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Abstract Human immunodeficiency virus (HIV) infection is currently incurable, due to the

persistence of latently infected cells. The ‘shock and kill’ approach to a cure proposes to eliminate

this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of

infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective.

To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined

which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of

these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of

reactivatable vs. non-reactivatable populations revealed that the integration sites were

distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of

‘shock and kill’, and suggest the need to explore other strategies to control the latent HIV

reservoir.

DOI: https://doi.org/10.7554/eLife.34655.001

Introduction
Antiretroviral therapy (ART) has transformed HIV infection from a uniformly deadly disease into a

chronic lifelong condition, saving millions of lives. However, ART interruption leads to rapid viral

rebound within weeks due to the persistence of proviral latency in rare, long-lived resting CD4+ T

cells and possibly in tissue macrophages (Honeycutt et al., 2017). HIV latency is defined as the pres-

ence of a transcriptionally silent but replication-competent proviral genome. Latency allows infected

cells to evade both immune clearance mechanisms and currently available ART, which is based solely

on the elimination of actively replicating virus.

An extensively investigated approach to purging latent HIV is the ‘shock and kill’ strategy, which

consists of forcing the reactivation of latent proviruses (‘shock’ phase) with the use of latency revers-

ing agents (LRAs), while maintaining ART to prevent de novo infections. Subsequently, reactivation
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of HIV expression would expose such cells (shocked cells) to killing by viral cytopathic effects and

immune clearance (‘kill’ phase). A variety of LRAs have been explored in vitro and ex vivo, with only

a few candidates being advanced to testing in pilot human clinical trials. Use of histone deacetylase

inhibitors (HDACi: vorinostat, panobinostat, romidepsin, and disulfiram) in clinical studies has shown

increases in cell-associated HIV RNA production and/or plasma viremia after in vivo administration

(Archin et al., 2012a; Elliott et al., 2015; Elliott et al., 2014; Rasmussen et al., 2014;

Søgaard et al., 2015). However, none of these interventions alone has succeeded in significantly

reducing the size of the latent HIV reservoir (Rasmussen and Lewin, 2016).

Several obstacles can explain the failure of LRAs, as reviewed in (Margolis et al., 2016;

Rasmussen et al., 2016). However, the biggest challenge to date is our inability to accurately quan-

tify the size of the reservoir. The absolute quantification (number of cells) of the latent reservoir in

vivo (and ex vivo) has thus far been technically impossible. The most sensitive, quickest, and easiest

assays to measure the prevalence of HIV-infected cells are PCR-based, quantifying total or inte-

grated HIV DNA or RNA transcripts. However these assays substantially overestimate the number of

latently infected cells, due to the predominance of defective HIV DNA genomes in vivo

(Bruner et al., 2016; Ho et al., 2013). The best currently available assay to measure the latent reser-

voir is the relatively cumbersome viral outgrowth assay (VOA), which is based on quantification of

the number of resting CD4+ T cells that produce infectious virus after a single round of maximum in

vitro T-cell activation. After several weeks of culture, viral outgrowth is assessed by an ELISA assay

for HIV-1 p24 antigen or a PCR assay for HIV-1 RNA in the culture supernatant. Importantly, the

number of latently infected cells detected in the VOA is 300-fold lower than the number of resting

CD4+ T cells that harbor proviruses detectable by PCR.

This reliance on a single round of T-cell activation likely incorrectly estimates the viral reservoir for

two reasons. First, the discovery of intact non-induced proviruses indicates that the size of the latent

reservoir may be much greater than previously thought: the authors estimate that the number may

be at least 60 fold higher than estimates based on VOA (Ho et al., 2013; Sanyal et al., 2017). This

work and that of others (Chen et al., 2017) highlight the heterogeneous nature of HIV latency and

suggest that HIV reactivation is a stochastic process that only reactivates a small fraction of latent

viruses at any given time (Dar et al., 2012; Ho et al., 2013; Singh et al., 2010; Weinberger et al.,

2005). Second, the ability of defective proviruses to be transcribed and translated in vivo

(Pollack et al., 2017): this study shows that, although defective proviruses cannot produce infectious

particles, they express viral RNA and proteins, which can be detectable by any p24 antigen or PCR

assays used for the reservoir-size quantification.

Thus, current assays underestimate the actual number of latently infected cells, both in vivo and

ex vivo, and the real size of HIV reservoir is still to be determined. Therefore, it has been difficult to

judge the potential of LRAs in in vitro (latency primary models), ex-vivo (patients’ samples) and in

vivo (clinical trial) experiments.

HIV latency is a complex, multi-factorial process (reviewed in [Dahabieh et al., 2015]). Its estab-

lishment and maintenance depend on: (a) viral factors, such as integrase that specifically interacts

with cellular proteins, including LEDGF, (b) trans-acting factors (e.g., transcription factors) and their

regulation by the activation state of T cells and the environmental cues that these cells receive, and

(c) cis-acting mechanisms, such as the local chromatin environment at the site of integration of the

virus into the genome. Recent evidence has also highlighted the association of specific HIV-1 inte-

gration sites with clonal expansion of latently infected cells (reviewed in [Maldarelli, 2016]).

The role of the site of HIV integration into the cellular genome in the establishment and mainte-

nance of HIV latency has remained controversial. While early studies found that the HIV integration

site does affect both the entry into latency (Chen et al., 2017; Jordan et al., 2003; Jordan et al.,

2001), and the viral response to LRAs (Chen et al., 2017), other studies have failed to find a signifi-

cant role of integration sites in regulating the fate of HIV infection (Dahabieh et al., 2014; Sherrill-

Mix et al., 2013).

In this study, we have used a new dual color reporter virus, HIVGKO, to investigate the reactivation

potential of various LRAs in pure latent population. We find that latency is heterogeneous and that

only a small fraction (<5%) of the latently infected cells is reactivated by LRAs. We also show that

both genomic localization and chromatin context of the integration site affect the fate of HIV infec-

tion and the reversal of viral latency.
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Results

A second-generation dual-fluorescence HIV-1 reporter (HIVGKO) to
study latency
Our laboratory reported the development of a dual-labeled virus (DuoFluoI) in which eGFP is under

the control of the HIV-1 promoter in the 50 LTR and mCherry is under the control of the cellular elon-

gation factor one alpha promoter (EF1a) (Calvanese et al., 2013). However, we noted that the

model was limited by a modest number of latently infected cells (<1%) generated regardless of viral

input (Figure 1—figure supplement 1A–1C), as well as a high proportion of productively infected

cells in which the constitutive promoter EF1a was not active (GFP+, mCherry-).

