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Abstract Most cellular features have a range of states, but understanding the mechanisms

responsible for interspecific divergence is a challenge for evolutionary cell biology. Models are

developed for the distribution of mean phenotypes likely to evolve under the joint forces of

mutation and genetic drift in the face of constant selection pressures. Mean phenotypes will

deviate from optimal states to a degree depending on the effective population size, potentially

leading to substantial divergence in the absence of diversifying selection. The steady-state

distribution for the mean can even be bimodal, with one domain being largely driven by selection

and the other by mutation pressure, leading to the illusion of phenotypic shifts being induced by

movement among alternative adaptive domains. These results raise questions as to whether

lineage-specific selective pressures are necessary to account for interspecific divergence, providing

a possible platform for the establishment of null models for the evolution of cell-biological traits.

DOI: https://doi.org/10.7554/eLife.34820.001

Introduction
As with nearly all biological traits, most cellular features vary among individuals within populations in

a nearly continuous fashion, owing to genetic differences among individuals and the myriad of sto-

chastic factors experienced by all organisms (ranging from intrinsic cellular noise to external environ-

mental forces; Lynch and Walsh, 1998). This is true, for example, for catalytic rates, rates of gene

expression and intracellular transport, numbers and sizes of organelles, etc. Ultimately,

some fraction of within-species genetic variation is transformed into among-species divergence as

alternative alleles arise by mutation and in some cases proceed to fixation (Wright, 1969;

Walsh and Lynch, 2018). The magnitude of such divergence is dictated by three major evolutionary

factors: the pattern of selection (the phenotypic fitness function), which imposes a directional and/or

stabilizing force on the mean phenotype; the rate of origin and distribution of mutational effects,

which define the raw materials upon which natural selection operates; and the power of random

genetic drift, which imposes noise on the selective process.

Although considerable effort has been devoted to understanding the divergence of mean pheno-

types among lineages (Walsh and Lynch, 2018), most of this work is focused on the evolution of

morphological phenotypes in response to external pressures, which can vary greatly depending on

the ecological setting. In contrast, owing to homeostatic effects, the internal environment of cells

remains largely constant over long time scales and broad geographic locations, raising the possibility

of establishing general evolutionary principles that transcend the imposition of transient ecological

changes. (The same might be true for the internal organs of multicellular species).

The goal here is to derive general expressions for the divergence of mean phenotypes among

species under scenarios that are likely to hold for a wide variety of cellular traits. The specific focus

will be on the magnitude of divergence expected among lineages in the face of identical evolution-

ary forces, as this helps clarify the degree to which phenotypic diversification can proceed in the

absence of lineage-specific selection pressures. Such a perspective is essential to establishing the
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Figure 1. An idealized overview of the model for the evolution of the distribution of mean phenotypes, given here for a trait under stabilizing selection.

The upper panel denotes a hypothetical phenotype distribution at a single point in time. The population consists of multiple genotypes, each having an

expected genotypic value (red) but a range of phenotypes (black distributions) resulting from variance in residual deviations (environmental effects and

nonadditive genetic factors). The phenotype distribution for the entire population (red) is the sum of these genotype-specific curves, and has a mean

denoted by the blue line. The exact location of this overall distribution can wander over time, owing to the joint forces of selection, mutation, and

random genetic drift. The lower panel gives the overall distribution of population means over a long evolutionary time span, with 11 locations at

Figure 1 continued on next page
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degree to which adaptive explanations need to be sought to explain patterns of variation among

populations.

The general approach will draw from well-established constructs employed in the field of quanti-

tative genetics (the study of continuously distributed traits with a multifactorial genetic basis;

Lynch and Walsh, 1998; Walsh and Lynch, 2018). The traditional focus of this field has been on

complex traits in multicellular species, but these same methods can be profitably applied to intracel-

lular morphological and molecular features, such as those involved in the cytoskeleton, gene expres-

sion, binding energy, and metabolic rates (Nourmohammad et al., 2013; Farhadifar et al., 2015;

Phillips and Bowerman, 2015). Indeed, although most work in phenotypic evolution proceeds as

though cellular details are irrelevant, the models employed may be equally if not more relevant to

cell-biological traits, owing to their potentially less temporally variable fitness effects.

Theory

The distribution of mean phenotypes
All genetically encoded traits are subject to the recurrent forces of mutation and random genetic drift,

and potentially to selection. Selection favors some genotypes over others, while mutation modifies

existing genotypes independent of the selective process, and random genetic drift causes stochastic

variation in gene transmission across generations. Owing to this latter factor, even if the forces of

selection and mutation remain constant, the population mean phenotype of a trait will wander within a

certain range over evolutionary time, with the frequency of occurrence of alternative mean phenotypes

depending on patterns and strengths of selective and mutational effects (Figure 1).

