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Abstract Regulation of protein turnover allows cells to react to their environment and maintain

homeostasis. Proteins can show different turnover rates in different tissue, but little is known about

protein turnover in different brain cell types. We used dynamic SILAC to determine half-lives of

over 5100 proteins in rat primary hippocampal cultures as well as in neuron-enriched and glia-

enriched cultures ranging from <1 to >20 days. In contrast to synaptic proteins, membrane

proteins were relatively shorter-lived and mitochondrial proteins were longer-lived compared to

the population. Half-lives also correlate with protein functions and the dynamics of the complexes

they are incorporated in. Proteins in glia possessed shorter half-lives than the same proteins in

neurons. The presence of glia sped up or slowed down the turnover of neuronal proteins. Our

results demonstrate that both the cell-type of origin as well as the nature of the extracellular

environment have potent influences on protein turnover.

DOI: https://doi.org/10.7554/eLife.34202.001

Introduction
Proteins, the fundamental units of all cells, exhibit dynamics in their expression levels in response to

intracellular and extracellular signals. Protein turnover, measured in cells, is the net result of protein

synthesis and degradation. Under steady-state conditions, proteins are continuously turned over

(Boisvert et al., 2012; Cambridge et al., 2011; Cohen et al., 2013; Price et al., 2010). Protein

turnover allows for the removal of damaged proteins and their replacement by new proteins. In

addition, continuous protein turnover is required and exploited to enable cells to dynamically adjust

their proteome according to internal and external perturbations and signals. Turnover rates have

likely been optimized during evolution such that individual proteins possess a life time that repre-

sents the balance between energy-saving stability and dynamic flexibility. In the brain, proteome

remodeling using protein synthesis and degradation is required for learning and memory formation

(Sutton and Schuman, 2006). In addition, several forms of synaptic plasticity studied in vitro also

require protein synthesis and protein degradation (Ehlers, 2003; Kang and Schuman, 1996;

Rosenberg et al., 2014; Schanzenbächer et al., 2016). During homeostatic scaling of cultured hip-

pocampal neurons, for example, specific sets of proteins show increased or decreased protein syn-

thesis associated with the up- or downscaling of synapses (Schanzenbächer et al., 2018;

Schanzenbächer et al., 2016). The turnover of brain proteins has been measured both in vivo and in

vitro. Price et al. (2010) used in vivo metabolic 15N-labelling and the subsequent mass spectromet-

ric analysis of whole brain homogenates to derive the turnover rates for 1010 proteins (average half-

life =~9 days) in the mouse brain. Another study used in vitro metabolic labeling of primary cortical

cultures to measure relatively shorter half-lives for 2802 brain proteins (average half-life =~5 days;

(Cohen et al., 2013)). In both of these studies, however, average half-lives were obtained using

mixed cell populations including multiple neuronal and glial cell types. It is known that proteins can

show very different turnover rates in different tissues (Price et al., 2010) or different cell types
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(Mathieson et al., 2018) of the same organism, but little is known about protein turnover rates in

different cell types of the brain.

To address these issues, we used a dynamic SILAC approach to determine protein half-lives in pri-

mary hippocampal cultures (containing a mixture

of neurons and glia cells), as well as in neuron-

enriched and glia-enriched cultures. Our results

demonstrate that both the cell-type of origin as

well as the nature of the extracellular environ-

ment have potent influences on protein turnover.

In neurons, protein turnover rates are related to

a protein’s function as well as the intracellular

environment and protein interactions.

Results

Determination of protein half-lives
in primary hippocampal cultures
To determine protein half-lives, we used a

dynamic stable isotope labeling with amino acids

in cell culture (SILAC) approach in combination

with LC-MS/MS analysis using mature primary

hippocampal cultures (containing both neurons

and glia, the latter of which do not undergo cell

division, owing to the confluence and maturity of

the cultures, see Materials and methods and Fig-

ure 6—figure supplement 5). Mature primary

neuronal and glial cultures mimic the physiology

of cells in-vivo and are an important system to

study the molecular and cellular mechanisms

that underlie the physiological and pathophysio-

logical function of neuronal networks. Cultured

hippocampal cells were maintained for 18–19

days in growth medium containing natural ‘light’

arginine and lysine, then the medium was

exchanged to one containing ‘heavy’ isotopically

labelled arginine and lysine (Figure 1A). To

reduce cellular stress (see

Materials and methods), we retained a small

amount of the ‘light’ medium and an excess of

‘heavy’ medium was added, yielding a final 4:1

ratio of heavy to light amino acids. Note that fol-

lowing the medium switch, mostly ‘heavy’ argi-

nine and lysine are incorporated into nascent

proteins while the fraction of ‘light’ proteins

decays over time. The cells were allowed to

incorporate the ‘heavy’ amino acids for 1, 3 or 7

days before they were harvested, lysed and pre-

pared for MS analyses (Figure 1A). An additional

sample was harvested just before the medium

change at t = 0. For all identified peptides, the

fraction of heavy and light peptide signal was

quantified by MS at each time point (see pep-

tide.txt uploaded to PRIDE). As the medium con-

tained residual ‘light’ amino acids, we developed

a correction factor for each peptide using the
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Figure 1. Protein turnover in neurons. (A) Protein half-

lives were determined by a dynamic SILAC approach in

combination with MS. Cells were grown for 18–19 days

in medium containing natural amino acids (‘light’) and

then switched to a medium containing heavy

isotopically labelled arginine (R10) and lysine (K8).

Upon the medium change, the ‘heavy’ amino acids

were incorporated into newly synthesized proteins,

whereas the fraction of ‘light’ pre-existing proteins

decayed over time. The cells were harvested 1, 3 and 7

days after the medium change as well as just before

the medium change (t0) and the fractions of newly

synthesized proteins and pre-existing proteins were

determined by MS. Protein half-lives were determined

based on first order exponential fitting of the fraction

of pre-existing proteins over time. (B) Distribution of

protein half-lives in primary hippocampal cultures

ranged from <1 day to >20 days.

DOI: https://doi.org/10.7554/eLife.34202.002

The following figure supplements are available for

figure 1:

Figure supplement 1. Data processing workflow of

dynamic SILAC samples.

DOI: https://doi.org/10.7554/eLife.34202.003

Figure supplement 2. Accuracy of turnover estimation.

DOI: https://doi.org/10.7554/eLife.34202.004

Figure supplement 3. Comparison to in vivo study.

DOI: https://doi.org/10.7554/eLife.34202.005

Figure supplement 4. Protein decay clusters.

DOI: https://doi.org/10.7554/eLife.34202.006
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probability of the incorporation of a ‘light’ amino acid into a nascent protein from peptides contain-

ing two arginines or lysines due to a missed tryptic cleavage site (Figure 1—figure supplement 1;

see Materials and methods). Using the above approach, we determined the protein half-lives of

3610 protein groups, using a first order exponential fit of the pre-existing protein levels over time

(Figure 1A,B; Supplementary file 1). The proteins we analyzed exhibited a range of half-lives

from <1 day to >20 days; the median half-life was 5.4 days. For extremely short-lived proteins,

where the data could not be accurately fit by an exponential decay curve, we assigned a half–life

of <1 day. The distribution of protein half-lives, shown in Figure 1B, is right skewed, reflecting a

long-tail of proteins with longer than average half-lives. To assess the quality of the dataset and the

accuracy of the protein half-lives, we computed the standard error (SE) of the rate constant as well

as the coefficient of determination (R2) of the fit for each protein (Figure 1—figure supplement 2A,

D and Supplementary file 1). Across the complete set of protein half-lives in mixed cultures, we

obtained a mean SE of the rate constant of ~0.007 and a median R2 of 0.96 demonstrating an accu-

rate determination of protein half-lives.

