1Þ for the Bayesian integration over the Null model

and a probability of pðMNulljXÞ ¼ BF01=ðBF01 þ 1Þ for the Null over the Bayesian integration model.

This was performed for each individual subject, respectively. Next, the overall comparison of the two

models across subjects was performed. In a first step, both models were compared using the posi-

tive evidence ratio (PER). This heuristic serves as an indicator of which model is better at the group

level only including subjects that show Bayes factors larger than three for either one of the com-

pared models (Stephan and Penny, 2007). PER is the quotient of the number of subjects for which

the Bayes factor in favor of the Bayesian integration model (BF10) is greater than three, and the

respective number of subjects favoring the Null model (BF01) with a Bayes factor greater than three.

The cut-off value greater three is used as such Bayes factors indicate at least a moderate evidence

for one model over another (Kass and Raftery, 1995; Lee and Wagenmakers, 2013).

In the next step, the single subject log model evidences were used to compute the overall condi-

tional expectations of model probabilities as well as the exceedance probabilities jx of the model

comparison using a random effects (RFX) approach for group studies (Rigoux et al., 2014;

Stephan et al., 2009). This procedure (implemented in SPM’s spm_BMS function) assumes that sub-

jects may use different models and thereby allows to control for possible group heterogeneity.

Further, correlations between the model parameters and the placebo effect were estimated by

means of the Pearson’s product-moment correlation coefficient (r). Additionally, a multiple linear
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regression was estimated to describe the relationship between the placebo effect and the attraction

weight in more detail. The prediction of the placebo effect magnitude was done by inserting the

two attraction weight components into the regression: the variability of treatment expectation

(sprior) and sensory input (slike).

Data analysis: fMRI
FMRI data and statistical analyses were performed using statistical parametric mapping (SPM12,

Wellcome Trust Centre for Neuroimaging, London, UK). The first four images of each run were dis-

carded prior to further analyses. Preprocessing consisted of motion correction (realignment and field

map correction), coregistration of the anatomical T1 image to the functional scans, segmentation of

the anatomical T1 image producing DARTEL-imported native tissue class images and in the next

step a flow field of the T1 image in Montreal Neurological Institute (MNI) standard space

(IXI555_MNI152 template of VBM12 toolbox) using the DARTEL toolbox as implemented in SPM12.

First-level analysis was performed in subject-specific native space. Data were high-pass filtered with

a 128 s cut-off period and corrected for temporal autocorrelations using a first-order autoregressive

model. Functional MRI data analysis was based on a general linear model (GLM) approach as it is

implemented in SPM12. The first-level design matrix of each subject consisted of 10 regressors for

each session, resulting in a total of forty regressors: anticipation cue onset (5.5–8 s), pain onset (8 s),

VAS rating (7 s), six motion regressors obtained during realignment, and one session constant. Each

regressor was modeled using a boxcar function and subsequently convolved with the hemodynamic

response function. After model estimation, t statistics for each voxel were calculated. All ensuing

output images were then normalized to MNI space using the previously obtained subject-specific

DARTEL flow field, smoothed with an 6 mm (FWHM) isotropic Gaussian kernel, and then used for

second-level analyses. For that, it was investigated whether behavioral Bayesian model parameters

reflecting the processing of variability would predict placebo-induced changes in brain signals in the

PAG during the test phase placebo condition. Therefore, the attraction weight (wprior) was used as a

covariate in a one-sample t test, testing whether variability variations in prior and likelihood would

explain changes in BOLD responses. To complement information about the relationship between

Bayesian integration and possible related BOLD responses concerning prior treatment expectation,

we additionally performed one-sample t tests either using �prior, log sprior

� �

, or the posterior model

probability for the Bayesian over the Null model (as in Figure 3A, blue bars) as respective covariates

(see Figure 4—figure supplements 2, 3 and 4). Figure 4—figure supplement 5 shows the main

effect of pain and placebo, respectively. For imaging data analyses, results were considered signifi-

cant after multiple comparison correction using a family-wise error rate (FWE) approach and a

threshold of p<0.05. Correction was based on a small-volume approach using a 6 mm sphere around

coordinates (MNI, x y z: 1 –29 �12) obtained from previous studies on the PAG (Linnman et al.,