The focus of this study, the stationary distribution of mean phenotypes, can be viewed as a sum-

mary distribution of: (1) phenotypic means across a large number of replicate populations exposed

to identical conditions for a very long period; or (2) a historical survey of mean phenotypes in a sin-

gle population over a long time period, again under constant environmental and population-genetic

conditions. Among many other applications, such an approach has long been exploited in attempts

to understand the steady-state distribution of allele frequencies expected under a constant regime

of selection, mutation, and random genetic drift (e.g. Wright, 1969). From an empirical perspective,

this steady-state view of evolution implicitly assumes that enough time has elapsed between

observed taxa that the dynamics of the evolutionary process are of negligible significance (which

would not be the case for closely related species).

The approach taken here relies on the Kolmogorov forward equation for a diffusion process

(Appendix 1, Walsh and Lynch, 2018), the assumption being that the trait of interest is continuously

distributed, with z denoting the phenotypic value of an individual. The population mean, �z; moves in

arbitrarily small increments each generation via the deterministic forces of selection and mutation

and the stochastic process of drift. Under most reasonable biological conditions, independent of the

starting conditions, a stationary distribution of mean phenotypes (among hypothetical replicate pop-

ulations) is eventually converged upon, at which point there is an exact balance between opposing

forces. The probability that a population’s mean phenotype will reside at any particular point is

defined by this distribution, which has the general form

F �zð Þ ¼C � exp 2

Z �z

M xð Þ=V xð Þ½ �dx
� �

; (1a)

where M xð Þ defines the rate of directional change (resulting from selection and/or mutation) for a

population with mean phenotype x, and V xð Þ is the variance in change (resulting from drift). C is the

normalization constant (containing only terms that are independent of �z) that ensures that the entire

probability density sums to 1.0.

Figure 1 continued

specific points of time being denoted by the short vertical lines. Persistent mutational bias towards smaller phenotypes prevents the overall distribution

of means from coinciding with the fitness-function optimum, and random genetic drift causes a dispersion of means around the overall average value.
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For a quantitative trait, the directional term can be subdivided into independent selection and

mutation components, Ms xð Þ and Mm xð Þ, both of which will be discussed in detail below. Under the

assumption of negligible genotype � environment interaction and epistasis, the variance of the

change in means, which results from the sampling of heritable genotypic values of individuals, is

equal to the underlying additive genetic variance for the trait, s2

A; divided by the effective population

size, Ne, in the case of haploidy (assumed here; and 2Ne in the case of diploidy). The latter is typically

far below the number of reproductive individuals in the population, and defined by various demo-

graphic features and interference imposed by chromosomal linkage, with values ranging between

~ 10
5 for multicellular eukaryotes to ~ 10

9 for bacteria (Charlesworth, 2009; Lynch et al., 2016;

Walsh and Lynch, 2018).

Individual phenotypes are comprised of the sum of a heritable additive genetic component (A)

and a nonheritable residual deviation (e, which includes environmental and nonadditive genetic

effects), such that z ¼ Aþ e; with the within-population phenotypic variance being partitioned as

s2

z ¼ s2

A þ s2

e : For cellular features, a large fraction of s2

e may be a consequence of stochastic gene

expression, imprecise placement of cell-division septa, etc. Assuming that both s2

A and Ne remain

constant, which is the model adhered to here, Equation (1a) can be rewritten as

F �zð Þ ¼C � exp ð2Ne=s
2

AÞ
Z �z

Ms xð ÞþMm xð Þ½ �dx
� �

; (1b)

showing that the stationary distribution of mean phenotypes (conditional on a particular level of

genetic variance, a point that will be returned to below) is proportional to the product of the distri-

butions expected under selection alone and under mutation alone. With extremely weak selection,

Ms xð Þ would be essentially a flat function, with the overall distribution reflecting the biases due to

mutation alone. Conversely, with a flat mutation function, an unlikely scenario, the distribution will

follow that expected under selection alone.

The process of selection
The influence of selection on the mean phenotype (the response to selection) is embodied in the

breeder’s equation,

Ms �zð Þ ¼�z tþ 1ð Þ��z tð Þ
¼ h2 �zs tð Þ��z tð Þ½ �; (2)

a general statement about the connection between directional selection within generations and the

transmission of such change across generations (Walsh and Lynch, 2018). Here, �z tð Þ and �zs tð Þ denote
the mean phenotypes before and after selection in generation t, the difference being the selection

differential. The heritability of the trait, h2 ¼ s2

A=s
2

z , which equals the proportion of the total pheno-

typic variance, s2

z , associated with additive genetic variation, s2

A; constitutes the fraction of the

within-generation change in the mean transmitted to the next generation.

Critical to everything that follows, the selection differential can be described in terms of the

within-population phenotype distribution, p z; tð Þ, and the function relating individual fitness to phe-

notype, W zð Þ. The mean fitness in generation t is

W ¼
Z

p z; tð Þ �W zð Þ � dz: (3)

The mean phenotype after selection (but before inheritance) is then obtained by weighting the pre-

selection phenotypes by their relative fitnesses,

�zs tð Þ ¼
1

W

Z

z � p z; tð Þ �W zð Þ � dz: (4)

We will make use of the fact that most quantitative traits have an approximately normal phenotype

distribution on some scale of measurement, which follows from the central limit theorem (Lynch and

Walsh, 1998). The distribution of individual measures is therefore described completely by the phe-

notypic mean and variance,
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p z; tð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
z

p � exp � z��z tð Þ½ �2
2s2

z

 !