To address these issues, which we suspected were due to recombination between the 20–30 bp

regions of homology at the N- and C-termini of the adjacent fluorescent proteins (eGFP and

mCherry) (Salamango et al., 2013), we generated a new version of dual-labeled virus (HIVGKO), con-

taining a codon-switched eGFP (csGFP) and a distinct, unrelated fluorescent protein mKO2 under

the control of EF1a (Figure 1A). First, titration of HIVGKO input revealed that productively and

latently infected cells increased proportionately as the input virus increased (Figure 1B and Figure

1—figure supplement 1), unlike the original DuoFluoI (Figure 1—figure supplement 1). Second,

comparison of primary CD4+ T cells infected with HIVGKO or the original DuoFluoI revealed an

increase in double-positive (csGFP+ mKO2+) infected cells in HIVGKO infected cells (Figure 1C). A

small proportion of csGFP+ mKO2- cells were still visible in HIVGKO infected cells. We generated a

HIVGKO virus lacking the U3 promoter region of the 30LTR (DU3-GKO), resulting in an integrated virus

devoid of the 5’ HIV U3 region. This was associated with a suppression of HIV transcription and an

inversion of the latency ratio (ratios latent/productive = 0.34 for HIVGKO-WT-LTR and 8.8 for HIVGKO-D

U3-3’LTR - Figure 1D). Finally, to further characterize the constituent populations of infected cells,

double-negative cells, latently and productively infected cells were sorted using FACS and analyzed

for viral mRNA and protein content. (Figures 1E and F, Figure 1—source data 1). As expected,

productively infected cells (csGFP+) expressed higher amounts of viral mRNA and viral proteins, but

latently infected cells (csGFP- mKO2+) had very small amounts of viral mRNA and no detectable viral

proteins.

Based on all these findings, the second-generation of dual-fluorescence reporter, HIVGKO, is able

to more accurately quantify latent infections in primary CD4+ T cells than HIVDuoFluoI, and thus allows

for the identification and purification of a larger number of latently infected cells. Using flow cytome-

try, we can determine infection and HIV productivity of individual cells and simultaneously control

for cell viability.

Correlation between LRA efficacy in HIV-infected patient samples and
activity in HIVGKO latently infected cells
Next, we evaluated the reactivation of latent HIVGKO in primary CD4+ T cells by LRAs, and compared

it with the ability of the same LRAs to reverse latency in CD4+ T cells isolated from HIV-infected indi-

viduals. We tested the following LRAs: (a) the histone deacetylase inhibitor (HDACi) panobinostat

(Rasmussen et al., 2013), (b) the bromodomain-containing protein 4 (BRD4) inhibitor JQ1, which

acts through positive transcription elongation factor (P-TEFb) (Banerjee et al., 2012; Boehm et al.,

2013; Filippakopoulos et al., 2010; Li et al., 2013; Zhu et al., 2012), and (c) the PKC activator,

bryostatin-1 (del Real et al., 2004; Mehla et al., 2010). Viral reactivation mediated by these LRAs

was compared to treatment of CD4+ T cells with aCD3/CD28 (Spina et al., 2013). Several studies

have shown synergetic effects when combining different LRAs (Darcis et al., 2015; Jiang et al.,

2015; Laird et al., 2015; Martı́nez-Bonet et al., 2015), therefore we also tested bryostatin-1 in

combination with either panobinostat or JQ1. Drugs were used at concentrations previously shown

to be effective at reversing latency in other model systems (Archin et al., 2012a; Bullen et al.,

2014; Laird et al., 2015; Spina et al., 2013).

To measure reactivation by LRAs in patient samples, we treated 5 million purified resting CD4+ T

cells from four HIV infected individuals on suppressive ART (participant characteristics in Table 1)

with single LRAs, combinations thereof, or vehicle alone for 24 hr. LRAs efficacy was assessed using

a PCR-based assay, by measuring levels of intracellular HIV-1 RNA using primers and a probe that

detect the 30 sequence common to all correctly terminated HIV-1 mRNAs (Bullen et al., 2014). Of
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Figure 1. Second generation of dual-fluorescence HIV-1 reporter, HIVGKO to quantify stable latency. (A) Schematic representation of first (top:

HIVDuoFluoI) and second generation (bottom: HIVGKO) of dual-labeled HIV-1 reporters. (B) Representative experiment of HIVGKO virus titration in

activated primary CD4+ T cells (4 days post-infection). Primary CD4+ T cells were activated with aCD3/CD28 beads + 20 U/mL IL-2 for 3 days before

infection with different amounts of HIVGKO (input, ng/p24) and analyzed by flow cytometry 4 days post-infection. (C) Comparison of HIVDuoFluoI and

Figure 1 continued on next page
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the LRAs tested individually, none exhibited a statistically significant effect (n=4 - Figure 2A, Fig-

ure 2—source data 1). Importantly, T-cell activation positive control, aCD3/CD28 (24.4-fold,

Figure 2A), showed expected fold induction value (10 to 100-fold increases of HIV RNA in PBMCs

[Bullen et al., 2014; Darcis et al., 2015; Laird et al., 2015]). Combinations of the PKC agonist

bryostatin-1 with JQ1 or with panobinostat (fold-increases of 126.2- and 320.8-fold, respectively,

Figure 2A), were highly more effective than bryostatin-1, JQ1 or panobinostat alone (fold-increases

of 6.8, 1.7- and 2.9-fold, respectively, Figure 3A), and even greater than T-cell activation with

aCD3/CD28. This observation is consistent with previous reports (Darcis et al., 2015; Jiang et al.,

2015; Laird et al., 2015; Martı́nez-Bonet et al., 2015).

The same LRAs and combinations were next tested after infection of human CD4+T cells in vitro

with HIVGKO. Measurement of intracellular HIV-1 mRNA in HIVGKO latently infected cells showed an

expected fold induction of latency in response to aCD3/CD28 (11.3-fold, Figure 2B, Figure 2—

source data 1). Second, JQ1, panobinostat, and bryostatin-1 alone all caused limited reactivation of

latent HIV (fold-increases of 1.1-, 5.6- and 6.2-fold, respectively, Figure 2B), as observed in patients’

samples. Finally, we observed low synergy when combining bryostatin and JQ1 (8-fold increase), but

high synergy between bryostatin and panobinostat (67.3-fold increase). These data together demon-

strate that HIVGKO closely mimics in vitro what is observed in ex vivo patients’ samples (correlation

rate r2 = 0.88, p=0.0056 - Figure 2C), and validate the robustness and reliability of the dual-flores-

cence HIV reporter as a model to study HIV-1 latency.

