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Abstract Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem

cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and

differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are

regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular

genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We

show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and

proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated

Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We

further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially

localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation

leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to

differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance

between proliferation and growth arrest.

DOI: https://doi.org/10.7554/eLife.33337.001

Introduction
Tissue regeneration is of vital importance for restoring tissue structure and function following dam-

age. Skeletal muscle has a remarkable capacity to self-repair after severe injuries, a process depen-

dent on muscle stem cells (MuSCs) (Relaix and Zammit, 2012). MuSCs originate from a PAX3/7+

progenitor cells that in late fetal life acquire their characteristic anatomical position between the

basal lamina and the plasma membrane of muscle fibers (Mauro, 1961; Relaix et al., 2005). MuSCs

are indispensable for postnatal muscle growth (White et al., 2010; Pawlikowski et al., 2015), main-

tenance (Keefe et al., 2015; Pawlikowski et al., 2015), and regeneration upon injury

(Lepper et al., 2011; McCarthy et al., 2011; Murphy et al., 2011; Sambasivan et al., 2011). The

majority of juvenile MuSCs acquire a non-proliferative, quiescent state around 3 weeks of post-natal

life to ensure cellular/genomic integrity and long-term survival (Lepper et al., 2009; White et al.,

2010; Cheung and Rando, 2013). However, once stimulated by homeostatic demand or damage,

adult MuSCs exit quiescence, re-enter the cell cycle, and provide differentiated progeny for muscle

repair, while a subpopulation self-renews to preserve the quiescent pool (Relaix and Zammit,
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2012). The myogenic regulatory factors including MYOD and MYOGENIN orchestrate MuSCs com-

mitment and progression through the myogenic lineage (Wang et al., 2014), while the signals that

trigger cell cycle exit and (re-) entry into quiescence remain more elusive.

Cell cycle is a tightly synchronized process responding to positive and negative signals, while

inappropriate growth arrest can result in cancer, malformations during development, and defective

stem cell renewal (Zhang et al., 1997; Matsumoto et al., 2011; Sherr, 2012). Cyclin-dependent

kinase inhibitors (CDKIs) are negative cell cycle regulators. CDKIs are divided into two structurally

and functionally defined families: the INK4 family (including Cdkn2a, Cdkn2b, Cdkn2c, and Cdkn2d)

and the Cip/Kip family (including Cdkn1a, Cdkn1b, and Cdkn1c) (Borriello et al., 2011).

Although members of the Cip/Kip family have been shown to inhibit proliferation and promote

differentiation in embryonic muscle or in myoblasts in vitro, their involvement in postnatal MuSC cell

cycle regulation is less well documented (Halevy et al., 1995; Reynaud et al., 1999; Zhang et al.,

1999; Messina et al., 2005; Chakkalakal et al., 2014; Zalc et al., 2014). Given the emerging impor-

tance of Cdkn1c in stem cell quiescence (Matsumoto et al., 2011; Zou et al., 2011;

Furutachi et al., 2013), we explored its role in adult myogenesis and MuSC-supported regeneration.

Using mouse mutants and ex vivo analysis, we provide evidence that Cdkn1c is involved in the early

phase following MuSC activation events, with its genetic ablation leading to impaired muscle regen-

eration associated with decreased differentiation and increased proliferation. We further show that

Cdkn1c is not detected in quiescent MuSCs but is induced upon activation and maintained in differ-

entiating myogenic cells. Finally, we show that Cdkn1c subcellular localization is specifically regu-

lated during adult myogenesis, with a progressive cytoplasmic to nuclear translocation as activated

myoblasts proceed to differentiation. Our results suggest that muscle stem cells require Cdkn1c

activity for the dynamic control of growth arrest during adult myogenesis.

Results

Cdkn1c is required for postnatal myogenesis
Although Cdkn1c loss is generally associated with perinatal death (Yan et al., 1997; Zhang et al.,

1997; Susaki et al., 2009; Mademtzoglou et al., 2017), a few Cdkn1c mutant mice survived in a

mixed CD1;B6 background (4.2%; Figure 1—figure supplement 1A). Cdkn1c-deficient mice dis-

played reduced body weight compared to control littermates (Figure 1—figure supplement 1B–C).

However, there was no significant difference in forelimb grip strength between Cdkn1c mutant and

control mice at 1 or 2 months of age when the strength was calculated on a per weight basis.

Strength was even slightly higher in 3- or 4-month-old Cdkn1c mutant mice compared to controls

(Figure 1—figure supplement 1D). This difference could be explained by the smaller body weight

of Cdkn1c mutants, possibly leading to increased relative grip strength (N/kg) in mutants. To evalu-

ate the role of CDKN1c in muscle homeostasis, we examined sections of the hindlimb Tibialis ante-

rior (TA) muscles in adult mice. Histological analysis showed that Cdkn1c knock-out muscles

contained smaller fibers and displayed increased fibrosis (Figure 1A–D), implying hindered myo-

genic differentiation. The amount of centrally located nuclei, indicative of ongoing regeneration, was

comparable in mutants and controls (Figure 1E). Myofiber culture conditions used allow MuSCs to

become activated, start dividing (T24-48), and eventually, proceed to myogenic differentiation or

self-renewal of the quiescent pool (T72) (Zammit et al., 2004). The number of PAX7+ MuSC on

freshly isolated myofibers of Extensor digitorum longus (EDLs) was increased in Cdkn1c mutant mice

compared to the controls (Figure 1F–G). Furthermore, PAX7+ MuSCs on Cdkn1c mutant myofibers

were mostly MYOD-, at a similar percentage to controls (Figure 1H), indicating that Cdkn1c is not

regulating MuSCs quiescence. When single myofibers were cultured for 72 hr (T72), Cdkn1c mutants

displayed an increased ratio of PAX7+ MYOD- self-renewing cells and a decreased ratio of PAX7-

MYOD+ differentiating myoblasts (Figure 1I–J). Taken together, our data suggest that in the

absence of CDKN1c the MuSC compartment is correctly established, but a proportion of the MuSC

population undergo increased self-renewal at the expense of differentiation.

Next, we evaluated the impact of CDKN1c loss on skeletal muscle regeneration. We performed

intramuscular cardiotoxin (CTX) injections into the Tibialis anterior (TA) and sacrificed the mice at 3,

(d3), 4 (d4), 7 (d7), and thirty (d30) days post-injury, to evaluate early and late time points of the

regeneration procedure. Once muscle degeneration is induced, MuSCs undergo: (1) activation, (2)
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Figure 1. Cdkn1c deficiency impairs normal muscle growth. (A) Hematoxylin and Eosin (HE) and Sirius red staining of control (Ctrl) and Cdkn1c mutant

(Cdkn1c-Mut) mouse Tibialis anterior (TA) muscles were performed to examine muscle histology, centrally located nucleated myofibers, and fibrosis.

Scale bars, 100 mm. (B) Histogram showing the average of myofiber diameters (mm). (C) Histogram of average fibrotic area per TA muscle. (D) Fiber size

(mm) distribution in control and Cdkn1c mutant mice. (E) Histogram of number of fibers with centrally located nuclei. (F) PAX7+ (green) MuSCs (arrows)

Figure 1 continued on next page
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proliferation to expand their population, (3) self-renewal of the quiescent pool for future needs, and

(4) differentiation for newly generated fibers and muscle repair (Relaix and Zammit, 2012). At d3

post-injury, loss of Cdkn1c promoted myoblasts proliferation and counteracted differentiation, as

shown by increased EdU+ incorporation and reduced MYOD+EdU+ fraction, respectively. (Fig-

ure 2—figure supplement 1A,B). At d4 post-injury, Cdkn1c-deficient muscles showed smaller

embryonic myosin (eMyHC)+ myofibers, a marker for early myofiber formation, compared to con-

trols (Figure 2A,C). At d7 post-injury, Cdkn1c-deficient muscles showed increased cell infiltration

and smaller and heterogeneous myofiber formation (Figure 2A,B,D), suggesting a delay in the

regeneration process. At d30, signs of impaired regeneration associated with smaller fibers were

observed (Figure 2A,B,E), including deposition of fibrotic tissue (Figure 2A,F) in Cdkn1c-mutant

mice. Next, we evaluated the MuSC population from isolated myofibers of EDLs at d30 and TA mus-

cle sections. The number of PAX7+ MuSCs was increased in Cdkn1c mutants compared to the con-

trols (Figure 2G–H; Figure 2—figure supplement 1C,D) while the proportion of MYOD+ MuSCs

was not altered (Figure 2I). Therefore, our data suggest that Cdkn1c is required for postnatal muscle

repair. In addition, Cdkn1c mutant myogenic cells demonstrated increased propensity for stem-cell

self-renewal during both tissue establishment and regeneration.