Validation of protein half-lives
To validate the half-lives obtained with our MS analysis, we used a different pulsed metabolic label-

ling technique, FUNCAT-PLA, that allows in situ visualization of newly synthesized proteins-of-inter-

est using non-canonical amino acids like azidohomoalanine (AHA) and antibodies (tom Dieck et al.,

2015). Extracellularly applied AHA crosses cell membranes and gets charged by endogenous

methionyl tRNA synthetases and incorporated into nascent proteins (Dieterich et al., 2006). For this

analysis, we chose four proteins (Bassoon, TrkB, GM130 and LaminB1) which exhibit different cellular

functions and half-lives ranging from ~3 days to ~11 days based on our MS analyses. To analyze the

half-lives of these proteins, a pulse of the non-canonical amino acid AHA was delivered for 2 hr to

hippocampal cultures (DIV 18). Then, at variable intervals (a.k.a. chase), the pool of pulse AHA-

labelled Bassoon, TrkB, GM130 or LaminB1 was tagged and visualized (Figure 2A and tom Dieck

et al., 2015). Previous studies demonstrated that 2 hr AHA incorporation is not toxic to cells and

does not affect global protein synthesis or degradation rates (Dieterich et al., 2006). In these

experiments we labelled GM130 or LaminB1 and also used data obtained for TrkB and Bassoon

from tom Dieck et al., 2015 using identical labeling and tagging conditions. For both GM130 and

LaminB1, proteins associated with Golgi and nuclear function, respectively, a decrement in the num-

ber of labelled puncta was observed over days, yielding measured half-lives of 1.9 and 4.4 days,

respectively (Figure 2B, Figure 2—source data 1). For all four proteins examined, the half-lives

obtained by the FUNCAT-PLA analysis were well-correlated with the half-lives obtained with MS

(Pearson correlation = 0.983; Figure 2C). We noted, however, that the half-lives obtained with FUN-

CAT-PLA were systematically shorter. This could be owing to a reduced stability of the AHA-contain-

ing proteins or the azide group used for tagging or other factors, as discussed below.

Protein localization and function
We next examined the relationship between a protein’s half-life and its location and/or function in

cells. We calculated the half-lives for proteins that reside in cytoplasm, nucleus or plasma membrane,

as well as in many different organelles (Figure 3—source data 1). As shown in Figure 3A, many

groups exhibited a wide range of protein half-lives that were not significantly different from the pop-

ulation average. An exception to this were proteins associated with the nucleus as well as several

groups of membrane proteins, including those associated with the plasma membrane, the Golgi

apparatus membrane and the ER membrane which all exhibited a shorter than average half-life.

Mitochondrial proteins also deviated from the population average: they exhibited significantly lon-

ger half-lives than all other groups. This was a counter-intuitive observation given the exposure of

mitochondrial proteins to elevated levels of reactive oxygen species (Adam-Vizi and Chinopoulos,

2006). Lastly, despite their remote location within axonal and dendritic arbors, we found that synap-

tic proteins as a group do not exhibit significantly different half-lives from the population (Figure 4—

source data 1; see below and Figure 4 for more discussion of individual synaptic protein half-lives).

We next grouped proteins by their half-lives, ascending from less than 3 days to greater than 14

days and performed a Gene Ontology (GO) analysis. We found that proteins associated with distinct

cellular components (B) or molecular functions and biological processes (C) were significantly over-
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represented (p<0.05, Bonferroni corrected) in certain half-live groups (Figure 3—source data 2).

For example, receptors, signaling molecules, cell adhesion molecules, and proteins involved in stimu-

lus response and cell communication were over-represented in the segment of comparably short-

lived (<3 days) proteins. Ribosomal proteins were enriched in a group with relatively long half-lives

(6–11 days). Amongst the most long-lived (12–15 days) groups we found a significant over-represen-

tation of proteins involved in energy metabolism. In this long-lived group there was also an over-

representation of histones and nuclear pore proteins, consistent with previous reports (Savas et al.,

2012; Toyama et al., 2013). We analyzed in greater detail the proteins that inhabit the presynaptic

and postsynaptic compartments. As mentioned above, synaptic protein show a wide range of

A GM130

C

Half-life MS

0 2 4 6 8 10 12

C
h

a
s
e

M
e
t 

C
tr

l

0 1 2 3 NC

0

5

10

15

0 1 3 7 NC

0

20

40

60

80

100

120

15

LaminB1: t1/2 = 4.4 d

P
u
n
c
ta

 n
u
m

b
e
r 

p
e
r 

n
e
u
ro

n

Chase period [days]

0

0

5

10

100

80

60

40

20

0 1 2 3 Met

0 1 3 7 Met

B

120

GM130: t1/2 = 1.9 d 

2
h
 A

H
A

 p
u
ls

e

0 2 4 6 8 10 12

0

1

2

3

4

5

6 r = 0.983

0

4

3

2

1

5

6

H
a
lf
-l
if
e
 F

U
N

C
A

T
-P

L
A

GM130

TrkB

Bassoon

LaminB1

LaminB1

New protein

MAP2

DAPI

2d

3d

3d

7d

1d1d

Figure 2. Validation of mass spectrometry results with metabolic labeling and visualization. Protein half-lives were

determined by FUNCAT-PLA for GM130 and LaminB1. Degradation of newly synthesized proteins (following a 2 hr

AHA pulse) was monitored for 0 (no chase), 1, 2 and 3 days for GM130 and for 0, 1, 3 and 7 days for LaminB1. (A)

Representative images of neurons with newly synthesized LaminB1 and GM130 as indicated (green), cell body and

dendrites (MAP2, red), nuclei (DAPI, blue). Puncta were dilated for visualization purposes only. Scale bar = 10 mm.

(B) Group analysis of experiments shown in A. Puncta number per neuron is shown for individual cells (grey dots)

as well as the mean (black line). Protein half-life was determined based on exponential fitting of the mean puncta

number per cell. (C) Protein half-lives measured by FUNCAT-PLA and MS exhibit a high and significant correlation

(Pearson correlation (r) = 0.983); data for TrkB and Bassoon were obtained from tom Dieck et al., 2015.

DOI: https://doi.org/10.7554/eLife.34202.007

The following source data is available for figure 2:

Source data 1. FUNCAT-PLA results.

DOI: https://doi.org/10.7554/eLife.34202.008
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Figure 3. Half-lives of proteins with different cellular locations and functions. (A) Half-life distribution of proteins in different cellular compartments

(LocTree annotation; score �50) and of synaptic proteins (extracted based on UniProt GO annotation). Number of protein groups assigned to each

compartment is given in brackets. Mitochondrial proteins are significantly longer-lived compared to the complete set of quantified half-lives. Except in

mitochondria, membrane proteins tend to be shorter-lived compared to soluble proteins in each compartment. Selected GO terms for cellular

component (B) as well as biological process, molecular function and Panther protein class (C) that are over-represented (p-value<0.05) in distinct half-

life segments. The complete set of over-represented GO terms and the full name of abbreviated GO terms (marked with *) are given in Figure 3—

source data 2.

DOI: https://doi.org/10.7554/eLife.34202.009

The following source data and figure supplement are available for figure 3:

Source data 1. Half-lives of proteins at different sub-cellular localizations.

DOI: https://doi.org/10.7554/eLife.34202.011

Source data 2. GO analysis of half-life segments.

DOI: https://doi.org/10.7554/eLife.34202.012

Figure supplement 1. N-terminal sequence analysis.

DOI: https://doi.org/10.7554/eLife.34202.010
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protein half-lives, which are not significantly different from non-synaptic proteins. Figure 4 depicts

half-lives of all synaptic proteins in our dataset. We note that the receptors for the excitatory neuro-

transmitter glutamate (GluR1, GluR2, GluR3, GluR6, NMDAR1, NMDAR1B, mGluR3, mGluR5, and

mGlusR7) exhibit shorter half-lives than the global protein population average (Figure 4A) while

receptors for the inhibitory neurotransmitter GABA exhibited half-lives similar to the population

average (Figure 4B). Relatively short half-lives were also observed for most of the cell adhesion mol-

ecules we identified, including most neuroligins (NLGN) and neurexins (NRXN) as well as N-cadherin.

More long-lived proteins were found in the pre-synaptic compartment. Amongst the most long-lived

synaptic molecules are those associated with synaptic vesicles and vesicle processing including the

synapsins, the synaptic vesicle transporter family Sv2 as well as the Munc proteins (Figure 4A). We

also noted in some cases that individual protein isoforms as well as members within a protein family
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Figure 4. Half-lives of synaptic proteins. Proteins located at glutamatergic synapses (A) and glycinergic or GABAergic synapses (B). Half-lives are

indicated by a color code from red (short-lived) to green (long-lived). Multiple circles for the same protein name show different isoforms. Interacting

proteins are displayed in closer proximity. Proteins with similar functions are grouped together and the synaptic vesicle cycle is indicated by arrows.

Abbreviated protein names are explained in Figure 4—source data 1.

DOI: https://doi.org/10.7554/eLife.34202.013

The following source data is available for figure 4:

Source data 1. Half-lives of synaptic proteins.

DOI: https://doi.org/10.7554/eLife.34202.014
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could exhibit very different half-lives, e.g. the synaptotagmins (Syt), the syntaxins (STX) and even

CamK2 subunits (Figure 4A).

Protein complex members
Proteins are functionally defined by their interactions and many proteins form stable multi-protein

complexes to execute their cellular functions; these macromolecular complexes are now intensely

studied both structurally and functionally (Purdy et al., 2014; Wohlgemuth et al., 2015). As such,

we also investigated the half-lives of proteins in the context of the complexes they are associated

with. We examined 314 protein complexes (composed of >5 proteins) and found that on average,

proteins that are co-members of a complex have more similar half-lives than randomly selected pro-

teins (Figure 5A; Figure 5—source data 1). We determined whether the protein half-lives of com-

plex members are related to the size of the complex (in terms of number of protein constituents).