: (5)

Substituting Equation (5) into (3) and differentiating, the change in mean fitness with respect to

mean phenotype is

qW

q�z tð Þ ¼
Z

qp z; tð Þ
q�z tð Þ �W zð Þ � dz

¼ 1

s2
z

Z

z��z tð Þ½ � � p z; tð Þ �W zð Þ � dz
(6)

(Lande, 1976). From Equation (4), the first term to the right of the integral is equal to �zs tð Þ �W, and

the second term is �z tð Þ �W. This provides a direct link to Equation (2), which upon rearrangement

becomes

Ms �zð Þ ¼ s2

A �
qW

W � q�z tð Þ : (7)

This expression states that, provided the phenotype distribution is normal, the change in mean phe-

notype caused by selection is equal to the product of the genetic variance for the trait and the gradi-

ent in the logarithm of mean fitness with respect to mean phenotype. Evolution by natural selection

comes to a standstill when there is no genetic variance for the trait or the phenotypic mean resides

at a point where the slope of the function of mean fitness with respect to mean phenotype is zero.

To endow this expression with practical utility, specific expressions for the fitness function, W zð Þ; will
be considered below.

The process of mutation
Most attempts to consider the long-term evolutionary features of quantitative traits have assumed

one of two mutation models: (1) a distribution of mutational effects always having a mean equal to

zero and a constant variance, independent of the starting genotype (Kimura, 1965; Lande, 1975;

Lynch and Hill, 1986); or (2) a rate of appearance of each type of mutant allele being independent

of the ancestral type (Cockerham, 1984; Turelli, 1984). Under the first scenario, mutation has no

directional effect on the mean phenotype, and there are no bounds on the possible mutational

effects or the physical limits to which the trait can evolve. Under the second scenario, there is a phys-

ical limit to phenotypic divergence, and because the directional effect of mutations depends on the

current location, more extreme alleles generate mutations with effects biased back toward the cen-

ter of the distribution.

Neither of these mutational schemes captures the features of a wide variety of cell biological

traits, which often have finite numbers of possible states and state-dependent spectra of mutational

effects. A few examples will suffice to make this point. Protein-protein interactions (e.g. the interfa-

ces between dimeric molecules) typically depend on no more than a few dozen amino-acid sites.

The same is true for intramolecular interactions such as the constellation of backbone residues that

assemble during protein folding. In both cases, the underlying residues operate in an approximately

binary manner, for example, hydrophobic vs. hydrophilic, or hydrogen-bonding vs. non-hydrogen

bonding. Likewise, the catalytic sites of enzymes often consist of a small-to-moderate numbers of

residues that either facilitate or inhibit catalytic rates, and the sizes of intracellular organelles and

cytoskeletal components are constrained by cell size. Many other examples could be cited, including

those involved in RNA-RNA and DNA-protein interactions.

The approximate structure of a mutation function with a bounded range can be arrived at by con-

sidering a trait determined by n binary factors (or sites), each with state b having effect 0, and state

B having effect m. For a trait with an additive genetic basis, the mean phenotype in a haploid popu-

lation can then be represented as

�z¼ z0 þ nm�q; (8)
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where z0 is an arbitrary baseline value for the trait, and �q is the mean frequency of B-type alleles

averaged over all n factors in the population (Lynch and Walsh, 1998).

Letting u be the mutation rate from B to b alleles, and v be the reciprocal rate, the per-generation

change in the mean phenotype resulting from mutation is

Mm �zð Þ ¼ nm v 1� �qð Þ� u�q½ �: (9)

With q¼ v= uþ vð Þ being the equilibrium frequency of B alleles under mutation pressure alone, and

�m ¼ z0þ nmq being the expected mean phenotype under neutrality, Equation (9) further reduces to

Mm �zð Þ ¼� uþ vð Þ �z� �mð Þ: (10)

This expression is quite general in that �z� �mð Þ is simply the distance of the mean phenotype from

that expected under mutation equilibrium, and uþ vð Þ is a measure of the mutational restoring force

per locus. The essential feature of Equation (10) is that mutation acts to reduce the distance

between the mean phenotype and �m to a degree that depends on the magnitude of this deviation.

Charlesworth (2013) implemented a similar mutation model in an investigation of

genomic features.

The stationary distribution of mean phenotypes
Application of Equations (7) and (10) to (1b) yields a useful simplification of the stationary distribu-

tion that will be adhered to below,

F �zð Þ ¼C � W �zð Þ
� �2Ne �exp � �z� �mð Þ2

2s2
N

 !

; (11)

with s2

N ¼ s2

A= 2Ne uþ vð Þ½ �. As will be discussed below, under neutrality, the genetic variance s2

A often

scales directly with Ne, and population size would have no influence on the distribution in this limiting

case, as s2

N would be independent of Ne. More generally, s2

A is also a function of the intensity of

selection, but the bulk of the steady-state distribution will be represented by mean phenotypes that

are in the range of effective neutrality with respect to each other, so the scaling relationship of s2

A

under neutrality is expected to be a reasonable first-order approximation.