CDKN1c regulates the balance between proliferation and
differentiation in activated myoblasts
We next abrogated CDKN1c specifically in adult MuSC to avoid cell non-autonomous effects and

bypass the impact of CDKN1c loss during development. To conditionally ablate Cdkn1c, we have

generated a floxed Cdkn1c allele (Cdkn1cFlox) to enable conditional knock-out of Cdkn1c using the

Cre/loxP system (Mademtzoglou et al., 2017). Given that Cdkn1c is an imprinted gene expressed

only by the maternal allele (Matsuoka et al., 1995), we used heterozygotes with maternal inheri-

tance of Cdkn1cFlox, hereafter indicated as Cdkn1cFlox(m)/+. To specifically target the MuSCs and

their progeny, we intercrossed Cdkn1cFlox mice with the Pax7CreERT2 line (Lepper et al., 2009). In

the compound mice, tamoxifen (TMX) administration results in CreERT2 translocation to the nucleus

and Cdkn1c excision in the MuSC lineage. One week of TMX administration led to 84.5% recombina-

tion efficiency (Figure 3—figure supplement 1A–B). We then inserted Cdkn1cFlox and Pax7CreERT2

in the ROSAmTmG background (Muzumdar et al., 2007). These double-fluorescent mice report Cre

activity by expressing membrane-Tomato (mT) prior to Cre-mediated excision and membrane-GFP

(mG) after excision. This allowed us to selectively isolate recombined (GFP+) MuSC cells.

We isolated by flow cytometry GFP+ MuSCs of control (Pax7CreERT2; Cdkn1c+/+; ROSAmTmG/+)

and Cdkn1c-deficient (Pax7CreERT2; Cdkn1c Flox(m)/+; ROSAmTmG/+) mice. Collected cells grew in

expansion conditions (20% fetal bovine serum, 10% horse serum) up to 70% confluence and then

were serum-deprived to differentiate for 1 or 3 days (Figure 3A). Cdkn1c transcript and protein

were induced by differentiation in control cells (Figure 3B–C). In contrast, they were not detected in

cells from mutant animals (Figure 3B,D), demonstrating efficient Cre-mediated recombination of the

Cdkn1c allele in FACS-isolated cells. We then performed primary myoblast cultures from control and

Cdkn1c-deficient mice. We monitored proliferating cells under ‘growth’ (high serum) or ‘differentia-

tion’ (low serum) conditions, and at d1 and d3 post-differentiation we stained with early (e.g. MYO-

GENIN) or late (i.e. Myosin heavy chain, MyHC) differentiation markers, respectively. Consistent with

the function of CDKN1cas a cell cycle inhibitor, we observed increased proliferation in primary

Figure 1 continued

on the myofibers isolated from EDL muscles of Cdkn1c mutant and control mice. MYOD (red) is not normally expressed in PAX7+ MuSCs at T0

(quiescence). DAPI (blue) shows all nuclei. Scale bars, 50 mm. (G) Numbers of PAX7+ satellite cells on the myofibers isolated from EDL. (H) Ratio of

MYOD+ activated cells per PAX7+ MuSC on the myofibers isolated from EDL muscles of Cdkn1c mutant and control mice. (I) Immunofluorescence for

PAX7 (green) and MYOD (red) at T72 in single myofiber cultures. Arrows and arrowheads show PAX7+MYOD- quiescent satellite cells and PAX7-MYOD

+ differentiating cells, respectively. Scale bars, 50 mm. (J) Quantification of ratios of PAX7+ and MYOD+ cells per fiber at T72. Nuclei were counter-

stained with DAPI. *p�0.05, **p�0.01.

DOI: https://doi.org/10.7554/eLife.33337.002

The following figure supplement is available for figure 1:

Figure supplement 1. Cdkn1c mutant mice display smaller body weight.

DOI: https://doi.org/10.7554/eLife.33337.003
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Figure 2. CDKN1c deficiency delays muscle regeneration. (A) Embryonic myosin (eMyHC)/LAMININ/DAPI,

Hematoxylin and Eosin (HE), and Sirius red staining of twelve- to fifteen-week-old control (Ctrl) and Cdkn1c mutant

mouse TA muscles were performed for histological and fibrosis characterization 4, 7 or thirty days after cardiotoxin

(CTX) injection. Scale bars, 100 mm. (B) Fiber size (mm) distribution in control (Ctrl) and Cdkn1c mutant (Cdkn1c-

Mut) mice 7 (upper panel) or thirty (lower panel) days after CTX injection. (C) Histogram of average embryonic

MyHC+ fiber diameters (mm) 4 days after CTX injection. (D) Histogram of average fiber diameters (mm) 7 and thirty

days after CTX injection. (E) Fiber size (mm) distribution in control and Cdkn1c mutant mice thirty days after CTX

injection. (F) Histogram of average fibrotic area per TA muscle. (G) PAX7+ (green) MuSCs (arrows) on the

myofibers isolated from EDL muscles of Cdkn1c mutant and control mice thirty days after CTX injection. MYOD

(red) is occasionally expressed in PAX7+ MuSCs (arrow heads). DAPI (blue) shows all nuclei. Scale bars, 50 mm. (H)

Numbers of PAX7+ MuSCs on the EDL isolated myofibers . (I) Ratio of MYOD+ activated cells per PAX7+ MuSC

Figure 2 continued on next page
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myoblasts derived from MuSC-specific Cdkn1c mutant mice. When cells were maintained in growth

conditions for 5 days, we observed 50% and 38% more EdU+ and KI67+ cells, respectively, in the

absence of CDKN1c (Figure 3E–H), suggesting that CDKN1c is involved in restraining cell cycle pro-

gression. Slightly more PAX7+ EdU+ cells were observed in the Cdkn1c-deficient myoblast cultures,

while differences in MYOD+ EdU+ or MYOGENIN+ EdU+ populations did now show significant dif-

ferences (Figure 3—figure supplement 1C–F). Furthermore, in cultures of FACS-isolated MuSCs

from MuSC-specific Cdkn1c-deficient mice, myogenic differentiation was impaired. One-day post-

differentiation, MYOGENIN was significantly decreased (Figure 3I,K,L). In addition, myotube forma-

tion 3 days post-differentiation was severely compromised (Figure 3J,M,N). We also detected a sim-

ilar increase in cell proliferation and reduction in myogenic differentiation in primary myoblasts

isolated from global Cdkn1c mutant mice (Figure 3—figure supplement 2). In conclusion, both

MuSC-specific and global ablation of CDKN1c led to increased primary myoblasts proliferation at

the expense of myogenic differentiation. Together, our data demonstrate that CDKN1c is required

in MuSCs for correct cell cycle regulation and differentiation during postnatal myogenesis.

