
*For correspondence:

massimo@physics.ucsd.edu (MV);

vnmurthy@fas.harvard.edu (VNM)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 20

Received: 10 January 2018

Accepted: 30 March 2018

Published: 24 April 2018

Reviewing editor: Fred Rieke,

Howard Hughes Medical

Institute, University of

Washington, United States

Copyright Reddy et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Antagonism in olfactory receptor neurons
and its implications for the perception of
odor mixtures
Gautam Reddy1†, Joseph D Zak2,3†, Massimo Vergassola1*,
Venkatesh N Murthy2,3*

1Department of Physics, University of California, San Diego, La Jolla, United States;
2Department of Molecular Cellular Biology, Harvard University, Cambridge, United
States; 3Center for Brain Science, Harvard University, Cambridge, United States

Abstract Natural environments feature mixtures of odorants of diverse quantities, qualities and

complexities. Olfactory receptor neurons (ORNs) are the first layer in the sensory pathway and

transmit the olfactory signal to higher regions of the brain. Yet, the response of ORNs to mixtures

is strongly non-additive, and exhibits antagonistic interactions among odorants. Here, we model

the processing of mixtures by mammalian ORNs, focusing on the role of inhibitory mechanisms. We

show how antagonism leads to an effective ‘normalization’ of the ensemble ORN response, that is,

the distribution of responses of the ORN population induced by any mixture is largely independent

of the number of components in the mixture. This property arises from a novel mechanism

involving the distinct statistical properties of receptor binding and activation, without any recurrent

neuronal circuitry. Normalization allows our encoding model to outperform non-interacting models

in odor discrimination tasks, leads to experimentally testable predictions and explains several

psychophysical experiments in humans.

DOI: https://doi.org/10.7554/eLife.34958.001

Introduction
The olfactory system, like other sensory modalities, is entrusted to perform certain basic computa-

tional tasks. Of primary importance is the specific identification of odors and the recognition of iso-

lated sources or objects in an olfactory scene. A typical scene in a natural environment is complex:

the olfactory landscape is determined by the chemical composition of odorants released by the

objects, the stoichiometry of the mixture and the physical location of the objects relative to the

observer. An efficient olfactory system is expected to eliminate irrelevant background components

and de-mix contextually relevant components received as a blend (Ache et al., 2016; Cardé and

Willis, 2008; Gottfried, 2010; Hopfield, 1999; Howard and Gottfried, 2014; Jinks and Laing,

1999; Knudsen et al., 1993; Pentzek et al., 2007; Raguso, 2008; Riffell, 2012; Riffell et al., 2008;

Riffell et al., 2014; Rokni et al., 2014; Stevenson and Wilson, 2007; Szyszka and Stierle, 2014;

Thomas-Danguin et al., 2014).

The importance of filtering a complex background is shared by the olfactory and the adaptive

immune systems. In the latter, lymphocytes must quickly and accurately identify a small fraction of

foreign ligands in a sea of native ligands (Abbas et al., 2014). Inhibitory feedback plays a key role in

meeting the challenge of a proper combination of rapidity, sensitivity and specificity (François et al.,

2013). Inhibitory interactions in the form of receptor antagonism have indeed been observed in

experiments with olfactory receptor neurons (ORNs) (Oka et al., 2004; Takeuchi et al., 2009;

Kurahashi et al., 1994), although it has not been quantified systematically. For instance, the

response of cells expressing the mOR-EG receptor is strongly suppressed when methyl isoeugenol is
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delivered together with the receptor’s cognate ligand, eugenol, at equal concentrations (Oka et al.,

2004). Further evidence of intensity suppression and overshadowing (i.e. when one odorant makes

another indiscernible) in the perception of odorant mixtures comes from psychophysical observa-

tions (Lawless, 1997; Keller and Vosshall, 2004; Doty and Laing, 2015; Thomas-Danguin et al.,

2014). The importance of peripheral interactions in shaping mixture perception has been directly

shown by electrophysiological and psychophysical measurements (Bell et al., 1987; Laing and Will-

cox, 1987; Chaput et al., 2012). However, the functional role, if any, of inhibition at the ORN level

remains unknown.

Each ORN expresses receptors of a particular type, which typically display broad sensitivities to

different odorants, whereas each odorant binds promiscuously to receptors of many types. The

axons of ORNs of a common type converge onto glomeruli, where the axon terminals form synaptic

contacts with mitral and tufted (M/T) projection neurons leading to the cortex, as well as local peri-

glomerular (PG) interneurons. The activation of an individual glomerulus therefore represents the

activation of a single ORN type. Discriminatory computations are carried out by brain regions such

as the olfactory cortex, which receive combinatorial information from the entire ORN ensemble. To

achieve a quantitative description of ORN inhibitory effects, it is then imperative to take their global

nature into account. In other words, it is necessary to address the knowledge gap between the mix-

ture response properties of a single ORN, the ensemble glomerular response, and ultimately its

influence on odor discrimination and perception, which constitutes the goal of the present work.

Previous computational models that examined discrimination tasks have, for simplicity, assumed a

linear summation model of mixture response at the ORN level (Hopfield, 1999; Koulakov et al.,

2007; Zhang and Sharpee, 2016; Zwicker et al., 2016; Mathis et al., 2016; Grabska-

Barwińska et al., 2017). Conversely, our emphasis is on explicitly characterizing the ORNs’

eLife digest When ordering in a coffee shop, you probably recognize and enjoy the aroma of

freshly roasted coffee beans. But as well as coffee, you can also smell the croissants behind the

counter and maybe even the perfume or cologne of the person next to you. Each of these scents

consists of a collection of chemicals, or odorants. To distinguish between the aroma of coffee and

that of croissants, your brain must group the odorants appropriately and then keep the groups

separate from each other.

This is not a trivial task. Odorants bind to proteins called odorant receptors found on the surface

of cells in the nose called olfactory receptor neurons. But each odorant does not have its own

dedicated receptor. Instead, a single odorant will bind to multiple types of odorant receptors, and

thus, each olfactory receptor neuron may respond to multiple odorants. So how does the brain

encode mixtures of odorants in a way that allows us to distinguish one aroma from another?

Reddy, Zak et al. have developed a computational model to explain how this process works. The

model assumes that an odorant triggers a response in an olfactory receptor neuron via two steps.

First, the odorant binds to an odorant receptor. Second, the bound odorant activates the receptor.

But the odorant that binds most strongly to a receptor will not necessarily be the odorant that is

best at activating that receptor.

This allows a phenomenon called competitive antagonism to occur. This is when one odorant in a

mixture binds more strongly to a receptor than the other odorants, but only weakly activates that

receptor. In so doing, the strongly bound odorant prevents the other odorants from binding to and

activating the receptor. This helps tame the dominating influence of background odors, which might

otherwise saturate the responses of individual olfactory receptor neurons.

Reddy, Zak et al. show that processes such as competitive antagonism enable olfactory receptor

neurons to encode all of the odors within a mixture. The model can explain various phenomena

observed in experiments and it adds to our understanding of how the brain generates our sense of

smell. The model may also be relevant to other biological systems that must filter weak signals from

a dominant background. These include the immune system, which must distinguish a small set of

foreign proteins from the much larger number of proteins that make up our bodies.

DOI: https://doi.org/10.7554/eLife.34958.002

Reddy et al. eLife 2018;7:e34958. DOI: https://doi.org/10.7554/eLife.34958 2 of 23

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.34958.002
https://doi.org/10.7554/eLife.34958


biophysical attributes, with a focus on mixture response properties. A key aspect of the model is

that odorant-receptor interactions depend on two distinct features: the sensitivity to binding and

the efficiency of activation after binding, respectively. Competitive antagonism occurs when a com-

ponent in a mixture that binds strongly, activates the downstream transduction pathway less effec-

tively compared to other components. While this might naively seem disadvantageous, we show

how an antagonistic encoding model has inherent normalization properties, leading to superior per-

formance in odor discrimination and identification tasks. Finally, we make an explicit connection

between a variety of psychophysical observations related to the perception of odorant mixtures and

inhibitory effects at the single ORN level, providing a potential neurobiological basis to perceptual

phenomena.

Results

Biophysics of mammalian olfactory receptor neurons
Odorants in the nasal cavity are captured by G-protein-coupled-receptors located on the cilia of

ORNs. The conversion of chemical binding events into transduction currents in the cilia leads to

spike signals transmitted to the brain (see Refs. [Pifferi et al., 2010; Kleene, 2008] for reviews). The

signal transduction pathway is complex; here, we build a chemical rate model of the mammalian

ORN meant to capture its major response properties. The model complements and extends previous

work on mixture interactions (Rospars et al., 2008; Cruz and Lowe, 2013). In Figure 1A, we illus-

trate the transduction pathway as modeled, and present a summarized version below (see Materials

and methods for details).