Equation (11) shows that, provided the genetic variance remains roughly constant, the stationary

distribution is equal to the product of the expectation under neutrality (where mutation and drift are

the only operable evolutionary forces) and the mean fitness function exponentiated by 2Ne; that is,

the stationary distribution is equivalent to a transformation of the neutral expectation by a function

of the fitness landscape. Thus, to obtain the overall distribution in the following applications, we

require an expression for mean population fitness in terms of the trait mean.

In what follows, insight into the approximate magnitude of s2

N will be useful. This can be achieved

by noting that 2Ne uþ vð Þ will have values of the order of magnitude of 4Ne�, where � is the mutation

rate per nucleotide site. This composite parameter is equivalent to the amount of standing heterozy-

gosity at neutral nucleotide sites in natural populations under mutation-drift equilibrium, and gener-

ally ranges from 0.001 to 0.1, with the lower and higher ends of the range being typical in

vertebrates and microbes, respectively (Lynch, 2007). Thus, because heritabilities (s2

A=s
2

z ) of traits

are typically on the order of 0.1 to 0.5 (Lynch and Walsh, 1998), s2

N is expected to be in the range

of 1� to 100� the average within-population phenotypic variance for the trait.

Selection for an intermediate optimum
A commonly assumed form of selection, probably relevant to many cellular features, is the Gaussian

(bell-shaped) fitness function with an intermediate optimum phenotype, �s, and a width, !, determin-

ing the strength of selection around the optimum,

W zð Þ ¼ exp � z� �sð Þ2
2!2

 !

: (12)

Application of this expression to Equations (3) and (4) leads to the expression for mean population

fitness, which when applied to Equation (7) yields the expression for Ms �zð Þ necessary for obtaining
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the stationary distribution (Table 1). The latter expression shows that the change in the mean pheno-

type resulting from selection is directly proportional to the deviation of the current mean phenotype

from the optimum and inversely proportional to the sum of the squared width of the fitness function

and the total phenotypic variance (Lande, 1976). As will be seen repeatedly below, phenotypic vari-

ance (an inevitable consequence of external environmental and internal cellular effects) generally

reduces the efficiency of selection by diminishing the correspondence between genotype and phe-

notype. If the mean phenotype were to evolve to the optimum, �z¼ �s, which is highly unlikely with

biased mutation pressure, selection would be purely stabilizing in nature, operating only to reduce

the variation around the mean.

With both the selection and mutation terms in Equation (11) being Gaussian functions, the prod-

uct is also Gaussian (Lande, 1976), in this case leading to a stationary distribution of mean

phenotypes

F �zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2ps2 �zð Þ

s

� exp � �z�� �zð Þ½ �2
2s2 �zð Þ

 !

; (13a)

with overall mean

� �zð Þ ¼ �s=s
2

S

� �

þ �m=s
2

N

� �

1=s2

S

� �

þ 1=s2
Nð Þ ¼ k�sþ �m

kþ 1
; (13b)

and variance

s2 �zð Þ ¼ 1

1=s2

S

� �

þ 1=s2
Nð Þ ¼

s2

N

kþ 1
; (13c)

where k¼ s2

N=s
2

S; with s2

S ¼ !2þs2

z

� �

= 2Neð Þ and s2

N (as defined as above) being the variances of the

contributions associated with selection and mutation.

Equation (13b) states that the grand mean is equal to a weighted average of the expectations

under mutation and selection alone (each component being weighted by the inverse of the variance

of the function). Equation (13c) states that the variance of means is equal to half the harmonic mean

of the variances associated with selection and mutation alone. As s2

S ! ¥; which implies a flatter fit-

ness function and hence an approach toward neutrality, the mean and variance converge on the

expectations for a purely mutationally driven process, �m and s2

N . As s2

N ! ¥; which implies a weak-

ening influence of mutation on the overall distribution, the mean and variance converge on the

expectations for a purely selection-driven process, �s and s2

S.

As can be seen from Equations (13b, c), a key determinant of the form of the stationary distribu-

tion of means is the composite parameter k ¼ s2

A= 2 uþ vð Þ !2 þ s2

z

� �� �

; which the following observa-

tions suggest is generally � 1: First, the width of the fitness function ! can be expected to be

generally greater than the phenotypic standard deviation sz, else the selective load on the trait

would be enormous, and this is indeed generally observed (Walsh and Lynch, 2018). Given the

range of heritability estimates noted above, this implies that the ratio s2

A= !2 þ s2

z

� �

is unlikely to be

Table 1. Formulae for mean population fitness, W �zð Þ, and the rate of change of the mean phenotype

resulting from selection, Ms �zð Þ, obtained from Equations (4) and (6), respectively.

Model W �zð Þ Ms �zð Þ
Gaussian

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2

!2 þ s2
z

s

� exp � �z� �sð Þ2

2 !2 þ s2
z

� �

 !

