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Abstract Neurons in the hippocampus and adjacent brain areas show a large diversity in their

tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved.

In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to

another. For example, place cells are typically invariant to head direction. We propose that all

observed spatial tuning patterns – in both their selectivity and their invariance – arise from the

same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics

of synaptic inputs. Using simulations and a mathematical analysis, we show that combined

excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations

of different input statistics along different spatial dimensions reproduce all major spatial tuning

patterns observed in rodents. Our proposed model is robust to changes in parameters, develops

patterns on behavioral timescales and makes distinctive experimental predictions.

DOI: https://doi.org/10.7554/eLife.34560.001

Introduction
Neurons in the hippocampus and the adjacent regions exhibit a broad variety of spatial activation

patterns that are tuned to position, head direction or both. Common observations in these spatial

dimensions are localized, bell-shaped tuning curves (O’Keefe, 1976; Taube et al., 1990), periodi-

cally repeating activity (Fyhn et al., 2004; Hafting et al., 2005) and invariances (Muller et al., 1994;

Burgess et al., 2005), as well as combinations of these along different spatial dimensions

(Sargolini et al., 2006a; Krupic et al., 2012). For example, head direction cells are often invariant to

location (Burgess et al., 2005), and place cells are commonly invariant to head direction

(Muller et al., 1994). The cellular and network mechanisms that give rise to each of these firing pat-

terns are subject to extensive experimental and theoretical research. Several computational models

have been suggested to explain the emergence of grid cells (Fuhs and Touretzky, 2006;

McNaughton et al., 2006; Franzius et al., 2007a; Burak and Fiete, 2009; Couey et al., 2013;

Burgess et al., 2007; Kropff and Treves, 2008; Bush and Burgess, 2014; Castro and Aguiar,

2014; Dordek et al., 2016; Stepanyuk, 2015; Giocomo et al., 2011; Zilli, 2012; D’Albis and

Kempter, 2017; Monsalve-Mercado and Leibold, 2017), place cells (Tsodyks and Sejnowski,

1995; Battaglia and Treves, 1998; Arleo and Gerstner, 2000; Solstad et al., 2006;

Franzius et al., 2007b; Burgess and O’Keefe, 2011; Franzius et al., 2007a) and head direction

cells (McNaughton et al., 1991; Redish et al., 1996; Zhang, 1996; Franzius et al., 2007a). Most of

these models are designed to explain the spatial selectivity of one particular cell type and do not

consider invariances along other dimensions, although the formation of invariant representations is a

non-trivial problem (DiCarlo and Cox, 2007). In view of the variety of spatial tuning patterns, the

question arises of whether differences in tuning of different cells in different areas reflect differences

in microcircuit connectivity, single cell properties or plasticity rules, or whether there is a unifying
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principle. In this paper we suggest that both the observed spatial selectivities and invariances can be

explained by a common mechanism – interacting excitatory and inhibitory synaptic plasticity – and

that the observed differences in the response profiles of grid, place and head direction cells result

from differences in the spatial tuning of excitatory and inhibitory synaptic afferents. Here, we explore

this hypothesis in a computational model of a feedforward network of rate-based neurons. Simula-

tions as well as a mathematical analysis indicate that the model reproduces the large variety of

response patterns of neurons in the hippocampal formation and adjacent areas and can be used to

make predictions for the input statistics of each cell type.

Results
We study the development of spatial representations in a network of rate-based neurons with inter-

acting excitatory and inhibitory plasticity. A single model neuron that represents a cell in the hippo-

campal formation or adjacent areas receives feedforward input from excitatory and inhibitory

synaptic afferents. As a simulated rat moves through an environment, these synaptic afferents are

weakly modulated by spatial location and in later sections also by head direction. This modulation is

irregular and non-localized with multiple maxima (Buetfering et al., 2014); see Figure 1a and Mate-

rials and methods. Importantly, different inputs show different modulation profiles and each profile

is temporally stable. We also show results for localized, that is, place cell-like, input (O’Keefe and

Dostrovsky, 1971; Marshall et al., 2002; Wilent and Nitz, 2007). The output rate is given by a

weighted sum of the excitatory and inhibitory inputs.

In our model, both excitatory and inhibitory synaptic weights are subject to plasticity. The excit-

atory weights change according to a Hebbian plasticity rule (Hebb, 1949) that potentiates the

weights in response to simultaneous pre- and postsynaptic activity. The inhibitory synapses evolve

according to a plasticity rule that changes their weights in proportion to presynaptic activity and the

difference between postsynaptic activity and a target rate (1 Hz in all simulations). This rule has

eLife digest Knowing where you are never hurts, be it during a holiday in New York or on a

hiking trip in the Alps. Our sense of location seems to depend on a structure deep within the brain

called the hippocampus, and its neighbor, the entorhinal cortex. Studies in rodents have shown that

these areas act a little like an in-built GPS for the brain. They contain different types of neurons that

help the animal to work out where it is and where it is going. Among those are place cells, present

within the hippocampus, and grid cells and head direction cells, found within the entorhinal cortex

and other areas.

Place cells fire whenever an animal occupies a specific location in its environment, with each place

cell firing at a different spot. Grid cells generate virtual maps of the surroundings that resemble

grids of repeating triangles. Whenever an animal steps onto a corner of one of these virtual

triangles, the grid cell that generated that map starts to fire. Head direction cells increase their firing

whenever an animal’s head is pointing in a specific direction. These cell types thus provide animals

with complementary information about their location. But how do the cells first become selective for

specific places or head directions?

Weber and Sprekeler propose that a single mechanism gives rise to the spatial characteristics of

all these different types of cells. Like all neurons, these cells communicate with their neighbors at

junctions called synapses. These may be either excitatory or inhibitory. Cells at excitatory synapses

activate their neighbors, whereas cells at inhibitory synapses deactivate them. Weber and Sprekeler

used a computer to simulate changes in excitatory and inhibitory synapses in a virtual rat exploring

an environment. Interactions between the two types of synapses gave rise to virtual cells that

behaved like place, grid or head direction cells. Which cell type emerged depended on whether the

excitatory or the inhibitory synapses were more sensitive to the virtual rat’s location.

This idea adds to a range of others proposed to explain how the brain codes for locations.

Whether any of these ideas or a combination of them is correct remains to be determined. Further

pieces are needed if we are to solve the puzzle of how the brain supports navigation.

DOI: https://doi.org/10.7554/eLife.34560.002
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previously been shown to balance excitation and inhibition such that the firing rate of the output

neuron approaches the target rate (Vogels et al., 2011; D’Amour and Froemke, 2015). We assume

the inhibitory plasticity will act fast enough to track changes of excitatory weights, so that excitation

and inhibition are approximately balanced at all times.

Figure 1. Emergence of periodic, invariant and single field firing patterns. (a) Network model for a linear track. A threshold-linear output neuron (gray)

receives input from excitatory (red) and inhibitory (blue) cells, which are spatially tuned (curves on top and bottom). (b) Spatially tuned input with

smoother inhibition than excitation. The fluctuating curves (top) show two exemplary spatial tunings (one is highlighted) of excitatory and inhibitory

input neurons. Interacting excitatory and inhibitory synaptic plasticity gradually changes an initially random response of the output neuron (firing rate

rout) into a periodic, grid cell-like activity pattern. (c) If the spatial tuning of inhibitory input neurons is less smooth than that of excitatory input neurons,

the interacting excitatory and inhibitory plasticity leads to a spatially invariant firing pattern. The output neuron fires close to the target rate of 1 Hz

everywhere. (d) For very smooth or spatially untuned inhibitory inputs, the output neuron develops a single firing field, reminiscent of a place cell. (e)

The mechanism, illustrated for place cell-like input. When a single excitatory weight is increased relative to the others, the balancing inhibitory plasticity

rule leads to an immediate increase of inhibition at the associated location. If inhibitory inputs are smoother than excitatory inputs, the resulting

approximate balance creates a center surround field: a local overshoot of excitation (firing field) surrounded by an inhibitory corona. The next firing

field emerges at a distance where the inhibition has faded out. Iterated, this results in a spatially periodic arrangement of firing fields. (f) Inputs with

place field-like tuning. Gaussian curves (top) show the spatial tuning of excitatory and inhibitory input neurons (one neuron of each kind is highlighted,

20 percent of all inputs are displayed). A grid cell firing pattern emerges from an initially random weight configuration. (g) Grid spacing ‘ scales with

inhibitory tuning width sI. Simulation results (dots) agree with a mathematical bifurcation analysis (solid). Output firing rate examples at the two

indicated locations are shown at the bottom. (h) Inhibitory smoothness sI;corr controls grid spacing; arrangement as in (d). Note that the time axes in (b,

c,d,f) are different, because the speed at which the patterns emerge is determined by both the learning rates of the plasticity and the firing rate of the

input neurons. We kept the learning rate constant and adjusted the simulation times to achieve convergence. Choosing identical simulation times, but

different learning rates, leads to identical results (Figure 1—figure supplement 2). Rat clip art from [https://openclipart.org/detail/216359/klara; 2015].

DOI: https://doi.org/10.7554/eLife.34560.003

The following figure supplements are available for figure 1:

Figure supplement 1. Statistics of the synaptic weights.

DOI: https://doi.org/10.7554/eLife.34560.004

Figure supplement 2. Different learning rates lead to identical results.

DOI: https://doi.org/10.7554/eLife.34560.005
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Relative spatial smoothness of the excitatory and inhibitory input
determines the firing pattern of the output neuron
We first simulate a rat that explores a linear track (Figure 1). The spatial tuning of each input neuron

is stable in time and depends smoothly on the location of the animal, but is otherwise random (e.g.

Figure 1a). As a measure of smoothness, we use the spatial autocorrelation length. In the following,

this is the central parameter of the input statistics, which is chosen separately for excitation and inhi-

bition. In short, we assume that temporally stable spatial information is presynaptically present but

we have minimal requirements on its format, aside from the spatial autocorrelation length.

At the beginning of each simulation, all synaptic weights are random. As the animal explores the

track, the excitatory and inhibitory weights change in response to pre- and postsynaptic activity, and

the output cell gradually develops a spatial activity pattern. We find that this pattern is primarily

determined by whether the excitatory or inhibitory inputs are smoother in space. If the inhibitory

tuning is smoother than the excitatory tuning (Figure 1b), the output neuron develops equidistant

firing fields, reminiscent of grid cells on a linear track (Hafting et al., 2008). If instead the excitatory

tuning is smoother, the output neuron fires close to the target rate of 1 Hz everywhere (Figure 1c);

it develops a spatial invariance. For spatially untuned inhibitory afferents (Grienberger et al., 2017),

the output neuron develops a single firing field, reminiscent of a one-dimensional place cell

(Figure 1d); (cf. Clopath et al., 2016).

The emergence of these firing patterns can be best explained in the simplified scenario of place

field-like input tuning (Figure 1e,f). The spatial smoothness is then given by the size of the place

fields. Let us assume that the output neuron fires at the target rate everywhere (see Materials and

methods). From this homogeneous state, a small potentiation of one excitatory weight leads to an

increased firing rate of the output neuron at the location of the associated place field (highlighted

red curve in Figure 1e). To bring the output neuron back to the target rate, the inhibitory learning

rule increases the synaptic weight of inhibitory inputs that are tuned to the same location

(highlighted blue curve in Figure 1e). If these inhibitory inputs have smaller place fields than the

excitatory inputs (Figure 1c), this restores the target rate everywhere (Vogels et al., 2011). Hence,

inhibitory plasticity can stabilize spatial invariance if the inhibitory inputs are sufficiently precise (i.e.

not too smooth) in space. In contrast, if the spatial tuning of the inhibitory inputs is smoother than

that of the excitatory inputs, the target firing rate cannot be restored everywhere. Instead, the com-

pensatory potentiation of inhibitory weights increases the inhibition in a spatial region at least the

size of the inhibitory place fields. This leads to a corona of inhibition, in which the output neuron can-

not fire (Figure 1e, blue region). Outside of this inhibitory surround the output neuron can fire again

and the next firing field develops. Iterated, this results in a periodic arrangement of firing fields

(Figure 1f and Figure 7b for a depiction of the input currents). Spatially untuned inhibition corre-

sponds to a large inhibitory corona that exceeds the length of the linear track, so that only a single

place field remains. From a different perspective, spatially untuned input can also be understood as

a limit case of vanishing spatial variation in the firing rate rather than a limit of infinite smoothness.

Consistent with this view, a development of grid patterns or invariance requires a sufficiently strong

spatial modulation of the inhibitory inputs (Materials and methods).

The argument of the preceding paragraph can be extended to the scenario where input is irregu-

larly modulated by space. For non-localized input tuning (Figure 1b,c,d), any weight change that

increases synaptic input in one location will also increase it in a surround that is given by the smooth-

ness of the input tuning (see Materials and methods for a mathematical analysis). In the simulations,

the randomness manifests itself in occasional defects in the emerging firing pattern (Figure 1h, bot-

tom, and Figure 1—figure supplement 1). The above reasoning suggests that the width of individ-

ual firing fields is determined by the smoothness of the excitatory input tuning, while the distance

between grid fields, that is, the grid spacing, is set by the smoothness of the inhibitory input tuning.

Indeed, both simulations and a mathematical analysis (Materials and methods) confirm that the grid

spacing scales linearly with the inhibitory smoothness in a large range, both for localized (Figure 1g)

and non-localized input tuning (Figure 1h). The analysis also reveals a weak logarithmic dependence

of the grid spacing on the ratio of the learning rates, the mean firing rates and the number of affer-

ents of the excitatory and inhibitory population (Equation 78 and Figure 8b).
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In summary, the interaction of excitatory and inhibitory plasticity can lead to spatial invariance,

spatially periodic activity patterns or single place fields depending on the spatial statistics of the

excitatory and inhibitory input.

Emergence of hexagonal firing patterns
When a rat navigates in a two-dimensional arena, the spatial firing maps of grid cells in the medial

entorhinal cortex (mEC) show pronounced hexagonal symmetry (Hafting et al., 2005; Fyhn et al.,

2004) with different grid spacings and spatial phases. To study whether a hexagonal firing pattern

can emerge from interacting excitatory and inhibitory plasticity, we simulate a rat in a quadratic

arena. The rat explores the arena for 10 hr, following trajectories extracted from behavioral data

(Sargolini et al., 2006b); Materials and methods. To investigate the role of the input statistics, we

consider three different classes of input tuning: (i) place cell-like input (Figure 2a), (ii) sparse non-

localized input, in which the tuning of each input neuron is given by the sum of 100 randomly located

place fields (Figure 2b and (iii) dense non-localized input, in which the tuning of each input is a ran-

dom function with fixed spatial smoothness (Figure 2c). For all input classes, the spatial tuning of

the inhibitory inputs is smoother than that of the excitatory inputs.