Satellite-cell-specific CDKN1c loss compromises muscle regeneration
We next evaluated the impact of MuSC-specific Cdkn1c ablation, driven by Pax7CreERT2

(Lepper et al., 2009), on skeletal muscle regeneration after injury. Following 4 weeks of tamoxifen

administration to induce recombination in adult (8- to 12-week-old) mice, we injected control and

Pax7CreERT2/+; Cdkn1cFlox (Cdkn1c cKO) TA muscles with CTX and evaluated muscle repair at 7 days

post-injury (Figure 4A), having achieved 94.5% recombination efficiency in MuSCs (Figure 4—figure

supplement 1A–B). Of note, Pax7CreERT2/+ (hereafter, Cre control) animals only express one allele of

Pax7, as the Cre recombinase is inserted into the Pax7 gene. Hence, in all experiments we also

included Cre control mice, as we found that Pax7CreERT2 (Lepper et al., 2009) heterozygous mice

display a mild regeneration phenotype (Figure 4B–G’), hence potentially acting as sensitizing back-

ground. Histological analysis at d7 post-injury showed normal tissue repair in wild-type (Wt) muscles

(Figure 4B,C). In contrast, Cre control muscles showed increased cell infiltration and reduced regen-

erated myofibers of smaller sizes compared to Wt (Figure 4B’; Figure 4—figure supplement 1C–

D), while muscle regeneration was severely compromised in Cdkn1c cKO muscles, in which newly

formed myofibers were rare and small and most of the tissue consisted of cell infiltration and fat

deposits (Figure 4B’’, C’’; Figure 4—figure supplement 1C–D). Furthermore, induction of early dif-

ferentiation was delayed, as evidenced by the presence of embryonic eMyHC+ fibers in Cdkn1c cKO

and Cre control, but not in Wt muscles at this time point (Figure 4D–E’’). Consistent with the lack of

tissue regeneration, we observed a massive diminution of the MuSC compartment in Cdkn1c cKO

muscles (Figure 4F–H). Together, our data reveal that CDKN1c expression in the myogenic lineage

is required for muscle repair.

Dynamic CDKN1c expression in adult myogenesis
To analyze the expression of CDKN1c during MuSC-mediated myogenesis, we isolated single myo-

fibers with their associated PAX7+ MuSCs from EDL muscles of adult wild-type mice. Immunostain-

ing experiments, using a CDKN1c-specific antibody, showed that quiescent MuSCs were not labeled

(Figure 5—figure supplement 1A). Similarly, MuSCs of resting adult TA muscles were CDKN1c-neg-

ative following labeling of cryosections (Figure 5—figure supplement 1B). To evaluate the kinetics

of CDKN1c expression during activation, self-renewal, and differentiation, we analyzed myofibers

that were cultured from 24 to 72 hr. Zammit et al., 2004During the initial proliferation state (T24-

Figure 2 continued

on the myofibers isolated from EDL muscles of Cdkn1c mutant and control mice. Nuclei were counter-stained with

DAPI. Scale bars, 100 mm. *p�0.05, **p�0.01.

DOI: https://doi.org/10.7554/eLife.33337.004

The following figure supplement is available for figure 2:

Figure supplement 1. Myoblasts in Cdkn1c mutant mice display delayed cell cycle exit during muscle

regeneration.

DOI: https://doi.org/10.7554/eLife.33337.005
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Figure 3. Cdkn1c deficiency impairs myogenic differentiation. (A) Time-course of tamoxifen (TMX) administration, muscle satellite cell harvest (FACS

arrow) and culture (light gray bar for growth culture conditions, dark gray bar for differentiation culture conditions). Analyzed animals were

Pax7CreERT2/+; Cdkn1cFlox(m)/+;RosamTmG (Cdkn1c cKO) and Pax7CreERT2/+; Cdkn1c+/+;RosamTmG (control; Ctrl); maternal inheritance of the imprinted

Cdkn1c is indicated by superscript (m). (B) Cdkn1c transcript levels of control and Cdkn1c cKO myoblast cultures 3 days post-differentiation. ND; not

detected. (C–D) Control (C) and Cdkn1c cKO (D) myoblast cultures were examined for CDKN1c protein (red) following three days under differentiation

conditions. (E–N) Control and Cdkn1c cKO myoblast cultures were examined for EdU+ (light blue) cells (E, G, H), KI67+ cells (F), MYOGENIN+ cells

(green; I, K, L), and myotube formation (J, M, N). Nascent myotubes were marked with myosin heavy chain (MyHC; green; M, N). Nuclei were counter-

stained with DAPI (blue). Graphs show quantification of EdU and KI67 expression under growth conditions (E, F), MYOGENIN expression following 24

hr under differentiation conditions (I), and MyHC+ cells following 72 hr under differentiation conditions (J). Data show mean +SD, n = 3 animals.

Asterisks indicate significance; *p�0.05, ***p�0.001. Scale bars, 40 mm (C, K), 1000 mm (G, M).

DOI: https://doi.org/10.7554/eLife.33337.006

The following figure supplements are available for figure 3:

Figure supplement 1. Myogenic marker expression in proliferating myoblasts.

Figure 3 continued on next page
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T48) MuSCs co-express PAX7 and MYOD (Zammit et al., 2004). Activated PAX7+ and MYOD+

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.33337.007

Figure supplement 2. Cdkn1c mutant myoblasts display increased proliferation and reduced differentiation.

DOI: https://doi.org/10.7554/eLife.33337.008

Figure 4. MuSC-specific Cdkn1c ablation hinders muscle regeneration. (A) Time-course of tamoxifen administration, intramuscular injury of TA muscle

(CTX arrow), and muscle harvest (D7 arrow). (B–G) Cryosections of TA muscle were stained for histological and satellite cell population characterization

7 days after CTX injection. Analyzed animals at (B-G) were wild-type littermates (Wt; Pax7+; Cdkn1c+; B–G), Cre control (Pax7CreERT2; B’–G’), and Cdkn1c

cKO (Pax7CreERT2; Cdkn1cFlox; B’’–G’’). (B) HE staining for histologic characterization of the muscles. (C) Oil Red O staining for evaluation of fat

infiltration of the muscles. (D–E) embryonic myosin (eMYHC, red)/LAMININ (LAM, green) immunofluorescence to mark newly formed myofibers post-

regeneration. (F–G) PAX7 (red)/LAMININ (LAM, green) immunofluorescence to mark PAX7+ satellite cells. Nuclei in (D-G) were counter-stained with

DAPI (blue). Scale bars, 50 mm. (H) Quantification of (F-G). Data show mean +SD, n � 5 animals. Asterisks indicate significance; **p�0.01.

DOI: https://doi.org/10.7554/eLife.33337.009

The following figure supplement is available for figure 4:

Figure supplement 1. In vivo MuSC-specific Cdkn1c ablation.

DOI: https://doi.org/10.7554/eLife.33337.010
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myoblasts at T24-T48 presented with increasing amounts of CDKN1c. Unexpectedly, this negative

cell cycle regulator was not expressed in the quiescent population, but in activated MuSCs entering

the cell cycle. However, during this early proliferation phase, CDKN1c was restricted to the cyto-

plasm (Figures 5A–B and 6A–B). Consistent with these findings, CDKN1c was mainly restricted to

the cytoplasm at d3 following CTX injection in vivo, a time point when most cells are in a prolifer-

ative state (Figure 5C).

Figure 5. Cdkn1c cytoplasmic expression after satellite cell activation. (A) Satellite-cell-derived myoblasts (T24–T48) of single EDL myofibers stained

with PAX7 (green) and CDKN1c (red). Arrowheads indicate PAX7+ cells. (B) Satellite cell-derived myoblasts of single EDL myofibers stained with MYOD

(green) and CDKN1c (red). Arrowheads indicate MYOD+ cells. Nuclei were counter-stained with DAPI. n � 3. Scale bars, 40 mm. (C) CDKN1c (red)

staining of TA muscle at 3 (D3) or t (D13) days after CTX injection. Asterisks indicate regions with cytoplasmic CDKN1c. # indicates central nuclei of

newly formed fibers during muscle regeneration. Nuclei were counter-stained with DAPI. Scale bars, 20 mm.

DOI: https://doi.org/10.7554/eLife.33337.011

The following figure supplement is available for figure 5:

Figure supplement 1. Cdkn1c is not expressed in quiescent satellite cells.

DOI: https://doi.org/10.7554/eLife.33337.012
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Figure 6. Cdkn1c expression and subcellular localization during satellite cell activation and differentiation. (A–D) Immunofluorescence for PAX7 (A;

green), MYOD (B; green), MYOGENIN (C; green) or KI67 (D; green) and Cdkn1c (red) at T72 in single myofiber cultures of EDL muscles and

quantification of PAX7+ (A), MYOD+ (B), MYOGENIN+ (C) or KI67+ (D) cells that co-expressed CDKN1c over the time-course of the culture.

