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Abstract As microtubule-organizing centers of animal cells, centrosomes guide the formation of

the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes

maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM).

This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at

the PCM and helps recruit additional PCM components. However, the mechanism underlying the

timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-

translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by

centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of

intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator,

ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest

that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a

generalized protein targeting mechanism.

DOI: https://doi.org/10.7554/eLife.34959.001

Introduction
A centrosome consists of a pair of centrioles embedded in a protein-dense matrix known as the peri-

centriolar material (PCM). The PCM functions as a major microtubule organizing center in animal

cells (Gould and Borisy, 1977) as it serves as a platform onto which g-tubulin ring complexes (g-

TuRCs), the main scaffold mediating microtubule nucleation, are loaded (Moritz et al., 1995;

Zheng et al., 1995).

At the onset of mitosis, centrosomes rapidly expand their PCM. This process, termed centrosome

maturation, is essential for proper spindle formation and chromosome segregation (Woodruff et al.,

2014). Centrosome maturation is initiated by phosphorylation of core PCM components, such as

Pericentrin (PCNT) and Centrosomin (Cnn), by mitotic kinases PLK1/Polo and Aurora kinase A

(Conduit et al., 2014a; Joukov et al., 2014; Kinoshita et al., 2005; Lee and Rhee, 2011). These

events then trigger the cooperative assembly of additional PCM scaffold proteins (e.g. PCNT,

CEP192/SPD-2, CEP152/Asterless, CEP215/CDK5RAP2/Cnn or SPD-5) into an expanded PCM matrix
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that encases the centrioles (Conduit et al., 2014b; Hamill et al., 2002; Kemp et al., 2004), culmi-

nating in the recruitment of additional g-TuRCs and tubulin molecules that promote microtubule

nucleation and render centrosomes competent for mediating the formation of bipolar spindles and

chromosome segregation (Conduit et al., 2015; Gopalakrishnan et al., 2011; Woodruff et al.,

2014).

Pericentrin (PCNT) is one of the first core PCM components identified to be required for proper

spindle organization (Doxsey et al., 1994). Importantly, mutations in PCNT have been linked to sev-

eral human disorders including primordial dwarfism (Anitha et al., 2009; Delaval and Doxsey,

2010; Griffith et al., 2008; Numata et al., 2009; Rauch et al., 2008). Pericentrin is an unusually

large coiled-coil protein (3336 amino acids in human) that forms elongated fibrils with its C-terminus

anchored near the centriole wall and the N-terminus extended outwardly and radially across PCM

zones in interphase cells (Lawo et al., 2012; Mennella et al., 2012; Sonnen et al., 2012). Recent

studies showed that pericentrin plays an evolutionarily conserved role in mitotic PCM expansion and

interphase centrosome organization, as loss of pericentrin activity in human, mice, and flies all results

in failed recruitment of other PCM components to the centrosome and affects the same set of down-

stream orthologous proteins in each system (e.g. CEP215 in human, Cep215 in mice, and Cnn in

flies) (Chen et al., 2014; Lee and Rhee, 2011; Lerit et al., 2015).

In vertebrates, a key function of PCNT is to initiate centrosome maturation (Lee and Rhee, 2011)

and serve as a scaffold for the recruitment of other PCM proteins (Haren et al., 2009; Lawo et al.,

2012; Purohit et al., 1999; Zimmerman et al., 2004). However, the mechanism underlying the

timely synthesis and recruitment of a large sum of PCNT proteins to the PCM is as yet unresolved.

Given its large size (>3300 amino acids) and the modest rate of translation elongation (~3–10 amino

acids per second, Boström et al., 1986; Ingolia et al., 2011; Morisaki et al., 2016; Pichon et al.,

2016; Wang et al., 2016; Wu et al., 2016; Yan et al., 2016), synthesizing a full-length PCNT protein

eLife digest Before a cell divides, it creates a copy of its genetic material (DNA) and evenly

distributes it between the new ‘daughter’ cells with the help of a complex called the mitotic spindle.