The binding of an odorant to a receptor induces the activation of the odor-receptor complex via

a two-step process. For an odorant X, its interactions at the receptor level are then represented by a

two-step process:
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Figure 1. Response properties of an ORN in our biophysical model. (A) Scheme of the modeled ORN signal transduction pathway. (B) The temporal

responses of an ORN to odorants A (red) and B (blue) delivered separately and as a mixture (magenta). (C–D) The peak response of the mixture for

different concentrations of A and B. The three colored curves in (C) are plotted separately in (D) on a single axis, whose scale corresponds to CA, CB and

CA þ CB for A, B and the mixture Aþ B, respectively. (E) The response latency vs odorant concentration. The red, dashed line shows the minimum

possible latency due to the limiting receptor activation and cAMP production steps in the signal transduction, which varies between a few tens of

milliseconds to a few hundred milliseconds depending on the particular odorant-receptor pair under consideration (Ghatpande and Reisert, 2011;

Rospars et al., 2003). (F–G) The Ca2þ-based adaptation properties of the biophysical model. In (F) the first odorant pulse at t ¼ 0 is followed by a

second pulse at each of the four shown times in separate trials. Full response is recovered after a few tens of seconds. (G) The peak response of a pulse

(solid) and a second pulse (dashed) delivered 10 s later against the pulse duration of both pulses.
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where k1 and k2 are the ratios of backward to forward rates for the binding and the activation steps.

R, RX and RX* represent unbound, bound inactive and bound activated receptors, respectively. Acti-

vated complexes convert ATP into cAMP molecules via adenylyl cyclase III. The rate of production of

cAMP is assumed independent of the available ATP (which is in excess), and is therefore propor-

tional only to the number of activated receptors. The cAMP molecules diffuse locally and coopera-

tively open nearby cyclic-nucleotide-gated (CNG) channels permeable to Ca2þ and Naþ ions. Since

CNG channels are distributed uniformly along the cilia (Flannery et al., 2006; Takeuchi and Kuraha-

shi, 2005), we ignore the time required for cAMP to diffuse from its production site to the CNG

channel. CNG channels have four binding sites for cAMP that exhibit allosteric cooperativity, which

leads to nonlinear response functions of the Hill form (Segel, 1993) and constitutes the first stage of

signal amplification in the ORN. The generated Ca2þ current is then proportional to the number of

fully bound CNG channels and is exchanged out of the cell at a constant rate through Naþ/Ca2þ

exchangers. Ca2þ ions open Cl� channels further downstream, which produces an outward amplify-

ing Cl� current (Boccaccio and Menini, 2007). Spike firing, in proportion to the current, follows.

Lastly, ORN adaptation occurs due to the subsequent blocking of the CNG channels by a Ca2þ-cal-

modulin complex.

Despite the complexity of the transduction model, the specific identity of odorants plays a role

only at the level of receptors (except for masking agents, described below). Odorants are character-

ized by two parameters (mathematically defined by (Equation 15) in the Materials and methods):

the sensitivity, k�1 ¼ 1þk2
k1k2

, which controls the affinity of X to the receptor, and the activation efficacy,

h, which combines k2 with parameters of downstream reaction steps to measure the current pro-

duced by X once bound. Numerically integrating the set of coupled rate equations presented in the

Methods yields the temporal firing rate response of the ORN to pulses of odorant molecules and

their mixtures at various concentrations (Figure 1B–D). For single odorants, the model successfully

captures the strongly non-linear peak response for different concentrations of the odorant, the

latency in response (Rospars et al., 2003), the quadratic rate of cAMP production (Takeuchi and

Kurahashi, 2017), and calcium-based adaptation (Kurahashi and Menini, 1997) (Figure 1E–G).

Since our focus in subsequent analysis will be on the peak response, its form is reproduced here (see

Materials and methods for details) for a monomolecular odorant delivered at a concentration C for a

fixed, short duration:

FC ¼
Fmax

1þ 1þC=k
hC=k

� �n : (2)

Here, n is the Hill coefficient and Fmax is the maximum physiologically possible firing rate, which

depends on parameters related to the transduction pathway downstream of receptor activation and

can be rescaled to unity. The maximal response at saturating concentrations, F¥ ¼ Fmax= 1þh�nð Þ is

truncated below Fmax by h, which controls the equilibrium level of activated receptors.

On stimulation with more than one chemical species, the different species bind and activate the

ORN in distinct ways. Its peak response to a pair of odorant molecules A and B is a special case of

the general formula (Equation 14) derived in the Materials and methods, and reads:

FCAþCB
¼

Fmax

1þ 1þCA=kAþCB=kB
hACA=kAþhBCB=kB

� �n : (3)

Strong amplification by the ion channels render the mixture response hyper-additive at concen-

trations close to the sensitivity threshold; at higher concentrations, as the receptors become satu-

rated and the odorants compete for limited binding sites, the response turns hypo-additive. The

reduction in response due to competitive antagonism is determined by the binding affinity of the

weaker odorant (with lower activation efficacy) relative to the stronger one.

Before further theoretical analysis, it is worth clarifying a few points. One may question the rele-

vance of introducing a separate h parameter, since the saturating ORN response could instead be

due to limiting factors downstream of receptor activation. Our assumption is motivated by observa-

tions made from spike recordings of single rat ORNs to odorant mixtures, where the responses of

the same ORN to saturating concentrations of different odorants yield very different firing rates
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(Rospars et al., 2008). Since odorant-ORN specific interactions occur only at the receptor, the differ-

ences at saturation must be due to differences in receptor activation efficacy. Further evidence

comes from examining the minimum latency of spiking response to different odorants at saturating

concentrations (Figure 1E), which can range from a few hundred milliseconds to a few seconds

depending on the odorant-ORN pair (Rospars et al., 2003). The lifetime of odorants bound to a

receptor is short (of a few milliseconds) and the probability of activation of a particular G-protein in

a 50 ms interval at saturating concentrations is low (Bhandawat et al., 2005). These observations

strongly suggest that the latency arises due to a relatively slow build-up of cAMP over many low-

probability activation events. The differences in latency at saturating concentrations, when all recep-

tors are bound, is therefore most likely due to differing activation probabilities, in line with our

assumptions on h. Note that even though both the sensitivity k�1 and the activation efficacy h

depend on k2 (Equation 15), the low probability of activation, which is reflected in the limit k2 � 1,

implies k�1 and h depend separately on k1 and k2.

While a purely competitive model of mixture interactions captured many cases from previous

experiments on ORN mixture responses, a significant fraction showed discrepancies (Rospars et al.,

2008). Non-competitive interactions are particularly manifest in synergy or suppression, which corre-

spond to the mixture response curve lying above or below the individual response curves for each

odorant, respectively, neither of which is possible with pure competition. Below, we show how non-

competitive antagonistic effects, namely masking, can generate those effects. Non-competitive inhi-

bition due to PI3K-dependent antagonism (Ukhanov et al., 2010) is beyond the scope of this paper.

Masking
Masking is the phenomenon of non-specific suppression of CNG channel currents (Kurahashi et al.,

1994; Takeuchi and Kurahashi, 2017). Experimental evidence suggests that masking agents disrupt

the lipid bilayer on the cell membrane, and thereby alter the binding affinity of cAMP to the CNG

channels (Takeuchi et al., 2009). Masking agents can also be odorants (like amyl acetate), that is,

they also bind to receptors and excite the transduction pathway. We suppose that the agents bind

to sites on the lipid bilayer, and that multiple masking agents compete for the available sites. Similar

to (Equation 1), the effects of a masking agent are determined by its affinity KM for the masking

binding sites, and a masking coefficient � (lying between 0 and 1), which measures its inhibitory

effects once bound (see Materials and methods). The latter quantifies the lowered affinity of cAMP

for the CNG channels when a masking agent is bound in the vicinity of the channel. Since the activa-

tion efficacy h that appears in (Equation 2) quantifies the effective rate of signal transduction, the

effect of a lowered affinity appears as a lowered value for h. Specifically, we show that

h ! 1� � ~M
� �

h, where ~M is the fraction of masking sites occupied by the masking agent. It follows

that the firing rate at saturating concentrations, which depends on h, is reduced (see [Equation 19]

in Materials and methods).