Cytoplasmic (light blue) or nuclear (dark blue) localization of CDKN1c is indicated in the graphs. Scale bars, 40 mm. (E) Immunofluorescence for Cyant

Figure 6 continued on next page
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At T72, clusters composed of cells at different states are observed, including differentiation (loss

of PAX7 expression associated with expression of MYOD and MYOGENIN) and self-renewal (mainte-

nance of PAX7, loss of MYOD, and lack of MYOGENIN) (Zammit et al., 2004). Thus, there is a mixed

population of self-renewing (cells expressing PAX7 alone), activated/proliferating (cells co-express-

ing PAX7 and MYOD), and differentiating (cells expressing MYOGENIN and/or MYOD) myogenic

cells. At this stage, we observed high percentages of CDKN1c expression in each of these popula-

tions (Figure 6A–C). Interestingly, as differentiation proceeded (MYOD+ followed by

MYOGENIN +at T72), Cdkn1c expression became increasingly nuclear (Figure 6B–C). Although

Cdkn1c was mostly cytoplasmic in PAX7+/Cdkn1c + T72 myoblasts, Cdkn1c exhibited nuclear pres-

ence in around 25% of MYOD+/Cdkn1c+ and 55% of MYOGENIN+/Cdkn1c + T72 myoblasts

(Figure 6A–C). In line with this, Cdkn1c protein was mainly restricted to cell nuclei at late stages of

regeneration following in vivo muscle injury (d13 post-CTX; Figure 5C). Finally, similarly to the T24-

T48 activated/cycling populations of myoblasts in single myofibers ex vivo, Cdkn1c continued to be

present in KI67+ proliferating cells at T72, yet limited to their cytoplasm (Figure 6D). Next, to evalu-

ate whether Cdkn1c nuclear translocation was linked with its association with MYOD

(Reynaud et al., 2000; Vaccarello et al., 2006; Figliola et al., 2008; Osborn et al., 2011;

Busanello et al., 2012; Battistelli et al., 2014; Zalc et al., 2014), we used data generated by a

MYOD ChIP sequencing experiment (Cao et al., 2010) to identify MYOD-binding sites at muscle

regulatory regions. We performed ChIP experiments with an anti-Cdkn1c antibody to test whether

Cdkn1c shares these binding sites with MYOD, and we found no significant enrichment at any of the

tested sites (Figure 6—figure supplement 1).

Finally, to establish whether the subcellular localization of CDKN1c directly affects the cycling sta-

tus of myoblasts, we generated retroviruses encoding full-length Cdkn1c (Cdkn1c FL) or Cdkn1c

lacking the Nuclear localization signal (Cdkn1c –NLS), using Cyan fluorescence protein (CFP) as a

reporter to identify transduced cells (Figure 6E). A mock CFP retrovirus was used as control

(Figure 6E–F). Overexpression of Cdkn1c FL in single myofiber cultures was associated with nuclear

CDKN1c protein (Figure 6E) and a marked decrease in cycling myoblasts (Figure 6E,F). In contrast,

forced expression of the NLS-deficient construct restricted CDKN1c to the cytoplasm (Figure 6E)

and did not induce cell cycle exit as Cdkn1c FL (Figure 6E,F). By contrast, overexpression of either

Cdkn1c FL or Cdkn1c –NLS did not alter the proportions of cells entering myogenic differentiation,

as evidenced by MYOD and/or MYOGENIN expression (Figure 6—figure supplement 2A–D).

Lastly, in order to eliminate potential interference with endogenous Cdkn1cCDKN1c in these experi-

ments, we repeated them in Cdkn1c-deficient myoblasts following FACS isolation (Figure 6—figure

supplement 2E). Comparably to the ex vivo system of single myofibers (Figure 6E, Figure 6—figure

supplement 2A–D), we observed cell cycle exit, uncoupled from myogenic differentiation, in Cdkn1c

FL but not Cdkn1c –NLS (Figure 6—figure supplement 2E–G). Together, these results show that

nuclear CDKN1c promotes growth arrest, while cytoplasmic localization of the protein - observed at

early stages of MuSC activation - is compatible with proliferation. Furthermore, our data suggest

uncoupling of cell cycle exit and myogenic differentiation.

Figure 6 continued

fluorescent protein (CFP, green), KI67 (purple), and CDKN1c (red) in transduced (i.e. CFP+) myoblasts at T72 in single myofiber cultures. Fibers were

transduced with empty retroviruses (control; left panel), retroviruses expressing full-length Cdkn1c (Cdkn1c FL; middle panel) or Nuclear localization

signal-deficient Cdkn1c (Cdkn1c–NLS; right panel). (F) Quantification of transduced (CFP+) myoblasts that were proliferating (KI67+). Nuclei were

counter-stained with DAPI (blue). Scale bars, 20 mm. Data show mean +SD, n � 3 animals, 20–32 fibers/animal. *p�0.05 compared to control virus.

DOI: https://doi.org/10.7554/eLife.33337.013

The following figure supplements are available for figure 6:

Figure supplement 1. Lack of CDKN1c binding in myogenic regulatory regions.

DOI: https://doi.org/10.7554/eLife.33337.014

Figure supplement 2. Uncoupling of cell cycle exit and differentiation.

DOI: https://doi.org/10.7554/eLife.33337.015
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Discussion
Regenerative adult myogenesis is crucial for recovery from injuries, but can be compromised by

degenerative or disease states that affect the functional capacity of skeletal muscle stem cells

(MuSC). The maintenance of MuSC function largely depends on the entry and maintenance of a non-

cycling, reversible quiescent state. The molecular mechanisms that control MuSC cell cycle transi-

tions and adult myogenesis have gained significant interest in recent years, as a way to understand

post-trauma tissue restoration and, subsequently, to design efficient innovative therapies when it is

defective.

Focusing on cell cycle exit signals and given our recent findings on the role of CDKN1c in cell fate

decisions in embryonic/fetal myogenesis (Zalc et al., 2014), we hypothesized that CDKN1c may con-

trol cell cycle and differentiation of MuSCs in adult muscle. Indeed, Cdkn1c deficiency compromised

muscle regeneration following in vivo injury (Figure 2A–D; Figure 4) and hindered primary myoblast

differentiation and myotube formation (Figure 3; Figure 3—figure supplement 2). CDKN1c expres-

sion correlates with differentiation in many other cell types (Westbury et al., 2001), while in myo-

genic cultures CDKN1c has also been considered as a differentiation marker (Reynaud et al., 1999;

Mounier et al., 2011). Nevertheless, the consequences of its ablation on adult muscle have not

been examined previously, notably because of the perinatal lethality of Cdkn1c mutant mice. Main-

taining the mice in a mixed CD1;B6 background allowed us to obtain some survivors, while analyzing

floxed Cdkn1c mice allowed cell-specific studies. In vivo and in vitro analysis of both models demon-

strated that lack of Cdkn1c compromised myogenic differentiation (Figures 1–4, Figure 3—figure

supplement 2). In the case of Cdkn1c-null mice, there was increased MuSC self-renewal at the

expense of differentiation (Figures 1–2), while conditional deletion of Cdkn1c in adult mice dimin-

ished the MuSC compartment after injury (Figure 4). These seemingly contradictory results might

depend on compensatory mechanisms that are activated when Cdnk1c deletion is induced prena-

tally (mutant) versus postnatally (cKO). Moreover, in our cKO mice, compounding effects of inactivat-

ing both Pax7 (due to CreERT2 insertion in the PAX7 locus) and Cdkn1c cannot be excluded.

However, comparing the Cdkn1c cKO mice to the Cre control, showed a much more severe regener-

ation impairment in the former (Figure 4). Together, our data on Cdkn1c mutant and cKO mice

implicate an important function for CDKN1c in adult myogenesis, similarly to its emerging impor-

tance in the quiescence and renewal of several other stem cell types [Matsumoto et a., 2011;

Zacharek et al., 2011; Furutachi et al., 2013).