We found that the variability of protein half-lives within complexes does not correlate with the num-

ber of constituents in a complex (Figure 5—figure supplement 1).

We next asked if the half-lives of multi-protein complex constituents correlate with the assembly

and disassembly dynamics of the complexes. We analyzed in greater detail several protein com-

plexes with different assembly and disassembly dynamics, including the spliceosome, the ribosome,

the nuclear pore complex, and the ATP synthase (Figure 5B–E; Figure 5—source data 2). The spli-

ceosome is a highly dynamic complex that assembles for each splicing event and then disassembles

again afterwards. For the analysis of the spliceosome, we chose the human ‘B-complex’, the pre-cat-

alytic complex primed for activation, which had recently been described structurally (pdb 5O9Z;

Bertram et al., 2017). This structure contains 38 subunits, of which we detected 20 (Figure 5B,F).

We found that these proteins exhibit a mean turnover of ~4.7 days, which is faster than the global

population of proteins we measured. The ribosome and the ATP-synthase are thought to be more

static complexes. Ribosomal proteins are synthesized in the cytoplasm and subsequently assembled

into the large and small ribosomal subunits in the nucleus and nucleolus, where they interact with a

variety of ribosomal assembly proteins and ribosomal RNA (Peña et al., 2017), before they are

released back into the cytoplasm where they drive protein synthesis. Depending on the translational

activity, the small and large ribosomal subunits can associate and dissociate, but the subunits them-

selves are considered to be stable throughout their life-time. The ribosome comprises ~79 proteins,

47 in the large subunit and 32 in the small subunit. We analyzed our data using a cryo-EM structure

of the Sus scrofa ribosome (pdb 3J7R; Voorhees et al., 2014). We obtained half-lives for 70 of the

76 ribosomal proteins annotated in the structure, which exhibited a mean half-life of 7.8 days across

all subunits (Figure 5C,F). Especially short-lived ribosomal proteins included proteins associated

with both the large (e.g. Rpl21: 4.4 days) and small (e.g. Rps30: 4.0 days) subunits; we note that

these proteins have not been recognized for extra-ribosomal functions (Warner and McIntosh,

2009). The ATP synthase assembles in a step-wise manner. The membrane-embedded rotor as well

as the soluble stalk and head domains are produced and assembled independently, and full ATP syn-

thase assembly is a finely-tuned process dependent on the energy demand of the cell

(Kucharczyk et al., 2009). For the ATP synthase, we analyzed a recently published structure (pdb

5LQX; Vinothkumar et al., 2016) and detected 8 of the 12 ATP synthase proteins found in the struc-

ture (Figure 5E,F). The protein subunits exhibit a relatively limited range of half-lives with a mean

half-live of 11.2 days, with head and stalk subunits displaying more similar half-lives when compared

to the whole complex. The nuclear pore complex (NPC) is a huge membrane-spanning protein com-

plex that comprises static scaffold regions, intermediate adopter regions as well as highly dynamic

regions (Rabut et al., 2004). For analysis of the nuclear pore complex, we used a recent cryo-EM

structure of the eukaryotic NPC (Lin et al., 2016), which contains 19 distinct proteins. We detected

10 of these proteins and found that the observed half-lives correlate very well with previous observa-

tions of subunit stability (Figure 5D,F; Beck and Hurt, 2017). For example, the large structured

solenoid elements of the core and the CNC rings display similar half-lives and they are not predicted

to exchange once the complex has been assembled. In contrast, the protein Nup62 displayed the

shortest half-life of the observed NPC subunits. Nup62, as part of the Nup54/58/62 channel trimer

at the center of the core, is known to dissociate easily from the complex (Lin et al., 2016). We also

observed a significantly shorter half-life of Sec13, a component of the NPC. However, Sec13 is also a

stoichiometric member of the COPII coat so we cannot attribute the observed half-life with dynamic

exchange in the NPC, as our data is averaged over all populations in the cell (see Discussion). Others
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have described some extremely long-lived proteins associated with the NPC in neurons (in-vivo

study in rat brain; (Savas et al., 2012; Toyama et al., 2013); we also detect some of the same long-

lived NPC components in our neural samples. Of course, we cannot rule out the possibility that all of

the complex member proteins that we analyzed were indeed physically associated with their respec-

tive complexes. With this caveat in mind, we considered the cohesiveness of the half-lives of the four

above protein complexes in a conceptual framework that considers the relative dynamism of the

complex assembly and disassembly (Figure 5G). At the dynamic extreme is the spliceosome; here

were observed that the spliceosome constituents exhibited the fastest turnover of the four com-

plexes examined. At the static extreme, we placed the ATP synthase and the small and the large

subunit of the ribosome. Notably, for the ATP synthase, we observed the longest average half-life.

The NPC is located in the center of the dynamism axis, as it contains both a static core as wells as

dynamic outer filaments. Correspondingly, we found the highest variation of subunit half-lives in the
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Figure 5. Protein half-lives within multi-protein complexes. (A) Standard deviation (SD) for half-lives within multi-protein complexes compared to SD

between randomly sampled proteins. (B) Structures of the spliceosome (PDB code: 5O9Z), (C) the ribosome (PDB code: 3J7R), (D) the nuclear pore

complex (multiple PDB codes, see Materials and methods) and (E) the ATP-synthase (PDB code: 5LQX) are color-coded according to the protein half-

lives. For the nuclear pore complex (D) only one repeating unit is displayed. The whole complex is shown as an insert (bottom right). RNA molecules

and proteins for which no half-life was determined are shown in grey. (F) Half-life distributions of the complex constituents and the corresponding color

scales. (G) Relationship between the SD of complex members and complex assembly and disassembly dynamics. Average half-lives of complex

members are indicated by the indicated color scale.

DOI: https://doi.org/10.7554/eLife.34202.015

The following source data and figure supplement are available for figure 5:

Source data 1. Half-lives of protein complex constituents.

DOI: https://doi.org/10.7554/eLife.34202.017

Source data 2. Half-lives of constituents of the ribosome, ATP-synthase, spliceosome and nuclear pore complex.

DOI: https://doi.org/10.7554/eLife.34202.018

Figure supplement 1. Correlation of half-life variability within protein complexes and complex size.

DOI: https://doi.org/10.7554/eLife.34202.016
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NPC. However, both the dynamic spliceosome and the static ribosome sub-complexes displayed

similar subunit half-life variations.

Nature vs. nurture in protein turnover
In previous studies, different protein lifetimes have been observed in different cell types

(Mathieson et al., 2018) and in different tissues (Price et al., 2010). We thus asked if the protein

lifetimes we examine here are intrinsic to their amino acid sequence (nature) or rather whether there

exist environmental influences (nurture), either intracellular (e.g. the specific cell type in which the

protein is expressed) or extracellular (the types of cells in the extracellular neighborhood). Indeed,

protein degradation and protein stability have been linked to intrinsic sequence properties, such as

the N-terminal amino acid, denoted as ‘N-end rule’ (Bachmair et al., 1986; Gibbs et al., 2014).

Accordingly, we analyzed the N-terminal amino acid sequence for all protein groups that were

assigned to one specific protein sequence. Sequence analysis revealed no significantly over- or

under-represented N-terminal amino acids in the fraction of short-lived proteins (10% of proteins

with shortest half-lives) or long-lived proteins (10% of proteins with longest half-lives), respectively

(Figure 3—figure supplement 1A,B). Interestingly, we found more proteins with a destabilizing

N-terminal amino acid in the fraction of long-lived proteins compared to short-lived proteins (Fig-

ure 3—figure supplement 1C). In primary hippocampal cultures, N-terminal sequence properties

seem to have little impact on protein lifetimes when compared to protein functions and localization.

To examine potential environmental influences, we prepared ‘glia-enriched’ and ‘neuron-

enriched’ cell cultures. The proteomes of these neuron-enriched and glia-enriched cultures were

clearly different from the mixed cultures (Figure 6—figure supplement 1A,H) and the respective

markers of the inappropriate cell type were significantly de-enriched (Figure 6—figure supplement

1B,C, Figure 6—source data 1; see Materials and methods). Proteomic analysis further revealed

that the glia-enriched cultures are strongly enriched in astrocytes and microglia, while markers for

oligodendrocytes do not show a consistent enrichment (Figure 6—figure supplement 1D,E; see

also Figure 6—figure supplement 4).