The model above (and detailed in the Materials and methods) reproduces qualitative features of

odorant suppression observed in experiments (Kurahashi et al., 1994; Takeuchi et al., 2013)

(Figure 2A,B). We stress that the presented fits serve as qualitative consistency checks; more experi-

mental data on masking agents is required to verify the specifics of the model. Importantly, we show

that both suppression and, counterintuitively, synergy are possible mixture interactions that could

arise due to masking (Figure 2C,D), both of which have been observed in experiments with single

ORNs (Rospars et al., 2008). To define suppression and synergy, we remark that the response curve

of the mixture, taking into account competitive binding alone, always lies between the response

curves of the individual components. This property is a simple consequence of the fact that the num-

ber of activated receptors for a mixture (at a particular total concentration) can never be larger/

smaller than the most/least effective odorant delivered alone at the same total concentration. Sup-

pression can then be defined as the situation when the mixture response curve is lower than the low-

est response curves among the components while synergy occurs when the mixture response is

higher than the highest response curve. In our model, synergy is qualitatively due to the taming of

suppressive effects: for instance, let us consider a component A that binds masking sites more

weakly than B, yet it is a stronger suppressor. If A binds and activates the ORN more strongly than B,

the net effect of mixing A and B is to reduce the suppressive masking effect of A and unmask its

strong activation properties, which can exceed the individual response curves as in Figure 2C.
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Olfactory encoding and antagonism
Equipped with the biophysical model above, we now proceed to investigate the functional conse-

quences of antagonism. To this end, we first define a model of olfactory encoding that focuses on

competitive antagonism and introduce simplifying assumptions to highlight the main ideas.

An odorant is defined by two N-dimensional vectors of sensitivities k�1 and activation efficacies h

across N distinct ORN receptor types. We take N ¼ 250, which is large enough to generalize our

results across species. Parameters for different odorants are drawn independently from log-normal

probability distributions (see Materials and methods), although our main conclusions below do not

depend on their specific form. The width of the k�1 distribution reflects the broad sensitivities of

odorants, spanning about six orders of magnitude (Saito et al., 2009).

An odorant caught in a sniff elicits a response in the glomerular ensemble whose individual activa-

tions vary in magnitude and progress differently in time. We focus on the vector y, which represents

the peak responses (Equation 2) to the odorant for the different ORN types. The statistics of the

glomerular response is encoded in the distribution of y, which is directly related to the distribution

of h for saturating concentrations of the odorant.

A straightforward generalization of the expression for the binary mixture response from (Equa-

tion 3) allows us to write the mixture response for K components in terms of effective mixture

parameters kmix and hmix (which replace k and h in [Equation 2]):

k�1

mix ¼
X

K

i¼1

bik
�1

i ;hmix ¼ kmix

X

K

i¼1

hibik
�1

i (4)

where bi is the fraction of component i in the mixture. We first consider for simplicity an equipropor-

tionate mixture, and then show below that this is not a limitation. The key observation made here is
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Figure 2. Suppression due to masking. (A) The dashed line shows the response predicted by our model with only

the first odorant (delivered during the red time window), while the solid line shows the predicted response when a

second pulse of a highly masking odorant is delivered shortly after during the green window (plotted as in

(Kurahashi et al., 1994)). (B) Experimental data on the masking effect of various masking agents (circles) and fits

to theory (lines). Blue: 2,4,6-trichloroanisole, red: 2,4,6-tribromoanisole, yellow: phenol, Magenta: 2,4,6-

trichlorophenol, cyan: trichlorophenetole, black: L-cis diltiazem, green: geraniol. (C–D) Mixture response curves

displaying synergy (C) and inhibition (D). The curves are plotted as in Figure 1D.
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that, since sensitivities are broadly distributed, we typically have one term dominating the sum in the

expression for k�1

mix (see Figure 3B). If we suppose that this dominant term is k�1

M , we may write:

k�1

mix »bMk
�1

M ;hmix »hM ; (5)

for typical values of hM=hi for i 6¼M. The expression for hmix above follows from (Equation 4) when

we approximate the sum in the expression for hmix as hMbMk
�1

M ; multiplying this sum with the expres-

sion for kmix in (Equation 5) then yields the approximation. Relation (Equation 5) still holds for com-

plex mixtures as the broad width of the sensitivity distribution ensures the dominance of one of the

k’s even for relatively large numbers of components. In Figure 3C, we show that the approximations

in Equation 5 result in a relative error in k�1

mix and hmix of about ~40% for equiproportionate mixtures

with over a hundred components. In other words, it is highly likely that only one component in the

mixture occupies the receptors of ORNs of a particular type, and thus the response from these

ORNs is determined by the activation efficacy of that specific component.

In order to measure the strength of competitive antagonism, we introduce the antagonistic factor

�. To define �, we note that an odorant A competitively antagonizes odorant B (at equal concentra-

tions) when its sensitivity exceeds that of B (k�1

A >k�1

B ), yet its activation efficacy is lower than B

(hA<hB). A quantification of this relationship is the Pearson correlation coefficient between binding

and activation strengths across the ORN ensemble:

��Corr logk�1; logh
� �

; (6)

where the logarithms conveniently account for the broad range of the two variables.

Let us first consider the extreme case of � ¼ 1, when there is no antagonism as the odorant that

binds best also has the strongest activation. This corresponds to an ORN behaving as a logical OR

gate, a feature shared by any additive model of mixture response. From Equation 5, the conse-

quence is that hmix always takes the maximum value of h in the mixture, which significantly biases

hmix toward higher values. To see this, we define the sparsity p, that is, the fraction of glomerular

responses above a certain threshold t for an odorant at saturating concentrations; then, the fraction

above t for a mixture with K components is given by 1� 1� pð ÞK . Thus, for any additive model of

mixture response, the sparsity quickly saturates to one as K increases and all information about indi-

vidual components is lost.

Figure 3. The encoding model. (A) The response curves of a collection of 10 ORN types to an odorant. The vector

y of continuous levels of response at a particular concentration (red, dashed line) yields a binary vector z of

activation by imposing a threshold t (blue, dashed). (B) For a particular ORN type, the sensitivities of the five most

sensitive odorants in a mixture relative to the sensitivity of the most sensitive odorant are shown. Blue, orange and

green colors correspond to the number of components in the mixture, nmix ¼ 10, 50 and 100 respectively. (C) The

relative error due to the approximation in (4) for k�1

mix (red) and hmix (blue) as a function of nmix. Solid lines refer to

an equiproportionate mixture. Conversely, dashed lines refer to the case where concentrations are drawn

uniformly in log scale over six orders of magnitude. The comparison indicates that our approximations in the main

text become even better when the concentrations are variable.
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On the contrary, when k�1 and h are independent, that is, � ¼ 0, hM is independent of the con-

straint k�1

M � k�1

i (i 6¼ M) implicit in Equation 5 and the distribution of hmix precisely matches the dis-

tribution of the single component hM . The � ¼ 0 condition of decorrelation between k�1 and h is

important for the argument since, even though Equation 5 holds generally, the constraint that M is

the most sensitive odorant biases the statistics of hmix for �>0. Since the entire distribution of activa-

tions across the ORN ensemble is invariant to the number of components in the mixture, we con-

clude that the statistics of activation is conserved as the complexity of the mixture increases, that is,

the population response is ‘normalized’ (Figure 4A–C, Figure 4—figure supplement 1). Remark-

ably, such a normalization of the mixture response is a direct consequence of antagonism in receptor

encoding, independent of any neural circuitry. The upshot is that a sparse representation for a single

odorant typically remains sparse for a complex mixture, allowing for improved performance in the

detection of individual components (as quantified in the next Section).

Notably, the above arguments rely solely on the broad distribution of the sensitivities, which ena-

bles the approximation in Equation 5. Despite the ~ 40% error in this approximation, our arguments

for normalization presented above still hold for a mixture with over a hundred components, as

shown in Figure 4A. An important consequence is that the approximation becomes even better

Figure 4. Normalization due to antagonism. (A) The fraction of active glomeruli as the number of odorants in the

mixture, nmix, increases, each of which individually activates 30% of the glomeruli (� ¼ 0; 0:1; 0:2; 0:5; 1 from the

bottom to the top curves). (B) The glomerular pattern of activation for � ¼ 0 and � ¼ 1 for three values of nmix,

shown to contrast the sparsity of their glomerular responses. (C) The distribution of the activation efficacy

hmix over different ORN types for � ¼ 0 (cyan) and � ¼ 1 (blue) as nmix increases, where h for each component is

drawn from a log-normal (left) or an exponential distribution (right). The distribution is largely invariant w.r.t nmix

for � ¼ 0, whereas it gets increasingly biased toward higher values for � ¼ 1. Normalization is independent of the

sparsity of activation (see Figure 4—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.34958.006

The following figure supplement is available for figure 4:

Figure supplement 1. Normalization is independent of the sparsity of activation: The fraction of active glomeruli

against the number of odors in the mixture, nmix, is shown as in Figure 4A for sparsity p = 0.1 and p = 0.2.