HIV-1 LRAs target a minority of latently infected primary CD4+ T cells
Current assays have relied on PCR-based assays to measure HIV RNA, and to evaluate the efficacy of

different LRAs (Figure 2A). The use of dual-fluorescent HIV reporters, however, provides a tool to

quantify directly the fraction of cells that become reactivated.

To quantify the absolute number of latently infected cells reactivated following LRA treatment,

primary CD4+ T cells were infected with HIVGKO, and cultured for 5 days (in the presence of IL-2)

before sorting the pure latent population (GFP-, mKO2+). Cells were allowed to rest overnight and

Figure 1 continued

HIVGKO infection profiles by flow cytometry in activated primary CD4+ T-cells (4 days post-infection). Cells were treated as in (B). (D) Comparison of

GKO-WT-LTR and GKO-DU3 3’LTR infection profiles by flow cytometry in cells treated as in (B). (E, F) Primary CD4+ T cells were treated as in (B). At 4

days post-infection, double-negative, productively infected, and latently infected cells were sorted out, and (E) the total RNA isolated from each

population was subjected to Taqman RT-qPCR analysis (Source Data - Figure 1). Unspliced (US), singly spliced (SS), and multiply spliced (MS) HIV-1

mRNAs were quantified relative to cellular GAPDH. (F) Western blot analysis of each population.

DOI: https://doi.org/10.7554/eLife.34655.002

The following source data and figure supplement are available for figure 1:

Source data 1. Taqman RT-qPCR analysis of unspliced (US), singly spliced (SS), and multiply spliced (MS) HIV-1 mRNAs in the uninfected, double nega-

tive, latent and productive populations.

DOI: https://doi.org/10.7554/eLife.34655.004

Figure supplement 1. Comparison of HIVGKO and HIVDuoFluoI.

DOI: https://doi.org/10.7554/eLife.34655.003

Table 1. Characteristics of HIV-1-infected study participants

ABC, abacavir; DRV, darunavir; FTC, emtricitabine; RPV, rilpivirine; RTV, ritonavir; TCV, tivicay; TDF, tenofovir; 3TC, lamivudine; VL, viral

load.

Scope
ID Age Sex Ethnicity

CD4
Count

Duration of infection
(years) ART regimen

Duration of ART
(years)

Peak reporter VL (copies/
ml�1)

1597 56 M Mixed 469 19 RPV/TDF/FTC 5 45734

2147 59 M Asian 597 28 RPV/TDF/FTC 23 374000

2461 62 M White 664 32 RPV/TCV 19 20000

3162 54 M White 734 29 RTV, DRV, ABC/TCV/
3TC

20 171000

DOI: https://doi.org/10.7554/eLife.34655.009
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were treated for 24 hr with the various LRAs (same drug concentrations as in Figure 2) (Figure 3A,

Figure 3—source data 1). Culture of DMSO-treated latently infected primary CD4+ T cells produced

little spontaneous reactivation (average of four experiments: 1.4% of GFP+ cells). Unexpectedly, we

found that none of the individual LRAs or their combinations reactivated more than 5.5% of the

latently infected cells: JQ1 (1.7%) panobinostat (3.7%), bryostatin-1 (3%) aCD3/CD28 (4.5%), bryos-

tatin-1 and JQ1 (3.3%.). bryostatin-1 and panobinostat (5.5%) (Figure 3B).

Small fractional rate of latency reactivation is not explained by low
cellular response to activation signals
These data highlight two important facts: a) cell-associated HIV RNA quantification does not reflect

the absolute number of cells undergoing viral reactivation, and b) induced cell-associated HIV RNA,

in response to all reversing agents, comes from a small fraction of reactivated latent cells. This was

particularly surprising with aCD3/CD28 stimulation, as a currently accepted model for HIV latency is

that the state of T cell activation dictates the transcriptional state of the provirus. Treatment of

latently infected primary CD4+ T cells with aCD3/CD28 stimulated HIV production in less than 5% of

the cells, while the other 95% remained latent, even though after 24 hr of treatment nearly all of the

cells had upregulated the early T cell activation marker CD69 (Figure 4—figure supplement 1).

To further rule out the possibility that non-reactivated latently infected cells (NRLIC) simply repre-

sented a lack of efficient response to T-cell activation signals, we analyzed T-cell activation markers

within the different populations (i.e., within uninfected, non reactivated (NRLIC) and reactivated

latently infected cells (RLIC); Figure 4, Figure 4—source data 1). Briefly, 72h-stimulated CD4+ T

cells were infected with HIVGKO, and 4 days later, GFP- cells were sorted, and allowed to rest
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Figure 2. LRAs efficacy in patient samples is predicted by activity in HIVGKO latently infected cells. (A) Intracellular HIV-1 mRNA levels in rCD4s,

obtained from infected individuals and treated ex vivo with a single LRA or a combination of two LRAs for 24 hr in presence of raltegravir, presented as

fold induction relative to DMSO control. (n = 4, mean +SEM) (Figure 2—source data 1). (B) Intracellular HIV-1 mRNA levels in HIVGKO latently infected

CD4+ T-cells, and treated with a single LRA or a combination of two LRAs for 6 hr in presence of raltegravir, presented as fold induction relative to

DMSO control. (n = 3 (different donors), mean +SEM, paired t-test) (Figure 2—source data 1). (C) Correlation between intracellular HIV-1 mRNA levels

quantified in either 6 hr stimulated HIVGKO latently infected CD4+ T-cells from different donors, or 24 hr stimulated rCD4s from HIV infected patients,

with a single LRA or a combination of two LRAs in presence of raltegravir.

DOI: https://doi.org/10.7554/eLife.34655.005

The following source data is available for figure 2:

Source data 1. Intracellular HIV-1 mRNA levels in rCD4s, obtained from infected individuals, or in HIVGKO latently infected CD4+ T-cells.