This complex is made of long cable-like protein chains called microtubules.

To ensure that each daughter cell receives an equal amount of DNA, structures known as

centrosomes organize the microtubules during the division process. Centrosomes have two rigid

cores, called centrioles, which are surrounded by a matrix of proteins called the pericentriolar

material. It is from this material that the microtubules are organized.

The pericentriolar material is a dynamic structure and changes its size by assembling and

disassembling its protein components. The larger the pericentriolar material, the more microtubules

can form. Before a cell divides, it rapidly expands in a process called centrosome maturation. A

protein called pericentrin initiates the maturation by helping to recruit other proteins to the

centrosome. Pericentrin molecules are large, and it takes the cell between 10 and 20 minutes to

make each one. Nevertheless, the cell can produce and deliver large quantities of pericentrin to the

centrosome in a matter of minutes. We do not yet know how this happens.

To investigate this further, Sepulveda, Antkowiak, Brust-Mascher et al. used advanced

microscopy to study zebrafish embryos and human cells grown in the laboratory. The results showed

that cells build and transport pericentrin at the same time. Cells use messenger RNA molecules as

templates to build proteins. These feed into protein factories called ribosomes, which assemble the

building blocks in the correct order. Rather than waiting for the pericentrin production to finish, the

cell moves the active factories to the centrosome with the help of a molecular motor called dynein.

By the time the pericentrin molecules are completely made by ribosomes, they are already at the

centrosome, ready to help with the recruitment of other proteins during centrosome maturation.

These findings improve our understanding of centrosome maturation. The next step is to find out

how the cell coordinates this process with the recruitment of other proteins to the centrosome. It is

also possible that the cell uses similar processes to deliver other proteins to different parts of the

cell.

DOI: https://doi.org/10.7554/eLife.34959.002
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would take ~10–20 min to complete after translation initiation. Notably, after the onset of mitosis,

the PCM reaches its maximal size immediately before metaphase in ~30 min in human cells

(Gavet and Pines, 2010; Lénárt et al., 2007). Thus, the cell faces a kinetics challenge of synthesiz-

ing, transporting, and incorporating multiple large PCM proteins such as PCNT into mitotic centro-

somes within this short time frame.

We show here that pericentrin mRNA is spatially enriched at the centrosome during mitosis in

zebrafish embryos and cultured human cells. In cultured cells, the centrosomal enrichment of PCNT

mRNA predominantly occurs during early mitosis, concomitantly with the peak of centrosome matu-

ration. We further show that centrosomally localized PCNT mRNA undergoes active translation and

that acute inhibition of translation compromises the incorporation of PCNT proteins into the centro-

some during early mitosis. Moreover, we find that centrosomal localization of PCNT mRNA requires

intact polysomes, microtubules, and cytoplasmic dynein activity. Taken together, our results support

a model in which translating PCNT polysomes are being actively transported toward the centrosome

during centrosome maturation. We propose that by targeting actively translating polysomes toward

centrosomes, the cell can overcome the kinetics challenge of synthesizing, transporting, and incor-

porating the unusually large PCNT proteins into the centrosome. Lastly, we find that the cell appears

to use a similar co-translational targeting mechanism to synthesize and deliver another unusually

large protein, the microtubule minus-end regulator, ASPM, to the mitotic spindle poles. Thus, co-

translational protein targeting might be a mechanism widely employed by the cell to transport cyto-

plasmic proteins to specific subcellular compartments and organelles.

Results

Zebrafish pcnt mRNA is localized to the centrosome in blastula-stage
embryos
We found that pericentrin (pcnt) transcripts were localized to distinct foci in early zebrafish embryos,

whereas those of three other core PCM components, cep152, cep192, and cep215, showed a pan-

cellular distribution (Figure 1A). This striking pcnt mRNA localization was observed using two inde-

pendent, non-overlapping antisense probes against the 5’ or 3’ portion of RNA (Figure 1B). The

specificity of in situ hybridization was further confirmed by the loss of signals in two frameshift mater-

nal-zygotic pcnt knockout embryos (MZpcnttup2 and MZpcnttup5) (Figure 1B and Figure 1—figure

supplement 1), where the pcnt transcripts were susceptible to nonsense-mediated decay pathway.