Examining the myoblast populations expressing CDKN1c (i.e. quiescent vs. activated), we did not

detect CDKN1c in quiescent MuSCs on sections or isolated myofibers of resting adult (8–12 weeks)

muscle (Figure 5—figure supplement 1). On the contrary, CDKN1c was readily detected in intersti-

tial cells (Figure 5—figure supplement 1). Our finding is consistent with previous reports of high

CDKN1c levels in adult muscle (Matsuoka et al., 1995; Park and Chung, 2001) and lack of CDKN1c

in FACS-isolated postnatal MuSC populations (Chakkalakal et al., 2014) or myofiber-associated

MuSCs (Naito et al., 2016). In contrast, an early study detected CDKN1c in quiescent MuSCs

(Fukada et al., 2007) which were isolated with a FACS protocol using an antibody previously

described by the same group (Fukada et al., 2004). However, this antibody immuno-reacts with

bone marrow cells (Fukada et al., 2004), while CDKN1c has a well-established role and presence in

the hematopoietic lineage (Matsumoto et al., 2011; Zou et al., 2011). Furthermore, CDKN1c

immunostaining in Fukada et al. (2007) was performed with an antibody against the CDKN1c car-

boxy-terminus, which might cross-react with the respective domain of CDKN1b (Matsuoka et al.,

1995; Galea et al., 2008; Pateras et al., 2009). Combining our observation with previous reports

(Fukada et al., 2004; Fukada et al., 2007; Chakkalakal et al., 2014; Naito et al., 2016); present

study], we conclude that quiescent MuSCs do not express CDKN1c. Instead, it is established that

they express CDKN1b, another member of the CDKI family including CDKN1c (Chakkalakal et al.,

2014); our unpublished data].

Upon MuSC activation and differentiation, we show that CDKN1c is strongly upregulated (Fig-

ures 5–6). Accordingly, activation of MuSCs during muscle regeneration has been shown to induce

CDKN1c, with its levels peaking at d3-4 (Yan et al., 2003); our unpublished observations]. The early

induction of CDKN1c upon activation might be associated with MYOD expression, a transcription

factor with which CDKN1c has been implicated in a positive feedback loop (Reynaud et al., 2000;

Osborn et al., 2011). Specifically, MYOD has been shown to induce Cdkn1c both by disrupting a
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chromatin loop to release the Cdkn1c promoter and by upregulating intermediate factors

(Vaccarello et al., 2006; Figliola et al., 2008; Busanello et al., 2012; Battistelli et al., 2014). Fur-

thermore, we previously identified a muscle-specific Cdkn1c regulatory element that MYOD binds

and transactivates (Zalc et al., 2014), while co-immunoprecipitation assays revealed direct CDKN1c-

MYOD binding (Reynaud et al., 2000). Moreover, MyoD mutant mice present a similar muscle phe-

notype as our Cdkn1c-deficient mice (Megeney et al., 1996), also consistent with Cdkn1c being a

direct downstream gene of MYOD, and possible association of MYOD and CDKN1c. MYOD is

expressed within hours after MuSC activation (Zammit et al., 2004; Zhang et al., 2010) and sustains

the transition from quiescence to cell cycle via the replication-related factor CDC6 (Zhang et al.,

2010). MYOD induces growth arrest in non-myogenic cell lines (Crescenzi et al., 1990;

Sorrentino et al., 1990) and has a well-established role for entry into the myogenic lineage. While

the possibility of CDKN1c associating with MYOD to regulate CDKN1c translocation was an attrac-

tive hypothesis, CDKN1c was not found associated with MYOD binding in muscle-specific gene reg-

ulatory regions (Cao et al., 2010) evaluated by ChIP (Figure 6—figure supplement 1). Remarkably,

despite robust expression of MYOD, myoblasts continue to proliferate and do not proceed to differ-

entiation for several days (Tajbakhsh, 2009). In fact, in dividing myoblasts MYOD activity is inhibited

by Id proteins and CDK/Cyclin complexes (Wei and Paterson, 2001). Furthermore, additional fac-

tors, including MYOGENIN, were suggested to initiate or enhance transcription of some MYOD tar-

gets (Blais et al., 2005; Cao et al., 2006).

We demonstrate robust CDKN1c presence in activated MuSCs, including expression in proliferat-

ing myoblasts in isolated myofiber cultures (e.g. KI67+ cells at T72, cycling cells at T24-T48; Fig-

ures 5–6). These observations might contradict its traditional function as cell cycle exit factor

(Lee et al., 1995; Matsuoka et al., 1995) and its role in growth arrest during embryonic myogenesis

(Zhang et al., 1999; Zalc et al., 2014). Our data, however, suggest that the uncoupling of CDKN1c

growth arrest activity in proliferating myoblasts of isolated myofiber cultures is related to its subcel-

lular localization. CDKN1c is cytoplasmically restricted in activated myoblasts but is progressively

detected in the nucleus as differentiation takes place (Figure 6). Indeed, forced CDKN1c expression

in myoblasts of isolated myofiber cultures led to nuclear CDKN1c and growth arrest, while overex-

pression of Nuclear localization signal-deficient CDKN1c was compatible with myoblast proliferation

(Figure 6; Figure 6—figure supplement 2). On the contrary, CDKN1c cyto-nuclear shuttling was

not related to myogenic differentiation, suggesting an uncoupling of cell cycle exit and myogenic

differentiation (Figure 6—figure supplement 2), in line with our previous observations in embryonic

muscles (Zalc et al., 2014).

We have not identified the molecular events underlying the CDKN1c nucleo-cytoplasmic shut-

tling, although some observations might explain this pattern. Firstly, CDKN1c could be implicated in

cell cycle progression through CDK/Cyclin assembly, similarly to its Cip/Kip siblings (Michieli et al.,

1994; Harper et al., 1995; LaBaer et al., 1997; Peschiaroli et al., 2002). In the absence of CDKN1a

and CDKN1b, CDKN1c is solely responsible for CDK/Cyclin complex stabilization in mouse embry-

onic fibroblasts (Cerqueira et al., 2014). However, this might be less likely in myoblasts, where

Cdkn1c-MYOD binding engages the CDKN1c helix domain (Reynaud et al., 2000) that was found

indispensable for CDK/Cyclin binding and inhibition (Hashimoto et al., 1998; Reynaud et al.,

2000). Moreover, in agreement with CDKN1c function as a cell cycle inhibitor, we observed reduced

differentiation and increased proliferation in its absence (Figures 1I–J, 2A–E and 3E–N). Secondly,

CDKN1c could be involved in nucleo-cytoplasmic distribution of cyclins or CDKs, as previously

observed in other cell types. CDKN1c has been shown to interfere with the nuclear translocation of

cyclin D1 (Zou et al., 2011) and to relocalize a fraction of CDK2 into the cytoplasm (Figliola and

Maione, 2004). Thirdly, while in the cytoplasm, CDKN1c might participate in MuSC mobilization,

one of the earliest manifestations of their activation (Siegel et al., 2009). Cytoplasmic CDKN1c was

described to regulate cell motility together with LIM-kinase1 (Vlachos and Joseph, 2009;

Chow et al., 2011; Guo et al., 2015). Although we did not detect LIM-kinase1 in myogenic cells, we

cannot exclude association with other, yet uncharacterized, partners. Future studies are expected to

elucidate the roles of CDKN1c in different sub-cellular compartments of myoblasts.

In conclusion, our data indicate that CDKN1c plays essential roles at the initial phase following

MuSC activation. We suggest that CDKN1c acts at that early phase, as a) in vivo, Cdkn1c mutants

display a strong phenotype during the first days after injury and b) Cdkn1c mutant myoblasts have

compromised functions in cultures that last a few days, thus resembling the first events after MuSC
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activation. CDKN1c presence is compatible with activation/proliferation and possibly represents an

early activation event. Its loss profoundly affects ex vivo myogenic differentiation and delays in vivo

post-injury recovery, which may lead to increased MuSC self-renewal. Therefore, the reduced regen-

eration capacity of Cdkn1c-mutant muscle is not caused by decreased numbers of MuSCs, but

results from the reduction of myogenic differentiation, which increases propensity for stem-cell self-

renewal. Defective stem cell cycle dynamics and continuous activation/proliferation can lead to DNA

damage accumulation, apoptosis, pool exhaustion, and inability to support homeostatic or regenera-

tive demands. A better understanding of cell cycle regulation in MuSCs is imperative to define the

molecular events underlying their long-term preservation.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(M. musculus)