Initially, all synaptic weights are random and the activity of the output neuron shows no spatial

symmetry. While the rat forages through the environment, the output cell develops a periodic firing

pattern for all three input classes, reminiscent of grid cells in the mEC (Fyhn et al., 2004;

Hafting et al., 2005) and typically with the same hexagonal symmetry. This hexagonal arrangement

is again a result of smoother inhibitory input tuning, which generates a spherical inhibitory corona

around each firing field (compare Figure 1e). These center-surround fields are arranged in a hexago-

nal pattern – the closest packing of spheres in two dimensions; (cf. Turing, 1952). We find that the

spacing of this pattern is determined by the inhibitory smoothness. The similarity between cells in

terms of orientation and phase of the grid depends – in decreasing order – on whether they receive

the same inputs, on the trajectories on which the tuning was learned and on the initial synaptic

weights (Figure 2—figure supplement 1). Two grid cells can thus have different phase and orienta-

tion, even if they share a large fraction or all of their inputs.

For the linear track, the randomness of the non-localized inputs leads to defects in the periodicity

of the grid pattern. In two dimensions, we find that the randomness leads to distortions of the hex-

agonal grid. To quantify this effect, we simulated 500 random trials for each of the three input sce-

narios and plotted the grid score histogram (Appendix 1) before and after 10 hr of spatial

exploration (Figure 2d,e,f). Different trials have different trajectories, different initial synaptic

weights and different random locations of the input place fields (for sparse input) or different ran-

dom input functions (for dense input). For place cell-like input, most of the output cells develop a

positive grid score during 10 hr of spatial exploration (33% before to 86% after learning, Figure 2d).

Even for low grid scores, the firing rate maps look grid-like after learning but exhibit a distorted sym-

metry (Figure 2d). For sparse non-localized input, the fraction of output cells with a positive grid

score increases from 35% to 87% and for dense non-localized input from 16% to 68% within 10 hr of

spatial exploration (Figure 2e,f). The excitatory and inhibitory inputs are not required to have the

same tuning statistics. Grid patterns also emerge when excitation is localized and inhibition is non-

localized (Figure 2—figure supplement 2).

In summary, the interaction of excitatory and inhibitory plasticity leads to grid-like firing patterns

in the output neuron for all three input scenarios. The grids are typically less distorted for sparser

input (Figure 2g).

Rapid appearance of grid cells and their reaction to modifications of
the environment
In unfamiliar environments, neurons in the mEC exhibit grid-like firing patterns within minutes

(Hafting et al., 2005). Moreover, grid cells react quickly to changes in the environment (Fyhn et al.,

2007; Savelli et al., 2008; Barry et al., 2012). These observations challenge models for grid cells

that require gradual synaptic changes during spatial exploration. In principle, the time scale of plas-

ticity-based models can be augmented arbitrarily by increasing the synaptic learning rates. For sta-

ble patterns to emerge, however, significant weight changes must occur only after the animal has

visited most of the environment. To explore the edge of this trade-off between speed and stability,
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Figure 2. Emergence of two-dimensional grid cells. (a,b,c) Columns from left to right: Spatial tuning of excitatory and inhibitory input neurons (two

examples each); spatial firing rate map of the output neuron and corresponding autocorrelogram before and after spatial exploration of 10 hr. The

number on the correlogram shows the associated grid score. Different rows correspond to different spatial tuning characteristics of the excitatory and

inhibitory inputs. For all figures the spatial tuning of inhibitory input neurons is smoother than that of excitatory input neurons. (a) Each input neuron is

a place cell with random location. (b) The tuning of each input neuron is given as the sum of 100 randomly located place fields. (c) The tuning of each

input neuron is a random smooth function of the location. This corresponds to the sum of infinitely many randomly located place fields. Before learning,

the spatial tuning of the output neuron shows no symmetry. After 10 hr of spatial exploration the output neuron developed a hexagonal pattern. (d)

Grid score histogram for 500 output cells with place cell-like input. Before learning (light blue), 33% of the output cells have a positive grid score. After

10 hr of spatial exploration (dark blue), this value increases to 86%. Two example rate maps are shown. The arrows point to the grid score of the

associated rate map. Even for low grid scores the learned firing pattern looks grid-like. (e,f) Grid score histograms for input tuning as in (b,c), arranged

as in (d). (g) Fraction of neurons with positive grid score before (light blue) and after learning (dark blue) as a function of the number of fields per input

neuron. Note that to learn within 10 hr of exploration time, we used different learning rates for different input scenarios. Using identical learning rates

for all input scenarios but adjusting the simulation times to achieve convergence leads to identical results (Figure 2—figure supplement 6).

DOI: https://doi.org/10.7554/eLife.34560.006

The following figure supplements are available for figure 2:

Figure supplement 1. Influence of random simulation parameters on the final grid pattern.

DOI: https://doi.org/10.7554/eLife.34560.007

Figure supplement 2. Using different input statistics for different populations also leads to hexagonal firing patterns.

DOI: https://doi.org/10.7554/eLife.34560.008

Figure supplement 3. Boundary effects in simulations with place field-like input.

DOI: https://doi.org/10.7554/eLife.34560.009

Figure supplement 4. Weight normalization is not crucial for the emergence of grid cells.

Figure 2 continued on next page
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we increased the learning rates to a point where the grids are still stable but where further increase

would reduce the stability (Figure 3—figure supplement 1). For place cell-like input, periodic pat-

terns can be discerned within 10 min of spatial exploration, starting with random initial weights

(Figure 3a,b). The pattern further emphasizes over time and remains stable for many hours

(Figure 3c and Figure 3—figure supplement 2).

To investigate the robustness of this phenomenon, we ran 500 realizations with different trajecto-

ries, initial synaptic weights and locations of input place fields. In all simulations, a periodic pattern

emerged within the first 30 min, and a majority of patterns exhibited hexagonal symmetry after 3 hr

(increasing from 33% to 81%, Figure 3c,d). For non-localized input, the emergence of the final grids

typically takes longer, but the first grid fields are also observed within minutes and are still present

in the final grid, as observed in experiments (Hafting et al., 2005); (Figure 3—figure supplement

3).

Above, we modeled the exploration of a previously unknown room by assuming the initial synap-

tic weights to be randomly distributed. If the rat had previous exposure to the room or to a similar

room, a structure might already have formed in some of the synaptic weights. This structure could

aid the development of the grid in similar rooms or hinder it in a novel room. To study this, we simu-

late a network that first learns the synaptic weights in one room. We then introduce a graded modifi-

cation of the room by remapping the firing fields of a fraction of input neurons to random locations.

We find that the output firing pattern is robust to such perturbations, even if more than half of the

inputs are remapped (Figure 3—figure supplement 2). If all inputs are changed, corresponding to a

novel room, a grid pattern is learned anew. The strong initial pattern in the weights does not hinder

this development (Figure 3—figure supplement 2).

Recently, Wernle et al., 2018 discovered that in an arena separated by a wall, single grid cells

form two independent grid patterns — one on each side of the wall — that coalesce once the wall is

removed. They find that grid fields close to the partition wall move to establish a more coherent pat-

tern. In contrast, fields far away from the partition wall do not change their locations. Rosay et al.

reproduced this experimental finding by simulating grid fields as interacting particles (Rosay et al., in

preparation). They also demonstrated how it could be reproduced by a feedforward model for grid

cells based on firing rate adaptation (Rosay et al., in preparation; Kropff and Treves, 2008). Inspired

by these experiments and simulations, we simulate a rat that first explores one half of a quadratic

arena and then the other half, for 2.5 hr each (Figure 4a). A grid pattern emerges in each compart-

ment (Figure 4b,c). We then remove the partition wall and the rat explores the entire arena for

another 5 hr (Figure 4a). As observed experimentally, grid fields close to the former partition line

rearrange to make the two grids more coherent and grid fields far away from the partition line basi-

cally stay where they were (Figure 4d).

In summary, periodic patterns emerge rapidly in our model and the associated time scale is lim-

ited primarily by how quickly the animal visits its surroundings, that is, by the same time scale that

limits the experimental recognition of the grids.

Place cells, band cells and stretched grids
In addition to grids, the mEC and adjacent brain areas exhibit a plethora of other spatial activity pat-

terns including spatially invariant (Burgess et al., 2005), band-like (periodic along one direction and

invariant along the other) (Krupic et al., 2012), and spatially periodic but non-hexagonal patterns

(Krupic et al., 2012; Hardcastle et al., 2017; Diehl et al., 2017). Note that it is currently debated

whether or not some of the observed spatially periodic but non-hexagonal firing patterns are arti-

facts of poorly isolated single cell data in multi-electrode recordings (Navratilova et al., 2016;

Krupic et al., 2015b). In contrast to spatially periodic tuning, place cells in the hippocampus proper

are typically only tuned to a single or few locations in a given environment (O’Keefe and

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.34560.010

Figure supplement 5. Distribution of input fields.

DOI: https://doi.org/10.7554/eLife.34560.011

Figure supplement 6. Different learning rates lead to identical results.

DOI: https://doi.org/10.7554/eLife.34560.012
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Dostrovsky, 1971; Moser et al., 2008; Leutgeb et al., 2005). If the animal traversed the environ-

ment along a straight line, all of these cells would be classified as periodic, localized or invariant (Fig-

ure 1), although the classification could vary depending on the direction of the line. Based on this

Figure 3. Grid patterns form rapidly during exploration and remain stable for many hours. (a,b) Rat trajectories with color-coded firing rate of a cell that

receives place cell-like input. The color depicts the firing rate at the time of the location visit, not after learning. Bright colors indicate higher firing

rates. The time interval of the trajectory is shown above each plot. Initially all synaptic weights are set to random values. Parts (a) and (b) show two

different realizations with a good (red star) and a bad (orange triangle) grid score development. After a few minutes a periodic structure becomes

visible and enhances over time. (c) Time course of the grid score in the simulations shown in (a) (red) and (b) (orange). While the periodic patterns

emerge within minutes, the manifestation of the final hexagonal pattern typically takes a couple of hours. Once the pattern is established it remains

stable for many hours. The gray scale shows the cumulative histogram of the grid scores of 500 realizations (black = 0, white = 1). The solid white and

black lines indicate the 20% and 80% percentiles, respectively. (d) Histogram of grid scores of the 500 simulations shown in (c). Initial histogram in light

blue, histogram after 1 hr and after 3 hr in dark blue. Numbers show the fraction of cells with positive grid score at the given time. Rat trajectories taken

from Sargolini et al., 2006b).

DOI: https://doi.org/10.7554/eLife.34560.013

The following figure supplements are available for figure 3:

Figure supplement 1. Learning too fast leads to unstable grids.

DOI: https://doi.org/10.7554/eLife.34560.014

Figure supplement 2. Influence of input remapping on grid patterns.

DOI: https://doi.org/10.7554/eLife.34560.015

Figure supplement 3. Rapid development of grid patterns from non-localized input.

DOI: https://doi.org/10.7554/eLife.34560.016
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observation, we hypothesized that all of these patterns could be the result of an input autocorrela-

tion structure that differs along different spatial directions.

We first verified that also in a two-dimensional arena, place cells emerge from a very smooth

inhibitory input tuning (Figure 5a,b). The emergence of place cells is independent of the exact

shape of the excitatory input. Non-localized inputs (Figure 5a) lead to similar results as those from

grid cell-like inputs of different orientation and grid spacing (Figure 5b, Methods and materials); for

other models for the emergence of place cells from grid cells see (Solstad et al., 2006;

Franzius et al., 2007b; Rolls et al., 2006; Molter and Yamaguchi, 2008; Ujfalussy et al., 2009;

Savelli and Knierim, 2010). Next we verified that also in two dimensions, spatial invariance results

when excitation is broader than inhibition (Figure 5c). We then varied the smoothness of the inhibi-

tory inputs independently along two spatial directions. If the spatial tuning of inhibitory inputs is

smoother than the tuning of the excitatory inputs along one dimension but less smooth along the

other, the output neuron develops band cell-like firing patterns (Figure 5d). If inhibitory input is

smoother than excitatory input, but not isotropic, the output cell develops stretched grids with dif-

ferent spacing along two axes (Figure 5e). For these anisotropic cases, stretched hexagonal grids

and rectangular arrangements of firing fields appear similarly favorable (compare Figure 5e, second

row and column). A hexagonal arrangement is favored by a dense packing of inhibitory coronas,

whereas a rectangular arrangement would maximize the proximity of the excitatory centers, given

the inhibitory corona (Figure 5—figure supplement 1).

In summary, the relative spatial smoothness of inhibitory and excitatory input determines the sym-

metry of the spatial firing pattern of the output neuron. The requirements for the input tuning that

support invariance, periodicity and localization apply individually to each spatial dimension, opening

up a combinatorial variety of spatial tuning patterns.

Figure 4. Grids coalesce in contiguous environments. (a) Illustration of the experiment. A quadratic arena (gray box) is divided into two rectangular

compartments by a wall (black line). The animal explores one compartment (A) and then the other compartment (B) for 2.5 hr each. Then the wall is

removed and the rat explores the entire arena (AB) for 5 hr. (b) Firing rate maps. From left to right: After learning in A; after learning in B; the maps

from A and B shown side by side (A|B); after learning in AB. (c) Autocorrelograms of the rate maps shown in (b). The number inside the correlogram

shows the grid score. (d) Box plot of the correlations of the firing rate map A|B with the firing rate map AB as a function of distance from the partition

wall. Close to the partition wall the correlation is low, far away from the partition wall it is high. This indicates that grid fields rearrange only locally. Each

box extends from the first to the third quartile, with a dark blue line at the median. The lower whisker reaches from the lowest data point still within 1.5

IQR of the lower quartile, and the upper whisker reaches to the highest data point still within 1.5 IQR of the upper quartile, where IQR is the inter

quartile range between the third and first quartile. Dots show flier points. Data: 100 realizations of experiments as in (a,b,c). For simulation details see

Appendix 1. Mouse clip art from lemmling, https://openclipart.org/detail/17622/simple-cartoon-mouse-1; 2006.

DOI: https://doi.org/10.7554/eLife.34560.017
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Spatially tuned input combined with head direction selectivity leads to
grid, conjunctive and head direction cells
Many cells in and around the hippocampus are tuned to the head direction of the animal

(Taube et al., 1990; Taube, 1995; Chen et al., 1994). These head direction cells are typically tuned

to a single head direction, just like place cells are typically tuned to a single location. Moreover,

head direction cells are often invariant to location (Burgess et al., 2005), just like place cells are

commonly invariant to head direction (Muller et al., 1994). There are also cell types with conjoined

spatial and head direction tuning. Conjunctive cells in the mEC fire like grid cells in space, but only

in a particular head direction (Sargolini et al., 2006a), and many place cells in the hippocampus of

crawling bats also exhibit head direction tuning (Rubin et al., 2014). To investigate whether these

tuning properties could also result in our model, we simulated a rat that moves in a square box,

whose head direction is constrained by the direction of motion (Appendix 1). Each input neuron is

tuned to both space and head direction (see Figure 6 for localized and Figure 6—figure supple-

ment 1 for non-localized input).