DOI: https://doi.org/10.7554/eLife.34958.007
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when the concentrations of the components are allowed to be different, as any variation in the bi’s

makes the distribution of each term bik
�1

i even broader. This is confirmed by the plots in Figure 3C.

The result holds generally true for any distribution of h and any broad distribution of k�1; their log-

normal forms are used here only to simplify subsequent calculations (Figure 4C).

Structural constraints at the receptor level, however, are likely to hamper a perfect decorrelation

� ¼ 0. Nevertheless, normalization does not require an exact equality and its effects fade gradually

as � increases (see Figure 4A). The extent of the advantageous effects of normalization (and the �

value) depends on the sparsity of activation for single odorants, the number of components in the

mixture and their properties. Indeed, the effect of normalization on the detection of an odorant in

the presence of a large number of other odorants depends on the balance between two opposing

factors. On the one hand, normalization induces an advantageous effect of maintaining sparsity and

preventing saturation of the bulb, leading to easier segmentation. On the other hand, the number

of active glomeruli corresponding to each odorant is greatly reduced, which makes detection

harder.

Performance in discrimination and identification tasks
To explore how our model performs in discrimination tasks, we next compute the performance of

the antagonistic encoding model described above in detecting a known odorant from a large back-

ground of unknown odorants, that is, figure-ground segregation (Rokni et al., 2014). The capacity

of an optimal Bayesian decoder in the task depends on the mutual information I T; yð Þ (in bits) that

the glomerular pattern y preserves about the presence (T ¼ 1) or absence (T ¼ 0) of the target. To

simplify the calculation of I T ; yð Þ, we convert the vector of continuous values y into a binary vector z

by applying a threshold t that partitions the glomeruli into two subsets, active and inactive glomeruli

(see Figure 3A). In general, any continuous read-out is demarcated into a few discrete, distinguish-

able states depending on the level of intrinsic noise in the system. Taking more graded states into

account will not change the qualitative result of our calculation. Specifically, as we show below, the

relative performance between an antagonistic and a non-antagonistic model is still dominated by

the loss of information due to glomerular saturation, which occurs independently of the number of

gradations in our read-out.

Figure 5A demonstrates that an encoding model with significant antagonism (� ¼ 0) contains

more information than a non-antagonistic model (� ¼ 1) as the background increases in complexity.

The results are robust to the presence of significant internal variability in the transduction pathway

of an ORN (Figure 5—figure supplement 1). When the number of odorants in the mixture is small,

the glomerular pattern for the non-antagonistic model is not saturated and preserves information

about the glomeruli activated by each component. For a specified sparsity p (as defined in the previ-

ous section as the fraction of glomerular responses above the threshold t at high concentrations),

the non-antagonistic case is thus advantageous when the mixture complexity is less than ~ 1=p. How-

ever, for mixtures of higher complexity, it is useful to introduce correspondingly higher levels of

antagonism in order to prevent saturation and still maintain an ability to segment out different com-

ponents. To further emphasize this point, for different values of p, we compute the level of antago-

nism that maximizes information transmission when the background varies both in composition and

complexity (see Materials and methods). We find that for experimentally observed levels (0.1–0.3) of

sparsity (Saito et al., 2009; Lin et al., 2006; Soucy et al., 2009; Vincis et al., 2012), it is always

advantageous to incorporate non-zero levels of antagonism into odorant encoding (Figure 5B).

We measure the performance of a linear classifier in component separation, the task of identifying

several known components from a mixture, for different levels of antagonism. Component separa-

tion is qualitatively different as the information about the other known odorants can be recurrently

exploited to extract more information about an odorant’s presence or absence (Grabska-

Barwińska et al., 2017). First, a linear classifier is trained to individually identify 500 known odorants

in the presence of other odorants from the set. In the test phase, a mixture which contains 1 to 20

known components, uniformly chosen, is delivered. The hit rate measures the fraction of odorants

that were correctly identified, while the false positives (FPs) is the number of odorants out of the 500

that were not actually present but were declared to be present. Generalized Receiver Operating

Characteristics (ROC) curves are drawn by varying the detection threshold of the linear classifier for
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each odorant (Figure 5C–D). We find again that antagonism in receptors yields superior perfor-

mance, independent of sparsity.

Antagonism and olfactory psychophysics
Psychophysical observations related to odor perception were the primary investigative tools before

neurobiological studies became prominent in the last few decades. Formulating an explicit connec-

tion between the vast body of literature on olfactory psychophysics and recent discoveries in neuro-

biology remains a challenge, particularly since perception is influenced by interactions throughout

the olfactory sensory pathway (Jinks and Laing, 1999; Su et al., 2009; Grossman et al., 2008;

Wilson and Sullivan, 2011). Various direct and indirect measurements (Bell et al., 1987; Laing and

Willcox, 1987; Chaput et al., 2012) strongly hint at the role of receptor-level interactions, although

a mechanistic explanation for how these effects may arise has not been proposed. Here, we examine

the possible relation between antagonism and observations from psychophysical experiments on the

Figure 5. The positive effects of antagonism on odor discrimination and component separation. (A–B) Figure-

ground segregation: (A) The mutual information between the presence of a target odorant and the glomerular

activation vector z for the antagonistic factor (13) � ¼ 0 (cyan), 0.5 (magenta), 1 (blue) with varying number of

background odorants in the mixture. (B) The optimal value �* of the antagonistic factor � that maximizes mutual

information when the number of background odorants vary from trial to trial for different sparsity levels p i.e. the

fraction of glomeruli that are activated. The yellow region marks experimentally observed levels of sparsity. The

inset shows how the mutual information varies for three values of the sparsity. (C–D) Component separation: ROC

curves (the hit rate vs the number of false positives (FPs)) are shown for three values of � (color scheme as in panel

A) and two relevant values of p. Inset: Same curves in semi-log scale. The positive effect of antagonism is retained

in the case where there is significant internal noise (see Figure 5—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.34958.008

The following figure supplement is available for figure 5:

Figure supplement 1. Performance is largely independent of internal noise: The accuracy of a linear classifier in

detecting a target odorant is plotted against the number of background odorants for � ¼ 0 (cyan) and � ¼ 1 (blue),

where an effective internal noise of magnitude � is added (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.34958.009
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perception of odor mixtures. The upshot is that the combination of competitive antagonism and

masking supports the diverse range of well-established psychophysical effects enumerated

hereafter.

Specifically, the list of psychophysical effects relevant here is as follows (see (Lawless, 1997;

Keller and Vosshall, 2004; Doty and Laing, 2015; Thomas-Danguin et al., 2014; Takeuchi et al.,

2013)). (1) Inhibition and synergy: The former is the strong reduction of perceived intensities when

two odorants are mixed, usually at high concentrations; synergy is occasionally observed, namely at

low concentrations. (2) Masking: When the concentration of a masking agent, such as 2,4,6- trichlor-

oanisole (called cork taint), is increased, the perceived intensity of the odorant decreases. (3) Sym-

metric and asymmetric suppression: When two odorants of equal perceived intensities are added,

they typically suppress each other in a striking reciprocal fashion so that the perceived intensity of

both odorants is still equal but sharply lowered. Asymmetric suppression (sometimes called counter-

acting), where the intensity of one of the odorant is lowered more than the other, is observed occa-

sionally. (4) Overshadowing: The loss of perception of a less intense odorant when a more intense

odorant is present in a mixture.

To examine the prevalence of inhibition and synergy, we estimate the inferred concentration (or

perceived intensity) of a component in the mixture as the concentration at which those precise num-

ber of glomeruli corresponding to the odorant would have been activated (i.e. above a fixed thresh-

old) had that odorant been delivered alone. In Figure 6A, we show that this simple algorithm leads

to an unbiased estimate of the concentration over a broad range of concentrations. Figure 6A fur-

ther demonstrates that inhibition and synergy naturally arise from competitive antagonism. Stronger

inhibition arises at higher concentrations as the glomeruli that are otherwise activated by an odorant

when delivered alone are antagonized by the second odorant, leading to lower perceived intensity.