Cdkn1ctm1Sje The Jackson Laboratory;
PMID: 9144284

MGI: J40203,
RRID:IMSR_JAX:003336

Strain, strain background
(M. musculus)

p57flox PMID: 28196404 Mouse line generated by the
group of F.Relaix and
characterized in
Mademtzoglou et al. (2017);
Genesis 55(4) doi:
10.1002/dvg.23025

Strain, strain background
(M. musculus)

Pax7CreERT2/+ The Jackson Laboratory;
PMID: 19554048

MGI: J:150962;
RRID:IMSR_JAX:012476

Mouse line obtained
from C.M. Fan

Strain, strain background
(M. musculus)

RosamTmG The Jackson Laboratory;
PMID: 17868096

MGI: J:124702;
RRID:IMSR_JAX:007576

Genetic reagent (synthetic) pGEMT-Easy vector Promega A1360

Cell line (Homo sapiens) 293T DSMZ ACC635;
RRID:CVCL_0063

https://www.dsmz.de/catalogues/
details/culture/ACC-635.
html?tx_dsmzresources_
pi5%5BreturnPid%5D=192

Cell line (M. musculus) C2C12 American Type Culture
Collection (ATCC);
PMID: 28966089

CRL-1772;
RRID: CVCL_0188

Cell line maintained
in E. Gomes lab

Antibody anti-CD31-PE (monoclonal) eBiosciences 12-0311-81;
RRID:AB_465631

Antibody anti-CD45-PE (monoclonal) eBiosciences 12-0451-81;
RRID:AB_465667

Antibody anti-embryonic MyHC
(mouse monoclonal)

DSHB F1.652;
RRID:AB_528358

Antibody anti-embryonic MyHC
(mouse monoclonal)

Santa Cruz sc53091;
RRID:AB_670121

Antibody anti-GFP (chicken
polyclonal)

Abcam ab13970;
RRID:AB_300798

Antibody anti-integrin a-biotin
(mouse)

Miltenyi Biotec 130-101-979;
RRID:AB_2652472

Antibody anti-IgG (rabbit) Diagenode C15410206

Antibody anti-KI67 (mouse
monoclonal)

BD Pharmingen 556003;
RRID:AB_396287

Antibody anti-Laminin (rabbit
polyclonal)

Sigma-Aldrich L9393;
RRID:AB_477163

Antibody anti-Laminin (rat
monoclonal)

Sigma-Aldrich 4H8-2;
RRID:AB_784266

Antibody anti-Laminin (rabbit
polyclonal)

Novus Biological NB300-144AF647

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody anti-MyHC (mouse
monoclonal)

DSHB mf20-c;
RRID:AB_2147781

Antibody anti-MyoD (mouse
monoclonal)

DAKO M3512;
RRID:AB_2148874

Antibody anti-MyoD (rabbit
polyclonal)

Santa Cruz sc-760;
RRID:AB_2148870

Antibody anti-Myogenin
(mouse monoclonal)

DSHB F5D;
RRID:AB_2146602

Antibody anti-p57 (goat polyclonal) Santa Cruz sc1039;
RRID:AB_2078158

Antibody anti-p57 (mouse
monoclonal)

Santa Cruz sc56431;
RRID:AB_2298043

Antibody anti-p57 (rabbit
polyclonal)

Santa Cruz sc8298;
RRID:AB_2078155

Antibody anti-Pax7 (mouse
monoclonal)

DSHB PAX7-c;
RRID:AB_528428

Antibody anti-Sca-1-PE (mouse) eBiosciences 12-5981-81;
RRID:AB_466085

Antibody fab fragment affinity-
purified antibody (goat)

Jackson ImmunoResearch 115-007-003

Sequence-based reagent AGGGCATATCC
AACAACAAACTT

Eurogentec N/A qPCR HPRT (Forward primer)

Sequence-based reagent GTTAAGCAGTA
CAGCCCCAAA

Eurogentec N/A qPCR HPRT (Reverse primer)

Sequence-based reagent CTGAAGGACCA
GCCTCTCTC

Eurogentec N/A qPCR p57 (Forward primer)

Sequence-based reagent AAGAAGTCGTT
CGCATTGGC

Eurogentec N/A qPCR p57 (Reverse primer)

Sequence-based reagent ATCTGAGGTCA
GCCATTTGGT

Eurogentec N/A ChIP qPCR Mef2a
(Forward primer)

Sequence-based reagent GCTAAGGACAG
CTGTGACCTG

Eurogentec N/A ChIP qPCR Mef2a
(Reverse primer)

Sequence-based reagent TTAAAGACATGTG
GCAACAGACTAC

Eurogentec N/A ChIP qPCR Lmn2b
(Forward primer)

Sequence-based reagent TGCTCTTTCTGTA
CTGTGTGGTG

Eurogentec N/A ChIP qPCR Lmn2b
(Reverse primer)

Sequence-based reagent GGAGTGATTGA
GGTGGACAGA

Eurogentec N/A ChIP qPCR Lincmd1
(Forward primer)

Sequence-based reagent CTCTCCCACCTG
TTTGTGTCTT

Eurogentec N/A ChIP qPCR Lincmd1
(Reverse primer)

Sequence-based reagent AATTACAGCCG
ACGGCCTCC

Eurogentec N/A ChIP qPCR Myogenin
(Forward primer)

Sequence-based reagent CCAACGCCACA
GAAACCTGA

Eurogentec N/A ChIP qPCR Myogenin
(Reverse primer)

Sequence-based reagent CAGCTCCTTG
CCCTGTGAAA

Eurogentec N/A ChIP qPCR Desmin-proximal
(Forward primer)

Sequence-based reagent TGTAGCCCTCC
TGACATCAC

Eurogentec N/A ChIP qPCR Desmin proximal
(Reverse primer)

Sequence-based reagent CCAAAAGGG
CCGATGAGGAA

Eurogentec N/A ChIP qPCR Desmin distal
(Forward primer)

Sequence-based reagent TAGAGACAGA
CCAGTGGCGG

Eurogentec N/A ChIP qPCR Desmin distal
(Reverse primer)

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial assay or kit LightCycler 480 SYBR
Green I Master

Roche-Sigma-Aldrich 04887352001

Commercial assay or kit iDeal ChIP-seq kit Diagenode C01010051

Commercial assay or kit RNasy Micro Kit QIAGEN 74004

Commercial assay or kit Transcriptor First Strand
cDNA Synthesis Kit

Roche-Sigma-Aldrich 4379012001

Chemical compound, drug bFGF Peprotech 450–33 20 ng/ml

Chemical compound, drug bFGF Thermo Fisher Scientific PHG0263 20 ng/ml

Chemical compound, drug Bovine serum
albumin (BSA)

Jackson ImmunoResearch 10001620 0.2%

Chemical compound, drug Cardiotoxin Latoxan L8102 10 mM

Chemical compound, drug Cardiotoxin Sigma-Aldrich 217503–1 mg 10 mM

Chemical compound, drug Chicken embryo extract MP-Biomedical 92850145 0.5%

Chemical compound, drug Chicken embryo extract Seralab CE-650-J 1%

Chemical compound, drug collagen BD Biosciences 354236 culture dish coating

Chemical compound, drug Collagenase type I Sigma-Aldrich C0130 0.2%

Chemical compound, drug Collagenase type I Worthington Biochemical Corp 9001-12-1

Chemical compound, drug Collagenase A Roche-Sigma-Aldrich 11088793001 0.2% w/v

Chemical compound, drug DAPI (4’,6-diamidino-2-
phenylindole
dihydrochloride)

Thermo Fisher Scientific D1306

Chemical compound, drug Dispase II Roche-Sigma-Aldrich 4942078001 2.4 U/ml

Chemical compound, drug DNaseI Roche-Sigma-Aldrich 11284932001 10 ng/mL

Chemical compound, drug Dulbecco’s Modified
Eagle’s Medium (DMEM)

Thermo Fisher Scientific 41966 single myofiber culture

Chemical compound, drug DMEM with GlutaMAX Thermo Fisher Scientific 61965 myoblast culture

Chemical compound, drug EdU Thermo Fisher Scientific C10340 2 mM

Chemical compound, drug F-10 Ham’s media Sigma-Aldrich N6635 N/A

Chemical compound, drug Fetal bovine serum (FBS) Thermo Fisher Scientific 10270 20%