DOI: https://doi.org/10.7554/eLife.34655.006
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Figure 3. Few HIVGKO latently infected primary CD4+ T cells are reactivated. (A) Schematic of experimental

procedure with primary CD4+ T cells. Briefly, CD4+ T cells were purified from blood of healthy donors and

activated for 72 hr with aCD3/CD28 beads and 100 U/ml IL-2 before infection with HIVGKO. Five days post-

infection, latently infected cells (csGFP- mKO2+) cells were sorted, put back in culture overnight and stimulated

with different LRAs in presence of raltegravir for 24 hr before performing FACS analysis. (B) Percentage of GFP

+ cells is shown after stimulation of latently infected CD4+ T-cells with LRAs (n = 4 (different donors), mean +SEM,

paired t-test) (Figure 3—source data 1). (C) Histogram plot of percent live cells for each drug treatment (n = 3

(different donors), mean + SEM, paired t-test) (Figure 3—source data 1). p-value: *p<0.05, **p<0.01 relative to

DMSO.

DOI: https://doi.org/10.7554/eLife.34655.007

Figure 3 continued on next page

Battivelli et al. eLife 2018;7:e34655. DOI: https://doi.org/10.7554/eLife.34655 7 of 22

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.34655.007
https://doi.org/10.7554/eLife.34655


overnight before restimulation with aCD3/CD28. After another 24 hr, cells were stained for the

early, intermediate, and late markers of T cell activation CD69, CD25 and HLA-DR respectively. The

three different populations, double negative, RLIC and NRLIC, had similar profiles of activated T-cell

subsets, as shown in Figure 4, and were mainly composed of strongly activated cells (CD69+/CD25

Figure 3 continued

The following source data is available for figure 3:

Source data 1. Percentage of GFP+ cells is shown after stimulation of latently infected CD4+ T-cells with LRAs as

well as percent live cells for each drug treatment.

DOI: https://doi.org/10.7554/eLife.34655.008
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Figure 4. Low-level latency reactivation is not explained by low cellular responses to activation signals. T-cell

activation patterns between double negative, reactivated (RLIC) and non-reactivated (NRLIC) latently infected cells.

Briefly, CD4+ T-cells were purified from blood of four healthy donors and activated for 72 hr with aCD3/CD28

beads and 20 U/ml IL-2 before infection with HIVGKO. At 4 days post-infection, csGFP- were sorted, cultured

overnight and stimulated with aCD3/CD28 in presence of raltegravir. At 24 hr post-treatment, cells were stained

for CD25, CD69, and HLA-DR activation markers before performing FACS analysis. (n = 4, mean +SEM, paired

t-test; *p<0.05; **p<0.01) (Figure 4—source data 1).

DOI: https://doi.org/10.7554/eLife.34655.010

The following source data and figure supplement are available for figure 4:

Source data 1. CD25, CD69, and HLA-DR activation markers patterns between double negative, reactivated (RLIC)

and non-reactivated (NRLIC) latently infected cells.

DOI: https://doi.org/10.7554/eLife.34655.012

Figure supplement 1. 24 hr treatment effectively activate primary CD4+ T cells.

DOI: https://doi.org/10.7554/eLife.34655.011
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+/HLA-DR+/-). We only observed a statistically significant increase of NRLIC compared with RLIC in

the CD69+/CD25-/HLA-DR+ population, however this small increase in a relatively minor population

is insufficient to explain the low reactivation rate of latently infected cells. Overall, comparison of

both reactivated and non reactivated latent populations showed little difference in their activation

state.

Integration sites, gene expression, transcription units and the fate of
HIV infection
The role of the site of HIV integration into the genome in latency remains a subject of debate

(Chen et al., 2017; Dahabieh et al., 2014; Jordan et al., 2003; Jordan et al., 2001; Sherrill-

Mix et al., 2013). To identify possible differences in integration sites between reactivated and non-

reactivated HIV genomes, primary CD4+ T-cells were infected with HIVGKO. At 5 days post-infection,

productively infected cells (GFP+, PIC) were sorted and frozen. The GFP negative population (con-

sisting of a mixture of latent and uninfected) was isolated and treated with aCD3/CD28. 48 hr post-

induction, both non reactivated (NRLIC) and reactivated (RLIC) populations were isolated. Nine

libraries (three donors, three samples/donor: PIC, RLIC, NRLIC) were constructed from genomic

DNA as described (Cohn et al., 2015) and analyzed by high-throughput sequencing to locate HIV

proviruses within the human genome. A total of 1803 virus integration sites were determined: 960

integrations in PIC, 681 in NRLIC, and 162 in RLIC (Integration Sites Source data).

To determine whether integration within genes differentially expressed during T-cell activation

predicted infection reactivation fate, we compared our HIV integration dataset with a published

dataset for gene expression in resting and activated (48 hr - aCD3/CD28) CD4+ T cells from healthy

individuals (Ye et al., 2014). The analysis revealed that most of the aCD3/CD28-induced latent pro-

viruses were not integrated in genes responsive to T-cell activation signals (Figure 5A and B, Fig-

ure 5—source data 1). Interestingly, PIC and RLIC integration events were associated with genes

whose basal expression was significantly higher than genes targeted in NRLIC, both in activated and

resting T cells (Figure 5C, Figure 5—source data 2).

Next, we investigated whether different genomic regions were associated with productive, induc-

ible or non-inducible latent HIV-1 infections. In agreement with previous studies (Cohn et al., 2015;

Dahabieh et al., 2014; Maldarelli et al., 2014; Wagner et al., 2014), the majority of integration

sites were found within genes in each population (Figure 6A, Figure 6—source data 1), although

the proportion of genic integrations in NRLIC was significantly lower than in PIC and RLIC samples.

Moreover, integration events in the PIC and RLIC populations were more frequent in transcribed

regions (64% and 58%, respectively, [sum of low + medium + high transcribed regions] (Figure 6B),

Figure 6—source data 1), while these regions were significantly less represented in the NRLIC

(31%) (Figure 6B). As expected since introns represent a much larger proportion of genes, genic

integration events were more frequent in the introns for each population (>65%, Figure 6C, Fig-

ure 6—source data 1). Finally, viral orientation of proviruses with respect to the transcriptional unit

did not correlate with the fate of HIV infection (latent vs productive) or the reactivation or absence

thereof of HIV latency (Figure 6D, Figure 6—source data 1).