At lower concentrations, competitive antagonism plays a limited role; instead, cooperative effects in

the ORN transduction pathway result in hyper-additivity, which pushes a few glomeruli above the

activation threshold and gives rise to a small synergistic effect. Masking is also readily explained by

our model, where the inferred concentration (based on the activated glomeruli) is below the actual

concentration as the masking agent’s concentration increases (Figure 6B).

To quantify suppression, we use the fraction of suppressed glomeruli, defined as the fraction of

glomeruli which are inactive in the mixture of A and B, yet are activated in isolation by odorant A(B)

and not activated in isolation by odorant B(A). Figure 6C shows that the reciprocal suppression of

intense binary mixtures is conspicuously absent for a non-antagonistic model. To see this, let us sup-

pose that each odorant individually activates half of all glomeruli (i.e. the sparsity p = 0.5). Note, A is

more sensitive than B to half (on average) of all the glomeruli that B activates. Then, for � ¼ 0, when

they are delivered together at equal concentrations, A binds better to half the otherwise active

receptors of B, activating half of them and suppressing the other half. Since B has precisely the same

effect on A, each odorant reciprocally suppresses the other. On the other hand, when there is no

antagonism, A still binds better to half the active receptors of B, but now activates all of them, result-

ing in no suppression. A strong asymmetric suppressive effect is observed when one of the odorants

has a capacity for masking.

Finally, to quantify overshadowing, we train a logistic regressor to identify a set of known odor-

ants as in Figure 5C–D. A weak odorant B is delivered along with a stronger odorant A at varying

concentration ratios. The probability of presence of B ascomputed by the regressor is compared

against the the ratio of concentrations of A and B. When the probability of presence goes below the

detection threshold (set at 0.5), B is no longer detected and is ‘overshadowed’. Figure 6D demon-

strates that overshadowing for binary mixtures is intensified by antagonism, in spite of its superior

discriminatory performance for more complex mixtures.

Discussion
Natural smells are due to mixtures of many chemicals, yet the need for tight stimulus control in

experiments often leads to a focus on individual molecular entities. In this paper, we have character-

ized mixture interactions with a realistic biophysical model. Importantly, we explored how these

interactions can naturally lead to ‘normalization’ of the glomerular responses, improve the coding

capacity of the olfactory system, and account for many observed perceptual phenomena.
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The odorant receptor dynamics in our model is based on a two-step activation process analogous

to previous works in vertebrates (Rospars et al., 2008; Cruz and Lowe, 2013) and the fly

(Nagel and Wilson, 2011). A key aspect of two-step activation is that it separates sensitivity of

ligand binding from activation efficacy (del Castillo and Katz, 1954). At the structural level, this dis-

tinction is consistent with observations on the binding and activation of GPCRs (Strange, 2008). The

common and parsimonious approximation of a single step (parametrized by a Kd for affinity) in bind-

ing models, appears too drastic. In contrast to earlier work, we explicitly model the pathway down-

stream of receptor activation (Pifferi et al., 2010; Kleene, 2008), which features the successive

steps of cAMP production, allosteric opening of CNG channels, and ultimately current fluxes. This

provides a biophysical basis to the cooperativity effects that were previously introduced ad hoc.

Moreover, this explicit formulation allows us to go beyond pure competitive antagonism, which was

reported to explain about half the cases and thus requires generalizations (Rospars et al., 2008). In

particular, non-competitive antagonistic effects, such as our masking model for the non-specific

Figure 6. Antagonism and psychophysics. (A) Inhibition and synergy: The inferred vs the true concentration for a

single odorant A (solid, red line) or with an additional odorant B. Blue, magenta, cyan: � ¼ 1; 0:5; 0, as defined in

(5). Green line: the inferred concentration when B has a high masking coefficient �B, as defined in (18) and (20). In

all panels, the sparsity of glomerular activation is p ¼ 0:5. (B) Masking: The inferred concentration of A for

increasing concentrations of a masking agent B (blue, orange, green: �B ¼ 0:4; 0:7; 1). (C) Symmetric and

asymmetric suppression: The fraction of suppressed glomeruli of A (B) is plotted in green (yellow) against the ratio

of concentrations of A and B. Solid/dashed lines: � ¼ 0; 1. The red line shows the fraction of suppressed glomeruli

when B also has a propensity for masking. (D) Overshadowing: The probability of presence of B as computed by

the logistic regressor against the ratio of A and B concentrations. The dashed lines show the probability of

presence of A. Color code is as in panel (A). The above results are independent of the sparsity of activation (see

Figure 6—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.34958.010

The following figure supplement is available for figure 6:

Figure supplement 1. Predicted psychophysical effects of antagonism are independent of the sparsity of

activation: The results as shown in Figure 6 for sparsity p ¼ 0:25 to show that our conclusions are independent of

the sparsity level.

DOI: https://doi.org/10.7554/eLife.34958.011
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suppression of the cyclic nucleotide-gated channels permit us to account for synergy and inhibition

effects that are impossible for competitive antagonism.

A major focus of our work is the functional role of antagonistic interactions. Antagonistic reduc-

tion of glomerular activation can be seen as a form of ‘normalization of activity’. Normalization with

increasing stimulus intensity or complexity is common in neural systems (Carandini and Heeger,

2011) and has been thought of as a circuit property that involves inhibitory synaptic interactions

(Wachowiak et al., 2002; Cleland et al., 2007). In the olfactory system, this was elegantly demon-

strated in the Drosophila antennal lobe, where activation of increasing number of receptors (or glo-

meruli) proportionally increases inhibition provided to any one glomerular channel (Olsen et al.,

2010). Similarly, in fish and mouse olfactory bulbs, increasing stimulus intensity is thought to recruit

populations of interneurons (namely, short axon cells) that inhibit principal cells, leading to blunted

activity for higher stimulus intensities. In an extreme example of this, a mouse with a particular

receptor forcibly expressed widely has remarkably similar activation of the mitral cell population

despite the massive increase in the input when the cognate odorant is presented (Roland et al.,

2016).

The key insight from our model is that normalization is granted at the level of receptors by purely

statistical reasons, without any additional circuit burden. In the limit of full statistical decorrelation

between ligands’ binding affinity and activation efficacy, the distribution of activations across the

ORN ensemble for a mixture coincides with that of a single monomolecular odorant, a property

which has been confirmed in the fly (Stevens, 2016). Why would we need normalization if the opti-

mal way to preserve information is to simply copy the input signal, i.e. have ORNs functioning as

pure relays? Copying however requires an unrealistically broad dynamic range, especially for the

processing of natural mixtures, where the concentration and the number of components can fluctu-

ate wildly. Normalization at the first layer in the sensory pathway helps avoid early saturation effects

that would confound the entire processing pathway. However, nonlinear distortions of the signal do

lead to loss of information, and the balance between the two effects calls for their quantification.

Our information theoretic calculations demonstrate that detection of a target odorant within a com-

plex mixture is enhanced by antagonistic interactions, and that holds for a wide range of receptor

tuning widths, that is, the average number of activated glomeruli per odorant.

Some of the predictions from our analysis can be tested experimentally. Direct measurements

from mammalian ORNs have been obtained in vitro in many biophysical studies studying signal

transduction (Lowe and Gold, 1995; Bhandawat et al., 2005). Although such preparations offer

excellent access for measurement, there is significant uncertainty about mimicking the native condi-

tions in terms of delivery of odors (airborne vs solution) as well as the ionic composition of the perfu-

sion medium, which will affect response amplitudes. Electrical recordings from individual ORNs are

difficult and have low yield, but have offered tantalizing hints on different nonlinear interactions

(Rospars et al., 2008). More extensive data will likely have to rely on glomerular imaging methods

(Bozza et al., 2004; Rokni et al., 2014; Mathis et al., 2016), which offer robust signals and

extended recording times to obtain measurements at different concentrations and mixture ratios

(Soucy et al., 2009). Here too, there are some concerns including potential effects of feedback

mediated by olfactory bulb neurons on ORN axon terminals, particularly through GABAb receptors

(McGann et al., 2005; McGann, 2013). Carefully controlled experiments that isolate feedforward

sensory signals could reveal the prevalence of antagonistic interactions in mammalian ORNs.

Extensive measurements at a large range of concentrations and mixture ratios will allow robust

fitting of our model to obtain accurate estimates of the two key parameters, h and k. A key empirical

test of our theory will then rest on the relation between h and k for each glomerulus (or ORN). If

these two parameters are highly correlated most of the time, then antagonistic interactions of the

sort described in our theory will likely have only weak impact on olfaction. Even a

modest decorrelation, on the other hand, will give rise to important effects on ensemble coding of

odor mixtures even at the front end of the olfactory system.