In line with the previous observations, we find that the spatial tuning of the output neuron is

determined by the relative spatial smoothness of the excitatory and inhibitory inputs, and the head

direction tuning of the output neuron is determined by the relative smoothness of the head direction

Figure 5. Emergence of spatially tuned cells of diverse symmetries. (a,b,c,d) Arrangement as in Figure 2. (a,b) Place cells emerge if the inhibitory

autocorrelation length exceeds the box length or if the inhibitory neurons are spatially untuned. The type of tuning of the excitatory input is not crucial:

Place cells develop for non-localized input (a) as well as for grid cell input (b). (c) The output neuron develops an invariance if the spatial tuning of

inhibitory input neurons is less smooth than the tuning of excitatory input neurons. (d) Band cells emerge if the spatial tuning of inhibitory input is

asymmetric, such that its autocorrelation length is larger than that of excitatory input along one direction (here the y-direction) and smaller along the

other (here the x-direction). (e) Overview of how the shape of the inhibitory input tuning determines the firing pattern of the output neuron. Each

element depicts the firing rate map of the output neuron after 10 hr. White ellipses of width 2sI;x and 2sI;y in x� and y�direction indicate the

direction-dependent standard deviation of the spatial tuning of the inhibitory input neurons. For simplicity, the width of the excitatory tuning fields, sE,

is the same in all simulations. It determines the size of the circular firing fields. The red circle at the axis origin is of diameter 2sE.

DOI: https://doi.org/10.7554/eLife.34560.018

The following figure supplement is available for figure 5:

Figure supplement 1. Arrangement of firing fields for asymmetric input.

DOI: https://doi.org/10.7554/eLife.34560.019
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tuning of the inputs from the two populations. If the head direction tuning of excitatory input neu-

rons is smoother than that of inhibitory input neurons, the output neuron becomes invariant to head

direction (Figure 6a). If instead only the excitatory input is tuned to head direction, the output neu-

ron develops a single activity bump at a particular head direction (Figure 6b,c). The concurrent spa-

tial tuning of the inhibitory input neurons determines the spatial tuning of the output neuron. For

spatially smooth inhibitory input, the output neuron develops a hexagonal firing pattern (Figure 6a,

b), and for less smooth inhibitory input the firing of the output neuron is invariant to the location of

the animal (Figure 6c).

In summary, the relative smoothness of inhibitory and excitatory input neurons in space and in

head direction determines whether the output cell fires like a pure grid cell, a conjunctive cell or a

pure head direction cell (Figure 6d).

We find that the overall head direction tuning of conjunctive cells is broader than that of individ-

ual grid fields (Figure 6e). This results from variations in the preferred head direction of different

Figure 6. Combined spatial and head direction tuning. (a,b,c) Columns from left to right: Spatial tuning and head direction tuning (polar plot) of

excitatory and inhibitory input neurons (one example each); spatial firing rate map of the output neuron before learning and after spatial exploration of

10 hr with corresponding autocorrelogram; head direction tuning of the output neuron after learning. The numbers in the polar plots indicate the peak

firing rate at the preferred head direction after averaging over space. (a) Wider spatial tuning of inhibitory input neurons than of excitatory input

neurons combined with narrower head direction tuning of inhibitory input neurons leads to a grid cell-like firing pattern in space with invariance to

head direction, that is, the output neuron fires like a pure grid cell. (b) The same spatial input characteristics combined with head direction-invariant

inhibitory input neurons leads to grid cell-like activity in space and a preferred head direction, that is, the output neuron fires like a conjunctive cell. (c)

If the spatial tuning of inhibitory input neurons is less smooth than that of excitatory neurons and the concurrent head direction tuning is wider for

inhibitory than for excitatory neurons, the output neuron is not tuned to space but to a single head direction, that is, the output neuron fires like a pure

head direction cell. (d) Head direction tuning and grid score of 10 simulations of the three cell types. Each symbol represents one realization with

random input tuning. The markers correspond to the tuning properties of the input neurons as depicted in (a,b,c): grid cell (triangles), conjunctive cell

(squares), head direction cell (circles). The values that correspond to the output cells in (a,b,c) are shown as filled symbols. (e) In our model, the head

direction tuning of individual grid fields is sharper than the overall head direction tuning of the conjunctive cell. Depicted is a rate map of a conjunctive

cell (left) and the corresponding head direction tuning (right, dashed). For three individual grid fields, indicated with colored squares, the head

direction tuning is shown in the same polar plot. The overall tuning of the grid cell (dashed) is a superposition of the tuning of all grid fields. Numbers

indicate the peak firing rate (in Hz) averaged individually within each of the four rectangles in the rate map.

DOI: https://doi.org/10.7554/eLife.34560.020

The following figure supplements are available for figure 6:

Figure supplement 1. Cells with combined spatial and head direction tuning with input tuning that is given by the sum of 20 randomly located

Gaussian ellipsoids.

DOI: https://doi.org/10.7554/eLife.34560.021

Figure supplement 2. Head direction tuning of individual grid fields is difficult to assess from grid cells with few firing fields.

DOI: https://doi.org/10.7554/eLife.34560.022

Weber and Sprekeler. eLife 2018;7:e34560. DOI: https://doi.org/10.7554/eLife.34560 11 of 41

Research article Neuroscience

https://doi.org/10.7554/eLife.34560.020
https://doi.org/10.7554/eLife.34560.021
https://doi.org/10.7554/eLife.34560.022
https://doi.org/10.7554/eLife.34560


grid fields. Typically, however, these variations remain small enough to preserve an overall head

direction tuning of the cell, because individual grid fields tend to align their head direction tuning

(compare with Figure 5—figure supplement 1, but in three dimensions). Whether or not a narrower

head direction of individual grid fields or a different preferred direction for different grid fields is

present also in rodents is not resolved (Figure 6—figure supplement 2).

Discussion
We presented a self-organization model that reproduces the experimentally observed spatial and

head direction tuning patterns in the hippocampus and adjacent brain regions. Its core mechanism is

an interaction of Hebbian plasticity in excitatory synapses and homeostatic Hebbian plasticity in

inhibitory synapses (Vogels et al., 2011; D’Amour and Froemke, 2015). The main prediction of the

model is that the spatial autocorrelation structure of excitatory and inhibitory inputs determines –

and should thus be predictable from – the output pattern of the cell. Investigations of the tuning of

individual cells (Wertz et al., 2015) or even synapses (Wilson et al., 2016) that project to spatially

tuned cells would thus be a litmus test for the proposed mechanism.

Origin of spatially tuned synaptic input
The origin of synaptic input to spatially tuned cells is not fully resolved (van Strien et al., 2009).

Given that our model is robust to the precise properties of the input, it is consistent with input from

higher sensory areas (Tanaka, 1996; Quiroga et al., 2005) that could inherit spatial tuning from

their sensory tuning in a stable environment (Arleo and Gerstner, 2000; Franzius et al., 2007a).

This is in line with the observation that grid cells lose their firing profiles in darkness (Chen et al.,

2016; Pérez-Escobar et al., 2016) and that the hexagonal pattern rotates when a visual cue card is

rotated (Pérez-Escobar et al., 2016).

The input could also stem from within the hippocampal formation, where spatial tuning has been

observed in both excitatory (O’Keefe, 1976) and inhibitory (Marshall et al., 2002; Wilent and Nitz,

2007; Hangya et al., 2010) neurons. For example, the notion that mEC neurons receive input from

hippocampal place cells is supported by several studies: Place cells in the hippocampus emerge ear-

lier during development than grid cells in the mEC (Langston et al., 2010; Wills et al., 2010), grid

cells lose their tuning pattern when the hippocampus is deactivated (Bonnevie et al., 2013) and

both the firing fields of place cells and the spacing and field size of grid cells increase along the

dorso-ventral axis (Jung et al., 1994; Brun et al., 2008b; Stensola et al., 2012). Moreover, entorhi-

nal stellate cells, which often exhibit grid-like firing patterns, receive a large fraction of their input

from the hippocampal CA2 region (Rowland et al., 2013), where many cells are tuned to the loca-

tion of the animal (Martig and Mizumori, 2011).

Inhibition is usually thought to arise from local interneurons – but see (Melzer et al., 2012) – sug-

gesting that spatially tuned inhibitory input to mEC neurons originates from the entorhinal cortex

itself. Interneurons in mEC display spatial tuning (Buetfering et al., 2014; Savelli et al., 2008;

Frank et al., 2001) that could be inherited from hippocampal place cells, other grid cells

(Couey et al., 2013; Pastoll et al., 2013; Winterer et al., 2017) or from entorhinal cells with non-

grid spatial tuning (Diehl et al., 2017; Hardcastle et al., 2017). The broader spatial tuning required

for the emergence of spatial selectivity could be established, for example by pooling over cells with

similar tuning or through a non-linear input-output transformation in the inhibitory circuitry. If inhibi-

tory input is indeed local, the increase in grid spacing along the dorso-ventral axis (Brun et al.,

2008b) suggests that the tuning of inhibitory interneurons gets smoother along this axis. For

smoother tuning functions, fewer neurons are needed to cover the whole environment, in accor-

dance with the decrease in interneuron density along the dorso-ventral axis (Beed et al., 2013).

The excitatory input to hippocampal place cells could originate from grid cells in entorhinal cortex

(Figure 5b), which is supported by anatomical (van Strien et al., 2009) and lesion studies

(Brun et al., 2008a). The required untuned inhibition could arrive from interneurons in the hippo-

campus proper that often show very weak spatial tuning (Marshall et al., 2002). In addition to grid

cell input, place cells are also thought to receive inputs from other cell types, such as border cells

(Muessig et al., 2015) and other brain regions such as the medial septum (Wang et al., 2015) .
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Dissociation from continuous attractor network models
The observed spatial tuning patterns have also been explained by other models. In continuous

attractor networks (CAN), each cell type could emerge from a specific recurrent connectivity pattern,

combined with a mechanism that translates the motion of the animal into shifts of neural activity on

an attractor. How the required connectivity patterns – which lie at the core of any CAN model –

could emerge is subject to debate (Widloski and Fiete, 2014). Our model is qualitatively different in

that it does not rely on attractor dynamics in a recurrent neural network, but on experience-depen-

dent plasticity of spatially modulated afferents to an individual output neuron (Mehta et al., 2000).

A measurable distinction of our model from CAN models is its response to a rapid global reduction

of inhibition. While a modification of inhibition typically changes the grid spacing in CAN models of

grid cells (Couey et al., 2013; Widloski and Fiete, 2015), the grid field locations generally remain

untouched in our model. The grid fields merely change in size, until inhibition is recovered by inhibi-

tory plasticity (Figure 7a). This can be understood by the colocalization of the grid fields and the

peaks in the excitatory membrane current (Figure 7b,c). A reduction of inhibition leads to an

increased protrusion of these excitatory peaks and thus to wider firing fields. Grid patterns in mEC

are temporally stable in spite of dopaminergic modulations of GABAergic transmission (Cilz et al.,

2014) and the spacing of mEC grid cells remains constant during the silencing of inhibitory inter-

neurons (Miao et al., 2017). Both observations are in line with our model. Moreover, we found that

for localized input tuning, the inhibitory membrane current typically also peaks at the locations of

Figure 7. Effect of reduced inhibition on grid cell properties. (a) Reducing the strength of inhibitory synapses to a fraction of its initial value (from left

to right: 1, 1/2, 1/4) leads to larger grid fields but unchanged grid spacing in our model. In continuous attractor network models, the same reduction of

inhibition would affect not only the field size but also the grid spacing. (b) Excitatory (red) and inhibitory (blue) membrane current to a cell with grid-like

firing pattern (gray) on a linear track. The currents are normalized to a maximum value of 1. Different rows correspond to different spatial tuning

characteristics of the input neurons. From top to bottom: Place cell-like tuning, sparse non-localized tuning (sum of 100 randomly located place fields),

dense non-localized tuning (Gaussian random fields). Peaks in excitatory membrane current are co-localized with grid fields (shaded area) for all input

statistics. In contrast, the inhibitory membrane current is not necessarily correlated with the grid fields for non-localized input. Moreover, the dynamic

range of the membrane currents is reduced for non-localized input. A reduction of inhibition as shown in (a) corresponds to a lowering of the inhibitory

membrane current. (c) Excitatory and inhibitory membrane current to a grid cell receiving sparse non-localized input (sum of 100 randomly located

place fields) in two dimensions. Top: Tuning of output firing rate, normalized excitatory and inhibitory membrane current. Bottom: Autocorrelograms

thereof. The grid pattern is more apparent in the spatial tuning of the excitatory membrane current than in the inhibitory membrane current.

DOI: https://doi.org/10.7554/eLife.34560.023
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the grid fields. This co-tuning breaks down for non-localized input (Figure 7b). In contrast, CAN

models predict that the inhibitory membrane current has the same periodicity as the grid (Schmidt-

Hieber and Häusser, 2013), but possibly phase shifted.

The grid patterns of topologically nearby grid cells in the mEC typically have the same orientation

and spacing but different phases (Hafting et al., 2005). Moreover, the coupling between anatomi-

cally nearby grid cells – for example their difference in spatial phase – is more stable to changes of

the environment than the firing pattern of individual grid cells (Yoon et al., 2013). These properties

are immanent to CAN models. In contrast, single cell models (Burgess et al., 2007; Kropff and

Treves, 2008; Castro and Aguiar, 2014; Stepanyuk, 2015; Dordek et al., 2016; D’Albis and

Kempter, 2017; Monsalve-Mercado and Leibold, 2017) require additional mechanisms to develop

a coordination of neighboring grid cells. The challenge for any mechanism is to correlate the grid

orientations, but leave the grid phases uncorrelated. The most obvious candidate, recurrent connec-

tions among different grid cells (Si et al., 2012), requires an intricate combination of mechanisms to

perform this balancing act. We assume that an appropriate recurrent connectivity would not be sim-

pler in our model.

CAN models predict that all grid fields in a conjunctive (grid x head direction) cell have the same

head direction tuning, whereas our model predicts that there could be differences between different

grid fields (Figure 6e). Our preliminary analysis suggests that an in-depth evaluation would require

data for central grid fields without trajectory biases (Figure 6—figure supplement 2), which are at

present not publicly available.

In addition, CAN models require that conjunctive (grid x head direction) cells are positively modu-

lated by running speed. Such modulation has been observed in experiments (Kropff et al., 2015). In

our model, we could introduce a running speed dependence, for example as a global modulation of

the input signals. We expect that in this case, the output neuron would inherit speed tuning from

the input but would otherwise develop similar spatial tuning patterns.