We next compared protein half-lives in the three different culture types (glial-enriched, neuron-

enriched cultures, and standard ‘mixed’ cultures used for all of the above described experiments;

Figure 6A). We found that, at the population level, the proteins extracted from the glial-enriched

cultures exhibited a significantly faster turnover than the proteins extracted from either the neuron-

enriched or mixed cultures, which were much more similar to one another (Figure 6B). This global

difference in turnover between the proteins from the glial-enriched samples and the other two sam-

ples cannot be explained by simple differences in their respective proteomes, as there was an 75%

and 78% overlap in proteomes between the glial-enriched proteome and neuron-enriched and

mixed proteomes, respectively (Figure 6—figure supplement 1A). We next compared the turnover

rates of individual proteins shared between any two proteomes. A comparison of the turnover rates

in glial-enriched cultures vs mixed cultures revealed a systematic shift of almost the entire proteome

to faster half-lives in glial-enriched cultures (Figure 6C). We considered whether the faster turnover

observed in glial-enriched cultures could be related to ongoing cell-division of glia cells, but, as

noted above, there is no significant cell division of glia in the confluent mature cultures (Figure 6—

figure supplement 5). We further explored the issue of cell division by examining the half-life of His-

tone H3.1 in the mixed vs. glia-enriched cultures. The heavy isotopically labelled form of Histone

H3.1 is only produced by cell division and not by protein turnover in post-mitotic cells (Ahmad and

Henikoff, 2002; Schwartz and Ahmad, 2005; Wu et al., 1982). Similar long half-lives for Histone

H3.1 were obtained in mixed cultures (11.6 days) and glia-enriched cultures (11.2 days) demonstrat-

ing that a similar low rate of cell division takes place in both culture types and that cell division can-

not account for the faster protein turnover in glia cells (Figure 6—figure supplement 5B).

A comparison of the turnover rates of proteins identified in both the neuron-enriched proteome

and the mixed-culture proteome revealed 169 proteins that exhibited a significantly faster turnover

in mixed cultures as well as 68 proteins that exhibited a significantly faster turnover in neuron-

enriched cultures (Figure 6D, Figure 6—source data 2). We asked whether any particular functional

groups are significantly over-represented using Gene Ontology (Figure 6—source data 3). We

found that proteins with faster turnover rates in mixed compared to neuron-enriched cultures were

significantly over-represented in functional groups that represent ribosomal proteins, cytoplasmic

translation, the extracellular matrix and focal adhesion (Figure 6E). Further, we found that proteins
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Figure 6. Protein turnover rates of different cell types in different cellular environments. (A) Different cell culture types and environments for which

protein turnover was investigated. (B) Protein half-life distributions for different primary neuronal culture types (mixed, neuron-enriched and glia-

enriched cultures). (C and D) show protein-wise half-life comparisons for proteins in glia-enriched versus mixed cultures as well as neuron-enriched

versus mixed cultures. Proteins with significantly regulated turnover rates (p<0.05 at�2 of 3 time points, Bonferroni corrected) are highlighted in color.

(E) GO over-representation analysis of proteins with significantly faster turnover rates in mixed cultures compared to neuron-enriched cultures. Selected

over-represented GO terms (p<0.05) and their log2-fold over-representation are shown. (F) Same as E for proteins with significantly faster turnover rates

in neuron-enriched cultures compared to mixed cultures. (G) Proposed mechanism to explain the increased turnover of glycolytic enzymes in neuron-

enriched cultures. In the absence of glia cells, neurons are not supplied with lactate via the astrocyte-neuron-lactate-shuttle and hence pyruvate

production relies on glycolysis exclusively. Glycolytic enzymes might be used more frequently, damaged more frequently and replaced earlier. (H)

Selected proteins with significantly faster turnover rates in neuron-enriched cultures that are involved in synaptic processes. (I) Protein-wise turnover

comparisons for proteins from neuron-enriched cultures maintained with or without conditioned medium. Proteins with significantly regulated turnover

rates (p<0.05, Bonferroni corrected) are highlighted in color.

DOI: https://doi.org/10.7554/eLife.34202.019

The following source data and figure supplements are available for figure 6:

Source data 1. Relative protein abundances in different culture types.

DOI: https://doi.org/10.7554/eLife.34202.025

Source data 2. Protein half-life comparison between different culture types.

DOI: https://doi.org/10.7554/eLife.34202.026

Source data 3. GO analysis of proteins with different turnover rates in mixed and neuron-enriched cultures.

DOI: https://doi.org/10.7554/eLife.34202.027

Source data 4. Proteins with different turnover rates in neuron-enriched cultures with and without conditioned medium.

Figure 6 continued on next page
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with faster turnover rates in neuron-enriched cultures were significantly over-represented in func-

tional groups related to glycolytic processes, the regulation of neurotransmitter levels, axon terminus

and myelin sheath (Figure 6F). Within the glycolysis pathway, we discovered that a majority of the

enzymes exhibited faster turnover in neuron-enriched cultures (Figure 6—figure supplement 2). It

has been demonstrated that astrocytes provide lactate (which can be converted to pyruvate by the

lactate dehydrogenase) to neurons (Magistretti and Pellerin, 1999; Mason, 2017); the relative pau-

city of glia in the neuron-enriched cultures would lead to the loss of astrocyte-derived lactate and

could lead to enhanced metabolic activity of the neuron’s own glycolytic axis, and a resulting faster

turnover (Figure 6G). Within the synapse, we noted that several proteins related to the synaptic ves-

icle cycle as well as neurotransmitter synthetic enzymes exhibited a faster turnover in neuron-

enriched cultures relative to mixed cultures (Figure 6H).

In the above experiments, differences in protein turnover in the neuron-enriched versus mixed

(neuron-glia) cultures could be due to secreted factors or due to the physical presence of glial cells.

To address this, we asked whether the composition of the extracellular medium alone could influ-

ence protein turnover. We compared the protein turnover rates in ‘sister’ neuron-enriched cultures

grown in a medium supplemented with conditioned medium (obtained from glia cells and mixed

cortical cultures) or without conditioned medium. As above, we used SILAC to assess protein turn-

over, performing the medium swap (light-to-heavy or heavy-to-light; see Materials and methods) at

DIV 18–19. We observed that cell density was clearly lower for neuron-enriched cultures without con-

ditioned medium compared to sister-cultures that were supplemented with conditioned medium

although cell viability was similar (visual inspection). When we compared the protein turnover rates

in the two conditions, we found that they were very similar to one another, with just a few proteins

showing altered turnover as a result of the presence or absence of pre-conditioned medium

(Figure 6I). We also noted that the proteins that had a faster turnover in neuron-enriched cultures

compared to mixed cultures (see Figure 6D) did not show different turnover kinetics in neuron-

enriched cultures with and without conditioned medium (e.g. glycolytic enzymes and proteins

depicted in Figure 6H; see also Figure 6—source data 4). These data indicate that the differences

in protein turnover we observe between neuron-enriched and neuron-glia cultures likely arise from

physical/mechanical interactions between the cells, presumably owing to adhesive interactions and

its associated signaling.

Discussion
Here, we used a dynamic SILAC approach to describe the turnover rates of neuronal proteins in dif-

ferent cellular environments. All in all, we obtained half-life measurements for over 5100 protein

groups which exhibited a range of half-lives from <1 day to >20 days, with a median half-life of 5.4

days in mixed cultures. A similar half-life distribution (median = 4.2 days) was obtained by

Cohen et al. (2013) who measured the turnover of 2802 protein groups from mixed

cortical cultures. A recent study by Mathieson et al. (2018) reported clearly shorter half-lives for pri-

mary mouse embryonic neurons (median = 1.9 days). These shorter half-lives are likely explained by

the relative immaturity of the cultures (prepared from embryonic rather than postnatal neurons) and

the relative short time in vitro (5 days vs. 18–19 days). We further compared the protein half-lives

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.34202.028

Figure supplement 1. Comparison of different culture types.

DOI: https://doi.org/10.7554/eLife.34202.020

Figure supplement 2. Faster protein turnover of glycolytic enzymes in neuron-enriched cultures.

DOI: https://doi.org/10.7554/eLife.34202.021

Figure supplement 3. Comparison of neuron-enriched cultures with and without conditioned medium.

DOI: https://doi.org/10.7554/eLife.34202.022

Figure supplement 4. Proteomic comparison of glia-enriched cultures prepared from cortex and hippocampus.

DOI: https://doi.org/10.7554/eLife.34202.023

Figure supplement 5. Estimation of cell division in primary cultures.