In addition to functional advantages, we showed that antagonistic effects are consistent with psy-

chophysical effects observed in mixture perception. Experiments show that the perceived intensity

level of an odorant is empirically related to the true concentration of the odorant as a power func-

tion, reflecting their proportional relationship on a single logarithmic scale (Lawless, 1997;

Wojcik and Sirotin, 2014). The intensity level for binary mixtures perception is commonly described

via a vector sum of the intensities of each component (Berglund et al., 1973; Laing et al., 1984;
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Berglund and Olsson, 1993). The vector model captures the level independent, symmetric nature

of mixture suppression. The biophysical model presented here is consistent with an even broader

range of perceptual phenomena, including level independency, synergy, symmetric and asymmetric

suppression, masking and overshadowing. The bottomline is that global antagonistic interactions at

the ORN level may play a major role in non-trivial perceptual phenomena.

In conclusion, ORNs are far from simple relays, and their strong nonlinear interactions crucially

affect olfactory processing. Non-competitive antagonistic mechanisms, such as masking effects dis-

cussed here, have not been widely studied in mice and they may only occur for selected odorants.

While this experimentally necessitates an extensive experimental dataset, the non-competitive

effects presented here make their future investigation particularly relevant. Finally, the generality of

the potential relations highlighted here between ORN antagonism and psychophysical phenomena

motivates their exploration in mice, where a broader arsenal of experimental techniques and manip-

ulations can be leveraged.

Materials and methods

Modeling
Competitive binding
When a mixture of K monomolecular odorants X1;X2; . . . ;XK at concentrations C1;C2; . . . ;CK is pre-

sented to an ORN, the odorants compete for the finite number of receptors available on the olfac-

tory cilia. In this Section, we derive the response of the ORN in such a case of competitive binding

under the assumptions stated below.

The binding of an odorant to a receptor induces the activation of the odor-receptor complex, via

a two-step GTP-mediated phosphorylation process (Pifferi et al., 2010). For a mixture of odorants,

the binding dynamics reads:

RþX1
*)
k1;1

RX1
*)
k2;1

RX*
1
;

RþX2
*)
k1;2

RX2
*)
k2;2

RX*
2
;

..

. ..
.

RþXK*)
k1;K

RXK*)
k2;K

RX*
K ;

where RXi and RX*
i symbolize the bound and activated complexes (i¼ 1;2; . . . ;K), while R, Bi and

Ai denote the number of unbound receptors, receptors bound by odorant i but inactive, and recep-

tors activated by odorant i, respectively. The concentration Ci of the various odorants is supposed

to be in excess for the total number of receptors Rtot ¼ Rþ
PK

i¼1
Aiþ

PK
i¼1

Bi. The parameters k1;i and

k2;i are the ratio of the backward rates tothe forward rates for the two reaction steps involving odor-

ant i. We introduce only the ratio of the rates because the time scale of the slowest step, the activa-

tion of the odor-receptor complex, is estimated to be a few hundred milliseconds (Rospars et al.,

2003). For delivery times of a few seconds or longer, we then assume equilibrium (see below). By

using the steady-state relations Bi ¼CiR=k1;i, Ai ¼ Bi=k2;i, and the above equation for Rtot, we obtain

that the number ofactivated receptors bound to odorant i at equilibrium is

A¥i ¼
aiCi=ki

1þ
PK

j¼1
Cj=kj

; (7)

with ki ¼
k1;ik2;i
1þk2;i

and ai ¼
Rtot

1þk2;i
. Since a sniff typically lasts only for about a hundred milliseconds, the

activation profile of the receptors depends on the full kinetics of sniffing, receptor binding and

receptor activation. However, the number of activated receptors after a sniff of 100 ms is still pro-

portional to those at equilibrium. Since our main conclusions below, that is, the importance of the

two-step activation step and different saturation levels for different odorants, still hold, we have

assumed equilibrium for simplicity and clarity of the presentation.

A chain of steps follows receptors’ activation in the transduction pathway. First, activated recep-

tors convert ATP into cAMP molecules via adenylyl cyclase III. Then, the cAMP molecules diffuse

locally and open nearby cyclic-nucleotide-gated (CNG) ion channels. The open CNG channels are
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permeable to Ca2þ (and Naþ) ions, which are crucial in regulating further downstream processes and

for adaptation (Kurahashi and Menini, 1997). Finally, Ca2þ ions bind to calmodulin (CaM) and the

formed complex (Ca-CaM) inhibits the CNG channels, leading to adaptation and, possibly, the termi-

nation of the response. The primary depolarizing current is carried by an Cl� efflux out of the cell

through Ca2þ regulated Cl� channels. We now proceed to model these various steps.

First, since CNG channels are spread out along the cilia membrane and cAMP diffusion is

restricted to the site of its production (Flannery et al., 2006; Takeuchi and Kurahashi, 2005), suc-

cessful receptor activation events are largely independent. Indeed, the electrical response is consis-

tent with Poisson statistics, and the voltage-clamped current response close to the threshold is linear

(Bhandawat et al., 2010). At concentrations much larger than the threshold, the production of

cAMP is linearly proportional to the number of activated receptors, as evidenced by the linear

increase of the rate of production of cAMP with time. The degradation of cAMP occurs on a single

time scale of a few hundred milliseconds (Takeuchi and Kurahashi, 2005). The effective cAMP

dynamics is then succinctly written as:

RX*
i !
kC

cAMP!
dC

�; (8)

where kC is the rate of production of cAMP (and implicitly includes the concentration of the con-

verted ATP, which is supposed to be in excess and thereby treated as fixed), dC is the rate of degra-

dation, and the index i runs over the set of K rate equations. Since the production of cAMP occurs

immediately downstream of activation and is independent of the activating odorant, the rate of pro-

duction is simply proportional to the total number of activated receptors. If C is the intracellular

cAMP concentration, we conclude that the steady state cAMP concentration C¥ is

C¥ ¼
kC

dC

X

K

i¼1

A¥i : (9)

Second, CNG channels have four binding sites for cAMP and exhibit allosteric cooperativity

(Zheng and Zagotta, 2004), which is generally represented as (Segel, 1993):

CNG0þ cAMP*)
a0kG

CNG1þ cAMP*)
a1kG

. . .CNGn�1þ cAMP *)
an�1kG

CNGn: (10)

Here, kG is an overall rate, n is the number of allosteric binding sites for cAMP, and a0;a1; . . . ;an�1

modulate the various steps of the reactions. For allosteric cooperativity, a0<a1;a2; . . ., which reflects

the fact that the binding of one cAMP molecule promotes the binding of further cAMP molecules.

Here, we have ignored the inhibitory effect of Ca-CaM, which will be introduced below. Allosteric

cooperativity leads to response functions of the Hill form (Segel, 1993). In the limit of strong coop-

erativity, most of the CNG channels are expected to be either unbound or fully bound, and the

steady state number of fully bound CNG channels reduces then to

CNG¥n ¼
CNGtot

1þ k0GC
¥

� ��n : (11)

Here, C¥ is the expression (Equation 9), kG ¼ kG
Qn�1

i¼0
a
1=n
i and CNGtot is the total number of CNG

channels. The Ca2þ current is directly proportional to the number of fully bound CNG channels and

decreases at a constant rate (Boccaccio and Menini, 2007):

CNGn !
kca

Ca2þ !
dca

� (12)

Third, the production of the CaCaM complex by Ca2þ and CaM is described as:

Ca2þ þCaM; *)
KCaCaM

CaCaM; (13)

where KCaCaM is the ratio of the forward and backward rates. The effect of calmodulin-mediated

feedback inhibition is accounted by assuming CaCaM modulates the CNG opening rate as

k0G ! k0G= 1þ CaCaM
CaCaM0

� �2
� �

. The previous form is empirical, yet we verified that its precise shape and
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the value of the Hill coefficient do not modify numerical results below as long as a steep sigmoidal

shape holds. With the values of the parameters used in our model (given below), CaCaM acts on the

CNG channel before the cAMP and the activated receptors reach steady state and terminates the

response. The resulting set of differential equations does not lend to analytical treatment but can be

numerically integrated to give a time series of the ORN response, as shown in Figure 1B. Numerical

curves indicate (data not shown) that the Ca2þ peak response terminated by CaM is roughly propor-

tional to the steady state Ca2þ response without CaM, that is, Ca¥ / kCa
dCa

CNG¥n , which is the approxi-

mation that we shall use hereafter.