Chromatin modifications at the site of HIV integration and latency
Chromatin marks, such as histone post-translational modifications (e.g., methylation and acetylation)

and DNA methylation, are involved in establishing and maintaining HIV-1 latency (De Crignis and

Mahmoudi, 2017). We examined 500 bp regions centered on all integration sites in each population

for several chromatin marks by comparing our data with several histone modifications and DNaseI

ENCODE datasets. We first looked at distinct and predictive chromatin signatures, such as

H3K4me1 (active enhancers), H3K36m3 (active transcribed regions), H3K9m3 and H3K27m3 (repres-

sive marks of transcription) (reviewed in [Kumar et al., 2015; Shlyueva et al., 2014]). All three popu-

lations exhibited distinct profiles, although productive and inducible latent infections profiles

appeared most similar (Figure 7A, Figure 7—source data 1). The analysis showed that PIC integra-

tion events were associated with active chromatin (i.e., transcribed genes - H3K36me3 or enhancers

- H3K4me1), while NRLIC integration events appeared biased toward heterochromatin (H3K27me3

and H3K9me3) and non-accessible regions (DNase hyposensitivity).
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Marini et al. recently reported that HIV-1 mainly integrates at the nuclear periphery (Marini et al.,

2015). We therefore examined the topological distribution of integration sites from each population

inside the nucleus by comparing our integration site data with a previously published dataset of

lamin-associated domains (LADs) (Guelen et al., 2008). LADs consist of H3K9me2 heterochromatin

and are present at the nuclear periphery. This analysis showed that latent integration sites from both

RLIC and NRLIC were in LADs to a significantly higher degree (32% and 30.4%) than productive inte-

grations (23.6%) (p<0.05, Figure 7B, Figure 7—source data 1). Overall, these data show similar fea-

tures between productively infected cells and inducible latently infected cells, while non-reactivated

latently infected cells appear distinct from the other populations. These findings support a promi-

nent role for the site of integration and the chromatin context for the fate of the infection itself, as

well as for latency reversal.

Discussion
Dual-color HIV-1 reporters are unique and powerful tools (Calvanese et al., 2013; Dahabieh et al.,

2013), that allow for the identification and the isolation of latently infected cells from productively

infected cells and uninfected cells. Latency is established very early in the course of HIV-1 infection

(Archin et al., 2012b; Chun et al., 1998; Whitney et al., 2014) and, until the advent of dual-

reporter constructs, no primary HIV-1 latency models have allowed the study of latency heterogene-

ity at this very early stage. Importantly, the comparison of data obtained from distinct primary HIV-1
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Figure 5. Relative expression of HIV-1 integration targeted genes for each population, before or after TCR activation. (A) Scatter chart showing primary

CD4+ T-cell gene expression changes after 48 hr of stimulation with aCD3/CD28 beads. Integration sites displayed outside of the two solid gray lines

were targeted genes whose expression is at least ± twofold differentially expressed after 48 hr stimulation. Plot points size can be different, the bigger

the plot point is, the more integration events happened within the same gene. (B) Fraction of integration sites from the different populations PIC, RLIC

or NRLIC, integrated within genes whose expression is at least ± twofold differentially expressed after 48 hr of aCD3/CD28 stimulation (**p<0.01;

***p<0.001; two-proportion z test) (Figure 5—source data 1). (C) Relative expression of genes targeted by HIV-1 integration in PIC, RLIC or NRLIC

before TCR stimulation and after aCD3/CD28 stimulation (n = 3, mean +SEM, paired t-test). ***p<0.001; ****p<0.0001. (Figure 5—source data 2).

DOI: https://doi.org/10.7554/eLife.34655.013

The following source data is available for figure 5:

Source data 1. Fraction of integration sites from the different populations PIC, RLIC or NRLIC, integrated within genes whose expression is at

least ± twofold differentially expressed after 48 hr of aCD3/CD28 stimulation.

DOI: https://doi.org/10.7554/eLife.34655.014

Source data 2. Relative expression of genes targeted by HIV-1 integration in PIC, RLIC or NRLIC before TCR stimulation and after 48 hr aCD3/CD28

stimulation.

DOI: https://doi.org/10.7554/eLife.34655.015
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latency models is complicated as some models are better suited to detect latency establishment (e.

g., dual-reporters), while others are biased towards latency maintenance (e.g., Bcl2-transduced

CD4+ T cells). The use of env-defective viruses limits HIV replication to a single-round and, thereby

limits the appearance of defective viruses (Bruner et al., 2016).

In this study, we describe and validate an improved version of HIVDuoFluoI, previously developed

in our laboratory (Calvanese et al., 2013), which accurately allows for: (a) the quantification of
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Figure 6. Insertion landscapes of HIV-1. (A) Proportion of mapped insertions that are in genic or intergenic regions. (Figure 6—source data 1). (B)

Proportion of integration sites in transcribed regions with high (top 1/8), medium (top 1/4–1/8), low expression (top 1/2–1/4), trace (bottom 1/2) or silent

(0) expression. (Figure 6—source data 1). (C) Proportion of unique genic integration sites located in introns, exons, UTR or promoters. (Figure 6—

source data 1). (D) Transcriptional orientation of integrated HIV-1 relative to host gene. (Figure 6—source data 1). p-value: *p<0.05; **p<0.01;

***p<0.001; ****p<0.0001 using two-proportion z test.

DOI: https://doi.org/10.7554/eLife.34655.016

The following source data is available for figure 6:

Source data 1. Proportion of mapped insertions that are in genic or intergenic regions; of integration sites in transcribed regions with high, medium,

low expression, trace or silent expression; of unique genic integration sites located in introns, exons, UTR or promoters; and transcriptional orientation

of integrated HIV-1 relative to host gene.

DOI: https://doi.org/10.7554/eLife.34655.017
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latently infected cells, (b) the purification of latently infected cells, and (c) the evaluation of the

‘shock and kill’ strategy. Our data highlight two important facts: (a) cell-associated HIV RNA quantifi-

cation does not reflect the number of cells undergoing viral reactivation, and (b) a small portion of

the cells carrying latent proviruses (<5%) is reactivated, although LRAs target the whole latent popu-

lation. Hence, even if cells harboring reactivated virus die, this small reduction would likely remain

undetectable when quantifying the latent reservoir in vivo. Our data are in agreement with previous

reports, which show that levels of cellular HIV RNA and virion production are not correlated, and

that the absolute number of cells being reactivated by aCD3/CD28 is indeed limited to a small frac-

tion of latently infected cells (Cillo et al., 2014; Sanyal et al., 2017; Yucha et al., 2017). Using our

dual-fluorescence reporter, we confirm these findings, and extend these observations to LRAs com-

binations. However, although LRAs combinations show synergy when measuring cell-associated HIV

RNA, we do not find such synergy at the level of individual cells, but rather only partial additive

effect. Our work, as well as that of others (Cillo et al., 2014; Sanyal et al., 2017; Yucha et al.,

2017), demonstrate the importance of single cell analysis when it comes to the evaluation of poten-

tial LRAs. Indeed, it is necessary to determine wheter potential increases in HIV RNA after stimula-

tion in a bulk population result from a small number of highly productive cells, or from a larger but

less productive population, as these two mechanisms likely have very different impacts on the latent

reservoir.