Chemical compound, drug Fetal calf serum (FCS) Eurobio CVFSVF00-01 10% (prol/tion medium),
2% (diff/tion medium)

Chemical compound, drug Fluoromount-G Southern Biotech 0100–01

Chemical compound, drug Hanks’ Balanced
Salt Solution (HBSS)

Thermo Fisher Scientific 14025

Chemical compound, drug Hepes Thermo Fisher Scientific 15630 0.1M

Chemical compound, drug Horse serum Thermo Fisher Scientific 26050088 5% (coating), 10% (culture)

Chemical compound, drug L-glutamine Thermo Fisher Scientific 25030 20 mM

Chemical compound, drug matrigel Corning Life Sciences 354230 1:20 in DMEM

Chemical compound, drug Penicillin/streptomycin Life Technologies 15140 1X

Chemical compound, drug Pyruvate Thermo Fisher Scientific 11360 10 mM

Software, algorithm Photoshop CS5 https://www.adobe.com/
products/photoshop.html

RRID:SCR_014199

Other (anti-biotin beads) anti-biotin beads Miltenyi Biotec 130-090-485;
RRID:AB_244365

MACS

Other (anti-PE beads) anti-PE beads Miltenyi Biotec 130-048-801;
RRID:AB_244373

MACS

Other (chamber slides) chamber slide Nalge Nunc International 177445 myoblast culture

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Other (culture plates) petri dish Sigma-Aldrich Z692301 single myofiber culture

Other (LD column) LD column Miltenyi Biotec 130-042-901 MACS

Other (MS column) MS column Miltenyi Biotec 130-042-201 MACS

Other (grip strength meter) grip strength meter Columbus Instruments 1027CSM-D54

Mouse lines
The following mouse lines have been previously described: Pax7CreERT2/+ (Lepper et al., 2009),

RosamTmG (The Jackson Laboratory, stock 007576), Cdkn1ccKO (m)/+ (Cdkn1c is imprinted with prefer-

ential expression of the maternal allele; superscript (m) indicates maternal inheritance)

(Mademtzoglou et al., 2017), Cdkn1c+/- (Zhang et al., 1997). Cdkn1c+/-female mice (C57BL/B6J

background, Jackson Laboratory) were bred with CD1 (Evigo) male mice to generate Cdkn1cm/-

CD1/B6 hybrid mice. Non-mutant littermates were used as controls. For recombination induction

with the Pax7CreERT2 allele, mice were fed in tamoxifen diet (TD.55125.I, Envigo). C57BL/6J (Janvier)

mice were used as wild-type animals for Figures 5–6. Adult mice of 8 to 16 weeks of age were used.

At least three mice per genotype were assessed. All animals were maintained inside a barrier facility,

and all in vivo experiments were performed in accordance with the French and European Community

guidelines (File No: 15–018 from the Ethical Committee of Anses/ENVA/UPEC) and Institutional Ani-

mal Care and the Use Committee of University of Minnesota (1604-33660A) for the care and use of

laboratory animals.

Single myofiber isolation and culture
Single muscle fibers were isolated by enzymatic digestion and mechanical disruption of EDL muscles

(Moyle and Zammit, 2014). For enzymatic digestion, muscles were incubated for 90 min at 37˚C
with 0.2% collagenase type I (C0130, Sigma-Aldrich) in Penicillin/Streptomycin(P/S)-supplemented

DMEM (41966, ThermoFisher Scientific). For mechanical disruption, muscles were transferred to 5%-

horse-serum-coated deep petri dishes (Z692301, Sigma-Aldrich) with P/S-supplemented DMEM and

medium was flushed against the muscle. Detached fibers were transferred into new dishes with P/S-

supplemented DMEM. For timed culture, all fibers were transferred after finishing isolation into 5%-

horse-serum-coated six-well plates and cultured in the presence of 10% horse serum and 0.5%

chicken embryo extract (#092850145, MP Biomedicals). Single myofibers for Figure 6E–F and Fig-

ure 6—figure supplement 2 were cultured in the presence of 20% FBS (#10270, Life Technologies)

and 1% chicken embryo extract (#CE-650-J, Seralab).

Retroviral cloning and infection
Cdkn1c cDNA was cloned by PCR from mouse cDNA and subcloned in the pGEMT-Easy vector

(#A1360, Promega). An additional primer was also designed to produce Cdkn1c cDNA lacking the

NLS and following sequences (Lee et al., 1995). Full-length or -NLS Cdkn1c were subsequently

subcloned -using XhoI and EcoRI added to cloning primers- into the MISSINCK retroviral production

vector, which was based on the pMSCV- IRES-eGFP (MIG) vector (Pear et al., 1998), substituting

eGFP with an insulin signal sequence-Cyan Fluorescent Protein (CFP)-KDEL sequence in order to

restrict fluorescent tracker expression to the endoplasmic reticulum and Golgi (Alonso-Martin et al.,

2016). MISSINCK retroviruses expressing either full-length or -NLS Cdkn1c were produced in 293T

(DSMZ, #ACC635) cells, and retroviral supernatant was acquired 50 hr post-transfection of 293 T

cells. For transduction, single myofiber cultures were incubated with 1:10 diluted retroviral superna-

tant from 24 to 72 hr after fiber isolation (Figure 6E; Figure 6—figure supplement 2A–D) and pri-

mary myoblasts were incubated with 1:10 diluted retroviral supernatant from 48 to 120 hr after

FACS isolation (Figure 6—figure supplement 2E–G).

Cell sorting and culture
Using the tamoxifen-inducible Cre line Pax7CreERT2, membrane-GFP is expressed in muscle satellite

cells (MuSCs) of Pax7CreERT2; RosamTmG mice. Hindlimb muscles were dissociated by 0.2% w/v

Mademtzoglou et al. eLife 2018;7:e33337. DOI: https://doi.org/10.7554/eLife.33337 17 of 25

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.33337


collagenase A (11088793001, Roche) and 2.4 U/ml dispase II (04942078001, Roche) in digestion

buffer [HBSS (14025, Thermo Scientific), 1% Penicillin/Streptomycin, 10 ng/ml DNase I

(11284932001, Sigma), 0.4 mM CaCl2, 5 mM MgCl2, 0.2% bovine serum albumin (BSA; 0010001620,

Jackson ImmunoResearch)] with 90 min incubation at 37˚C. Dissociated muscles were filtered

through 100 mm and 40 mm cell strainers. GFP +cells were collected based on gating of GFP signal.

Sorted cells were plated on matrigel (354230, Corning Life Sciences)-coated chamber slides

(177445, Nalge Nunc International). They were initially cultured in high-serum conditions (referred to

as ‘growth phase’) with 20% fetal bovine serum, 10% horse serum and 1:4000 bFGF (20 ng/ml; 450-

33B, PeproTech) in DMEM + Glutamax (61965, ThermoFisher Scientific) supplemented with 1% P/S,

20 mM L-glutamine (25030, Thermo Scientific), 10 mM pyruvate (11360, Thermo Scientific), and

0.1M Hepes (15630, Thermo Scientific). Upon reaching 70% confluence at 5 days post-plating, they

were switched to low-serum conditions (5% horse serum in P/S-supplemented DMEM + Glutamax)

to differentiate (referred to as ‘differentiation phase’). EdU (2 mM; C10340, Thermo Fisher Scientific)

chase was performed for 2 hr. EdU-incorporating cells were detected according to the manufac-

turer’s protocol.

Myoblast culture
Hindlimb muscle of control or Cdkn1c mutant mice was harvested for isolation of MuSC-derived pri-

mary myoblasts as described previously (Asakura et al., 2001; Motohashi et al., 2014). Briefly, mus-

cle was dissected, minced and then digested in type I collagenase (Worthington Biochemical Corp.).