A recent analysis has shown that periodic firing of entorhinal cells in rats that move on a linear

track can be assessed as slices through a hexagonal grid (Yoon et al., 2016), which arises naturally

in a two-dimensional CAN model. In our model, we would obtain slices through a hexagonal grid if

the rat learns the output pattern in two dimensions and afterwards is constrained to move on a linear

track that is part of the same arena. If the rat learns the firing pattern on the linear track from

scratch, the firing fields would be periodic.

Rapid appearance and rearrangement of grids
Models that learn grid cells from spatially tuned input do not have to assume a preexisting connec-

tivity pattern or specific mechanisms for path integration (Burgess et al., 2007), but are challenged

by the fast emergence of hexagonal firing patterns in unfamiliar environments (Hafting et al., 2005).

Most plasticity-based models require slow learning, such that the animal explores the whole arena

before significant synaptic changes occur. Therefore, grid patterns typically emerge slower than

experimentally observed (Dordek et al., 2016). This delay is particularly pronounced in models that

require an extensive exploration of both space and movement direction (Kropff and Treves, 2008;

Franzius et al., 2007a; D’Albis and Kempter, 2017). In contrast to these models, which give center

stage to the temporal statistics of the animal’s movement, our approach relies purely on the spatial

statistics of the input and is hence insensitive to running speed.

For the mechanism we suggested, the self-organization was very robust and allowed rapid pat-

tern formation on short time scales, similar to those observed in rodents (Figure 3). This speed could

be further increased by accelerated reactivation of previous experiences during periods of rest

(Lee and Wilson, 2002). By this means, the exploration time and the time it takes to activate all

input patterns could be decoupled, leading to a much faster emergence of grid cells in all trajectory-

independent models with associative learning. Other models that explain the emergence of grid pat-

terns from place cell input through synaptic depression and potentiation also develop grid cells in

realistic times (Castro and Aguiar, 2014; Stepanyuk, 2015; Monsalve-Mercado and Leibold,

2017). These models differ from ours in that they do not require inhibition, but instead specific

forms of rate-dependent synaptic depression and potentiation that change the synaptic weights

such that place cell-like input leads to grid cell-like output. How these models generalize to poten-

tially non-localized input is yet to be shown.
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Learning the required connectivity in CAN models can take a long time (Widloski and Fiete,

2014). However, as soon as the required connectivity and translation mechanism is established, a

grid pattern would be observed immediately, even in a novel room. For different rooms this pattern

could have different phases and orientations, but similar grid spacing (Fyhn et al., 2007). Similarly,

we found that room switches in our model lead to grid patterns of the same grid spacing but differ-

ent phases and orientations. The pattern emerges rapidly, but is not instantaneously present (Fig-

ure 3—figure supplement 2). It would be interesting to study whether rotation of a fraction of the

input would lead to a bimodal distribution of grid rotations: No rotation and co-rotation with the

rotated input, as recently observed in experiments where distal cues were rotated but proximal cues

stayed fixed (Savelli et al., 2017).

Recently, it was discovered that in an arena separated by a wall, single grid cells form two inde-

pendent grid patterns – one on each side – that coalesce once the wall is removed (Wernle et al.,

2018; Rosay et al., in preparation). This coalescence is local, that is, grid fields close to the partition

wall readjust, whereas grid fields far away do not change their locations. Feedforward models like

ours can explain such a local rearrangement (Figure 4; Rosay et al., in preparation).

Boundary effects
Experiments show that the pattern and the orientation of grid cells is influenced by the geometry of

the environment. In a quadratic arena, the orientation of grid cells tends to align – with a small offset

– to one of the box axes (Stensola et al., 2015). In trapezoidal arenas, the hexagonality of grids is

distorted (Krupic et al., 2015a). We considered quadratic and circular arenas with rat trajectories

from behavioral experiments and found that the boundaries also distort the grid pattern in our simu-

lations, particularly for localized inputs (Figure 2—figure supplement 3). In trapezoidal geometries,

we expect this to lead to non-hexagonal grids. However, we did not observe a pronounced align-

ment to quadratic boundaries if the input place fields were randomly located (Figure 2—figure sup-

plement 3).

Conclusion
We found that interacting excitatory and inhibitory plasticity serves as a simple and robust mecha-

nism for rapid self-organization of stable and symmetric patterns from spatially modulated feedfor-

ward input. The suggested mechanism ports the robust pattern formation of attractor models from

the neural to the spatial domain and increases the speed of self-organization of plasticity-based

mechanisms to time scales on which the spatial tuning of neurons is typically measured. It will be

interesting to explore how recurrent connections between output cells can help to understand the

role of local inhibitory (Couey et al., 2013; Pastoll et al., 2013) and excitatory connections

(Winterer et al., 2017) and the presence or absence of topographic arrangements of spatially tuned

cells (O’Keefe et al., 1998; Stensola et al., 2012; Giocomo et al., 2014). We illustrated the proper-

ties and requirements of the model in the realm of spatial representations. As invariance and selec-

tivity are ubiquitous properties of receptive fields in the brain, the interaction of excitatory and

inhibitory synaptic plasticity could also be essential to form stable representations from sensory

input in other brain areas (Constantinescu et al., 2016; Clopath et al., 2016).

Materials and methods

Code availability
The code for reproducing the essential findings of this article is available at https://github.com/sim-

web/spatial_patterns (Weber, 2018) under the GNU General Public License v3.0. A copy is archived

at https://github.com/elifesciences-publications/spatial_patterns.

Network architecture and neuron model
We study a feedforward network where a single output neuron receives synaptic input from NE excit-

atory and NI inhibitory neurons (Figure 1a) with synaptic weight vectors w
E 2 R

NE , wI 2 R
NI and

spatially tuned input rates r
EðxÞ 2 RNE , r

IðxÞ 2 RNI , respectively. Here x 2 Rdimensions denotes the

location and later also the head direction of the animal. For simplicity and to allow a mathematical
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analysis we use a rate-based description for all neurons. The firing rate of the output neuron is given

by the rectified sum of weighted excitatory and inhibitory inputs:

routðxðtÞÞ ¼
XNE

i¼1

wE
i ðtÞrEi ðxðtÞÞ�

XNI

j¼1

wI
jðtÞrIj ðxðtÞÞ

" #

þ

; (1)

where �½ �+ denotes a rectification that sets negative firing rates to zero. To comply with the notion of

excitation and inhibition, all weights are constrained to be positive. In most simulations we use

NE ¼ 4NI. Simulation parameters are shown in Tables 1–3 for the main figures and in Tables 4–6 for

the supplementary figures.

Excitatory and inhibitory plasticity
In each unit time step (Dt ¼ 1), the excitatory weights are updated according to a Hebbian rule:

Dw
E ¼ hEr

EðxÞroutðxÞ ðand normalizationÞ: (2)

The excitatory learning rate hE is a constant that we chose individually for each simulation. To

avoid unbounded weight growth, we use a quadratic multiplicative normalization, that is, we keep

the sum of the squared weights of the excitatory population
PNE

i¼1
ðwE

i Þ
2 constant at its initial value,

by rescaling the weights after each unit time step. However, synaptic weight normalization is not a

Table 1. Parameters for excitatory inputs for all figures in the manuscript.

Nf
E ¼ ¥ indicates that the excitatory input is a Gaussian random field.

sE;x;sE;y;sE;z

� �
NE hE wE;init Nf

E

Figure 1b 0.05 2000 2 � 10�6 1 ¥

Figure 1c 0.08 2000 2 � 10�6 1 ¥

Figure 1d 0.06 2000 2 � 10�6 1 ¥

Figure 1f 0.04 160 2 � 10�6 1 1

Figure 1g 0.03 1600 3.6 � 10�5 1 1

Figure 1h 0.03 10000 3.5 � 10�7 1 ¥

Figure 2a [0.05, 0.05] 4900 6.7 � 10�5 1 1

Figure 2b [0.05, 0.05] 4900 2 � 10�6 1 100

Figure 2c [0.05, 0.05] 4900 6 � 10�6 1 ¥

Figure 3a–d [0.05, 0.05] 4900 2 � 10�4 1 1

Figure 4 [0.05, 0.05] 2 � 4900 1.3 � 10�4 1 1

Figure 5a [0.07, 0.07] 4900 6 � 10�6 0.5 ¥

Figure 5b [0.07, 0.07] 400 1.3 � 10�4 1 1

Figure 5c [0.05, 0.05] 4900 1.1 � 10�6 0.0455 ¥

Figure 5d [0.08, 0.08] 4900 6 � 10�6 0.5 ¥

Figure 5e [0.05, 0.05] 4900 6.7 � 10�5 1 1

Figure 6a [0.07, 0.07, 0.2] 37500 1.5 � 10�5 1 1

Figure 6b [0.08, 0.08, 0.2] 50000 10�5 1 1

Figure 6c [0.1, 0.1, 0.2] 50000 10�5 1 1

Figure 7a [0.05, 0.05] 4900 6.7 � 10�5 1 1

Figure 7b 0.04 2000 5 � 10�5 1 1

0.04 2000 5 � 10�7 1.0 100

Figure 7c 0.05 2000 5 � 10�6 0.5 ¥

[0.05, 0.05] 4900 2 � 10�6 1 100

Figure 8b 0.03 800 3.3 � 10�5 1 1

DOI: https://doi.org/10.7554/eLife.34560.024
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necessary ingredient for the emergence of firing patterns (Figure 2—figure supplement 4). We

model inhibitory synaptic plasticity using a previously suggested learning rule (Vogels et al., 2011):

Dw
I ¼ hIr

IðxÞðroutðxÞ� �0Þ ; (3)

with inhibitory learning rate hI and target rate �0 = 1 Hz. Negative inhibitory weights are set to zero.

Table 2. Parameters for inhibitory inputs for all figures in the manuscript.

indicates that the inhibitory input is a Gaussian random field. We denote spatially untuned inhibition with: sI = ¥.

sI;x;sI;y;sI;z

� �
NI hI wI;init Nf

I

Figure 1b 0.12 500 2 � 10�5 4:4 ¥

Figure 1c 0.07 2000 2 � 10�5 1.1 ¥

Figure 1d ¥ 500 2 � 10�5 4.39 ¥

Figure 1f 0.13 40 2 � 10�5 1.31 1

Figure 1g From 0.08 to 0.3 in 0.02 steps 400 3.6 � 10�4 Equation 111 1

Figure 1h From 0.08 to 0.3 in 0.02 steps 2500 7 � 10�6 4.03 ¥

Figure 2a [0.1, 0.1] 1225 2.7 � 10�4 1.5 1

Figure 2b [0.1, 0.1] 1225 8 � 10�6 1.52 100

Figure 2c [0.1, 0.1] 1225 6 � 10�5 4.0 ¥

Figure 3a–d [0.1, 0.1] 1225 8 � 10�4 1.5 1

Figure 4 [0.1, 0.1] 2 � 1225 5.3 � 10�4 1.51 1

Figure 5a [¥, ¥] 1225 6 � 10�5 2 ¥

Figure 5b [¥, ¥] 1 5.3 � 10�4 69.5 1

Figure 5c [0.049, 0.049] 1225 4.4 � 10�5 0.175 ¥

Figure 5d [0.3, 0.07] 1225 6 � 10�5 2 ¥

Figure 5e [0.049, 0.049] 4900 2.7 � 10�4 1.02 1

[0.2, 0.1]; [0.1, 0.2] 1225 2.7 � 10�4 1.04 1

[2, 0.1]; [0.1, 2] 1225 2.7 � 10�4 2.74 1

[2, 0.2]; [0.2, 2] 1225 2.7 � 10�4 1.38 1

[0.1, 0.1] 1225 2.7 � 10�4 1.5 1

[0.2, 0.2] 1225 2.7 � 10�4 0.709 1

[2, 2] 1225 2.7 � 10*�4 0.259 1

[0.1, 0.049]; [0.049, 0.1] 1225 2.7 � 10�4 2.48 1

[0.2, 0.049]; [0.049, 0.2] 1225 2.7 � 10�4 1.74 1

Figure 6a [2, 0.049]; [0.049, 2] 1225 2.7 � 10�4 5.56 1

[0.15, 0.15, 0.2] 9375 1.5 � 10�4 1.55 1

Figure 6b [0.12, 0.12, 1.5] 3125 10�4 5.68 1

Figure 6c [0.09, 0.09, 1.5] 12500 10�4 2.71 1

Figure 6d Same as Figure 6a,b,c

Figure 7a [0.1, 0.1] 1225 2.7 � 10�4 1.5 1

Figure 7b 0.12 500 5 � 10�4 1.6 1

0.12 500 5 � 10�6 1.62 100

Figure 7c 0.12 500 5 � 10�5 1.99 ¥

[0.1, 0.1] 1225 8 � 10�6 1.52 100

Figure 8b 0.1 varied varied varied 1

DOI: https://doi.org/10.7554/eLife.34560.025
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Rat trajectory
In the linear track model (one dimension, Figures 1 and 7), we create artificial run-and-tumble trajec-

tories xðtÞ constrained on a line of length L with constant velocity v = 1 cm per unit time step and

persistence length L=2 (Appendix 1).

In the open arena model (two dimensions, Figures 2, 3, 5 and 7), we use trajectories xðtÞ from

behavioral data (Sargolini et al., 2006b) of a rat that moved in a 1 m � 1 m quadratic enclosure

(Appendix 1). In the simulations with a separation wall (Figure 4), we create trajectories as a two-

dimensional persistent random walk (Appendix 1). In the model for neurons with head direction tun-

ing (three dimensions, Figure 6), we use the same behavioral trajectories as in two dimensions and

model the head direction as noisily aligned to the direction of motion (Appendix 1).

Table 3. Simulation time tsim and system size L for all figures in the manuscript.

tsim L

Figure 1b 2,000,000 2

Figure 1c 2,000,000 2

Figure 1d 400,000 2

Figure 1f 20,000,000 2

Figure 1g 80,000,000 14

Figure 1h 40,000,000 10

Figure 2a,b,c 1,800,000 1

Figure 3a,b,c,d 540,000 1

Figure 4 1,800,000 1

Figure 5a,c,d,e 1,800,000 1

Figure 5b 180,000 1

Figure 6a,b,c,d 1,800,000 1

Figure 7a,c 1,800,000 1

Figure 7b 400,000 2

Figure 8b 40,000,000 3

DOI: https://doi.org/10.7554/eLife.34560.026

Table 4. Parameters for excitatory inputs in supplement figures.