Finally, the Cl� current is the predominant component of the currents that depolarize ORNs

(Li et al., 2016; Boccaccio and Menini, 2007) and is mediated by Ca2þ-gated Cl� ion channels. This

current response induced due to Ca2þ is again a Hill function of coefficient greater than one, sug-

gesting further cooperativity (Reisert et al., 2005). We can formally write the steady state Cl� cur-

rent as I¥Cl ¼ f Ca¥ð Þ, where f is some unknown function. The firing rate response F of the ORN is

assumed to be proportional to the current, so that F ¼ kf I
¥

Cl, where kf is a constant.

By combining all the equations above, we can write the firing rate as a function of the odorant

concentrations Ci:

F C1;C2; . . . ;CKð Þ ¼ kf f
CNGtot

1þ
1þ
PK

i¼1
Ci=ki

PK

i¼1
hiCi=ki

� �n

0

B

B

B

@

1

C

C

C

A

; (14)

where the odorant-receptor dependent parameters for the ith odorant are written explicitly:

ki ¼
k1;ik2;i

1þk2;i
; (15)

hi / kCk
0
Gai=dC; where ai ¼

Rtot

1þk2;i
:

As mentioned in the main text, for each odorant i, ki and hi carry the dependence on the odor-

ants and control their interactions within mixtures. Conversely, the unknown function f is related to

downstream processes and therefore expected to not depend on the odorant and receptor type.

This point, together with the reduction in the number of free parameters, was our rationale for using

the approximation of a linear function f . Then, the proportionality constant in f is lumped together

with kf and CNGtot in (Equation 14) into a single parameter Fmax, which defines the maximum physio-

logically possible firing rate of the neuron. Both Fmax and n are constants that do not depend on the

odorant or the receptor type.

We can finally write a general expression for the ORN response to a mixture of K odorants with

concentrations C1;C2; . . . ;CK . Denoting the total concentration by C ¼
PK

i Ci and the contribution

of the ith component by bi ¼ Ci=C, it follows from (Equation 14) that the response reads

F Ccomplex

� �

¼
Fmax

1þ 1þC=kmix

hmixC=kmix

� �n ; (16)

where the ‘effective’ mixture parameters hmix and kmix are

1=kmix ¼
X

K

i¼1

bi=ki ;hmix ¼ kmix

X

K

i¼1

hibi=ki : (17)

A complex odorant can therefore be treated in a manner similar to monomolecular odorants,

namely, by specifying its effective sensitivity and activation efficacy to each receptor type. Note that

this holds generally true, irrespective of the linear f chosen in Equation 14 to limit the number of

free parameters.

The parameters used in Figure 1 are as follows – we first define k1; k�1 as the forward and back-

ward rates for the binding step of Equation 1, and k2; k�2 as the forward and backward rates for the

activation step. For panels B,C and D, we use k1 ¼ 100s�1, k�1 ¼ 100s�1, k2 ¼ 2s�1, k�2 ¼ 2s�1 for
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odorant A and k1 ¼ 80s�1, k�1 ¼ 100s�1, k2 ¼ 0:4s�1, k�2 ¼ 2s�1 for odorant B. The concentration is

unity in panels B, F and G. For panels E, F and G, the parameters for odorant A are used. In all pan-

els, we use kC ¼ 2s�1, dC ¼ 1s�1, kG ¼ 10, CNGtot ¼ 1, n ¼ 4, kCa ¼ 20s�1, dCa ¼ 0:5s�1, kCaCaM ¼ 1s�1,

CaCaM0 ¼ 0:05.

Masking
Here, we present a phenomenological description of non-competitive masking processes.

We suppose that masking agents bind sites on the lipid bilayer and compete for their limited

number. The suppression timescale and off-timescale are smaller than a few hundred milliseconds

(Kurahashi et al., 1994), justifying the assumption of steady state. In steady state, the occupancy

fraction of the ith masking agent with concentration Mi and binding affinity KMi
is

~Mi ¼
KMi

Mi

1þ
P

iKMi
Mi

: (18)

The disruption of a CNG channel conformation due to agent i is supposed to alter the affinity of

cAMP to one of its binding sites on the channel in the reactions (9). The energy of the cAMP bound

state is increased by D�i and its probability is reduced by the corresponding Gibbs factor e�bD�i ,

where b¼ 1=kT is the inverse temperature. The resulting reduction in the opening of the channels is

most conveniently accounted for by a mean-field approach where the channel opening rate k0G

appearing in (10) is modified by the masking agents. In other words, k0G ! �Mk
0
G with the suppression

factor �M<1 derived below. It follows from the definition (13) of h that a modification of k0G by �M

carries over to h as h! �Mh. Therefore, when saturating concentrations of excitatory odorants are

presented together with masking agents that produce a masking coefficient �M , the maximal firing

rate is reduced as

FM ¥ð Þ ¼
Fmax

1þ 1= �Mhð Þn
: (19)

which reflects the masking effect.

The dependence of the suppression factor �M on the concentrations Mi of the masking agents is

estimated as follows. Let us denote the radius of disruption of the channels by a single masking mol-

ecule on the lipid bilayer by r, and the surface density of masking binding sites by s. The typical

number of masking binding sites surrounding a given CNG channel is then l ¼ psr2. The number

nmask of masking binding sites within distance r of a CNG channel is assumed to be Poisson distrib-

uted, that is P nmaskð Þ ¼ e�llnmask

nmask!
. For a given number of sites nmask, the vector of their occupancy num-

bers I ¼ i1; i2; ::iKþ1ð Þ is distributed following a multinomial distribution with probabilities given by

Equation 18, that is, P Ið Þ ¼
nmask

i1; i2; . . . ; iKþ1

� �

QKþ1

k¼1
~M ik
k . The index K þ 1 corresponds to unoccu-

pancy, ~MKþ1 ¼ 1�
PK

i¼1
~Mi and iKþ1 ¼ nmask �

P

k ik. The probability of each I is proportional to its

Gibbs factor e�bD� Ið Þ, where D� Ið Þ is the energy shift to the binding of masking agents.

We consider the first step in Equation 10; similar arguments hold for successive ones. The

unmodified a0kG ¼ e�b� is the ratio between the probability for a channel to be cAMP bound or

cAMP unbound, and � is their energy difference. In the presence of masking, there are multiple

cAMP bound and unbound states, which differ in their occupancy of the masking binding sites. The

sum over all those states defines the probabilities Pb and Pu of cAMP bound and unbound, respec-

tively. The suppression factor �M that modifies k0G ! �Mk
0
G is obtained as the ratio eb�Pb=Puð Þ

1=n
,

where the 1=n power stems from the definition of k0G in (10). The sum Pb is obtained by combining all

the previous factors:

Pb ¼
X

¥

nmask¼0

e�llnmask

nmask!

X

nmask

i1;i2;::iKþ1

e�b �þD� Ið Þð Þ

Z

nmask

i1; i2; . . . ; iKþ1

� �

Y

Kþ1

k¼1

~Mik
k : (20)

where Z is a normalization factor. Assuming the masking sites do not affect the energy of the chan-

nels when cAMP is unbound, the sum Pu has a similar expression with �þD�¼ 0. It is then verified
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that Pu ¼ 1=Z. As for Pb, the simplest possible assumptions are that D� i1; i2; . . . ; iKð Þ ¼
PK

k¼0
ikD�k is

additive, and the masking binding sites are dilute, that is, l is small. Equation (20) reduces then to

�n
M ¼

eb�Pb

Pu

¼ e
�l

P

k
~Mk 1�e�bD�kð Þ

»1�
X

K

k¼1

�k
~Mk; (21)

where �k ¼ l 1� e�bD�k
� �

satisfy 0� �k � 1, and the same inequality holds for �M . In general, masking

agents can affect multiple CNG channel subunits (Chen et al., 2006). If a masking agent affects the

binding of cAMP to j CNG subunits, the suppression effect is �M ¼ 1�
P

i�i
~Mi

� �m
with m¼ j=n.

The ratio 1� FM ¥ð Þ
F ¥ð Þ in (Equation 19) is plotted in Figure 2B and compared to experimental data.

In Figure 2C,D, the parameters for generating the response curves for odorants A and B are

kA ¼ 1; kB ¼ 1;hA ¼ 1;hB ¼ 5. For synergy (Figure 2C), the masking parameters are

KM;A ¼ 10
�5;KM;B ¼ 10

�1; �A ¼ 0; �B ¼ 0:7, while the corresponding parameters for inhibition

(Figure 2D) are KM;A ¼ 1;KM;B ¼ 10
�5; �A ¼ 0; �B ¼ 0:7. The parameter m is chosen to be unity in

both cases.