�s2

A �z� �sð Þ
!2 þ s2

z

Hyperbolic 1� a exp �b �z� bs2

z=2
� �� �� 	

s2

Aab

exp b �z� bs2
z=2

� �� �� 	

� a

Sigmoid 1

1 þ exp � b=gð Þ �z� z*ð Þ½ �
s2

A b=gð Þ
1 þ exp b=gð Þ �z� z*ð Þ½ �

DOI: https://doi.org/10.7554/eLife.34820.004
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greater than 0.1 under strong selection, and can become one to two orders of magnitude smaller

than 0.1 under weak selection. Second, mutation rates at the single nucleotide level are typically in

the range of 10�11 to 10
�8, with the former being approached in microbes and the latter in large mul-

ticellular species (Lynch et al., 2016). Thus, keeping in mind that individual targets of mutation may

comprise more than single nucleotide sites, 1= 2 uþ vð Þ½ � is still likely to be in the range of 107 to 10
10.

Together, these results suggest a likely range for k of 104 to 10
9; which simplifies Equations (13b, c)

to

� �zð Þ ’ �sþ �m=kð Þ (14a)

s2 �zð Þ ’ s2

N=k¼ s2

S: (14b)

With these parameter values in mind, Figure 2 shows that the form of the stationary distribution

varies dramatically with the value of s2

N=k¼ s2

S, becoming extremely narrow and extremely flat at

opposite ends of the spectrum for this key composite parameter. The degree to which �m deviates

from �s for cellular features is unknown, but there is no reason to expect them to be equal. If they

differ greatly, � �zð Þ can substantially deviate from the optimum to a degree that depends on the

weighting factor k (Figure 2).

Hyperbolic fitness function
Many cellular features are likely to be primarily under continuous selection for an extreme optimum,

but with diminishing strength of selection as the optimum is approached. For example, many

Figure 2. Stationary distributions of mean phenotypes, with optimum phenotype �s ¼ 0 and k ¼ 10
4: Results are given for three different values of �m

for the condition in which s2

N=k ¼ 10
�8 (colored curves), and four different values of s2

S for the case in which the mutational mean coincides with the

optimum (black curves). The parametric values used in these plots assume a scale on which the phenotypic standard deviation is 1.0, so a mean

phenotype of �0:001 is equivalent to a shift of 0.1% phenotypic standard deviations from the optimum.

DOI: https://doi.org/10.7554/eLife.34820.005
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enzymes are likely to be selected for as high a catalytic rate as possible, protein structures for as

high folding rates and stability as possible, binding interfaces with as high affinities as possible, etc.

One way of representing this type of selection involves the hyperbolic function,

W zð Þ ¼ 1�a exp �bzð Þ; (15)

where the constants 0� a� 1 and b� 0, respectively, define the amplitude and rapidity of the fitness

response to increasing z. Fitness is equal to 1�a when z¼ 0, and asymptotically approaches one as

z!¥:

Expressions for the mean population fitness and the change in the mean resulting from selection,

obtained by the procedures noted above, are provided in Table 1, and substitution of the former

into Equation (11) yields the stationary distribution of mean phenotypes. Because of the asymmetry

of this fitness function, the resultant distribution is no longer perfectly Gaussian, but setting

qF �zð Þ=q�z ¼ 0 yields an expression for the single mode of the distribution, z

ẑ� �mð Þ exp bẑ½ ��ff g ¼ 2Nebs
2

Nf; (16a)

with f¼ a exp b2s2

z=2
� �

. Despite the monotonic increase in fitness with z, the distribution of mean

phenotypes is prevented from progressive increase by the counteraction of mutation and the diffu-

sive action of drift. Because selection is always in the positive direction, the expected mode always

exceeds the neutral expectation �m, to a degree that increases with the effective population size.

Equation (16a) is readily solved numerically, but provided bẑ<1, in the limit of large Ne,

ẑ’ �mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nefs
2
N

q

: (16b)

Although the hyperbolic fitness function generates a slightly asymmetric distribution of means

(with tail to the right), the bulk of the distribution is approximately normal, and an excellent approxi-

mation to the variance can be obtained from the curvature of the stationary distribution around the

mode (using the negative of the inverse of the second derivative of the stationary distribution),

s2 �zð Þ ’ 1

2Neb
2fexp bẑð Þ= exp bẑð Þ�fð Þ2

h i

þ 1=s2
Nð Þ

(17)

As in the case of the Gaussian fitness function, Equation (13c), the two terms in the denominator

are respectively the inverses of the variances expected under the limits of strong selection and

neutrality.

An example of the influence of population size on the stationary distribution is given in Figure 3,

where there is a strong mutational bias away from the optimum. The distributions progressively

move to the right with an increase in Ne, with the mean phenotype increasing five-fold over a three

order-of-magnitude range of Ne. As can be seen from Equation (16b), equal changes in either Ne or

the neutral variance s2

N have identical effects on the mean, although effects on the variance are

opposite in direction.

Sigmoid fitness function
Finally, we consider a variant of the fitness function just noted. With the previous fitness function,

Equation (15), the selection gradient progressively declines with increasing phenotypic value over

the full range of z, with increasing z resulting in an asymptotic approach to maximum fitness. With a

sigmoid fitness function, sometimes called a mesa function (Gerland and Hwa, 2002; Berg et al.,

2004), there is an inflection point such that the fitness landscape becomes progressively flatter at

both higher and lower values. This means that adjacent variants become increasingly similar in fitness

(i.e. more neutral with respect to each other) at both extremes of the phenotype distribution.

