A transcriptomics resource reveals a transcriptional transition during ordered sarcomere morphogenesis in flight muscle
Abstract
Muscles organise pseudo-crystalline arrays of actin, myosin and titin filaments to build force-producing sarcomeres. To study sarcomerogenesis, we have generated a transcriptomics resource of developing Drosophila flight muscles and identified 40 distinct expression profile clusters. Strikingly, most sarcomeric components group in two clusters, which are strongly induced after all myofibrils have been assembled, indicating a transcriptional transition during myofibrillogenesis. Following myofibril assembly, many short sarcomeres are added to each myofibril. Subsequently, all sarcomeres mature, reaching 1.5 µm diameter and 3.2 µm length and acquiring stretch-sensitivity. The efficient induction of the transcriptional transition during myofibrillogenesis, including the transcriptional boost of sarcomeric components, requires in part the transcriptional regulator Spalt major. As a consequence of Spalt knock-down, sarcomere maturation is defective and fibers fail to gain stretch-sensitivity. Together, this defines an ordered sarcomere morphogenesis process under precise transcriptional control - a concept that may also apply to vertebrate muscle or heart development.
Data availability
Processed data from DESeq2, Mfuzz and GO-Elite are available in Supplementary Files 1, 2, 4. mRNA-Seq data are publicly available from NCBI's Gene Expression Omnibus (GEO) under accession number GSE107247. Fiji scripts for analysis of sarcomere length, myofibril width and myofibril diameter are available from https://imagej.net/MyofibrilJ. Raw data used to generate all plots presented in figure panels are available in the source data files for Figures 1, 5, 6, 7 and 8. Data on statistical test results are presented in Supplementary File 5.
-
Systematic transcriptomics reveals a biphasic mode of sarcomere morphogenesis in flight muscles regulated by SpaltPublicly available at the NCBI Gene Expression Omnibus (accession no: GSE107247).
-
The RNA binding protein Arrest (Aret) regulates myofibril maturation in Drosophila flight musclePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE63707).
Article and author information
Author details
Funding
Max-Planck-Gesellschaft
- Maria L Spletter
- Christiane Barz
- Assa Yeroslaviz
- Xu Zhang
- Sandra B Lemke
- Bianca H Habermann
- Frank Schnorrer
Agence Nationale de la Recherche (ANR-10-INBS-04- 01)
- Frank Schnorrer
Agence Nationale de la Recherche (ANR ACHN)
- Frank Schnorrer
Centre National de la Recherche Scientifique
- Xu Zhang
- Adrien Bonnard
- Bianca H Habermann
- Frank Schnorrer
European Molecular Biology Organization (EMBO-LTR 688-2011)
- Maria L Spletter
Alexander von Humboldt-Stiftung
- Maria L Spletter
National Institute for Health Research (5F32AR062477)
- Maria L Spletter
H2020 European Research Council (ERC Grant 310939)
- Frank Schnorrer
Aix-Marseille Université (ANR-11-IDEX-0001-02)
- Bianca H Habermann
- Frank Schnorrer
Agence Nationale de la Recherche (ANR-11- LABX-0054)
- Frank Schnorrer
European Molecular Biology Organization (EMBO-YIP)
- Frank Schnorrer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India
Version history
- Received: December 4, 2017
- Accepted: May 26, 2018
- Accepted Manuscript published: May 30, 2018 (version 1)
- Version of Record published: June 18, 2018 (version 2)
Copyright
© 2018, Spletter et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,867
- Page views
-
- 513
- Downloads
-
- 50
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Developmental Biology
Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.
-
- Cell Biology
- Structural Biology and Molecular Biophysics
Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.