2012). Other areas found during the analyses were considered significant on a whole brain corrected

level of p<0.05. Activations that did not survive whole brain correction but met the criteria of

p<0.001 uncorrected and were located in either pain or placebo relevant areas are considered infor-

mative and are also reported. Single subject parameter extraction of the BOLD signal and the

respective covariate was done by first correcting for multiple comparisons, extracting beta values for

each surviving voxel of the corrected ROI cluster per subject, and then averaging subject-wise over

all surviving voxels. Statistical maps are presented with a threshold of p<0.001 uncorrected (uc),

masked with the field of view of data acquisition, and overlaid on the mean structural image of all

subjects. Activations are reported in mm (x y z) using MNI standard space.

Acknowledgements
The authors would like to express their gratitude to Sophia Thomas for helping with data acquisition

and analysis as well as Mareike Menz, Manuel Kuhn, and Jan Mehnert for helpful input concerning

data analysis. Additionally, the authors thank Christian Möller for IT and technical support as well as
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Christian Büchel http://orcid.org/0000-0003-1965-906X

Ethics

Human subjects: The study was approved by and conducted in accordance with the ethics guidelines

of the Medical Chamber Hamburg (PV4817). All participants provided informed consent to partici-

pate and to publish the data first prior to the experiment and second after debriefing.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.32930.021

Author response https://doi.org/10.7554/eLife.32930.022

Additional files
Supplementary files
. Source data 1. Single trial raw data of VAS ratings including subject ID and group allocation per

experimental session (four sessions) for Figures 2 and 3.

DOI: https://doi.org/10.7554/eLife.32930.018

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.32930.019

References
Amanzio M, Benedetti F. 1999. Neuropharmacological dissection of placebo analgesia: expectation-activated
opioid systems versus conditioning-activated specific subsystems. The Journal of Neuroscience : The Official
Journal of the Society for Neuroscience 19:484–494. PMID: 9870976

Anchisi D, Zanon M. 2015. A Bayesian perspective on sensory and cognitive integration in pain perception and
placebo analgesia. Plos One 10:e0117270. DOI: https://doi.org/10.1371/journal.pone.0117270, PMID: 256645
86

Grahl et al. eLife 2018;7:e32930. DOI: https://doi.org/10.7554/eLife.32930 17 of 20

Research article Computational and Systems Biology Neuroscience

http://orcid.org/0000-0002-9699-6329
http://orcid.org/0000-0002-4782-5603
http://orcid.org/0000-0003-1965-906X
https://doi.org/10.7554/eLife.32930.021
https://doi.org/10.7554/eLife.32930.022
https://doi.org/10.7554/eLife.32930.018
https://doi.org/10.7554/eLife.32930.019
http://www.ncbi.nlm.nih.gov/pubmed/9870976
https://doi.org/10.1371/journal.pone.0117270
http://www.ncbi.nlm.nih.gov/pubmed/25664586
http://www.ncbi.nlm.nih.gov/pubmed/25664586
https://doi.org/10.7554/eLife.32930


Atlas LY, Bolger N, Lindquist MA, Wager TD. 2010. Brain mediators of predictive cue effects on perceived pain.
Journal of Neuroscience 30:12964–12977. DOI: https://doi.org/10.1523/JNEUROSCI.0057-10.2010, PMID: 20
881115

Benedetti F, Amanzio M, Vighetti S, Asteggiano G. 2006. The biochemical and neuroendocrine bases of the
hyperalgesic nocebo effect. Journal of Neuroscience 26:12014–12022. DOI: https://doi.org/10.1523/
JNEUROSCI.2947-06.2006, PMID: 17108175

Benedetti F. 2013. Placebo and the new physiology of the doctor-patient relationship. Physiological Reviews 93:
1207–1246. DOI: https://doi.org/10.1152/physrev.00043.2012, PMID: 23899563

Blasi ZD, Harkness E, Ernst E, Georgiou A, Kleijnen J. 2001. Influence of context effects on health outcomes: a
systematic review. The Lancet 357:757–762. DOI: https://doi.org/10.1016/S0140-6736(00)04169-6

Brainard DH. 1997. The Psychophysics Toolbox. Spatial Vision 10:433–436. DOI: https://doi.org/10.1163/
156856897X00357, PMID: 9176952
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