By co-staining with the centrosome marker g-tubulin, we demonstrated that zebrafish pcnt mRNA is

specifically localized to the centrosome (Figure 1C).

Human PCNT mRNA is enriched at the centrosome during early mitosis
To test whether centrosomal localization of pcnt mRNA is conserved beyond early zebrafish

embryos, we examined the localization of human PCNT mRNA in cultured HeLa cells using fluores-

cent in situ hybridization (FISH). Consistent with our observation in zebrafish, human PCNT mRNA

was also localized to the centrosome (Figure 2). Interestingly, this centrosomal enrichment of PCNT

mRNA was most prominent during early mitosis (i.e. prophase and prometaphase) and declined

after prometaphase. The signal specificity was confirmed by two non-overlapping probes against the

5’ or 3’ portion of the PCNT transcript (Figure 2—figure supplement 1A). Furthermore, using an

alternative FISH method, Stellaris single-molecule FISH (smFISH) against the 5’ or 3’ portion of the

PCNT transcript, we observed highly similar centrosomal enrichment of PCNT mRNA during early

mitosis, with near single-molecule resolution (Figure 2—figure supplement 1B). Similar smFISH

results were observed in both HeLa and RPE-1 cells (data not shown). Together, these results indi-

cate that PCNT mRNA is specifically enriched at the centrosome during early mitosis in cultured

human cells. We speculate that the seemingly constant presence of zebrafish pcnt mRNA at the cen-

trosome of early blastula-stage embryos is due to the fast cell cycle without gap phases at this stage

(~20 min per cycle).
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Figure 1. Pericentrin (pcnt) mRNA is localized to centrosomes in early zebrafish embryos. (A) RNA in situ

hybridization of transcripts of different PCM components in four-cell stage zebrafish embryos. Note that while the

mRNA of cep152, cep192, and cep215 displayed a pan-cellular distribution, pcnt mRNA was concentrated at two

distinct foci in each cell. (B) RNA in situ hybridization showed similar dot-like patterns of pcnt transcripts with two

non-overlapping antisense probes. The signals were lost in two maternal-zygotic (MZ) pcnt mutants. (C)

Fluorescent RNA in situ hybridization and anti-g-tubulin co-staining demonstrated the centrosomal localization of

pcnt mRNA. n > 300 (pcnt-001 probe), n > 100 (pcnt-002 probe), n > 50 (cep152, cep192, or cep215 probe); all the

embryos showed the same RNA distribution patterns as shown in the representative images. More than 100

MZpcnttup2 or MZpcnttup5 embryos were examined; none of them showed visible pcnt RNA in situ signals.

Embryos were examined between 2- and 16-cell stages with representative four-cell stage embryos shown.

Dashed lines delineate the cell boundaries. Scale bars: 200 mm or 25 mm (inset in C).

Figure 1 continued on next page
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Zebrafish pcnt mRNA is localized to the centrosome of mitotic retinal
neuroepithelial cells in vivo
We next tested whether centrosomal localization of pcnt mRNA also takes place in differentiated tis-

sues in vivo. We focused on the retinal neuroepithelia of 1-day-old zebrafish because at this develop-

mental stage, retinal neuroepithelial cells in different cell cycle stages can be readily identified based

on the known patterns of interkinetic nuclear migration (e.g. mitotic cells at the apical side of retina)

(Baye and Link, 2007). Again, we observed that zebrafish pcnt mRNA was enriched at the centro-

some of mitotic, but not of non-mitotic, neuroepithelial cells (Figure 2—figure supplement 2). We

thus conclude that centrosomal enrichment of pericentrin mRNA is likely a conserved process in

mitotic cells.