The sigmoid fitness function for individual phenotypes can be described as

W zð Þ ¼ 1

1þ exp �b z� z*ð Þ½ � ; (18a)

where z* denotes the inflection point at which W zð Þ ¼ 0:5. This function is closely approximated by
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W zð Þ ¼ 1

2
1þ erf

ffiffiffiffi

p
p

b z� z*
� �

4

� �� �

; (18b)

where erf is the error function (the cumulative standard normal distribution), which facilitates integra-

tion with Equation (4). The resultant expression for mean population fitness is also sigmoid, but with

phenotypic variance reducing the strength of selection from b to b=g, where g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2s2
zp=8

� �

q

(Table 1).

As in the case of the hyperbolic fitness function, the mesa function does not yield a perfectly

Gaussian distribution of mean phenotypes, but an expression for the mode (z) can be acquired using

the methods noted above,

ẑ� �mð Þ exp b=gð Þ ẑ� z*
� �� �

þ 1
� 	

¼ 2Ne b=gð Þs2

N ; (19a)

Figure 3. Stationary distributions of mean phenotypes with a hyperbolic fitness function, Equation (14) with a ¼ 1 and b ¼ 0:03 and denoted by the

dashed line. Black distributions denote results for various effective population sizes (Ne ¼ 10
3 to 10

6), with phenotypic variance s2

z ¼ 1, mutational

variance s2

N ¼ 1; and the mean phenotype under neutrality (distribution given by the dotted line) �m ¼ 10: Blue and red distributions denote the effects

of altering �m and s2

N :

DOI: https://doi.org/10.7554/eLife.34820.006
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which again has a single solution, indicating a unimodal stationary distribution. If bẑ=g<1, in the limit

of large Ne,

ẑ’ �mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Nes
2
Nexp bz*=gð Þ

q

; (19b)

which has a form similar to the expression noted with the hyperbolic fitness function. From the form

of these equations, it can again be seen that there are several equivalent effects of the underlying

parameters. For example, a doubling of Ne has the same effect as a doubling of s2

N on the mode,

and a doubling of b the same effect as a reduction in g by 50%. Although more complicated, the

expected variance in means under the sigmoid model is similar in form to that noted above for the

Gaussian and hyperbolic fitness functions,

s2 �zð Þ ’ 1

2Ne b=gð Þ2exp � b=gð Þ �z� z*ð Þ½ �= 1þ exp � b=gð Þ �z� z*ð Þ½ �ð Þ2
n o

þ 1=s2
Nð Þ

(20)

Discussion
The preceding models are meant to provide heuristic guidance into the evolutionary mechanisms

responsible for the dispersion of mean phenotypes of a diversity of subcellular and molecular fea-

tures. Although such traits may sometimes be under selection for an intermediate optimum, selec-

tion may often operate in a continuous directional fashion. In either case, there are two reasons why

mean phenotypes are unlikely to commonly achieve states that endow a population with maximum

fitness. First, if mutation bias conflicts with the directional effects of selection, the optimum pheno-

type will not coincide with the mean phenotype. Second, even in the absence of mutation bias and

regardless of the form of the fitness function, a drift barrier exists beyond which the gradient of the

selection function is not steep enough to overcome the vagaries of genetic drift, thereby preventing

further adaptive progress. Within the confines of the drift barrier, the mean phenotype will wander

to a degree that depends on the strength of local patterns of mutation and selection.

These points have implications for the degree to which the ‘adaptive paradigm’ should be

embraced as an explanatory framework for diversification at the cellular level. For example, with

mutation bias encouraging the mean phenotype to deviate from the optimum, the result will be a

population under persistent directional selection despite the existence of an attainable (but not sus-

tainable) phenotype with maximum fitness. Even without mutation pressure and in the face of intrin-

sic directional selection, for example, a hyperbolic or mesa fitness function, the most common mean

phenotype will not be equivalent to the optimum phenotype, and the drift barrier will ensure varia-

tion in mean phenotypes among populations exposed to identical selection pressures.

An attempt has been made to couch the stationary forms of mean-phenotype distributions in

terms of underlying parameters that are at least in principle observable empirically. Consider, for

example, the model for stabilizing selection for a specific optimum. From Equation (14a), the

expected deviation of the mean phenotype from the optimum resulting from mutation bias is �m=k;

which expands to �m 2 uþ vð Þ !2 þ s2

z

� �

=s2

A

� �

; a somewhat complex function that may not be immedi-

ately transparent. However, a wide variety of models suggest that s2

A scales directly with Ne� pro-

vided selection is weak (Bürger et al., 1989; Zeng and Cockerham, 1993; Charlesworth, 2013),

and because u and v (the forward and reverse mutation rates) are both proportional to � (the total

mutation rate per site), this implies that the average deviation of the mean from the optimum scales

as �m !2 þ s2

z

� �

=Ne; or approximately as �m!
2=Ne assuming weak selection. Thus, the deviations of

phenotypic means from the selective optimum are expected to be inversely proportional to Ne, a

point also made by Charlesworth (2013) in a somewhat different analysis. Note, however, that this

is only the expected pattern, as the mean phenotype is still expected to drift above and below the

expectation to a degree depending on the effective strength of selection. As noted in