Olfactory encoding model
Every odorant is defined by a vector of binding sensitivities k�1 and a vector of activation efficacies

h, each with dimensionality N, where N ¼ 250 is the chosen number of receptor types. An odorant’s

binding sensitivity to a particular receptor type is drawn independently from a log-normal distribu-

tion logk�1
~N 0;sk�1ð Þ, where its standard deviation sk�1 is set to 4 to obtain a six orders of magni-

tude separation between the most sensitive and least sensitive receptor types (Saito et al., 2009).

The activation efficacies are similarly drawn independently for each receptor type such that

logh~N 0; 1ð Þ. The measure of antagonism, �, is defined as the Pearson correlation coefficient

between logk�1 and logh:

��
hlogk�1 loghi� hlogk�1ihloghi

sk�1sh

(22)

where s2 denotes the variance of the random variables and the angular brackets denote expectation

values. To generate an odorant-receptor pair, first logh is drawn from the standard normal distribu-

tion. Then, logk�1 is generated with correlation � as logk�1 ¼ sk�1 �loghþ
ffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

!
� �

, where ! is

drawn from a standard normal distribution. At saturating concentrations of an odorant, the peak fir-

ing rate it elicits for a receptor type with activation efficacy h is F¥ ¼
1

1þh�n (see (Equation 16), where

Fmax can be chosen to be unity). The rescaled glomerular activation vector y (each component is

rescaled between 0 and 1) is given by y¼ 1

1þh�n, where the transformation is performed on each com-

ponent of the vector. The probability p that each component exceed a threshold t is given by the

probability that a random variable drawn from a standard normal distribution exceed 1

n
log 1�t

t
. This

probability p represents the sparsity of the glomerular activations z at saturating concentrations after

thresholding. The sparsity is set by selecting t¼ 1

1þe�nF�1 1�pð Þ
, where F is the cumulative distribution

function for a standard normal random variable.

Figure-ground segregation and component separation
To quantify the performance of the encoding model in figure-ground segregation, we compute the

mutual information between the absence (T ¼ 0) or presence (T ¼ 1) of the target odorant T and the

glomerular activation pattern z. Noise is introduced due to the presence of background odorants of

unknown sensitivities and activation efficacies. The mutual information controls the performance of

an optimal Bayesian decoder in detecting a target odorant in a background by using the glomerular

activation pattern as input. The mutual information is defined as

I T; zð Þ ¼H Tð Þ�H Tjzð Þ ; (23)

where H Tð Þ is the entropy of target presence or absence, which equals one bit (since the target is

present in half the trials). The second term on the right hand side H T jzð Þ (in bits) is given by
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H Tjzð Þ ¼�
z

P

Pr zð Þ Pr T ¼ 1jzð Þlog2Pr T ¼ 1jzð ÞþPr T ¼ 0jzð Þlog2Pr T ¼ 0jzð Þf g ; (24)

where Bayes’ formula yields Pr T ¼ 1jzð Þ ¼ Pr zjT¼1ð Þ
Pr zjT¼0ð ÞþPr zjT¼1ð Þ, and Pr zð Þ ¼

P

nb
Pr zjnbð ÞPr nbð Þ, where

Pr nbð Þ is the distribution of the number of background odorants. H T jzð Þ is estimated numerically by

using Monte Carlo sampling. The quantities Pr zjT ¼ 1ð Þ and Pr zjT ¼ 0ð Þ are also computed numeri-

cally by observing that Pr zjT ¼ 1ð Þ ¼
P

nb
Pr zjT ¼ 1;nbð ÞPr nbð Þ. Due to the independence of the

receptor types and since the background odorants are independently drawn, the probability

Pr zjT ¼ 1;nbð Þ factorizes into N multiplicative terms, each of which can be pre-computed prior to

Monte Carlo sampling. To obtain the results in Figure 5A, we choose p¼ 0:5. When the number of

background odorants fluctuate (as in Figure 5B), we draw nb from a truncated exponential distribu-

tion with a mean of 32 and truncated at a maximum of 128 background odorants.

To show that internal noise does not affect our results, we compare the performances of antago-

nistic and non-antagonistic models in figure-ground segregation by including an additional noise

term in the expression for ORN response (Equation 16). Specifically, the response of an ORN to a

mixture is modified as hmix ! 1þ �ð Þhmix, where � is an effective noise term that condenses the vari-

ability in signal transduction relative to the number of activated receptors. We train a linear classifier

to identify a target odorant against a fixed number of background odors. The target odorant and

background odorants (of varying composition) are delivered at concentrations drawn from a uniform

distribution in the logscale over 3 orders of magnitude. The discrimination accuracy of the linear

classifier is shown in Figure 5—figure supplement 1 for � ¼ 0; 1 and � ¼ 0 and 0.4. The results show

the superior performance of antagonism when the number of background odors is large even at

noise levels of 40%. The higher performance for � ¼ 0:4 compared to � ¼ 0 for � ¼ 1 (at >30 back-

ground odorants) occurs because the noise can desaturate glomeruli that are otherwise saturated.

For the component separation task, we use an ensemble of linear classifiers as our decoders. A

linear classifier computes the probability of presence of an odorant from the glomerular activation

pattern z as 1

1þexp � �:zþbð Þð Þ, where � and b are the vector of learned weights and bias, respectively. First,

linear classifiers are trained to identify odorants from a fixed set S of 500 odorants. During the train-

ing phase, each classifier is trained to identify the presence of its target against a background of one

to ten odorants also chosen from S. In each trial of the test phase, 1 to 20 odorants are uniformly

chosen from S and the component separation performance is measured using the fraction of correct

identifications (hit rate) and the number of false positives (FPs). An odorant is declared to be present

if the probability of presence exceeds a detection threshold. The hit rate and the number of false

positives are modulated by sliding the detection threshold of each linear classifier, yielding the gen-

eralized ROC curves in Figure 5C,D.

Antagonism and olfactory psychophysics
To infer the concentration based on the glomerular profile for a single odorant, we first note that

glomeruli are progressively recruited as the concentration of the odorant increases depending on

their sensitivity to that odorant. Suppose a glomerulus gi corresponding to this odorant is first

recruited at concentration ci, where ci increases with the index i. Then, the contribution of gi to the

total inferred log concentration, logc, is taken to be logci � logci�1 for i>1 and logc1 for i ¼ 1 (here c1

corresponds to the concentration at which the most sensitive receptor becomes active). This simple

scheme to infer the concentration is accurate for a single odorant (Figure 6A) and can be easily

shown to have a concentration invariant Weber ratio ~
logcmax=c1

pN
where N is the number of receptor

types, p is the sparsity and cmax is the saturating concentration (Koulakov et al., 2007). To obtain the

results for mixtures when � ¼ 0; 0:5 and 1, for each concentration of odorant A, another odorant B is

delivered at an equal concentration. The log concentration of A is then inferred by computing the

sum of the contributions from the glomeruli corresponding to odorant A as described above. The

curve corresponding to the masking agent is obtained similarly as above for � ¼ 0 with B having a

masking coefficient �B ¼ 1.

To plot the curves in Figure 6B, odorant A is delivered at a fixed concentration (red, dashed line)

and a masking agent is applied at increasing concentrations (horizontal axis). Here, we use � ¼ 0 and

we assume the masking agent does not bind to anyof the receptors.
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To show symmetric and asymmetric suppression in Figure 6C, the concentration of A is fixed at a

saturating concentration and the concentration of B is varied to get different concentration ratios

CA=CB (horizontal axis). We define a suppressed glomerulus as one that is active when an odorant is

delivered individually yet is inactive when A and B are delivered together. The fraction of suppressed

glomeruli for each concentration ratio is averaged over many samplings of the two odorants A and

B.

To obtain the results for overshadowing, the different concentration ratios are generated similar

to the method described above for Figure 6C. Logistic regressors that can detect odorants A and B

are first trained to identify them when delivered alone at varying concentrations. A logistic regressor

computes the probability of presence of an odorant given the glomerular pattern of activation. A

detection threshold can then be applied on the probability of presence in order to declare the odor-

ant present or absent. In Figure 6D, we show the probability of presence of odorant B as deter-

mined by the logistic regressor corresponding to B for different concentration ratios and values of �

(solid lines). Similar curves for odorant A are shown as dashed lines.

Code availability
Code for the modeling can be accessed at: https://github.com/greddy992/Odor-mixtures

(Reddy, 2018); copy archived at https://github.com/elifesciences-publications/Odor-mixtures).
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