DOI: https://doi.org/10.7554/eLife.34202.024
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determined by our in vitro study in mixed cultures to half-lives of mouse brain proteins that were

previously determined by in vivo metabolic labelling. Though proteins were clearly longer-lived in

vivo (average half-life ~9 days) compared to in vitro, a gene-wise comparison revealed a significant

correlation between protein half-lives (Spearman rank correlation = 0.62, p<0.001; Figure 1—figure

supplement 3). The systematic offset could be explained by the different experimental approach,

species (mouse versus rat), cellular compositions and environments as well as by the different ages

of the investigated cells. Visscher et al. (2016) recently reported shorter half-lives for proteins in

young cells (C. elegans larvae) compared to older cells (adult C. elegans).

We validated the protein turnover rates we measured using dynamic SILAC with a metabolic

labelling and visualization strategy, FUNCAT-PLA (tom Dieck et al., 2015). We found that the

ranked half-lives of the proteins determined via MS and FUNCAT-PLA were very well correlated. The

half-lives of proteins visualized in situ with FUNCAT-PLA, however, were systematically shorter than

those determined via MS. Reasons for this offset could include a relative instability of the azide

group or AHA-containing proteins, or an increased sensitivity of the AHA-labeling to detect the

rapid degradation of misfolded proteins which are missed by the continuous SILAC labelling (also

discussed below).

Analysis of our dynamic SILAC data revealed that protein turnover is influenced by the cellular

location of the protein. We found that membrane proteins, in particular those of the plasma mem-

brane, the ER, and the Golgi apparatus exhibited significantly shorter than average half-lives while

mitochondrial proteins exhibited significantly longer half-lives. These systematic differences in pro-

tein turnover might result from different major degradation mechanisms for cytosolic and membrane

proteins (Jin et al., 2018; Tai and Schuman, 2008) as well as the unique quality control mechanism

of mitochondria by fission and fusion (Cagalinec et al., 2013; Gomes and Scorrano, 2008). Interest-

ingly, the population of synaptic proteins exhibited a similar distribution of half-lives to the general

population. Protein half-lives also correlate with protein functions. Receptors, signalling molecules

and proteins involved in cellular communication, for instance, were over-represented in the group of

short-lived proteins. In contrast, other functional classes such as histones and proteins involved in

energy metabolism were over-represented in the fraction of long-lived proteins. This finding sup-

ports the idea that protein lifetimes evolved evolutionary in a way that proteins involved in internal

and external signal response are short-lived to enable faster and more fine-tuned regulation, while

proteins that serve more steady functions in the cell are longer-lived in order to save energy that is

required for protein synthesis and degradation.

Proteins are interactive by design and this interaction is essential for the execution and regulation

of cellular functions. Cohen et al. (2013) showed that interacting proteins have more similar half-

lives compared to non-interacting proteins in primary cortical neurons. Expanding on this, we found

that members of multi-protein complexes display more similar half-lives than randomly selected pro-

teins. Protein complexes differ greatly in their biogenesis, assembly and disassembly kinetics, and

these differences might be reflected in different mean half-lives between complexes or variability of

half-lives within complexes. We examined in detail the half-lives of protein constituents of 4 different

multi-protein complexes: the ATP synthase, the ribosome, the nuclear pore complex and the spliceo-

some. For the four complexes we examined, the most dynamic in terms of assembly and disassembly

is the spliceosome and the proteins in this complex exhibited the shortest half-lives. The nuclear

pore complex exhibited highly variable half-lives of its associated protein constituents, which is in

agreement with previous studies (Beck and Hurt, 2017; Daigle et al., 2001; Mathieson et al.,

2018). Surprisingly, the ribosome, a canonical stable cellular complex where the 40S and 60S subu-

nits are thought to be assembled ‘for life’ in the nucleus and nucleolus, exhibited substantial variabil-

ity in the half-lives of its constituents, suggesting the possibility that some ribosomal proteins may

be exchanged to repair (Pulk et al., 2010) or even specialize ribosomes (Xue and Barna, 2012) in

subcellular compartments (Holt and Schuman, 2013).

The above results must be interpreted with the caveat that we do not know if the half-lives we

measured represent a single functional state for the proteins. A recent study in mouse fibroblasts

demonstrated that ~ 10% of the proteins show non-exponential decay kinetics with a faster degrada-

tion in the first hours after synthesis (McShane et al., 2016). The dynamic SILAC approach we used

here does not allow us to accurately distinguish between different sub-populations of the same pro-

tein that have different stabilities. As unstable proteins are degraded shortly after synthesis, they

represent a low abundant sub-population in the whole cell lysate and contribute less to the
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measured MS signals compared to the corresponding stable protein population. Furthermore, we

did not acquire samples in the first hours after the medium change, which would be necessary to

accurately resolve protein populations with different decay kinetics. In contrast, sub-populations with

different lifetimes could be better detected in a pulse-chase experiment sampling multiple chase

time points in short time intervals after the pulse. During the pulse, proteins of all sub-populations

are synthesized and during the chase these sub-populations will decay with different time constants:

the fraction of short-lived proteins will vanish after a short time while the longer-lived fraction will

remain much longer before it eventually degrades. Alternatively, in future experiments, the purifica-

tion of subcellular compartments (e.g. synaptosomes) or organelles (e.g. ribosomes) and an indepen-

dent determination of the half-lives of proteins in particular cell locations or functional groups could

provide new insights on sub-populations with different half-lives.

Factors intrinsic to the amino acid sequence have been described, which contribute to the stabil-

ity of proteins; specific amino acids were found to have a destabilizing effect when located at the

protein N-terminus (Bachmair et al., 1986; Gibbs et al., 2014). In our dataset, there was no over-

representation of destabilizing N-terminal amino acids in the fraction of short-lived proteins com-

pared to long-lived proteins, indicating that N-terminal sequence properties have little impact on

protein lifetimes in primary hippocampal cultures.

We further examined whether there is an additional effect of the intracellular environment on

brain protein turnover by comparing the half-lives of the same proteins in either glial- or neuron-

enriched cultures. We found that when expressed in glia, proteins exhibited a significantly faster

turnover rate than they did when expressed in neurons; this difference cannot be explained by glial

cell division. Others have investigated turnover rates for nuclear proteins in different brain cell types

and also observed faster protein turnover for glia cells compared to neurons (Toyama et al., 2013).

We also examined the effect of the extracellular environment on protein turnover, comparing the

turnover of proteins in neuron-enriched cultures to mixed cultures, which contain both neurons and

glia. We found that while the majority of protein half-lives were not changed between the two condi-

tions, a significant group of proteins exhibited faster or slower turnover when glia were present in

the extracellular environment. We believe that most of the changes in half-life are likely due to adhe-

sive interactions with glial cells, rather than secreted factors, as there were no big differences in turn-

over when we compared neuron-enriched cultures treated, or not, with glial conditioned medium.

Proteins that showed faster turnover in the absence of glia included both glycolytic enzymes and

proteins associated with vesicle cycling. This turnover regulation is likely related to the activity state

of the respective proteins. In the absence of glia cells, neurons lack lactate supplied from glia (by the

glia-neuron lactate shuttle), and thus require increased glycolytic activity to produce pyruvate. The

observed increase in turnover of glycolytic enzymes might reflect this increased activity. A similar

correlation between turnover and the activity of individual proteins was recently demonstrated in

yeast (Martin-Perez and Villén, 2017). Taken together, these data indicate a potent influence of

both the intracellular (local) and extracellular (global) environment on protein turnover.

In the present experiments we rely on the relative enrichment of neurons or glia in special culture

conditions. With the recent development of cell type-specific metabolic labelling (Alvarez-

Castelao et al., 2017), there exists the possibility to directly examine the protein turnover of distinct

cell types in combination with the dynamic SILAC approach employed here. In addition, understand-

ing how plasticity regulates and exploits turnover to modify brain proteomes is a goal of future

studies.

Materials and methods

Preparation and maintenance of cultured neurons and glia cells
Mixed cultures
Dissociated hippocampal neurons were prepared and maintained as previously described

(Aakalu et al., 2001). Briefly, hippocampi from postnatal day 1 rat pups (strain Sprague-Dawley)

were dissected and dissociated by papain and plated at a density of 18,000 cells/cm2 onto poly-D-

lysine-coated Petri dishes (MatTek, Ashland, Massachusetts). Cultures were maintained in Neuroba-

sal-A medium (Invitrogen, Carlsbad, California) supplemented with B-27 (Invitrogen) and Glutamax
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(Invitrogen) at 37˚C. All experiments were carried out with the approval of the German animal exper-

iment authorities.

Primary hippocampal cultures for FUNCAT-PLA experiments
For FUNCAT-PLA experiments, primary hippocampal neurons were prepared as described above

and plated at a density of approximately 20,000 cells/cm2 onto poly-D-lysine-coated glass-bottom

Petri dishes (MatTek).