Equation (14b), and previously pointed out by Lande (1975) and Lande (1976), the magnitude of

this drift variance is also inversely proportional to Ne, which implies that the standard deviation with

respect to the expected mean scales as ~ 1=
ffiffiffiffiffi

Ne

p
:

Of course, �m (the mean phenotype expected under neutrality) may differ among lineages and

the within-population genetic variance s2

A is sensitive to the strength of selection, in which case the

power to detect such relationships may be challenging. In addition, the linear scaling of s2

A with Ne is
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unlikely to continue indefinitely, unless Ne in natural populations rarely attains levels where all constit-

uent loci are saturated with segregating mutations. The salient issue is that the preceding expres-

sions provide qualitative insight into the behavior of mean phenotypes in alternative population-

genetic environments, while also revealing the types of measurements that need to be made if we

are to understand such behavior. For example, we know essentially nothing about the key mutational

(�m) and selection (!2) parameters for cell biological features and how these might vary among spe-

cies. This is not a trivial issue, as the influence of both parameters in determining the most likely

locations of mean phenotypes are just as central as the role played by Ne.

Applying the same logic to results for plateaued fitness functions leads to the prediction that the

expected mode of mean phenotypes will scale fairly strongly with the effective population size, in

the limit approaching proportionality to
ffiffiffiffiffi

Ne

p
; that is, a 10-fold increase in the mean phenotype with

a 100-fold increase in Ne: As shown in Figure 3, a simple change in the mutational variance s2

M (with

no associated change in mutational bias) can also cause a substantial shift in the position of the

mean phenotype. These sorts of observations raise the significant possibility that species with sub-

stantially different population-genetic environments may commonly exhibit measurable differences

in trait means despite experiencing identical forms of directional selection, again raising challenging

issues for those who wish to interpret phenotypic differences as reflections of different underlying

processes of selection.

Although the data are not extensive, several lines of evidence support the idea that the mean

phenotypes of cellular attributes are indeed modulated by the power of random genetic drift. The

most compelling example derives from observations on the mutation rate (per nucleotide site per

generation), which scales approximately inversely with the 1000-fold range of variation in Ne across

the Tree of Life (Lynch et al., 2016). Such a scaling is qualitatively consistent with the drift-barrier

hypothesis for mutation-rate evolution (Lynch, 2010; Lynch, 2011), which postulates that because

most mutations are deleterious, selection will typically operate to improve replication fidelity, with

refinements in molecular performance eventually being thwarted by random genetic drift – as the

mutation rate is progressively lowered, there is less room for improvement and hence a narrower

range of selectively advantageous replication-fidelity variants accessible by selection.

Enzyme efficiency provides a second broad category of traits with evolutionary behavior seem-

ingly in accordance with the theory outline above. For example, Bar-Even et al. (2011) have found

that enzymes involved in secondary metabolism are on average ~ 30� less efficient than those

involved in central metabolism, suggesting that selection operates less effectively on enzymes fur-

ther removed from core energetic determinants. More directly relevant to the points made above,

Bar-Even et al. (2011) also found that prokaryotic enzymes have slightly better kinetics than those

from eukaryotes, as expected for species with higher effective population sizes and consistent with

the prediction that improvement of enzyme efficiencies will stall once the gradient of the fitness sur-

face is on the order of 1=Ne (Hartl et al., 1985). The fact that bacteria utilize transcription-factor

binding-site motifs with stronger affinity to their cognate transcription factors than is the case in

eukaryotes is also plausibly related to a higher efficiency of selection in the former (Lynch and

Hagner, 2015).

Finally, proteins typically evolve to the ‘margin of stability,’ such that only one or two mutations

are usually enough to destabilize the folding process (Taverna and Goldstein, 2002; Tokuriki and

Tawfik, 2009). Protein stability is deemed to be positively associated with fitness because destabi-

lized proteins are prone to loss of function, aggregation, and/or direct toxicity. Strikingly, however,

it is relatively easy to obtain more stable proteins by mutagenesis (Matsuura et al., 1999;

Bershtein et al., 2013; Sullivan et al., 2012), with the contributing residues typically interacting in

an additive fashion (Wells, 1990; Serrano et al., 1993; Zhang et al., 1995). Moreover, although it is

commonly argued that marginal stability is required for proper protein function, with excess stability

somehow reducing protein performance, this has not held up to close scrutiny. Many examples exist

in which increased stability has been achieved in laboratory modifications of proteins with few if any

consequences for enzyme efficiency (e.g. Giver et al., 1998; Zhang et al., 1995; Taverna and Gold-

stein, 2002; Borgo and Havranek, 2012; Moon et al., 2014).