Centrosomally localized PCNT mRNA undergoes active translation
Interestingly, the timing of this unique centrosomal accumulation of PCNT mRNA in cultured cells

(Figure 2) overlaps precisely with that of centrosome maturation (Khodjakov and Rieder, 1999;

Piehl et al., 2004). These observations raise the intriguing possibility that PCNT mRNA might be

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.34959.003

The following figure supplement is available for figure 1:

Figure supplement 1. Sequences of two Cas9-induced frameshift mutations (alleles pcnttup2 and pcnttup5) in the

zebrafish pcnt gene.

DOI: https://doi.org/10.7554/eLife.34959.004

Figure 2. Human PCNT mRNA is localized to centrosomes during early mitosis. (A) Synchronized HeLa cells were subjected to fluorescent in situ

hybridization with tyramide signal amplification against PCNT mRNA and anti-g-tubulin immunostaining. Note that PCNT mRNA was localized to

centrosomes predominantly during prophase (pro) and prometaphase (prometa). (B) Quantification of PCNT mRNA localization at centrosomes during

different cell cycle stages. Data are represented as mean with standard deviation (SD) from three biological replicates, with the total number of cells

analyzed indicated. Dashed lines delineate the cell boundaries. Scale bars: 10 mm and 2 mm (inset).

DOI: https://doi.org/10.7554/eLife.34959.005

The following source data and figure supplements are available for figure 2:

Source data 1. The source data to plot the bar chart in Figure 2B.

DOI: https://doi.org/10.7554/eLife.34959.008

Figure supplement 1. Non-overlapping antisense probes and two independent in situ methods confirm centrosomal localization of PCNT mRNA

during early mitosis.

DOI: https://doi.org/10.7554/eLife.34959.006

Figure supplement 2. Zebrafish pcnt mRNA is localized to centrosomes of mitotic retinal neuroepithelial cells in vivo.

DOI: https://doi.org/10.7554/eLife.34959.007
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translated near the centrosome to facilitate the incorporation of PCNT proteins into the PCM during

centrosome maturation.

To determine whether PCNT mRNA is actively translated near the centrosome, we developed a

strategy to detect actively translating PCNT polysomes by combining PCNT smFISH and double

immunofluorescence to label PCNT mRNA, and the N- and C-termini of PCNT protein simulta-

neously (Figure 3A). Given the inter-ribosome distance of approximately 260 nucleotides on a tran-

script during translation (Wang et al., 2016) and the large size of PCNT mRNA (10 knt), a single

PCNT transcript can be actively translated by as many as 40 ribosomes simultaneously. Therefore,

up to 40 nascent polypeptides emerging from a single PCNT polysome can be visualized by anti-

PCNT N-terminus immunostaining. By combining this immunostaining strategy with PCNT smFISH,

multiple nascent PCNT polypeptides can be visualized on a single PCNT mRNA. Furthermore, the

signals from antibody staining are determined by the location of the epitopes. Therefore, the trans-

lating nascent PCNT polypeptides, with the C-terminus not yet synthesized, would only show posi-

tive signals from anti-PCNT N-terminus immunostaining (and be positive for PCNT smFISH), whereas

fully synthesized PCNT protein would show signals from both anti-PCNT N- and C-terminus immu-

nostaining (and be negative for PCNT smFISH because of release of the full-length protein from the

RNA-bound polysomes).

Using this strategy, we detected nascent PCNT polypeptides emerging from PCNT mRNA near

the centrosome during early mitosis (Figure 3B, top panel, PCNT N+/C-/PCNT smFISH+). As an

important control, we showed that colocalization of PCNT mRNA with anti-PCNT N-terminus signals

was lost after a brief treatment of cells with puromycin (Figure 3B, bottom panel), under a condition

confirmed to inhibit translation by dissociating the ribosomes and releasing the nascent polypepti-

des (Figure 3—figure supplement 1, Wang et al., 2016; Yan et al., 2016). Next, we developed a

methodology to quantify the effect of puromycin treatment on the colocalization of PCNT mRNA

and anti-PCNT N-terminus signals in three dimensional (3D) voxels rendered from confocal z-stacks.