The dissociated cells were filtered, and incubated with anti-CD45-PE, anti-Sca-1-PE, and anti-CD31-

PE antibodies (all from eBiosciences) and integrin a-biotin antibody (Miltenyi Biotec) followed by

anti-PE beads (Miltenyi Biotec). For magnetic-activated cell sorting (MACS), LD column (Miltenyi Bio-

tec) was used for negative selection to remove non-muscle cells. Flow-through fraction was used for

incubation with anti-biotin beads (Miltenyi Biotec) followed by MS column (Miltenyi Biotec). Enriched

MuSCs were fractionated as a positive fraction. MuSC-derived primary myoblasts were cultured in

growth media, F-10 Ham’s media supplemented with 20% FBS, 20 ng/ml basic fibroblast growth fac-

tor (Invitrogen) and 1% penicillin-streptomycin (Gibco) on culture dishes coated with collagen (BD

Biosciences), and the growth medium was changed every two days. Procedures for EdU experiments

and myogenic differentiation were described above.

Gene expression analysis
RNA was extracted with the RNeasy Micro kit (74004, Qiagen), according to the manufacturer’s

instructions. cDNA was synthetized with the Transcriptor First Strand cDNA Synthesis kit

(04379012001, Roche). RT-qPCR reactions were carried out in triplicate using the LightCycler 480

SyBR Green I Master (04887352001, Roche). Hypoxanthine Phosphoribosyltransferase 1 (HPRT) tran-

scripts were used for normalization. Oligonucleotides sequences were AGGGCATATCCAACAA-

CAAACTT and GTTAAGCAGTACAGCCCCAAA for HPRT and CTGAAGGACCAGCCTCTCTC and

AAGAAGTCGTTCGCATTGGC for Cdkn1c.

C2C12 culture and ChIP-qPCR
C2C12 (PMID: 28966089) cells were grown in DMEM High Glucose (#41966, Life Technologies) sup-

plemented with 10% SVF (Eurobio) until reaching 70% confluence and then they were changed to

low serum (2% SVF), differentiation, conditions for four days. Cells were collected and processed for

ChIP with the iDeal ChIP-seq kit (C01010051, Diagenode) according to manufacturer’s instructions. 1

mg of a mouse anti-Cdkn1c (sc56341, Santa Cruz) or IgG negative control (C15410206, Diagenode)

was used. The precipitated and input chromatins were analyzed by qPCR. Primer sequences are

listed in Table 1.

Muscle regeneration
Adult (12- to 15-week-old) mice in Figure 2 and Figure 2—figure supplement 1 were intramuscu-

larly injected with 70 ml of 10 mM cardiotoxin (CTX) solution (Sigma-Aldrich) into the Tibialis Anterior

(TA) after being anesthetized by i.p. injection of Avertin (Sigma-Aldrich) (Asakura et al., 2002).

Muscles were recovered 3, 4, 7 or 30 days post-injury. Five mg/kg of EdU was injected at 24 hr

before sacrifice for EdU staining.
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Adult (8- to 12-week old) mice in Figure 4 and Figure 5C were intramuscularly injected with 45 ul

of 10 mM CTX (Latoxan) into the TA after being anesthetized by i.p. injection of ketamine-xylasin.

Muscles were recovered at 3, 7 or 13 days post-injury.

Grip strength test
The maximum grip strength using a grip strength meter (Columbus Instruments) was determined by

taking the average of the three highest values out of the 15 values collected and normalized by

body weight (Aartsma-Rus and van Putten, 2014). We performed three sets of five consecutive

measurements for one set, and mice were allowed to rest for at least 20 min between the sets.

Immunohistochemistry
Sections: Muscles were frozen fresh in liquid nitrogen-cooled isopentane and sectioned at 8 mm. Fro-

zen sections were fixed with 4% paraformaldehyde/PBS for 20 min at room temperature. For hema-

toxylin-eosin staining, nuclei were stained with hematoxylin (Sigma-Aldrich) for 11 min and

cytoplasmes were counter-stained with eosin (Sigma-Aldrich) for 30 s. The sections were then dehy-

drated with brief passages through increasing concentrations of ethanol (30%, 50%, 70%, 85%, 95%,

100%). Sirius red staining (Sigma-Aldrich) was performed for detection of fibrosis as described previ-

ously (Shimizu-Motohashi et al., 2015). For two-color immunofluorescence, frozen sections were

permeabilized with 0.2% Triton X (Sigma-Aldrich) and blocked with M.O.M kit (Vector laboratories)

followed by 2% bovine serum albumin (Sigma-Aldrich) at room temperature. For three-color immu-

nofluorescence, sections were permeabilized and blocked with 3% BSA, 10% lamb serum, 0.25% Tri-

tonX-100/PBS for 30 min at room temperature. In both cases, immunolabeling was performed at 4˚C
overnight for primary antibodies and at room temperature for 1 hr for secondary antibodies. To out-

line fibers with Alexa-conjugated anti-laminin, incubation was performed for 3 hr at room tempera-

ture, after washing out the secondary antibody. Nuclei were counterstained blue with DAPI. When

mouse-raised antibodies were applied, endogenous mouse IgG was blocked by incubation with

goat anti-mouse fab fragment affinity-purified antibody (115-007-003, Jackson Immunoresearch) for

30 min at room temperature.

Single myofibers: After isolation (T0) or following culture (T24, T48, T72), myofibers were fixed

with 37˚C-preheated 4% paraformaldehyde/PBS for 10 min at room temperature. Fixed fibers were

permeabilized with 0.5% TritonX-100/PBS for 8 min, blocked with 10% goat serum, 10% swine serum

in 0.025% Tween20/PBS for 45 min and incubated with primary antibody (overnight at 4˚C) and sec-

ondary antibody (1 hr at room temperature). Nuclei were counterstained blue with DAPI.

Primary myoblast culture: Cell cultures were fixed with 4% paraformaldehyde/PBS for 15 min at

room temperature, permeabilized with 0.5% TritonX-100/PBS for 5 min, blocked with 5% BSA, 10%

goat serum and immunolabeled with primary antibody (overnight at 4˚C) and secondary antibody (1

hr at room temperature). Nuclei were counterstained blue with DAPI.

Antibodies
The following antibodies were used: chicken anti-GFP 1:1000 (#ab13970, Abcam), mouse anti-KI67

1:80 (#556003, BD Pharmingen), mouse anti-MYOD 1:80 (M3512, DAKO), rabbit anti-MYOD 1:1000

(sc304, Santa Cruz), mouse anti-MYOGENIN 1:100 (F5D-c, DSHB), mouse anti-embryonic MyHC 1:50

(F1.652, DSHB), mouse anti-embryonic MyHC 1:300 (sc53091, Santa Cruz), mouse anti-MyHC 1:100

Table 1. Sequences of primers used for the ChIP-qPCR.

Regulated gene/region Forward primer Reverse primer

Mef2a ATCTGAGGTCAGCCATTTGGT GCTAAGGACAGCTGTGACCTG

Lmn2b TTAAAGACATGTGGCAACAGACTAC TGCTCTTTCTGTACTGTGTGGTG

Lincmd1 GGAGTGATTGAGGTGGACAGA CTCTCCCACCTGTTTGTGTCTT

Myogenin AATTACAGCCGACGGCCTCC CCAACGCCACAGAAACCTGA

Desmin (proximal) CAGCTCCTTGCCCTGTGAAA TGTAGCCCTCCTGACATCAC

Desmin (distal) CCAAAAGGGCCGATGAGGAA TAGAGACAGACCAGTGGCGG

DOI: https://doi.org/10.7554/eLife.33337.016
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(mf20-c, DSHB), rabbit AlexaFluor647-conjugated anti-laminin 1:200 (NB300-144AF647, Novus Bio-

logical), rabbit anti-laminin 1:400 (L9393, Sigma Aldrich), rat anti-laminin 1:1000 (4H8-2, Sigma-

Aldrich), mouse anti-PAX7 1:100 (Pax7-c, DSHB), rabbit anti-CDKN1c 1:100 (sc8298, Santa Cruz),

goat anti-CDKN1c 1:50 (sc1039, Santa Cruz), AlexaFluor-coupled secondary antibodies (Life Tech-

nologies, Jackson ImmunoResearch).

Graphic editing
Graphs and representative photos were arranged in Figure format with the graphics editor Photo-

shop CS5. Curves were adjusted in some photos with identical adjustments between control and

experimental samples. Color intensities of hematoxylin-eosin photos were adjusted to acquire uni-

form result among different sections.

Statistical test
Data of control and mutant mice were compared with the Mann-Whitney U-test, using a significance

level of 0.05.
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