These observations suggest that despite persistent selection for high folding stability, the pla-

teau-like nature of the fitness landscape results in diminishing fitness advantages of increasing stabil-

ity. A hyperbolic relationship between fitness and the binding energy involving protein stability
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follows from biophysical principles (Govindarajan and Goldstein, 1997; Taverna and Goldstein,

2002; Bloom et al., 2005; Zeldovich and Shakhnovich, 2008; Wylie and Shakhnovich, 2011;

Serohijos and Shakhnovich, 2014), and under this model, proteins are expected to be pushed by

natural selection to more stable configurations until reaching the point where any further fitness

improvement is small enough to be offset by the vagaries of random genetic drift and/or mutation

pressure towards less stable states. Notably, proteins of equivalent length fold at least ten times

more rapidly in bacteria than in eukaryotes (Galzitskaya et al., 2011). Moreover, an in vitro evalua-

tion of the folding stability of the dihydrofolate reductase enzyme from 36 species of mesophilic bac-

teria illustrates the existence of a substantial range of variation among species, with the standard

deviation being roughly 10% of the mean (Bershtein et al., 2015). In principle, such a distribution

may reflect the dispersion in mean phenotypes associated with drift around the drift barrier.

Although the mutation function employed here likely comes closer to approximating the situation

for cellular features than do previous functions relied on in quantitative genetics, in reality we do not

know the exact form of this function for any cellular feature. Thus, the mathematical theory devel-

oped here is best viewed as a guide to approaching the problem at hand rather than as an indelible

platform for quantitative analysis. Despite such uncertainties, however, the central feature of the the-

ory presented above is that, regardless of the form of the underlying mutation and selection func-

tions, the stationary distribution of mean phenotypes can generally be viewed as the product of the

pattern expected under neutrality alone and the associated function for mean population fitness

taken to the 2Ne power, as described by Equations (1a,b) and (11). Similar behavior was previously

pointed out for the stationary distribution of allele frequencies (Wright, 1969). Thus, once the key

underlying functions have been elucidated, the precise details of the theory can be readily modified

with alternative mathematical functions.

Finally, a key issue that is not formally evaluated here, but is arguably relevant to a number of cel-

lular features, concerns the matter of peak shifts across the stationary distribution. Questions regard-

ing this matter are typically inspired by Wright’s (1932) metaphor of an adaptive topography, with

multiple fitness peaks and valleys of various depths over the phenotypic landscape. However, unless

the distribution of mutational effects is completely flat, the relevant topography is not simply defined

by the fitness landscape but by the joint action of both selection and mutation. Although the station-

ary distribution was unimodal in all of the cases examined above, plausible cases exist in which the

stationary distribution exhibits two peaks, one largely driven by selection and the other by mutation

pressure. For this to occur, the gradient of mutation pressure in one direction has to be of a form

such that its product with the selection gradient has an internal minimum (Figure 4). In principle, this

can happen when at the intersection of intermediate phenotypes the two functions are sufficiently

upwardly concave that their product reaches a local minimum.

Under such a scenario, the population mean phenotype is expected to reside in two alternative

semi-stable domains for extended periods of time, with the rates of transitions between domains

depending on the relative heights of the two peaks, the depth of the distributional valley, and the

curvatures of the stationary distribution at the inflection points (Lande, 1985; Barton and Rouhani,

1987). Over long evolutionary time periods, such a system will exhibit detailed balance – the net

fluxes will be equal in both directions, with the ratio of the occupancy of the two alternative domains

being inversely related to the ratio of the transition rates between them, that is, with the less fre-

quent domain having a higher conditional rate of transition to the more frequent domain.

Although the frequency of stationary distributions with multimodal forms is unknown, they have

been predicted to arise in some situations involving transcription (Lynch and Hagner, 2015;

Tuğrul et al., 2015). Should they exist, the picture from comparative analyses would be one of quali-

tative changes in mean phenotypes in adjacent lineages. Tempting as it might be to invoke shifting

ecological pressures to explain such patterns, they would be occurring in the absence of any under-

lying changes in selection, being a simple consequence of the multiplicity of mutational opportuni-

ties in one direction balanced by selective pressures in the other. Such ideas may be helpful in

attempts to decipher the substantial and seemingly disorganized diversity of certain cellular features

such as open vs. closed mitosis (Sazer et al., 2014), the structure of the centrosome (Carvalho-

Santos et al., 2011), and the variable multimeric states of proteins (Dayhoff et al., 2010;

Lynch, 2013; Ahnert et al., 2015) across the Tree of Life.

Lynch. eLife 2018;7:e34820. DOI: https://doi.org/10.7554/eLife.34820 13 of 17

Research article Cell Biology Evolutionary Biology

https://doi.org/10.7554/eLife.34820


Acknowledgements
I thank M Bauer, J Felsenstein, P Higgs, P Johri, M Lässig, M Manhart, A Moses, and D Needleman
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with the forms of these two functions being such that their product is a minimum at the valley in the landscape. Most of the time, a population will

reside in one domain or the other, wandering over a range of phenotype space to the left or the right of the valley, but occasionally a transition will be

made across the valley impelled by a stochastic series of drift and mutational events. Populations crossing the valley to the right are pulled by selection

pressure, whereas those crossing to the left are pulled by the multiplicity of mutational opportunities.
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