Given that the mean radius of a mitotic centrosome is ~1 mm (Figure 3—figure supplement 2), we

specifically quantified the fraction of PCNT mRNA between 1 and 3 mm from the center of each cen-

trosome—that is, the RNA close to, but not within, the centrosome—with anti-PCNT N-terminus sig-

nals in early mitotic cells, with or without the brief puromycin treatment. Consistent with the results

shown in Figure 3B, upon the short puromycin treatment, the fraction of PCNT mRNA with anti-

PCNT N-terminus signals was significantly reduced, with many PCNT mRNA no longer bearing anti-

PCNT N-terminus signals (Figure 3C). Furthermore, we observed that PCNT mRNA molecules near

the centrosome were often positive for both anti-PCNT N-terminus and anti-ribosomal protein S6

signals in both HeLa and RPE-1 cells during early mitosis (Figure 3—figure supplement 3). Together,

these results indicate that during early mitosis, a population of PCNT mRNA is undergoing active

translation near the centrosome.

Centrosomal localization of pcnt/PCNT mRNA requires intact
polysomes, microtubules, and dynein activity
In addition to the loss of anti-PCNT N-terminus signals from PCNT mRNA, surprisingly, the brief

puromycin treatment led to the population of PCNT mRNA shifting away from the centrosome

(Figure 4A). Similarly, when zebrafish embryos were injected with puromycin at the one-cell stage,

pcnt transcripts became diffused throughout the cell (Figure 4—figure supplement 1). Because

puromycin dissociates ribosomes and nascent polypeptides, these observations suggest that PCNT/

pcnt mRNAs in human and zebrafish are enriched near the centrosome by tethering to the actively

translating ribosomes.

To further test the dependency of centrosomal enrichment of PCNT mRNA on intact, actively

translating polysomes, we treated the cultured cells with either emetine, which stabilizes polysomes

by irreversibly binding the ribosomal 40S subunit and thus ‘freezing’ translation during elongation

(Jiménez et al., 1977), or harringtonine, which disrupts polysomes by blocking the initiation step of

translation while allowing downstream ribosomes to run off from the mRNA (Huang, 1975). We

found that PCNT mRNA localization patterns in emetine- and harringtonine-treated cells resembled

those observed in vehicle- (control) and puromycin-treated cells, respectively (Figure 4A). Congruent

with the detection of nascent PCNT polypeptides near the centrosome (Figure 3), these data sup-

port the model that centrosomal enrichment of PCNT mRNA relies on centrosomal enrichment of

polysomes that are translating PCNT mRNA.
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Figure 3. Centrosomally localized PCNT mRNA undergoes active translation. (A) A strategy of using smFISH and

double immunofluorescence (IF) to distinguish between newly synthesized and full-length PCNT proteins (see text

for details). The location and size of the epitopes for anti-PCNT N- and C-terminus antibodies, proportionally

scaled to the full-length human PCNT protein, are indicated. (B) Prometaphase HeLa cells were subjected to

Figure 3 continued on next page
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We often observed that the two centrosomes in early mitotic cells were asymmetric in size where

more PCNT mRNA was enriched near the larger centrosome (Figure 4—figure supplement 2).

Because the microtubule nucleation activity is often positively correlated with the centrosome size,

we speculated that centrosomal enrichment of pericentrin mRNA/polysomes might be a microtu-

bule-dependent process. We thus tested if the localization of pericentrin mRNA would be perturbed

when microtubules were depolymerized. We found that in both zebrafish and cultured human cells,

pcnt/PCNT mRNA was no longer enriched around the centrosome upon microtubule depolymeriza-

tion (Figure 4B and C, Figure 4—figure supplement 3). In contrast, a cytochalasin B treatment,

which disrupts the actin cytoskeleton, had no effect on the centrosomal enrichment of PCNT mRNA

(Figure 4—figure supplement 3A). These results suggest that microtubules, but not actin filaments,

serve as ‘tracks’ on which pericentrin mRNA/polysomes are transported.