Our data further highlight the heterogeneous nature of the latent reservoir (Chen et al., 2017;

Ho et al., 2013). We currently have a limited understanding of why some latently infected cells are

capable of being induced while others are not. It is possible that different chromatin environments

impose different degrees of transcriptional repression on the integrated HIV genome, with the non

reactivatable latent HIV corresponding to the most repressive environment. (Chen et al., 2017).
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Figure 7. Epigenetics marks and nuclear localization of HIV-1 integration sites. (A) 500 bp centered on HIV-1 integration sites for each population were

analyzed for the presence of H3K4me1 (active enhancers), H3K36m3 (active transcribed regions), H3K9m3 and H3K27m3 (repressive marks of

transcription), and DNA accessibility (DNAseI). (Figure 7—source data 1). (B) Nuclear localization of HIV-1 integration sites. Quantification was based

on inside a LAD (=1) or outside (=0), which means the Y axis represents the fraction of integrations within a LAD. (Figure 7—source data 1). (n = 3–4

ENCODE donors, mean +SEM, paired t-test). *p<0.05; **p<0.01; ***p<0.001).

DOI: https://doi.org/10.7554/eLife.34655.018

The following source data is available for figure 7:

Source data 1. HIV-1 integration sites for each population were analyzed for the presence of H3K4me1, H3K36m3, H3K9m3, H3K27m3, DNA accessibil-

ity, as well as their nuclear localization.

DOI: https://doi.org/10.7554/eLife.34655.019
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Since HIVGKO allows for the isolation of productively infected cells and reactivated latent cells from

those that do not reactivate, it provides a unique opportunity to explore the impact of HIV integra-

tion on the fate of the infection.

Different integration site-specific features contribute to latency, such as the chromatin structure,

including adjacent loci but also the provirus location in the nucleus (Lusic and Giacca, 2015;

Lusic et al., 2013). Viral integration is a semi-random process (Bushman et al., 2005) in which HIV-1

preferentially integrates into active genes (Barr et al., 2006; Bushman et al., 2005;

Demeulemeester et al., 2015; Ferris et al., 2010; Han et al., 2004; Lewinski et al., 2006;

Mitchell et al., 2004; Schröder et al., 2002; Sowd et al., 2016; Wang et al., 2007). LEDGF, one of

the main chromatin-tethering factors of HIV-1, binds to the viral integrase and to H3K36me3, and to

a lesser extent to H3K4me1, thus directing the integration of HIV-1 into transcriptional units

(Daugaard et al., 2012; Eidahl et al., 2013; Pradeepa et al., 2012). Also CPSF6, which binds to the

viral capsid, markedly influences integration into transcriptionally active genes and regions of

euchromatin (Sowd et al., 2016), explaining how HIV-1 maintains its integration in the euchromatin

regions of the genome independently of LEDGF (Quercioli et al., 2016). Several studies have char-

acterized the integration sites, however, these analyses have been restricted to productive

infections.

Using ENCODE reference datasets, our data are consistent with previous results, showing that

HIV-1 preferentially targets actively transcribed regions (Marini et al., 2015; Wang et al., 2007;

Chen et al., 2017). However, non-inducible latent proviruses are observed to be integrated to a

higher extent into silenced chromatin. In addition, even though HIV integration is normally strongly

disfavored in the heterochromatic condensed regions in LADs due to low chromatin accessibility, we

show that some HIV integration does occur in LADs when using a previously published dataset of

LADs (Guelen et al., 2008; Marini et al., 2015), and that latent proviruses that are not readily reacti-

vatable are integrated at higher extent in LADs.

Importantly, we identify a unique rare population among the latent cells that can be reactivated.

In contrast to the non-inducible latent infections, the latency reversal of inducible latent proviruses

might be explained by integration in an open chromatin context, similar to integration sites for pro-

ductive proviruses, followed by subsequent heterochromatin formation and proviral silencing. As a

consequence, the distinct integration sites between induced and non-induced latent proviruses high-

light new possibilities for cure strategies. Indeed, the ‘shock and kill’ strategy aims to reactivate and

eliminate every single replication-competent latent provirus, since a single remaining cell carrying a

latent inducible provirus could, in theory, reseed the infection. However, our study and others point

out several significant barriers to successful implementation of the ‘shock and kill’ strategy. First,

LRAs only reactivate a limited fraction of latent proviruses. It is likely that some of the non-induced

proviruses, such as those integrated into enhancers and transcriptionnal active regions of the

genome, will reactivate after several rounds of activation, due to the stochastic nature of HIV activa-

tion (Dar et al., 2012; Ho et al., 2013; Singh et al., 2010; Weinberger et al., 2005). It is also likely

that better suited LRAs combinations (two or more LRAs) will reactivate some of the non-induced

proviruses integrated into silenced chromatin marked by H3K27me3 and H3K9me3. Indeed, several

studies have shown that the pharmaceutical inhibition of H3K27me3 and H3K9me2/3 could sensitize

latent proviruses to LRAs (Friedman et al., 2011; Nguyen et al., 2017; Tripathy et al., 2015). Sec-

ond, Shan et al. have shown that latently reactivated cells are not cleared due to cytopathic effects

or CTL response implying that immunomodulatory approaches, in addition of more potent LRAs, are

likely required to achieve a cure for HIV infection (Shan et al., 2012).

In conclusion, the heterogeneity of the latent reservoir calls for therapies addressing the different

pools of latently infected cells. While ‘shock and kill’ might be helpful in reactivating and possibly

eliminating a small subset of highly reactivatable latent HIV genomes, other approaches will be nec-

essary to control or eliminate the less readily reactivatable population identified here and in patients.

Perhaps, this latter population should rather be ‘blocked and locked’ using latency-promoting

agents (LPAs), as described by several groups (Besnard et al., 2016; Kessing et al., 2017;

Kim et al., 2016; Vranckx et al., 2016). For a functional cure, a stably silenced, non-reactivatable

provirus is preferable to a lifetime of chronic active infection.
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Materials and methods

Patients’ samples
Four HIV-1-infected individuals, who met the criteria of suppressive ART, undetectable plasma HIV-1

RNA levels (<50 copies/ml) for a minimum of six months, and with CD4+ T cell count of at least 350

cells/mm3, were enrolled. The participants were recruited from the SCOPE cohort at the University

of California, San Francisco. Table 1 details the characteristics of the study participants.