Nf
E ¼ ¥ indicates that the excitatory input is a Gaussian random field.

sE;x;sE;y;sE;z

� �
NE hE wE;init Nf

E

Figure 1—figure supplement 1 0.04 2000 5 � 10�7 1 varied

Figure 1—figure supplement 2 see caption

Figure 2—figure supplement 1 [0.05, 0.05] 4900 6.7 � 10�5 1 1

Figure 2—figure supplement 3 [0.05, 0.05] 4900 6.7 � 10�5 1 1

Figure 2—figure supplement 4 [0.05, 0.05] 4900 2 �10�4 1 1

Figure 2—figure supplement 6 see caption

Figure 2—figure supplement 2 [0.05, 0.05] 4900 3.3 � 10�5 1 1

Figure 3—figure supplement 1 see caption

Figure 3—figure supplement 3 see caption

Figure 3—figure supplement 2 [0.05, 0.05] 4900 1.3 �10�4 1 1

Figure 6—figure supplement 1 see caption

DOI: https://doi.org/10.7554/eLife.34560.027
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Spatially tuned inputs
The firing rates of excitatory and inhibitory synaptic inputs rEi ; r

I
j are tuned to the location x of the

animal. In the following, we use x and y for the first and second spatial dimension and z for the head

direction.

For place field-like input, we use Gaussian tuning functions with standard deviation sE, sI for the

excitatory and inhibitory population, respectively. In Figure 5 the standard deviation is chosen inde-

pendently along the x and y direction. The centers of the Gaussians are drawn randomly from a dis-

torted lattice (Figure 2—figure supplement 5). This way we ensure random but spatially dense

tuning. The lattice contains locations outside the box to reduce boundary effects.

For sparse non-localized input with Nf
P fields per neuron of population P, we first create Nf

P dis-

torted lattices, each with NP locations. We then assign Nf
P of the resulting Nf

PNP locations at random

and without replacement to each input neuron (see also Appendix 1).

For dense non-localized input, we convolve Gaussians with white noise and increase the resulting

signal to noise ratio by setting the minimum to zero and the mean to 0.5 (Appendix 1). The Gaussian

convolution kernels have different standard deviations for different populations. For each input neu-

ron we use a different realization of white noise. This results in arbitrary tuning functions of the same

Table 5. Parameters for inhibitory inputs in supplement figures.

Nf
I ¼ ¥ indicates that the inhibitory input is a Gaussian random field. We denote spatially untuned inhibition with: sI = ¥.

sI;x;sI;y;sI;z

� �
NI hI wI;init Nf

I

Figure 1—figure supplement 1 0.12 500 5 � 10�6 1.61 varied

Figure 1—figure supplement 2 see caption

Figure 2—figure supplement 1 [0.1, 0.1] 1225 2.7 � 10�4 1.5 1

Figure 2—figure supplement 3 [0.1, 0.1] 1225 2.7 � 10�4 1.5 1

Figure 2—figure supplement 4 [0.1, 0.1] 1225 8� 10-4 1.5 1

Figure 2—figure supplement 6 see caption

Figure 2—figure supplement 2 [0.1, 0.1] 1225 5.3 � 10�6 0.03 50

Figure 3—figure supplement 1 see caption

Figure 3—figure supplement 3 see caption

Figure 3—figure supplement 2 [0.1, 0.1] 1225 5.3�10-4 1.5 1

Figure 6—figure supplement 1 see caption

DOI: https://doi.org/10.7554/eLife.34560.028

Table 6. Simulation time tsim and system size L for supplement figures.

tsim L

Figure 1—figure supplement 1 48,000,000 1

Figure 1—figure supplement 2 see caption

Figure 2—figure supplement 1 1,800,000 0.5

Figure 2—figure supplement 3 1,800,000 0.5

Figure 2—figure supplement 4 180,000 0.5

Figure 2—figure supplement 6 see caption

Figure 2—figure supplement 2 1,800,000 0.5

Figure 3—figure supplement 1 see caption

Figure 3—figure supplement 3 see caption

Figure 3—figure supplement 2 1,800,000 0.5

Figure 6—figure supplement 1 see caption

DOI: https://doi.org/10.7554/eLife.34560.029
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autocorrelation length as the – potentially asymmetric – Gaussian convolution kernel. For grid cell-

like input, we place Gaussians of standard deviation sE on the nodes of perfect hexagonal grids

whose spacing and orientation is variable. In Figure 5b we draw the grid spacing of each input from

a normal distribution of mean 6sE and standard deviation sE=6. The grid orientation was drawn

from a uniform distribution between �30 and 30 degrees.

For input with combined spatial and head direction tuning, we use the Gaussian tuning curves

described above for the spatial tuning and von Mises distributions along the head direction dimen-

sion (Appendix 1).

For all input tunings, the standard deviation of the firing rate is of the same order of magnitude

as the mean firing rate (Appendix 1).

Initial synaptic weights and global reduction of inhibition
We specify a mean for the initial excitatory and inhibitory weights, respectively, and randomly draw

each synaptic weight from the corresponding mean �5%. The excitatory mean is chosen such that

the output neuron would fire above the target rate everywhere in the absence of inhibition; we typi-

cally take this mean to be 1 (Table 1 and Appendix 1). The mean inhibitory weight is then deter-

mined such that the output neuron would fire close to the target rate, if all the weights were at their

mean value (Table 2 and Appendix 1). Choosing the weights this way ensures that initial firing rates

are random, but neither zero everywhere, nor inappropriately high. We model a global reduction of

inhibition by scaling all inhibitory weights by a constant factor, after the grid has been learned.

Mathematical analysis of the learning rules
In the following, we derive the spacing of periodic firing patterns as a function of the simulation

parameters for the linear track.

We first show that homogeneous weights, chosen such that the output neuron fires at the target

rate, are a fixed point for the time evolution of excitatory and inhibitory weights under the assump-

tion of slow learning. We then perturb this fixed point and study the time evolution of the perturba-

tions in Fourier space. The translational invariance of the input overlap leads to decoupling of spatial

frequencies and leaves a two-dimensional dynamical system for each spatial frequency. For smoother

spatial tuning of inhibitory input than excitatory input, the eigenvalue spectrum of the dynamical sys-

tem has a unique maximum, which indicates the most unstable spatial frequency. This frequency

accurately predicts the grid spacing. We first consider place cell-like input (Gaussians) and then non-

localized input (Gaussians convolved with white noise).

At the end of the analysis, you will find a glossary of the notation. Whenever we use P as a sub-

or superscript instead of E or I, this implies that the equation holds for neurons of the excitatory and

the inhibitory population.

The analysis is written as a detailed and comprehensible walk-through. The reader who is inter-

ested only in the result can jump to Equations 78 and 104.

Assumption of slow learning
The firing rate of the output neuron is the weighted sum of excitatory and inhibitory input rates:

rout ¼ w
E � rE�w

I � rI
� �

þ ; (4)

where . . .½ �þ indicates that negative firing rates are set to zero.

Written as a differential equation, the excitatory learning rule with quadratic multiplicative nor-

malization is given by:

dwE

dt
¼ hE 11�w

E
w

ET

kwEk2

 !

r
Erout ; (5)

where 11 is the NE �NE identity matrix. The projection operator w
E
w

ET

kwEk2 ensures that the weights are

constrained to remain on the hypersphere whose radius is determined by the initial value of the sum

of the squares of all excitatory weights (Miller and MacKay, 1994). The inhibitory learning rule is

given by:
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dwI

dt
¼ hIr

I rout� �0
� �

: (6)

We assume that the rat will learn slowly, such that it forages through the environment before sig-

nificant learning (i.e. weight change) occurs. Therefore we can coarsen the time scale and rewrite

Equation 5 and 6 as

dwE

dt
¼ hE 11�w

E
w

ET

kwEk2

 !

r
Erout

* +

x

(7)

and

dwI

dt
¼ hI r

I rout � �0
� �
 �

x
; (8)

respectively, where the spatial average, . . .h ix, is defined as

ð. . .Þh ix¼
1

L

Z þL=2

�L=2

ð. . .Þdx (9)

and L is the length of the linear track.

High density assumption and continuum limit for place cell-like input
We assume a high density of input neurons and formulate the system in continuous variables. More

precisely, we assume the distance between two neighboring firing fields to be much smaller than

the width of the firing fields, that is, L=NP � sP. Furthermore, we assume that the linear track is very

long compared with the width of the firing fields, that is, sP � L.

We replace the neuron index with the continuous variable � and denote the weight wP
� and the

tuning function rPð�; xÞ associated with a place field that is centered at � in the continuum limit as:

wP
i !wPð�Þ and rPi ðxÞ! rPð�;xÞ : (10)

The distance between two neighboring place fields is given by D�¼ L=NP. Thus, for sums over all

neurons we get the following integral in the continuum limit:

XNP

i¼1

fi ¼
1

D�

XNP

i¼1

fiD�!NP

L

Z þL=2

�L=2

f ð�Þd�: (11)

We will switch between the discrete and continuous formulations, using whatever is more

convenient.

For place cell-like input we take Gaussian tuning curves:

rPi ðxÞ ¼ aP exp �ðx��iÞ2
2s2

P

( )

; (12)

with height aP and standard deviation sP. Thus, in the continuum limit we get:

rPi ðxÞ! rPð�;xÞ ¼ rPðjx��jÞ ¼ aP exp �ðx��Þ2
2s2

P

( )

: (13)

Because of the translational invariance of rPð�;xÞ, integration over space gives the same result as

integration over all center locations and the mean of all inputs is the same:

rPi ðxÞ

 �

x
¼ rPð�;xÞ

 �

x
(14)

¼ 1

L

Z þL=2

�L=2

rPð�;xÞdx (15)
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¼ 1

L

Z þL=2

�L=2

rPð�;xÞd�» aP

L

ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2

P

q

¼MP=L (16)

where we introduced MP :¼ aP

ffiffiffiffiffiffiffiffiffiffiffiffi

2ps2

P

p

for the area under the tuning curves. Accordingly, we get a

summarized input activity that is independent of location:

XNP

i¼1

rPi ðxÞ!
NP

L

Z þL=2

�L=2

rPð�;xÞd�» NP

L
MP : (17)

Equal weights form a fixed point
In the following, we will show that equal weights wEð�Þ ¼ wE

0
and wIð�0Þ ¼ wI

0
, 8�; �0 form a fixed

point if wI
0
is chosen such that the output neuron fires at the target rate, �0, throughout the arena.

With equal weights we get a constant firing rate rout
0

,

routðxÞ ¼ rout
0

¼ wE
0

X

i

rEi ðxÞ�wI
0

X

i

rIi ðxÞ
" #

þ
; (18)

which according to Equation 17 does not depend on x. Furthermore, according to Equation 14,

rPi ðxÞ

 �

x
does not depend on the neuron index i. Now the stationarity of the excitatory weight evolu-

tion follows from Equation 7:

dwE
i

dt
¼ hE rout

X

j

rEj dij �
wE
i w

E
j

P

kw
E
k

2

 !* +

x

(19)

¼ hEr
out
0

X

j

rEj

D E

x
dij�

wE
0

2

NEw
E
0

2

 !" #

(20)

¼ rout
0

hEME

L

XNE

j¼1

dij�
1

NE

� �

¼ 0 ; (21)

that is, excitatory weights are stationary for all values of wE
0
and wI

0
(here dij denotes the Kronecker

delta which is 1 if i¼ j and 0 otherwise). This holds for all input functions for which rEj ðxÞ
D E

x
is inde-

pendent of j. If rout ¼ �0, it immediately follows from Equation 6 that dwI

dt
¼ 0, so the inhibitory weights

are stationary if

�0 ¼w
E � rE�w

I � rI ¼wE
0

X

i

rEi �wI
0

X

j

rIj ; (22)

which is fulfilled if

wI
0
¼wE

0

P

i r
E
i � �0

P

j r
I
j

¼wE
0
NEME � �0
NIMI

: (23)

Linear stability analysis
In the following, we will show that the fixed point of equal weights, the homogeneous steady state,

is unstable when the spatial tuning of inhibitory inputs is broader than that of the excitatory inputs.

In this case, perturbations of the fixed point will grow and one particular spatial frequency will grow

fastest. We will show that this spatial frequency predicts the spacing of the resulting periodic pattern

(Figure 1g).

We perturb the fixed point

wEð�Þ ¼wE
0
þ dwEð�Þ; wIð�Þ ¼wI

0
þ dwIð�Þ (24)
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and look at the time evolution of the perturbations ddwE

dt
and ddwI

dt
of the excitatory and inhibitory

weights around the fixed point.

Close to the fixed point the output neuron fires around the target rate �0. We thus ignore the rec-

tification in Equation 4, that is, rout ¼ �0 þ drout, with drout ¼Pk dw
E
k r

E
k �Pk0 dw

I
k0r

I
k0 .

Time evolution of perturbations of the inhibitory weights
We start with the time evolution of the inhibitory weight perturbations:

ddwI
i

dt
¼ dwI

i

dt
¼ hI rout � �0

� �
rIi


 �

x
(25)

¼ hI �0 þ drout � �0
� �

rIi

 �

x
(26)

¼ hI rIidr
out


 �

x
(27)

¼ hI rIi

X

k

dwE
k r

E
k �

X

k0
dwI

k0r
I
k0

 !* +

x

(28)

¼ hI

XNE

k¼1

rIi r
E
k


 �
dwE

k �
XNI

k0¼1

rIi r
I
k0


 �
dwI

k0

 !

; (29)

where only the rates rP depend on x. Intuitively, the first term in Equation 29 means that the rate of

change of the inhibitory weight perturbation of the weight associated with one location depends on

the excitatory perturbations of the weights associated with every other location, weighted with the

overlap (the cross correlation) of the two associated tuning functions (analogous for inhibitory weight

perturbations). In the continuum limit, the sums are:

hP
XNP0

k¼1

rPi r
P0

k

D E

x
dwP0

k ! hPNP0

L

Z þL=2

�L=2

rPð�ÞrP0ð�0Þ
D E

x
dwP0ð�0Þd�0 (30)

¼
Z þL=2

�L=2

KPP0ð�;�0ÞdwP0ð�0Þd�0 ; (31)

where we introduce overlap kernels

KPP0ð�;�0Þ :¼ hPNP0

L
rPð�ÞrP0ð�0Þ
D E

x
P;P0 2 E; If g: (32)

The overlap rPð�ÞrP0ð�0Þ

 �

x
depends only on the distance of the Gaussian fields, that is,

KPP0ð�;�0Þ ¼KPP0ð���0Þ : (33)

Taking L!¥, the time evolution of the perturbations of the inhibitory weights can thus be written

as convolutions:

ddwIð�Þ
dt

¼ ðKIE � dwEÞð�Þ� ðKII � dwIÞð�Þ ; (34)

where � denotes a convolution.