Neuron-enriched cultures
Hippocampal cells were dissociated and plated as described above at a density of approximately

25,000 cells/cm2. After one day, 3 mM cytosine b-D-arabinofuranoside (AraC; Sigma-

Aldrich, St. Louis, Missouri) was added for 48 hr. Subsequently, the cells were maintained in a

medium composed of Neurobasal-A supplemented with B-27 and Glutamax of which 20% were pre-

conditioned over cortical neurons and 30% were pre-conditioned over glia cells.

Neuron-enriched sister cultures with and without pre-conditioned medium
Hippocampal cells were dissociated and plated as described above and plated at a density of

approximately 25,000 cells/cm2. Eight hours after plating, the medium was fully exchanged with

‘light’ or ‘heavy’ (K10, R8) Neurobasal-A supplemented with B-27 and Glutamax (NGM) or with

‘light’ or ‘heavy’ (K10, R8) Neurobasal-A supplemented with B-27 and Glutamax of which 20% were

pre-conditioned over cortical cultures and 30% were pre-conditioned over glia cells (NGM- condi-

tioned). One day after plating, 3 mM AraC was added for 48 hr. Subsequently, the cells were main-

tained again in ‘heavy’ or ‘light’ NGM or NGM conditioned as before.

Glia-enriched cultures
The cortex from postnatal day 1 rat pups was dissected and dissociated as described above. 20% of

the cell suspension was plated out and maintained on non-coated 6 cm Petri dishes (MatTek). Cells

were initially grown in MEM++. Medium was exchanged with fresh MEM++ after 4 hr and after 4

days. After 7 days in culture, medium was exchanged by conditioned medium composed of Neuro-

basal-A supplemented with B-27 and Glutamax of which 5% were pre-conditioned over cortical neu-

rons and 15% were pre-conditioned over glia cells.

Comparison of glia-enriched cultures prepared from cortex and
hippocampus
The cortex from a postnatal day 1 rat pup was dissected and dissociated by papain. Five percent of

the cell suspension was plated on non-coated 3 cm Petri dishes (MatTek). Four hippocampi from

two rat pups (postnatal day 1) were dissected and dissociated by papain. Twenty-five percent of the

pooled cell suspension was plated on non-coated 3 cm Petri dishes. Cells were maintained in MEM+

+ at 37˚C. After 11 days in culture, cells were washed with ice-cold DPBS (Invitrogen) supplemented

with protease inhibitor (cOmplete EDTA-free, Roche, Basel, Switzerland), scraped, pelleted by cen-

trifugation, frozen in liquid nitrogen and stored at �80˚C.

Dynamic SILAC experiment in mixed, neuron-enriched and glia-enriched
cultures
After 18–19 days in culture, the growth medium was exchanged with a medium that was depleted of

arginine and lysine (customized; Invitrogen) and added ‘heavy’ isotopically labeled arginine (R10;

Thermo Fisher, Waltham, Massachusetts) and lysine (K8; Thermo Fisher) resulting in a final percent-

age of 80% Arg10/Lys8% and 20% remaining ‘light’ arginine (R0)/lysine (K0). Visual inspection of the

cells in pilot experiments revealed improved cell viability when a thin layer of initial medium

remained on the cells during the medium change compared to a complete medium removal and

addition of fresh medium or medium that was pre-conditioned in sister-cultures. Cells were har-

vested 0, 1, 3 and 7 days after the medium switch. Cells were washed with ice-cold DPBS supple-

mented with protease inhibitor (cOmplete EDTA-free, Roche), scraped, pelleted by centrifugation,

frozen in liquid nitrogen and stored at �80˚C. For each culture type, three independent biological

replicates were performed.
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Dynamic SILAC experiment in neuron-enriched sister cultures with and
without conditioned medium
After 18–19 days in culture, approximately 80% of the medium was swapped between a heavy and

light neuron-enriched cultures without conditioned medium or between heavy and light neuron-

enriched cultures with conditioned medium, respectively. Cells were harvested 7 days after the

medium switch. For each culture type, one dish was also harvested just before the medium change

(0 day). Two independent biological replicates were performed.

Sample preparation for MS analysis
The cell pellets were lysed in lysis buffer (8 M urea, 200 mM Tris/HCl [pH 8.4], 4% CHAPS, 1 M NaCl,

cOmplete EDTA-free protease inhibitor) using a pistil and sonication for 4 � 30 s at 4˚C. The sam-

ples were incubated with Benzonase (1 mL of a � 250 units/mL stock solution; Sigma) for 10 min, and

centrifuged for 5 min at 10,000 x g to clear the samples from cell debris.

The proteins were digested as described by Wiśniewski et al. (2009). In brief, the samples were

mixed with Urea Buffer A (UA: 8 M urea, 0.1 M Tris/HCl [pH 8.5]), loaded onto a 10 kDa Microcon fil-

ter (Merck Millipore, Burlington, Massachusetts) and centrifuged at 17,000 x g for 20 min. After an

additional wash step with UA, the proteins on the filter membrane were reduced with 10 mM TCEP

(in UA) for 30 min. TCEP was subsequently removed by centrifugation and proteins were then added

95 mM IAA in UA and incubated in the dark for 30 min. IAA was removed by centrifugation and the

samples were washed three times with 100 mL of Urea Buffer B (UB: 8 M urea, 0.1 M Tris/HCl [pH

8.0]). Proteins were digested with Endopeptidase LysC (Promega, Madison, Wisconsin) in a protein

to enzyme ratio of 50:1 and subsequently with trypsin (Promega) in a protein to enzyme ratio of

100:1. Samples were desalted using C18 StageTips (Rappsilber et al., 2007) or SepPak cartridges

(Waters, Milford, Massachusetts) as described by Schanzenbächer et al. (2016). Samples were dried

by vacuum centrifugation and stored at �20˚C until LC-MS analysis.

LC-MS/MS Analysis
The dried peptide samples were reconstituted in 5% acetonitrile with 0.1% formic acid and subse-

quently loaded using a nano-HPLC (Dionex U3000 RSLCnano) onto a PepMap100 loading column

(C18, L = 20 mm, 3 mm particle size, Dionex, Sunnyvale, California) and washed with loading buffer

(2% acetonitrile, 0.05% trifluoroacetic acid in water) for 6 min at a flow rate of 6 mL/min. Peptides

were separated on a PepMap RSLC analytical column (C18, L = 50 cm, <2 mm particle size, Dionex)

by a gradient of phase A (water with 5% v/v dimethylsulfoxide and 0.1% formic acid) and phase B

(5% dimethylsulfoxide, 15% water and 80% acetonitrile v/v/v). The gradient was ramped from 4% B

to 48% B in 178 min at a flow rate of 300 nL/min. All solvents were LC-MS grade and purchased

from Fluka. Peptides eluting from the column were ionized online using a Nanospray Flex ion source

(Thermo Scientific) and analyzed either in a ‘Q Exactive Plus’ (Thermo Scientific) or in an ‘Orbitrap

Elite’ (Thermo Scientific) mass spectrometer in data-dependent acquisition mode. For Q Exactive

Plus measurements, precursor ion spectra were acquired over the mass range 350–1400 m/z (mass

resolution 70 k), and the top10 precursor ions were selected for fragmentation (HCD; normalized

collision energy = 30) and analysis in MS2 mode (resolution 17.5 k). For Orbitrap Elite measure-

ments, precursor ion spectra were acquired over the mass range 350–1600 m/z (FTMS; mass resolu-

tion 120 k), and the top15 precursor ions were selected for fragmentation (CID; normalized collision

energy = 35) and analysis in MS2 mode (ITMS). The full parameter sets are listed in

Supplementary file 2. All dynamic SILAC samples were measured in triplicate LC-MS/MS runs. The

samples for comparison of glia-enriched cultures obtained from cortex and hippocampus were mea-

sured in technical duplicates.

Database searches
Raw data were analyzed with MaxQuant (version 1.6.0.1; RRID:SCR_014485 [Cox and Mann, 2008;

Tyanova et al., 2016a]) using customized Andromeda parameters (see Supplementary file 3).

For all searches, spectra were matched to a Rattus norvegicus database downloaded from uni-

prot.org (37,669 entries, reviewed and unreviewed; RRID:SCR_002380) and a contaminant and

decoy database. Precursor mass tolerance was set to 4.5 ppm, fragment ion tolerance to 20 ppm

(QExactive Plus) or 0.5 Da (Orbitrap Elite), respectively. Carbamidomethylation (+57.021) of cysteine
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residues was set as fixed modification and protein-N-terminal acetylation (+42.011) as well as methi-

onine oxidation (+15.995) were set as variable modifications. A False discovery rate of 0.01 was

applied at the PSM and protein level. If not stated otherwise, only unique peptides were included in

down-stream analysis. For the dynamic SILAC samples, two different parameter sets were used to (a)

relatively quantify protein abundance and assess the rate of incorporation of ‘light’ amino acids into

nascent proteins during the ‘heavy’ pulse (R10 and K8 as variable modifications) and to (b) quantify

‘heavy/light’ ratios (R10 and K8 as heavy SILAC labels). For (a), heavy arginine (R10; +10.008) and

heavy lysine (K8; +8.014) were set as additional variable modifications, whereas for (b), R10 and K8

were set as heavy SILAC partners (multiplicity = 2).