Plasmids construction
To construct HIVGKO, the csGFP sequence was designed and ordered from Life Technologies. The

sequence was cut out from Life Technologies’ plasmid with BamHI and XhoI and cloned into Duo-

FluoI, previously cut with the same enzymes (DuoFluoI-csGFP). HIVGKO was creating by PCR overlap-

ping: csGFP-EF1a (Product 1) was PCR amplified from DuoFluoI using primers P1: 5’ for-GATTAG

TGAACGGATCCTTGGCAC-3’ and P2: 5’ rev-GGCTTGATCACAGAAACCATGGTGGCGACCGG

TAGCGC-3’. mKO2 (Product 2) was PCR amplified from Brian Webster’s plasmid (kind gift from

Warner Greene) using primers P3: 5’ for-GCGCTACCGGTCGCCACCATGGTTTCTGTGATCAA

GCC-3’ and P4: 5’ rev-CTCCATGTTTTTCCAGGTCTCGAGCCTAGCTGTAGTGGGC CACGGC-3’.

Finally, we amplified the 3’LTR sequence (Product 3) from RGH plasmid (Dahabieh et al., 2013)

using primers P5: 5’ for-GCTCGAGACCTGGAAAAACATGGAG-3’ and P6: 5’ rev-GTGCCACC

TGACGTCTAAGAAACC-3’, to add a fragment containing the AatII restriction site, in order to ligate

the csGFP-EF1a-mKO2 cassette into pLAI (Peden et al., 1991). We then did sequential PCRs: prod-

ucts 1 and 2 were amplified using primers P1 and P4. PCR product (1 + 2) was mixed with product

three and PCR amplified with P1 and P6 thus creating the full cassette. The cassette csGFP-EF1a-

mKO2 was then digested with BamHI and AatII, and cloned into pLAI previously digested with the

same enzymes to create HIVGKO.

Of note, the Envelope open reading frame was disrupted by the introduction of a frame shift at

position 7136 by digestion with KpnI, blunting, and re-ligation.

To construct GKO-DU3 3’LTR, we cloned a DU3 linker from pTY-EFeGFP (Chang et al., 1999;

Cui et al., 1999; Iwakuma et al., 1999; Zolotukhin et al., 1996) into the KpnI/SacI sites of the 3’

LTR in HIVGKO.

Virus production
The production of HIVGKO and the assessment of HIV Latency Reversal Agents in Human Primary

CD4+ T Cells are described in more detail at Bio-protocol (Battivelli and Verdin, 2018). Pseudo-

typed HIVDuoFluoI and HIVGKO viral stocks were generated by co-transfecting (standard calcium phos-

phate transfection method) HEK293T cells with a plasmid encoding HIVDuoFluoI or HIVGKO, and a

plasmid encoding HIV-1 dual-tropic envelope (pSVIII-92HT593.1). Medium was changed 6–8 hr post-

transfection, and supernatants were collected after 48 hr, centrifuged (20 min, 2000 rpm, RT), fil-

tered through a 0.45 mM membrane to clear cell debris, and then concentrated by ultracentrifuga-

tion (22,000 g, 2 hr, 4˚C). Concentrated virions were resuspended in complete media and stored at

�80˚C. Virus concentration was estimated by p24 titration using the FLAQ assay (Gesner et al.,

2014).

Primary cell isolation and cell culture
CD4+ T cells were extracted from peripheral blood mononuclear cells (PBMCs) from continuous-flow

centrifugation leukophoresis product using density centrifugation on a Ficoll-Paque gradient (GE

Healthcare Life Sciences, Chicago, IL). Resting CD4+ lymphocytes were enriched by negative deple-

tion with an EasySepHuman CD4+ T Cell Isolation Kit (Stemcell Technologies, Canada). Cells were

cultured in RPMI medium supplemented with 10% fetal bovine serum, penicillin/streptomycin and 5

mM saquinavir.

Primary CD4+ T cells were purified from healthy donor blood (Blood Centers of the Pacific, San

Francisco, CA, and Stanford Blood Center), by negative selection using the RosetteSep Human

CD4+ T Cell Enrichment Cocktail (StemCell Technologies, Canada). Purified resting CD4+ T cells

from HIV-1 or healthy individuals were cultured in RPMI 1640 medium supplemented with 10% FBS,

L-glutamine (2 mM), penicillin (50 U/ml), streptomycin (50 mg/ml), and IL-2 (20 to 100 U/ml) (37˚C,
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5% CO2). Spin-infected primary CD4+ T cells were maintained in 50% of complete RPMI media sup-

plemented with IL-2 (20–100 U/ml) and 50% of supernatant from H80 cultures (previously filtered to

remove cells) without beads. Medium was replenished every 2 days until further experiment.

HEK293T cells were obtained from ATCC (mycoplasma free). Feeder cells H80 was a kind gift

from Jonathan Karn. H80 cells were cultured in RPMI 1640 medium supplemented with 10% fetal

bovine serum (FBS), L-glutamine (2 mM), penicillin (50 U/ml), and streptomycin (50 mg/ml) (37˚C, 5%
CO2). HEK293T cells were cultured in DMEM medium supplemented with 10% FBS, 50 U/ml penicil-

lin, and 50 mg/ml streptomycin.

Cell infection
Purified CD4+ T cells isolated from healthy peripheral blood were stimulated with aCD3/CD28 activ-

ating beads (Thermofisher, Waltham, MA) at a concentration of 0.5 bead/cell in the presence of 20–

100 U/ml IL-2 (PeproTech, Rocky Hill, NJ) for three days. All cells were spinoculated with either HIV-

DuoFluoI, HIVGKO or HIV D3U-GKO at a concentration of 300 ng of p24 per 1.106 cells for 2 hr at 2000

rpm at 32˚C without activation beads.

Infected cells were either analyzed by flow cytometry or sorted 4–5 days post-infection.

Latency-reversing agent treatment conditions
CD4+ T cells were stimulated for 24 hr unless stipulated differently, with latency-reversing agents at

the following concentrations for all single and combination treatments: 10 nM bryostatin-1, 1 mM

JQ1, 30 nM panobinostat, aCD3/CD28 activating beads (1 bead/cell), or media alone plus 0.1% (v/

v) DMSO. For all single and combination treatments, 30 mM Raltregravir (National AIDS Reagent Pro-

gram) was added to media. Concentrations were chosen based on Laird et al. paper (Laird et al.,

2015).