Time evolution of perturbations of the excitatory weights
To derive the time evolution of the excitatory weights, we first show that the weight normalization

term in Equation 7 , expressed through the projection operator Pij ¼ wiwjP

k
w2

k

, leads to a term that bal-

ances homogeneous weight perturbations and a term that can be neglected in the continuum limit.
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Let P be the projection operator responsible for the normalization of the excitatory weights by

projecting a weight update onto a vector that is orthogonal to the hypersphere of constant
PNE

i¼1
ðwE

i Þ
2. We now determine the projection operator around the fixed point (We drop the index

‘E’ in the following, to improve readability):

Pij ¼
ðw0 þ dwiÞðw0 þ dwjÞ
P

kðw0þ dwkÞ2
� Pijðwþ dwÞ : (35)

Using Taylor’s theorem

Pijðwþ dwÞ ¼ PijðwÞþ
XN

l¼1

dwl

dPijðwÞ
dwl

þOðdw2Þ (36)

and wl ¼w08l, we get

PijðwÞ ¼ wiwj
P

kw
2

k

¼ 1=N ; (37)

dPijðwÞ
dwl

¼ dilwj
P

kw
2

k

þ djlwi
P

kw
2

k

� wiwj2wl

ð
P

k w
2

kÞ
2
¼ dil

Nw0

þ djl

Nw0

� 2

N2w0

: (38)

In summary this gives:

Pij ¼
1

NE
|{z}

�P0/Oð1Þ

þ 1

NEw
E
0

dwE
i þ dwE

j �
2
PNE

l¼1
dwE

l

NE

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�dPij/OðdwÞ

þOðdw2Þ : (39)

Using the perturbed projection operator Equation 39 with Equation 7, we obtain the time evolu-

tion of the excitatory weight perturbation to linear order:

ddwE
i

dt
¼ dwE

i

dt
(40)

¼ hE rout
X

j

ðdij�PijÞrEj

* +

x

(41)

¼ hE ð�0 þ droutÞ
X

j

ðdij �P0 � dPijÞrEj

* +

x

(42)

¼ hE �0
X

j

ðdij�P0ÞrEj

* +

x
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0;cf:Equation19

þ drout
X

j

ðdij�P0ÞrEj

* +

x

� �0
X

j

dPijr
E
j

* +

x

þOðdw2Þ (43)

¼ hE rEi dr
out


 �

x
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ð1Þ

�P0 drout
X

j

rEj

* +

x
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð2Þ

��0
X

j

dPijr
E
j

* +

x
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð3Þ

0

B
B
B
B
@

1

C
C
C
C
A

þOðdw2Þ (44)

Term ð1Þ in Equation 44 has a similar structure as in the inhibitory case (Equation 27), and will

lead to analogous convolutions. he second term is given by

ð2Þ ¼ 1

NE

X

k

rEk dw
E
k �

X

k0
rIk0dw

I
k0

 !
X

j

rEj

* +

x

(45)
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¼ME

L

X

k

rEk dw
E
k �

X

k0
rIk0dw

I
k0

* +

x

(46)

¼ME

L

X

k

rEk

 �

x
dwE

k �
X

k0
rIk0

 �

x
dwI

k0

 !

(47)

¼ME

L2
ME

X

k

dwE
k �MI

X

k0
dwI

k0

 !

(48)

cont:limit!ME

L3
NEME

Z þL=2

�L=2

dwEð�0Þd�0�NIMI

Z þL=2

�L=2

dwIð�00Þd�00
 !

(49)

and the third term by

ð3Þ ¼ �0
NEw

E
0

X

j

rEj dwE
i þ dwE

j �
2

NE

X

l

dwE
l

 !* +

x

(50)

¼ �0
NEw

E
0

X

j

rEj

D E

x
dwE

i þ dwE
j �

2

NE

X

l

dwE
l

 !

(51)

¼ �0ME

NEw
E
0
L

X

j

dwE
i þ dwE

j �
2

NE

X

l

dwE
l

 !

(52)

¼ �0ME

wE
0
L

dwE
i þ

1

NE

X

j

dwE
j �

2

NE

X

l

dwE
l

 !

(53)

¼ �0ME

wE
0
L

dwE
i �

1

NE

X

j

dwE
j

 !

(54)

cont:limit! �0ME

wE
0
L

dwEð�Þ� 1

L

Z þL=2

�L=2

dwEð�0Þd�0
 !

(55)

¼ �0ME

wE
0
L

Z þL=2

�L=2

d�0dwEð�0Þ dð���0Þ� 1

L

� �

; (56)

where dð���0Þ denotes the Dirac delta function. Together, this leads to the time evolution of the

excitatory weight perturbations:

ddwEð�Þ
dt

¼
Z þL=2

�L=2

d�0dwEð�0Þ
"

KEEð���0Þ�hE�0ME

wE
0
L

dð���0Þ (57)

þhEME

L2
�0
wE
0

�NEME

L

� �#

(58)
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�
Z þL=2

�L=2

d�00dwIð�00Þ KEIð���00Þ�hENIMEMI

L3

� �

: (59)

We now assume L� sP and write everything as convolutions, also trivial ones:

ddwEð�Þ
dt

¼ KEE� hE�0ME

wE
0
L

dþ hEME

L2
�0
wE
0

� NEME

L

� �h i

� dwE
� �

ð�Þ

� KEI� hENIMEMI

L3

� �
� dwI

� �
ð�Þ :

(60)

Decoupling of spatial frequencies
The convolutions in Equations 34 and 60 show how the excitatory and inhibitory weight perturba-

tions at one location influence the time evolution of weights at every other location. Transforming

the system to frequency space leads to a drastic simplification: The time evolution of a perturbation

of a particular spatial frequency depends only on the excitatory and inhibitory perturbation of the

same spatial frequency, that is, the Fourier components decouple. We define the Fourier transform

f ðkÞ � F½f ð�Þ� with wavevector k of a function f ð�Þ of location � as:

f ðkÞ �
Z þ¥

�¥
f ð�Þe�ik� d� (61)

and note that

Z þ¥

�¥
e�ik� d�¼ 2pdðkÞ : (62)

Using the Convolution theorem and the linearity of the Fourier transform we get

ddwEðkÞ
dt

¼ hEME

L2
�0
wE
0

� NEME

L

� �

dwEðkÞþ hENIMEMI

L3
dwIðkÞ

h i

2pdðkÞ

�hE�0ME

wE
0
L

dwEðkÞþ KEEðkÞdwEðkÞ�KEIðkÞdwIðkÞ
� � (63)

and

ddwIðkÞ
dt

¼KIEðkÞdwEðkÞ�KIIðkÞdwIðkÞ : (64)

The dðkÞ term in Equation 63 balances homogeneous perturbations in such a way that the output

neuron would still fire at the target rate, if not for permutations at other frequencies. In the follow-

ing, we drop this term, because we are not interested in spatially homogeneous perturbations.

Moreover, the continuum limit is valid only for high densities: NP=L!¥. We can thus drop terms of

lower order than NP=L, which eliminates the hE�0ME

wE
0
L

term. Writing the remaining terms of Equa-

tions 63 and 64 as a matrix leads to:

_dwE

_dwI

" #

ðkÞ ¼ KEEðkÞ �KEIðkÞ
KIEðkÞ �KIIðkÞ

� �
dwE

dwI

� �

ðkÞ; (65)

which no longer contains terms from the weight normalization. The characteristic polynomial of the

above matrix is:

l2 þl KII �KEE
� �

þKEIKIE�KEEKII ¼ 0 (66)

The difference, KEIKIE �KEEKII, vanishes for Gaussian input, because:

KPP0ð�;�0 ¼ 0Þ ¼ hPNP0

L
rPð�ÞrP0ð0Þ
D E

x
(67)

¼ aPaP0hPNP0

L2

Z þL=2

�L=2

dxexp �ðx��Þ2
2s2

P

� x2

2s2

P0

( )

(68)
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»

aPaP0hPNP0

L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

1

s2

P

þ 1

s2

P0

s

exp � �2

2ðs2

Pþs2

P0Þ

� �

; (69)

where we completed the square and used
Rþ¥
�¥ e�ax2 ¼

ffiffiffi
p
a

p
. Taking the Fourier transform and complet-

ing the square again gives

KPP0ðkÞ ¼ hPNP0MP MP0

L2
exp �k2

2
ðs2

Pþs2

P0Þ
� �

: (70)

and thus KEIKIE�KEEKII ¼ 0.

For P ¼ P0, Equation 70 simplifies to:

KPPðkÞ ¼ hPNPM
2

P

L2
exp �k2s2

P

� 	
: (71)

This leads to the eigenvalues:

l0ðkÞ ¼ 0 (72)

l1ðkÞ ¼KEEðkÞ�KIIðkÞ (73)

¼ 1

L2
hEM

2

ENE exp �k2s2

E

� 	
�hIM

2

I NI exp �k2s2

I

� 	� �
; (74)

which are shown in Figure 8a. Perturbations with spatial frequencies for which l1ðkÞ is positive will

grow. Setting dl1ðkÞ
dk

¼ 0 gives the wavevector kmax of the Fourier component that grows fastest:

2

L2
hIM

2

I NIs
2

I kmax exp �k2maxs
2

I

� 	
�hEM

2

ENEs
2

Ekmax exp �k2maxs
2

E

� 	� �
¼ 0 (75)

) lnðhIM
2

I NIs
2

I Þ� k2maxs
2

I ¼ lnðhEM
2

ENEs
2

EÞ� k2maxs
2

E (76)

) kmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
hIM

2

I
NIs

2

I

hEM
2

E
NEs

2

E

� �

s2

I �s2

E

v
u
u
t

: (77)

Assuming that the fastest-growing spatial frequency from the linearized system will prevail, the

final spacing of the periodic pattern, ‘, is determined by:

‘¼ 2p=kmax ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

I �s2

E

ln
hIM

2

I
NIs

2

I

hEM
2

E
NEs

2

E

� �

v
u
u
t ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

I �s2

E

ln
hINIa

2

I
s4

I

hENEa
2

E
s4

E

� � :

v
u
u
t (78)

Equation 78 is in exact agreement with the grid spacing obtained in simulations (Figure 1g).

Moreover, it indicates the bifurcation point: When excitation is as smooth as inhibition (sE ¼ sI),

there is no unstable spatial frequency anymore and every perturbation gets balanced (Figure 1g

compare Equation 103). The grid spacing also depends on the ratio of the inhibitory and excitatory

parameters hP;NP;aP (logarithmic term in Equation 78). We confirm this dependence with simula-

tions on the linear track where we increase either hI or NI or a2

I such that the product g¼ hINIa
2

I

increases with respect to the initial product g0. We find a good agreement with the theoretical pre-

diction for all three variations (Figure 8b).

Note that the term hPM2

PNP in the logarithm in Equation 78 is essentially a factor that determines

the rate of weight change of population P: hP is just the scaling factor; MP is the mass under a tun-

ing function (with quadratic influence: once directly through the firing rate of the input, once through

the increased firing rate of the output neuron); NP is the number of tuning functions. The remaining

s2

P originates specifically from the Gaussian shape of the tuning functions.
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Analysis for non-localized input (Gaussian random fields)
Above, we derived the time evolution of perturbations of excitatory and inhibitory weights for place

field-like input, that is, Gaussian tuning curves. In the following we conduct a similar analysis, using

non-localized input, that is, random functions with a given spatial autocorrelation length. We show

that the grid spacing is predicted by an equation that is equivalent to Equation 78.

The non-localized input rPi for input neuron i of population P was obtained by rescaling a Gauss-

ian random field (GRF) gPi to mean 1=2 and minimum 0:

rPi ðxÞ ¼
gPi ðxÞ�minx g

P
i ðxÞ

2 gPi ðxÞ�minx g
P
i ðxÞ


 �

x

; (79)

where minx denotes the minimum over all locations and the GRF gPi is obtained by convolving a

Gaussian GPðxÞ ¼ expð�x2=2s2

PÞ with white noise �i from a uniform distribution between �0:5 and 0:5:

gPi ðxÞ ¼
Z

GPðx� x0Þ�Pi ðx0Þdx0 : (80)

As the white noise has zero mean, the spatial average of a GRF is also 0 in expectation:

gPi ðxÞ

 �

x
¼
Z

GPðx� x0Þ

 �

x
�Pi ðx0Þdx0 (81)

/
Z

�Pi ðx0Þdx0 ¼ 0 : (82)

The individual minima minx g
P
i ðxÞ in Equation 79 would complicate the subsequent analysis. If we

again consider infinitely large systems L!¥ with infinite density NP=L!¥, Equation 79 simplifies.

The mean of the distribution of GRF minima over different input neurons scales logarithmically with

the number of samples (Bovier, 2005). Here the number of samples corresponds to the number of

minima in a GRF, which scales inversely with the width of the convolution kernel that was used to

obtain the GRF:

Number of minima in a GRF/ L=sP : (83)

In the continuum limit the variance of the minima distribution over cells decreases and the relative

difference between the mean minimum value of excitation and inhibition vanishes (Figure 8c):

logðL=sEÞ� logðL=sIÞ
logðL=sEÞ

¼ logðsI=sEÞ
logðL=sEÞ

! 0 : (84)

NB: For the argument it doesn’t matter if it scales purely logarithmically or with logg, where g is

any exponent.

Thus, we take the minimum value as a constant m, which does neither depend on the population

nor on the input neuron. This leads to a simplified expression of the input tuning functions:

rPi ðxÞ ¼
1

2
1� gPi ðxÞ

m

� �

: (85)

As rPi

 �

¼ 0:5 is independent of i, equal excitatory weights are a fixed point for the excitatory

learning rule Equation 7 as described in Equation 19. Moreover, the sum over all input neurons

does not depend on the location:

XNP

i¼1

rPi ðxÞ ¼
1

2

XNP

i¼1

1�
XNP

i¼1

gPi ðxÞ
 !

¼NP

2
� 1

2

Z

GPðx� x0Þ
XNP

i¼1

�Pi ðx0Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0 in cont: limit

dx0 ¼NP

2
: (86)

Therefore, given constant excitatory weights, all inhibitory weights can be set to a value wI
0
such

that the output neuron fires at the target rate, that is, homogeneous weights are a fixed point of the

learning rules, as in the scenario with Gaussian input. Moreover, Equation 29 holds also for GRF
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input. The analysis of the projection operator (see above) of the weight normalization lead to a term

of homogeneous weight perturbations and a term that could be neglected in the high density limit.

We now omit these terms a priori. The time evolution of excitatory and inhibitory weight perturba-

tions can thus be summarized as (compare Equations 29 and 44):

ddwP
i

dt
¼ hP

XNE

k¼1

rPi ðxÞrEk ðxÞ

 �

x
dwE

k �
XNI

k0¼1

rPi ðxÞrIk0ðxÞ

 �

x
dwI

k0

 !