All proteomics data associated with this manuscript have been uploaded to the PRIDE online

repository (Vizcaı́no et al., 2013).

Bioinformatic processing and data analysis
Relative protein quantification in dynamic SILAC samples
Protein results from MaxQuant search B were filtered to remove decoys and contaminants and pro-

tein intensities were subsequently normalized to the mean intensity of each injection (Figure 6—

source data 1). GO over-representation analysis of neuron-related proteins (detected in �2 neuron-

enriched samples and absent in all glia-enriched samples) and glia-related proteins (detected in �2

glia-enriched samples and absent in all neuron-enriched samples), respectively, was performed using

the Gene List Analysis tool of the Panther Classification System (RRID:SCR_015893; Mi et al., 2013).

All identified proteins were used as reference data set. Significantly over-represented GO terms

(p<0.05; Bonferroni corrected) are shown in Figure 6—figure supplement 1D,E. For principle com-

ponent analysis (Figure 6—figure supplement 1F; performed using Perseus software package; ver-

sion 1.5.2.6; RRID:SCR_015753 (Tyanova et al., 2016b), protein intensities were averaged within

biological replicates and log2 transformed. Only proteins with expression values for all biological

replicates could be used for principle component analysis.

For a quantitative comparison of individual proteins, protein intensities of technical replicates

were averaged. To characterize the cellular composition of the different culture types, relative

expression levels of established neuronal and glial marker proteins as well as previously reported

astrocyte, oligodendrocyte and microglia marker proteins (the top 20 most enriched proteins in the

respective cell types reported by Sharma et al., 2015) were compared between the different culture

types (Figure 6—figure supplement 1B–E). Forty-three of these astrocyte, oligodendrocyte and

microglia marker proteins, that were detected in mixed cultures at all time points within a samples

set (biological replicate), were used to quantify the relative expression levels of glia proteins over

the time course of the dynamic SILAC experiment (7 days; see Figure 6—figure supplement 5A).

Incorporation of light arginine and lysine into nascent proteins
Peptide results from MaxQuant search A were filtered for decoys and contaminants. Peptides con-

taining two arginine and/or lysine residues (due to a missed tryptic cleavage site) were extracted

and the ratio of the following combinations was calculated for each sample (except t0 samples)

based on the number of detections: ‘light-heavy’ and ‘heavy-heavy’. The probabilities of incorpo-

ration of a light or heavy amino acid, respectively, into a nascent protein was calculated using the

following equation system:

P Lð ÞþP Hð Þ ¼ 1 (1)

2 �P Lð Þ �P Hð Þ ¼
LH

LLþLHþHH
(2)

P Hð Þ �P Hð Þ ¼
HH

LLþLHþHH
(3)

LL: Newly synthesized peptides containing two ‘light’ Arg/Lys; cannot be experimentally

assessed, since newly synthesized ‘light’ peptides cannot be distinguished from pre-existing

peptides
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LH: Newly synthesized peptides containing one ‘light’ and one ‘heavy’ Arg/Lys; experimentally

assessed for each sample

HH: Fraction of newly synthesized peptides containing two ‘heavy’ Arg/Lys; experimentally

assessed for each sample

P(L): Probability of incorporation of a ‘light’ Arg/Lys into a nascent protein

P(H): Probability of incorporation of a ‘heavy’ Arg/Lys into a nascent protein

Combination of equations 1-3 lead to:

P Hð Þ ¼
2 � HH

LH

1þ 2 � HH
LH

(4)

P Lð Þ ¼ 1�P Hð Þ (5)

For protein half-life determination, P(H) is used as a correction factor to convert the fraction of

‘light’ peptides into the fraction of pre-existing peptides (see below).

Protein half-life determination
Peptide results from MaxQuant search B were filtered for decoys and contaminants. The fractions of

remaining light peptides (%L) were calculated for each measurement and each peptide based on the

H/L ratios (computed by MaxQuant) using equation 6. For t0 samples, %L was set to 1, if the pep-

tide was only detected in its ‘light’ form and hence no H/L was computed.

%L¼
1

1þH=L
(6)

%L: fraction of remaining ‘light’ peptide

H/L: Heavy-light ratio computed by MaxQuant

The fraction of light peptide was converted into the fraction of pre-existing peptide (%old) using

a correction factor that corrects for incorporation of light Arg/Lys into newly synthesized proteins,

see equation 7. Resulting negative values were excluded from further analysis.

%old¼ 1�
1�%L

P Hð ÞMC
(7)

%old: fraction of pre-existing peptide

P(H): Correction factor; probability of incorporation of a ‘heavy’ Arg/Lys into a nascent protein

MC: number of missed cleavages

Peptides were subsequently filtered within biological replicates. Only peptides that were quanti-

fied at all four time points (t0, 1d, 3d, 7d) and with a mean %old >0.9 at t0 were considered for fur-

ther analysis. Only peptides unique for a protein group were used for further analysis. In a few cases,

two protein groups were merged (in order to rescue peptides) and only peptides unique for the

merged group were further considered. For protein group 5450 (Rps27A) peptides assigned to the

sequence of ubiquitin were removed, so that all remaining peptides were specific for Rps27A. The

filtered peptide data of the biological replicates was merged. For each culture type, protein group

and time point, %old values that were identified as outliers (%old <quartile 25–1.5*interquartile

range or %old >quartile 75 + 1.5*interquartile range) were removed. Protein groups which average

%old did not show a continuous decay over time were excluded from further analysis. Hierarchical

clustering (kmeans method; based on average %old values per protein group) was applied to find

groups of proteins with similar turnover kinetics (Figure 1—figure supplement 4). Cluster A and B

(Figure 1—figure supplement 4) contain proteins with comparably short life-times (�50% remaining

pre-existing protein after 1 day) that cannot be accurately fit and were hence assigned a half-life of

‘<1 day’. For all other proteins, the peptide data (%old over time) were ln transformed and fitted by

a linear function, as described in equation 8. Protein half-lives (t1/2) were calculated based on the

rate constant k (negative value of slope of the fit), see equation 9. Half-lives, rate constants, stan-

dard errors of the slope and coefficients of determination (R2) are given for all proteins and all cul-

ture types in Figure 1—figure supplement 2 and Supplementary file 1.
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ln %oldð Þ ¼�k � t (8)

k: rate constant of protein turnover t: Incubation time with “heavy” medium

t1=2 ¼
ln 2ð Þ

k
(9)

Analysis of protein half-lives in mixed cultures
N-end rule
N-terminal amino acid sequences (excluding initiator methionine) were analyzed for 1797 protein

groups that contain only one protein. Sequence over-representation analysis was performed using

pLogo (O’Shea et al., 2013).

Subcellular localization
Subcellular localizations were assigned to protein groups from mixed cultures using the LocTree3

database (Goldberg et al., 2014). Only proteins assigned to a single localization with a score >50

were considered for analysis (Figure 3A; Figure 3—source data 1). Synaptic proteins were

extracted based on GO term annotations (Uniprot) and literature (Figure 3A, Figure 4, and Fig-

ure 4—source data 1). Half-lives at different cellular localizations were compared by a Mann-Whit-

ney test (Bonferroni correction for multiple testing).

Functional analysis
Proteins from mixed cultures were divided into eight overlapping half-life bins. GO over-representa-

tion analysis was performed for proteins in each half-life bin using the Gene List Analysis tool of the

Panther Classification System (Mi et al., 2013). All protein half-lives were used as reference data set.

Significantly over-represented GO terms (p<0.05; Bonferroni corrected) are shown in Figure 3B,C

and Figure 3—source data 2).

Analysis of protein complexes
Half-lives of proteins that belong to multi-protein complexes were extracted from the mixed culture

dataset and standard deviations (SD) between the half-lives of proteins belonging to the same com-

plex were calculated. Protein complex information were obtained from the CORUM database

(Ruepp et al. (2010); RRID:SCR_002254) and only complexes composed of �5 complex members,

for which � 3 half-lives were assigned, were used for analysis (Figure 5—source data 1). As compar-

ison, the SD was calculated between random half-lives sampled from the mixed culture dataset

(same number of groups and same group sizes as the complexes). Distribution of complex SD and

random SD was compared by Mann-Whitney test.