Staining, flow cytometry and cell sorting
Cells from Figure 4 were stained with a-CD69-PE-Cy7 (561928), a-CD25-APC (560987), and a-HLA-

DR-PerCP-Cy5.5 (562007) (BD Bioscience, Franklin Lakes, NJ).

Before collecting data using the FACS LSRII (BD Biosciences, Franklin Lakes, NJ) or the FACS

AriaII (BD Biosciences, Franklin Lakes, NJ, Figures 3 and 4), cells were stained with violet Live/Dead

Fixable Dead Cell Stain (Thermofisher, Waltham, MA) and fixed with 2% formaldehyde. Analyses

were performed with FlowJo V10.1 software (TreeStar).

Sorting of infected CD4+ T cells was performed with a FACS AriaII (BD Biosciences, Franklin

Lakes, NJ) based on their GFP and mKO2 fluorescence markers at 4/5 days post-infection, and

placed back in culture for further experimentation. In the experiments shown in Figures 2B and

4, we isolated both HIVGKO latently infected cells (GFP-, mKO2+, 3%) and uninfected cells (csGFP-,

mKO2-, 97%) five days post-infection, before treating cells with LRAs.

In the experiment shown in Figure 3, we isolated pure latent cells (GFP-, mKO2+) five days post-

infection, before treating this pure population with LRAs.

DNA, RNA and protein extraction, qPCR and western blot
RNA and proteins (Figure 1B and C) were extracted with PARISTM kit (Ambion, Thermofisher, Wal-

tham, MA) according to manufacturer’s protocol from same samples. RNA was retro-transcribed

using random primers with the SuperScript II Reverse Transcriptase (Thermofisher, Waltham, MA)

and qPCR was performed in the AB7900HT Fast Real-Time PCR System, using 2X HoTaq Real Time

PCR kit (McLab, South San Francisco, CA) and the appropriate primer-probe combinations described

in (Calvanese et al., 2013). Quantification for each qPCR reaction was assessed by the ddCt algo-

rithm, relative to Taq Man assay GAPDH Hs99999905_m1. Protein content was determined using

the Bradford assay (Bio-Rad, Hercules, CA) and 20 mg were separated by electrophoresis into 12%

SDS-PAGE gels. Bands were detected by chemiluminescence (ECL Hyperfilm Amersham, GE Health-

care Life Sciences, Chicago, I) with anti-Vif, HIV-p24 and a-actin (Sigma, Saint-Louis, MO) primary

antibodies.

Total RNA (Figure 2A and B) wasextracted using the Allprep DNA/RNA/miRNA Universal Kit

(Qiagen, Germany) with on-column DNAase treatment (Qiagen RNase-Free DNase Set, Germany).

cDNA synthesis was performed using SuperScript IV Reverse Transcriptase with a combination of
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random hexamers and oligo-dT primers (ThermoFisher, Waltham, MA). Relative cellular HIV mRNA

levels were quantified using a qPCR TaqMan assay using primers and probes described in

(Bullen et al., 2014) on a QuantStudio 6 Flex Real-Time PCR System (Thermofisher, Waltham, MA).

Relative cell-associated HIV mRNA copy numbers were determined in a reaction volume of 20 mL

with 10 mL of 2x TaqMan Universal Master Mix II with UNG ( Thermofisher, Waltham, MA), 4 pmol of

each primer, 4 pmol of probe, 0.5 mL reverse transcriptase, and 2.5 mL of cDNA. Cycling conditions

were 50˚C or 2 min, 95˚C for 10 min, then 60 cycles of 95˚C for 15 s and 60˚C for 1 min. Real-time

PCR was performed in triplicate reaction wells, and relative cell-associated HIV mRNA copy number

was normalized to cell equivalents using human genomic GAPDH expression by qPCR and applying

the comparative Ct method (Livak and Schmittgen, 2001).

HIV integration site libraries and computational analysis
HIV integration site libraries and computational analysis were executed in collaboration with Lilian B.

Cohn and Israel Tojal Da Silva as described in their published paper (Cohn et al., 2015), with a few

small changes added to the computational analysis pipeline. First, we included integration sites with

only a precise junction to the host genome. Second, to eliminate any possibility of PCR mispriming,

we have excluded integration sites identified within 100 bp (50 bp upstream and 50 bp downstream)

of a 9 bp motif identified in our LTR1 primer: TGCCTTGAG. Thirdly we have merged integration

sites within 250 bp and have counted each integration site as a unique event. The list of integration

sites for each donor and each population can be found as a source data file linked to this manuscript

(Integration Sites Source data 1).

Datasets
Chromatin data (ChIP-seq) from CD4+ T cells was downloaded from ENCODE: H3K4me1

(ENCFF112QDR, ENCFF499NFE, ENCFF989BNS), H3K9me3 (ENCFF044NLN, ENCFF736KRZ,

ENCFF844IWD, ENCFF929BPC), H3K27ac (ENCFF618IUD, ENCFF862SKP), H3K27me3

(ENCFF124QDD, ENCFF298JKA, ENCFF717ODY), H3K36me3 (ENCFF006VTQ, ENCFF169QYM,

ENCFF284PKI, ENCFF504OUW), DNAse (GSM665812, GSM665839, GSM701489, GSM701491).

Data were analyzed using Seqmonk (v0.33, http://www.bioinformatics.bbsrc.ac.uk/projects/ seq-

monk/).

We calculated expression (GSM669617) and chromatin mark abundance (the remaining ENCODE

datasets) at the integration sites as bins of 500 bp centered on the integration site (read count quan-

tification in Seqmonk: all non-duplicated reads regardless of strand, corrected per million reads

total, non-log transformed). Gene annotations were not taken into account. Thresholds for expres-

sion values (upper 1/8th, upper quarter, half, and above 0) were set to distinguish five different cate-

gories, set as the upper 1/8th of expression values (high), upper quarter–1/8th (medium), upper

half–quarter (low), lower half but above 0 (trace), 0 (silent).

CD4+ T cells activation data in Figure 5A weredownloaded from GEO (GSE60235).

Statistical analysis
Significance was analyzed by either paired t-test (GraphPad Prism) or proportion test (standard test

for the difference between proportions), also known as a two-proportion z test (https://www.med-

calc.org/calc/comparison_of_proportions.php), and specified in the manuscript.
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