: (87)

The above equation describes the time evolution of each synaptic weight. For the Gaussian input

of the earlier sections, each synaptic weight is associated with one location. In the continuum limit

we thus identified the synaptic weight associated with location � with wPð�Þ. An increase of wEð�Þ
corresponded to an increase in firing at location � (and in the surrounding, given by the width of the

Gaussian of the excitatory tuning). Analogously, an increase of wIð�Þ caused a decrease in firing at

location � (and in the surrounding, given by the width of the Gaussian of the inhibitory tuning).

Because of the non-localized tuning of GRF input, each synaptic weight has an influence on the firing

rate at many locations. The influence of neuron i of population P at location � is expressed by �Pi ð�Þ.
If one wanted to increase the firing rate at a specific location � – and not just everywhere – one

would thus increase all excitatory weights with high �Pi ð�Þ and decrease all excitatory weights with

low �Pi ð�Þ (note that �P can also be negative). The ‘weight’ that corresponds to location � is thus

expressed as:

wPð�Þ :¼
XNP

i¼1

wP
i �

P
i ð�Þ ; (88)

where we weight each synaptic weight with the value of the corresponding white noise at location �.

This corresponds to expressing the weights in a basis that is associated with the location and not

with the individual input neurons. Combining Equation 88 and Equation 87 gives the time evolution

of the weight perturbations associated with location �:

ddwPð�Þ
dt

¼
XNP

i¼1

�Pi ð�Þ
ddwP

i

dt
(89)

¼ hP
XNP

i¼1

�Pi ð�Þ
XNE

k¼1

rPi ðxÞrEk ðxÞ

 �

x
dwE

k �
XNI

k0¼1

rPi ðxÞrIk0ðxÞ

 �

x
dwI

k0

 !

: (90)

We now look at the first term of the above equation, the second term will be treated

analogously:

XNP

i¼1

�Pi ð�Þ
XNE

k¼1

rPi ðxÞrEk ðxÞ

 �

x
dwE

k ¼
XNP

i¼1

�Pi ð�ÞrPi ðxÞ
 !

XNE

k¼1

dwE
k r

E
k ðxÞ

 !* +

x

: (91)

The sum containing the white noise can be simplified using the zero mean property and the

expression for the variance of uniform white noise:

XNP

i¼1

�Pi ð�ÞrPi ðxÞ ¼
1

2

XNP

i¼1

�Pi ð�Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

� 1

m

XNP

i¼1

�Pi ð�ÞgPi ðxÞ

0

B
B
B
@

1

C
C
C
A

(92)

¼� 1

2m

XNP

i¼1

Z

GPðx� x0Þ
XNP

i¼1

�Pi ð�Þ�Pi ðx0Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼bNPdðx0��Þ incont: limit

dx0 (93)

¼�bNP

2m
GPðx��Þ; (94)
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where b is a proportionality constant that does not depend on the population type P. The Dirac

delta dðx0��Þ occurs, because the white noise at different locations is uncorrelated. The sum of the

product of weight perturbations and input rates can be rewritten as:

XNE

k¼1

dwE
k r

E
k ðxÞ ¼

1

2

XNE

k¼1

dwE
k

|fflfflfflffl{zfflfflfflffl}

homog:pert:

� 1

m

Z

GE x��0ð Þ
XNE

k¼1

dwE
k �

E
k ð�0Þ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

¼:dwEð�0Þ; Equation 88

d�0

0

B
B
B
B
@

1

C
C
C
C
A

: (95)

The first term is independent of location x and thus will lead only to spatially homogeneous per-

turbations, which we do not consider in the following. Inserting Equations 94 and 95 and the analo-

gous terms for inhibition in Equation 91 leads to:

XNP

i¼1

�Pi ð�Þ
XNE

k¼1

rPi ðxÞrEk ðxÞ

 �

dwE
k ¼ bNP

4m2

Z

GPðx��ÞGE ðx��0Þ

 �

x
dwEð�0Þd�0 (96)

Figure 8. Results of the mathematical analysis. (a) The eigenvalue spectrum for the eigenvalues of Equation 72 for an excitatory tuning of width

sE ¼ 0:03. The first eigenvalue l0 is always 0. If the inhibitory tuning is more narrow than the excitatory tuning, that is, sI<sE, the second eigenvalue l1

is negative for every wavevector k. For sI>sE the eigenvalue spectrum has a unique positive maximum kmax, that is, a most unstable spatial frequency.

The wavevector kmax at which l1 is maximal is obtained from Equation 78 and marked with a dashed line. (b) The dependence of the grid spacing on

learning rate hI, number of input neurons NI and input height aI is accurately predicted by the theory. The gray line shows the grid spacing obtained

from Equation 78. We vary the inhibitory learning rate, hI (circles), the number of inhibitory input neurons, NI (squares), or the square of the height of

the inhibitory input place fields, a2

I (diamonds). The horizontal axis shows the ratio of the product hINIa
2

I to the initial value of the product g0. We keep

hE ¼ 0:3� 10
�4, NE ¼ 800 and aE ¼ 1 in each simulation and the g0 parameters are: hI ¼ 0:3� 10

�3, NI ¼ 200, aI ¼ 1. (c) Distribution of minimal values

of GRF input. Histograms show the distribution of the minimal values of 1000 Gaussian random fields for a small linear track, L ¼ 2, and a large linear

track L ¼ 1000. Red and blue colors correspond to the tuning of excitatory and inhibitory input neurons, respectively. Each dotted line indicates the

mean of the histogram of the same color. For larger systems, the distribution of the minimum values gets more narrow and the relative distance

between the minima of excitatory and inhibitory neurons decreases.

DOI: https://doi.org/10.7554/eLife.34560.030

Weber and Sprekeler. eLife 2018;7:e34560. DOI: https://doi.org/10.7554/eLife.34560 30 of 41

Research article Neuroscience

https://doi.org/10.7554/eLife.34560.030
https://doi.org/10.7554/eLife.34560


¼ 1

hP

Z

K̂PEð���0ÞdwEð�0Þd�0 (97)

¼ 1

hP
ðK̂PE � dwEÞð�Þ ; (98)

where we introduce kernels for the translation invariant overlap between two Gaussians with differ-

ent centers (similar to Equation 32):

K̂PP0ð���0Þ :¼ bh NP

4m2
GPð�ÞGPð�0Þ

 �

x
¼ bh NP

4m2
GPð0ÞGP0ðj���0jÞ
D E

x
(99)

Equation 89 can thus be written as:

ddwPð�Þ
dt

¼ ðK̂PE � dwEÞð�Þ� ðK̂PI � dwIÞð�Þ ; (100)

which leads to a dynamical system for the Fourier components of the weight perturbations that is

equivalent to Equation 65 with eigenvalues:

l0ðkÞ ¼ 0 (101)

l1ðkÞ ¼ K̂EEðkÞ� K̂IIðkÞ (102)

¼ b

4m2
hEM

2

ENE exp �k2 s2
� 	

�hIM
2

I NI exp �k2s2
� 	� �

: (103)

Thus, we get the same expression for the grid spacing as in the scenario of Gaussian input (with

aE = aI = 1):

‘¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

I �s2

E

ln
hIs

4

I
NI

hEs
4

E
NE

� � :

v
u
u
t (104)

Glossary
A summary of notation:

The rat0s position at time t : xðtÞ
Spatial dimensions x;y and head direction z : x¼ ðx;y; zÞ

Population label; can be E ðexcitatoryÞ or I ðinhibitoryÞ : P

Standard deviation of Gaussian tuning of population P : sP

Spatial autocorrelation length of input of population P : sP;corr

Number of input neurons of population P :NP

Number of place fields per input neuron of population P :Nf
P

Firing rate of output neuron : routðxÞ
Firing rate of input neuron i of population P : rPi ðxÞ

Synaptic weight of input neuron i of population P to output neuron :wP
i ðtÞ

Learning rates of excitation and inhibition : hE;hI

Target rate of the output neuron : �0
Length of linear track : L

Height of the Gaussian input fields : aE;aI

Value of Gaussian with standard deviation sP at location x : GPðxÞ
Von Mises distribution with width sP that is periodic in ½�L=2;L=2� :MPðxÞ
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Mégevand P. 2013. watsons_u2. GitHub. 09f649a. https://github.com/pierremegevand/watsons_u2
Miao C, Cao Q, Moser MB, Moser EI. 2017. Parvalbumin and somatostatin interneurons control different space-
coding networks in the medial entorhinal cortex. Cell 171:507–521. DOI: https://doi.org/10.1016/j.cell.2017.08.
050, PMID: 28965758

Miller KD, MacKay DJC. 1994. The role of constraints in hebbian learning. Neural Computation 6:100–126.
DOI: https://doi.org/10.1162/neco.1994.6.1.100

Molter C, Yamaguchi Y. 2008. Entorhinal theta phase precession sculpts dentate gyrus place fields.
Hippocampus 18:919–930. DOI: https://doi.org/10.1002/hipo.20450, PMID: 18528856

Monsalve-Mercado MM, Leibold C. 2017. Hippocampal spike-timing correlations lead to hexagonal grid fields.
Physical Review Letters 119:038101. DOI: https://doi.org/10.1103/PhysRevLett.119.038101, PMID: 28777606

Moser EI, Kropff E, Moser MB. 2008. Place cells, grid cells, and the brain’s spatial representation system. Annual
Review of Neuroscience 31:69–89. DOI: https://doi.org/10.1146/annurev.neuro.31.061307.090723, PMID: 182
84371

Muessig L, Hauser J, Wills TJ, Cacucci F. 2015. A developmental switch in place cell accuracy coincides with grid
cell maturation. Neuron 86:1167–1173. DOI: https://doi.org/10.1016/j.neuron.2015.05.011, PMID: 26050036

Muller RU, Bostock E, Taube JS, Kubie JL. 1994. On the directional firing properties of hippocampal place cells.
Journal of Neuroscience 14:7235–7251 . DOI: https://doi.org/10.1523/JNEUROSCI.14-12-07235.1994, PMID: 7
996172

Navratilova Z, Godfrey KB, McNaughton BL. 2016. Grids from bands, or bands from grids? An examination of
the effects of single unit contamination on grid cell firing fields. Journal of Neurophysiology 115:992–1002.
DOI: https://doi.org/10.1152/jn.00699.2015, PMID: 26683071

Weber and Sprekeler. eLife 2018;7:e34560. DOI: https://doi.org/10.7554/eLife.34560 34 of 41

Research article Neuroscience

https://doi.org/10.1038/nature03721
http://www.ncbi.nlm.nih.gov/pubmed/15965463
https://doi.org/10.1113/jphysiol.2010.194274
http://www.ncbi.nlm.nih.gov/pubmed/20819942
https://doi.org/10.1016/j.neuron.2017.03.025
https://doi.org/10.1016/j.neuron.2017.03.025
http://www.ncbi.nlm.nih.gov/pubmed/28392071
https://doi.org/10.1523/JNEUROSCI.14-12-07347.1994
https://doi.org/10.1523/JNEUROSCI.14-12-07347.1994
http://www.ncbi.nlm.nih.gov/pubmed/7996180
https://doi.org/10.1038/nature14622
http://www.ncbi.nlm.nih.gov/pubmed/26176924
https://doi.org/10.1002/hipo.20520
http://www.ncbi.nlm.nih.gov/pubmed/19021261
https://doi.org/10.1038/nature14153
http://www.ncbi.nlm.nih.gov/pubmed/25673417
https://doi.org/10.1126/science.1222403
http://www.ncbi.nlm.nih.gov/pubmed/22904012
https://doi.org/10.1126/science.1188210
https://doi.org/10.1126/science.1188210
http://www.ncbi.nlm.nih.gov/pubmed/20558721
https://doi.org/10.1016/S0896-6273(02)01096-6
http://www.ncbi.nlm.nih.gov/pubmed/12495631
https://doi.org/10.1126/science.1114037
https://doi.org/10.1126/science.1114037
http://www.ncbi.nlm.nih.gov/pubmed/16040709
http://www.ncbi.nlm.nih.gov/pubmed/11784809
https://doi.org/10.1002/hipo.20734
https://doi.org/10.1002/hipo.20734
http://www.ncbi.nlm.nih.gov/pubmed/20082295
https://doi.org/10.1038/nrn1932
http://www.ncbi.nlm.nih.gov/pubmed/16858394
http://www.ncbi.nlm.nih.gov/pubmed/16858394
https://doi.org/10.1162/jocn.1991.3.2.190
https://doi.org/10.1162/jocn.1991.3.2.190
http://www.ncbi.nlm.nih.gov/pubmed/23972093
https://doi.org/10.1016/S0896-6273(00)81072-7
http://www.ncbi.nlm.nih.gov/pubmed/10774737
https://doi.org/10.1126/science.1217139
http://www.ncbi.nlm.nih.gov/pubmed/22442486
https://github.com/pierremegevand/watsons_u2
https://doi.org/10.1016/j.cell.2017.08.050
https://doi.org/10.1016/j.cell.2017.08.050
http://www.ncbi.nlm.nih.gov/pubmed/28965758
https://doi.org/10.1162/neco.1994.6.1.100
https://doi.org/10.1002/hipo.20450
http://www.ncbi.nlm.nih.gov/pubmed/18528856
https://doi.org/10.1103/PhysRevLett.119.038101
http://www.ncbi.nlm.nih.gov/pubmed/28777606
https://doi.org/10.1146/annurev.neuro.31.061307.090723
http://www.ncbi.nlm.nih.gov/pubmed/18284371
http://www.ncbi.nlm.nih.gov/pubmed/18284371
https://doi.org/10.1016/j.neuron.2015.05.011
http://www.ncbi.nlm.nih.gov/pubmed/26050036
https://doi.org/10.1523/JNEUROSCI.14-12-07235.1994
http://www.ncbi.nlm.nih.gov/pubmed/7996172
http://www.ncbi.nlm.nih.gov/pubmed/7996172
https://doi.org/10.1152/jn.00699.2015
http://www.ncbi.nlm.nih.gov/pubmed/26683071
https://doi.org/10.7554/eLife.34560


O’Keefe J, Burgess N, Donnett JG, Jeffery KJ, Maguire EA. 1998. Place cells, navigational accuracy, and the
human hippocampus. Philosophical Transactions of the Royal Society B: Biological Sciences 353:1333–1340.
DOI: https://doi.org/10.1098/rstb.1998.0287, PMID: 9770226

O’Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the
freely-moving rat. Brain Research 34:171–175. DOI: https://doi.org/10.1016/0006-8993(71)90358-1,
PMID: 5124915

O’Keefe J. 1976. Place units in the hippocampus of the freely moving rat. Experimental Neurology 51:78–109.
DOI: https://doi.org/10.1016/0014-4886(76)90055-8, PMID: 1261644

Pastoll H, Solanka L, van Rossum MC, Nolan MF. 2013. Feedback inhibition enables q-nested g oscillations and
grid firing fields. Neuron 77:141–154. DOI: https://doi.org/10.1016/j.neuron.2012.11.032, PMID: 23312522
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Appendix 1

DOI: https://doi.org/10.7554/eLife.34560.032

Rat trajectory
In the linear track model (one dimension, Figure 1), we create artificial trajectories xðtÞ. The rat

moves along a line of length L with constant velocity v = 1 cm per unit time step Dt = 1. The

rat always inverts its direction of motion when it hits either end of the enclosure at �L=2 or

L=2. Additionally, in each unit time step it inverts its direction with a probability of 2�Dt=L,

resulting in a typical persistence length of L/2.