For more detailed analysis of selected complexes, the protein half-lives of the complex constitu-

ents were plotted onto the known structures of the spliceosome from Homo sapiens (pdb code

5O9Z), the ribosome from Sus Scrofa (pdb code 3J7R), the nuclear pore complex from Saccharomy-

ces cerevisiae and Chaetomium thermophilum (multiple pdbs merged into a full assembly as

described by Lin et al. (2016), including pdb codes: 5HAX, 5HAY, 5HAZ, 5HB4, 5HB5, 5HB6, 5HB7,

5HB6, 5HB7 and 5HB8) and the ATP synthase from Pichia angusta (pdb code 5LQX); see Figure 5B–

E. Proteins were matched to homologue chains in the pdb files using gene names when applicable,

and half-lives were visualized using a custom red-yellow-green color palette that ranges from 3 to 15

days as indicated in Figure 5F. Identical polypeptide chains in different locations in the complex

were counted as a single protein for histogram calculation. The protein complexes were plotted in

‘surface’ representation using PyMOL (RRID:SCR_000305). Subunits for which no half-life was deter-

mined are indicated in grey, RNA is plotted in ‘cartoon’ mode in light grey when applicable.

Analysis of protein turnover rates in different culture types
All proteins for which half-lives were determined in the mixed and neuron-enriched culture as well as

in the mixed and glia-enriched culture were compared protein-wise in order to identify proteins that

display different turnover rates in different culture types (Figure 6B–C). Proteins which average %old

was always greater (or always smaller) at each time point (1d, 3d, 7d) in the cell-type enriched culture
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compared to the mixed culture type, were used for statistical analysis. A t-test was performed for

each time point to compare %old values between each two different culture types (p<0.05; Bonfer-

roni correction for the total number of tests). A protein’s turnover is considered to be significantly

different between two cultures types, if %old values are significantly different for at least two of

three time points (Figure 6—source data 2).

To identify common properties/functions of proteins that showed a significantly faster or slower

turnover, respectively, in neuron-enriched cultures versus mixed cultures, we performed a GO over-

representation analysis using the Gene List Analysis tool of the Panther Classification System

(Figure 6D–H; [Mi et al., 2013]). As reference data set, all proteins were used for which a turnover

rate was determined in both, mixed and neuron-enriched cultures. All significantly over- and under-

represented GO terms (p<0.05; Bonferroni corrected) are given in Figure 6—source data 3).

Proteomic comparison of neuron-enriched sister cultures with and
without conditioned medium
Protein results from MaxQuant search A were filtered to remove decoys and contaminants. LFQ

intensities were averaged across technical replicates and log2 transformed.

Comparison of protein turnover in neuron-enriched sister cultures with
and without conditioned medium
Peptide results from MaxQuant search B were filtered for decoys and contaminants. The fractions of

remaining old peptides were calculated as described above. As a measure for protein turnover, the

relative decay of pre-existing peptides was calculated as the difference of pre-existing peptides at

time point t0 and 7 days. Peptides with resulting negative values were removed. A pair-wise t-test

(peptide level) was applied to compare the relative protein decay in neuron-enriched cultures with

and without conditioned medium. Proteins with significantly different turnover (p<0.05; Bonferroni

corrected) are reported in Figure 6I and Figure 6—source data 4.

Comparison of glia-enriched cultures prepared from cortex and
hippocampus
Protein results were filtered to remove decoys and contaminants. Protein intensities and LFQ values

were averaged across technical replicates and log2 transformed. Protein intensities were used to

compare the number of quantified proteins in each sample (Figure 6—figure supplement 4A) and

LFQ intensities were used for a protein-wise comparison of expression levels in the different samples

(Figure 6—figure supplement 4B).

FUNCAT-PLA
FUNCAT-PLA experiments were performed as described by tom Dieck et al. (2015). After 18 days

in culture, cells were incubated in methionine-free Neurobasal-A (custom made by Invitrogen) sup-

plemented with 4 mM azidohomoalanine (AHA; in-house synthesized) for 2 hr. In methionine control

samples, the medium was supplemented with 4 mM methionine (Sigma) instead of AHA. After meta-

bolic labeling, cells were placed back into their original medium for different chase times (1–7 days

as indicated). Subsequently, cells were washed with PBS-MC (1 � PBS, pH 7.4, 1 mM MgCl2, 0.1

mM CaCl2; Gibco), fixed in PFA-sucrose (4% paraformaldehyde (Alfa Aesar), 4% sucrose in PBS-MC)

and stored in PBS at 4˚C until further sample processing. Cells were permeabilized with 0.5% Triton

X-100 in 1 � PBS (pH 7.4), blocked with blocking buffer (4% goat serum in 1 � PBS) and washed

with 1 � PBS (pH 7.8). For the click reaction, the cells were incubated with a click reaction mix (200

mM triazole ligand Tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine (TBTA), 25 mM biotin alkyne tag,

500 mM TCEP and 200 mM CuSO4 in PBS (pH 7.8)) overnight at room temperature, protected from

light. The cells were washed with 0.5% Triton X-100 in 1 � PBS (pH 7.4) and PBS and then blocked

with blocking buffer. Cells were incubated with a mixture of primary antibodies diluted in blocking

buffer (90 min at room temperature). For Lamin-B1 experiment: rabbit-anti-lamin-B1 (1:800; abcam,

ref. no.: ab16048), mouse-anti-biotin (1:1,000; Life Technologies, ref. no.: 03–3700), and guinea pig-

anti-MAP2 (1:1,000; Synaptic Systems, ref. no.: 188004). For GM130 experiment: mouse-anti-GM130

(1:500; BD Transduction Laboratories, ref. no.: 610823), rabbit-anti-biotin (1:5,000; Cell signaling,

ref. no.: 5597) and guinea pig-anti-MAP2 (1:1,000). PLA probes (rabbit PLA-plus and mouse PLA-
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minus; Sigma) were applied in 1:10 dilution in blocking buffer supplemented with goat-anti-guinea

pig secondary antibody coupled to Alexa Fluor 488 (1:500; Life Technologies) for 1 hr at 37˚C in a

wet chamber. Cells were then incubated with the ligation reaction mix (Duolink Detection reagents

Red, Sigma) for 30 min in a pre-warmed wet chamber at 37˚C. Amplification and label probe binding

was performed after three washes with wash buffer A with the amplification reaction mixture (Duo-

link Detection reagents Red, Sigma) in a pre-warmed wet chamber at 37˚C for 100 min. After amplifi-

cation was stopped by washes with wash buffer B (0.2 M Tris, 0.1 M NaCl, pH 7.5), cells were

incubated with of 40,6-diamidino-2-phenylindole (DAPI; 1:1000) for 2 min to stain nuclei. DAPI was

removed by washes with wash buffer B and cells were subsequently imaged in wash buffer B.

Imaging
Cells were selected based on the MAP2, DAPI and PLA signals. Criteria for choosing cells were

healthy appearance judged by MAP2 staining (no swelling of dendrites or fragmented pattern) and

homogeneous DAPI staining. As the PLA signal was very heterogeneous between different neurons,

for each time point the whole dish was inspected and the cells with the overall highest puncta num-

ber were selected for each time point. All images for one experiment were acquired within 12 hr

after the PLA procedure. Images were acquired with a LSM880 confocal microscope

(Zeiss, Oberkochen, Germany) using a 40�/1.4-NA oil objective (Plan Apochromat 40�/1.3 oil DIC

UV-IR M27) and a pinhole setting of 29 mm. The lasers were used at 0.8% (488 nm), 0.9% (561 nm)

and 2.8% (405 nm) power. Images were acquired in 12-bit mode as z stacks with 2,048 � 2,048–pixel

xy resolution through the entire thickness of the cell, pixel dwell times of 0.26 ms and the detector

gain in each channel adjusted to cover the full dynamic range but to avoid saturated pixels. Imaging

conditions were held constant within an experiment.

Image data processing and analysis
The number of puncta was assessed using custom built Matlab scripts (Tuchev, 2017; code available

at https://github.molgen.mpg.de/MPIBR/NeuroBits; copy archived at https://github.com/elifescien-

ces-publications/MPIBR-NeuroBits) and revised manually. Puncta were detected in neuronal somata

by finding local intensity maxima in the PLA channel. The mean puncta number per neuron was plot-

ted over time and fitted by a first order exponential function. This function was used to calculate the

protein half-life. Representative cell somata were cropped and the puncta channel was thresholded,

dilated once and smoothened to improve puncta visualization in figures. The threshold value was

kept constant for all images (Figure 2A). Puncta numbers for all analyzed neurons are presented in

Figure 2B and Figure 2—source data 1. Ln transformed mean puncta numbers were fit by a linear

function and the protein half-life was calculated as described above.
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