In the open arena model (two dimensions, Figures 2, 3 and 5), we take trajectories xðtÞ
from behavioral data (Sargolini et al., 2006b) of a rat that moved in a 1 m � 1 m quadratic

enclosure. The data provide coherent trajectories in intervals of 10 min. To get a 10-hr

trajectory, we concatenate 60 individual trajectories. Different trajectories in our simulations

correspond to different random orders of concatenation. A 10-min trajectory contains 30,000

locations. We update the location in every unit time step. A time step thus corresponds to 20

ms. For simulations with a separation wall (Figure 4), we use a persistent random walk to

constrain the motion of the rat to either side of the arena (see below).

In the model for neurons with head direction tuning (three dimensions, Figure 6), we use

the same behavioral trajectories as in two dimensions. To account for the experimental

observation that the head direction of the animal is only roughly aligned with the direction of

motion, we model the head direction as the direction of motion plus a random angle that is

drawn in each unit time step from a normal distribution with standard deviation p=6.

In all dimensions and for the learning rates under consideration, we find that the precise

trajectory of the rat has only a small influence on the results (see also Figure 2—figure

supplement 1).

Spatial tuning of input neurons
The firing rates of excitatory and inhibitory synaptic inputs rEi ; rIj are tuned to the location x of

the animal. In the following, we use x and y for the first and second spatial dimensions and z

for the head direction. The values of x; y; z are in the range ½�L=2; L=2�. Note that we take the

interval of length L even for the dimension of head direction to have spatial and head

direction input at the same scale. In the interpretation of head direction input, the periodic

interval is to be understood as the full circle of 360 degrees.

We analyzed three different kinds of input tuning functions. Place cells (single Gaussians),

several place fields (sum of multiple Gaussians) and non-localized input (Gaussians convolved

with white noise). We summarize the tuning functions of neurons from the excitatory and the

inhibitory population by referring to them as population P, where P 2 fE; Ig.
For readability, we define a Gaussian of height 1 with standard deviation sP:

GPðxÞ :¼ exp � x2

2s2

� �

: (105)

The input function of the i-th neuron of population P with Nf
P place fields per input neuron

in one dimension is then given by:

rPi ðxÞ ¼
X
Nf
P

b¼1

GPðx��P
i;bÞ ; (106)

where �P
i;b denotes the center location of field number b of input neuron i of population P. The

scenario of place cell-like inputs is obtained by setting NP ¼ 1.

For higher dimensions we define the center components as �P
i;b ¼ ð�P

i;b;x; �
P
i;b;y; �

P
i;b;zÞ. In two

dimensions, the tuning of the i-th neuron of population P with Nf
P place fields per input neuron

is thus given by:
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rPi ðxÞ ¼
X
N f
P

b¼1

GPðx��P
i;b;xÞ GPðx��P

i;b;yÞ: (107)

Here, the two one-dimensional Gaussians can have different standard deviations along

different axes, sP;x and sP;y, respectively. For simplicity, we constrain the resulting elliptic bell-

shaped curve to be aligned with the x or y axis.

In three dimensions we also consider bell-shaped tuning functions along the z-direction.

However, as the head direction component is periodic, we take von Mises functions that are

periodic in the interval ½�L=2; L=2�:

MPðzÞ :¼ exp
L

2psP;z

� �2

cos
2pz

L

� �

� 1

� �( )

: (108)

In the interpretation of head direction input, the periodic interval is to be understood as

the full circle of 360 degrees. In three dimensions, the tuning of the i-th neuron of population

P with Nf
P place fields per input neurons is thus given by:

rPi ðxÞ ¼
X
Nf
P

b¼1

GP x��P
i;b;x

� �

GP y��P
i;b;y

� �

MP z��P
i;b;z

� �

: (109)

The center locations �p for neurons of type P in an enclosure of side length L are drawn

from a randomly distorted lattice (Figure 2—figure supplement 5). First, the total number of

input neurons is factorized into its dimensional components NP ¼ NP;xNP;yNP;z. Then, for

example along the x dimension, center locations of neurons of population P are placed

equidistantly in ½� L
2
� 3sP;x;

L
2
þ 3sP;x�. Allowing the field centers to lie a multiple of their

standard deviation outside the box reduces boundary effects. Each point on the equidistant

lattice is subsequently distorted with noise drawn from a uniform distribution whose range is

given by the distance between two points on the undistorted lattice, that is,

½� L
2ðNP;x�1Þ ;

L
2ðNP;x�1Þ�; see Figure 2—figure supplement 5. Other dimensions are treated

analogously. This procedure ensures a random, but still dense, coverage of the arena with few

place fields. A truly random distribution of centers leads to similar results (not shown), but

requires more input neurons to cover the arena densely. We create N f
P of such distorted

lattices. To each input neuron we assign one center location from each of the N f
P lattices at

random and without replacement. This guarantees that each input neuron has Nf
P randomly

located fields that together cover the arena densely.

We obtain dense non-localized input by convolving Gaussians as in Equations 105 and 107

(with Nf
P ¼ 1) with uniform white noise between �0.5 and 0.5. For the discretization we choose

sP=20 and center the Gaussian convolution kernel on an array of eight times its standard

deviation. We convolve this array with a sufficiently large array of white noise such that we

keep only the values where the array of the convolution kernel is inside the array of the white

noise. This way we avoid boundary effects at the edges. From the resulting function we

subtract its minimum and then divide by twice the mean of the difference between the

function and its minimum. This increases the signal to noise ratio and ensures that all of the

inputs have a mean value of 0.5 across the arena and a minimum at 0. For each input neuron

we take a different realization of white noise. This results in arbitrary tuning functions of the

same autocorrelation length as the Gaussian convolution kernel. We define the autocorrelation

length as the distance at which the autocorrelation has decayed to 1=e of its maximum, where

e is Euler’s number. The above mentioned also holds for circular enclosures, but we drop all

field centers outside of a circle of radius L=2þ 3sP because they never get activated. This is

not necessary but it reduces simulation time.

Weber and Sprekeler. eLife 2018;7:e34560. DOI: https://doi.org/10.7554/eLife.34560 38 of 41

Research article Neuroscience

https://doi.org/10.7554/eLife.34560


Learning two sides of a room independently
In Figure 4 we simulated a rat that explores each half of an arena that is divided by a wall.

Then the wall is removed and the animal explores the entire arena. This setup was inspired by

recent experiments (Wernle et al., 2018) and simulations (Rosay et al., in preparation;

Mégevand, 2013). To simulate the two separated compartments, we use two independent

sets of inputs, that is, place cells that are randomly distributed around the entire arena (AB).

One set is active when the rat explores the first compartment, the other set is active when the

rat explores the second compartment. Both sets are active when the wall is removed. If we

used a single set of inputs, the grids would be merged, even before the wall was removed.

The excitatory synaptic weights of the two sets are normalized independently. This is

important, because otherwise the synaptic weights of inputs that are only active when the rat

is in compartment A would die out while the rat explored compartment B.

To constrain the motion of the rat to one side of the arena, we create artificial rat

trajectories as a persistent random walk with velocity v along a direction vector ðcosf; sinfÞ,
with polar angle f. In each time step, Dt, a random number drawn from a normal distribution

with mean 0 and standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4vDt=L
p

is added to f, resulting in a two-dimensional

random walk of persistence length L=2. Whenever the rat hits one of the boundaries, the

direction vector is modified such that the angle of incidence equals the angle of reflection. We

relate the trajectory to behavioral times by assuming an average rat velocity of 20 cm/s.

Boundary effects and stability of grids
The motion of the rat is not periodic. We constrain it to either a square or a circular box. The

input tuning is not periodic either. Consequently, input neurons with tuning fields that lie

partially outside the boundary receive less activation. This leads to boundary effects:

Excitatory weights associated with fields at the boundaries grow less, because the Hebbian

learning scales with the presynaptic activation. This leads to smaller firing rates at the

boundary. According to the inhibitory learning rule, the inhibitory weights of neurons that are

tuned to boundary locations then also grow less. At a distance given by the width of the

excitatory firing fields, the excitatory weights grow as fast as those that are far away from the

boundary. However, if inhibition is more broadly tuned than excitation, the inhibitory input is

still reduced at these locations. Firing fields are thus favored at a distance from the boundary

that is determined by the width of the excitatory tuning, because at this location the excitation

will exceed the inhibition. This preference of firing at a certain distance from the boundary

competes with the preference for hexagonal firing that is induced by the interaction of

excitatory and inhibitory plasticity. For place field-like input arranged on a symmetric lattice,

the alignment to the boundary can be seen in the alignment of one grid axis to the boundary

in a square box (Figure 2—figure supplement 3a). This alignment is not an artifact of the

symmetric distribution of input fields, because it is not present in a circular arena (Figure 2—

figure supplement 3b). The tendency to align with the boundary can be overcome using a

random distribution of input fields (Figure 2—figure supplement 3c), and in particular by

using input with more than one place field per neuron, that is, non-localized input.

Nonetheless, we observe boundary effects in all simulations when simulating for very long

times.

Distribution of initial synaptic weights
To start with reasonable firing rates, we take the initial weights close to the values that would

correspond to the fixed point weights (see also the mathematical analysis). More precisely,

initially all synaptic weights are chosen from a uniform distribution. For the spreading of the

distribution we take �5% of the mean value. For the mean value of the excitatory weights, wE
0
,

we typically take wE
0
¼ 1, see Table 1. We then determine the mean of the initial inhibitory

weights, wI
0
, such that the output neuron fires on average around the target rate:
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w
E
r
E �w

I
r
I ¼wE

0

XNE

i¼1

rEi �wI
0

XNI

j¼1

rIj¼
!
�0 ; (110)

so

wI
0
¼wE

0

PNE

i¼1
rEi � �0

PNI

j¼1
rIj

: (111)

The sums are given by:

XNP

i¼1

rPi ¼NP

AP
MP ; (112)

where NP is the number of input neurons, MP is the area under a tuning function and AP is the

area in which the centers of the input tuning function can lie. For the fixed point weight

relation Equation 111 this leads to

wI
0
¼wE

0
NEME=AE� �0
NIMI=AI

: (113)

The values for AP and MP depend on the dimensionality of the system.

One dimension
For Gaussian input we have:

MP ¼
ffiffiffiffiffiffi

2p
p

Nf
PaPsP; AP ¼ Lþ 6sP : (114)

For Gaussian random field input we have:

MP ¼ AP

2
; AP ¼ L : (115)

Two dimensions
For Gaussian input we have:

MP ¼
Z Z

rPð�x;�yÞd�x d�y ¼ 2pNf
PsP;xsP;y; AP ¼ ðLþ 6sP;xÞðLþ 6sP;yÞ : (116)

For Gaussian random field input we have:

MP ¼ AP

2
; AP ¼ L2 : (117)

Three dimensions
In three dimensions we use a von Mises distribution along the third dimension to account for

the periodicity of the head direction angle. We thus get

MP ¼
Z Z Z

rPð�P;�y;�zÞd�x d�y d�z (118)

¼Nf
P2psP;xsP;y L

I0
L

2psP;z

� �2
� �

exp L
2psP;z

� �2
� � (119)
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where I0 is the modified Bessel function. The area in which the function centers can lie is given

by:

AP ¼ ðLþsP;xÞðLþ 6sP;yÞL : (120)

Grid score measure
We use the grid score suggested by Langston et al. (2010) . More precisely, we determine

the grid score of a spatial autocorrelogram – the Pearson correlation coefficients for all spatial

shifts of the firing rate map against itself – in the following way: We crop a centered doughnut

shape from the correlogram. To get the inner radius of the doughnut, we clip all values in the

correlogram with values smaller than 0.1 to 0. We obtain the resulting clusters that are larger

than 0.1 using scipy.ndimage.measurements.label from the SciPy package for Python with a

quadratic filter structure, ðð1; 1; 1Þ; ð1; 1; 1Þ; ð1; 1; 1ÞÞ, for a correlogram with 51� 51 pixels. We

use the distance from the center to the outermost pixel of the innermost cluster as the inner

radius of the doughnut. For the outer radius we try 50 values, linearly increasing from the inner

radius to the corner of the quadratic arena. For each of the resulting 50 doughnuts, we rotate

the doughnut around the center and correlate it with the unrotated doughnut. We determine

the correlation for 30, 60, 90, 120 and 150 degrees. We define the grid score as the minimum

of the correlation values at 60 and 120 degrees minus the maximum of the correlation values

at 30, 90 and 150 degrees. After trying all 50 doughnuts, we take the highest resulting grid

score as the grid score of the cell. A hexagonal symmetry thus leads to positive values,

whereas a quadratic symmetry leads to negative values.

Measure for head direction tuning
To quantify the head direction tuning of a cell, we compare the head direction tuning to a

uniform circular tuning, using Watson’s U2 measure. We adopted the code from

Mégevand, 2013 . We drew 10; 000 samples, s_HD , from a probability distribution created

from the head direction tuning array, and 10; 000 samples, s_uniform , from a uniform

distribution and use watson_u2(s_uniform, s_HD) from Mégevand, 2013 to quantify the

degree of non-circularity. The sharper the head direction tuning, the higher the resulting

value.

Measure for grid spacing on the linear track
We define the grid spacing of one-dimensional grids as the location of the first non-centered

peak in the autocorrelogram of the firing pattern (Figure 1g). For place cell-like input, we

obtain the grid spacing from a single simulation.

For non-localized input the grids show defects, which results in misleading peaks in the

correlogram. In this case, we used the first peak of the average of 50 correlograms to get the

grid spacing (Figure 1h). The 50 correlograms were obtained from 50 realizations that differ

only in the randomness of the input function. To avoid taking a fluctuation in the correlogram

as the first peak – and thus obtaining misleading grid spacing – we take the maximum

between 3sE (to cut out the center of the correlogram) and 1 (a value larger than the largest

grid spacing in Figure 1h).

For high values of the spatial smoothness of inhibition, sI, the simulation results deviate

from the analytical solution. This is because for high sI but small sE, the output neuron fires

very sparsely, which impedes the learning. This can be readily overcome by increasing the

tuning width, sE, of the excitatory input.
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