Given that cytoplasmic dynein is a common minus-end-directed, microtubule-based motor that

transports cargo toward the microtubule minus end (i.e. toward the centrosome), we next tested

whether centrosomal localization of PCNT mRNA is a dynein-dependent process. We treated the

cells with ciliobrevin D, a specific small molecule inhibitor of cytoplasmic dynein (Firestone et al.,

2012) and quantified the effect of this treatment on the centrosomal localization of PCNT mRNA.

We found that PCNT mRNA was no longer enriched at the centrosome upon the ciliobrevin D treat-

ment (Figure 4D). Together, these results indicate that centrosomal enrichment of pericentrin

mRNA during early mitosis is a translation-, microtubule- and dynein-dependent process.

Active translation of PCNT mRNA during early mitosis contributes to
the optimal incorporation of PCNT protein into the mitotic PCM
To determine the functional significance of translation of centrosomally localized PCNT mRNA dur-

ing early mitosis, we compared centrosomal PCNT levels shortly before and after mitotic entry (i.e.

late G2 vs. early M phase). We arrested cultured human cells from progression out of late G2 phase

using the CDK1 inhibitor RO-3306 (Vassilev et al., 2006). CDK1 is largely inactive during G2 and

becomes activated at the onset of mitosis (Gavet and Pines, 2010; Jackman et al., 2003). In the

presence of RO-3306, cells can be held at late G2 phase, and upon inhibitor washout, cells can be

released into mitosis. Because cell cycle synchronization is rarely 100% homogeneous in a cell

Figure 3 continued

PCNT smFISH and anti-PCNT immunostaining against the N- and C-terminus of PCNT protein (PCNT N-term and

PCNT C-term). Note that the putative active translation sites were labeled by PCNT N-term IF and PCNT smFISH,

but not by PCNT C-term IF (top panel). However, upon the puromycin treatment (300 mM for 2 min at 37˚C,
bottom panel), PCNT N-term IF signals were no longer colocalized with PCNT smFISH signals, indicating that

those PCNT N-term IF signals on RNA represent nascent PCNT polypeptides. Orange boxes show higher contrast

of selected areas (dashed orange boxes) for better visualization. The low-magnification images corresponding to

the magnified insets are shown in monochrome (individual channels) and color (merged channels). (C) PCNT

smFISH signals between 1 and 3 mm radius from the centrosome center were quantified for the presence of anti-

PCNT N-term IF signals with or without a short puromycin treatment. Data are represented as mean ±95% CI

(confidence intervals) from three biological replicates, with the total number of cells analyzed indicated. p-value

was obtained with Student’s t-test (two-tailed). Scale bars: 5 mm and 0.5 mm (inset).

DOI: https://doi.org/10.7554/eLife.34959.009

The following source data and figure supplements are available for figure 3:

Source data 1. The source data to plot the dot plot in Figure 3C.

DOI: https://doi.org/10.7554/eLife.34959.014

Figure supplement 1. Visualization of active translation in live cells using the SunTag/PP7 system.

DOI: https://doi.org/10.7554/eLife.34959.010

Figure supplement 2. Mean radius of mitotic centrosomes of HeLa cells.

DOI: https://doi.org/10.7554/eLife.34959.011

Figure supplement 2—source data 1. The source data to plot the dot plot in Figure 3—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.34959.012

Figure supplement 3. Colocalization of anti-PCNT N-terminus, anti-ribosomal protein S6, and PCNT smFISH

signals near the centrosome during early mitosis.

DOI: https://doi.org/10.7554/eLife.34959.013
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Figure 4. Centrosomal localization of pcnt/PCNT mRNA requires intact polysomes, microtubules, and dynein activity. (A) HeLa cells were synchronized

by a double thymidine block and treated with DMSO vehicle (Control), 208 mM emetine, 3.76 mM harringtonine for 30 min, or 300 mM puromycin for 2

min before anti-PCNT immunostaining and PCNT smFISH. Representative confocal images and quantification of the PCNT mRNA distribution are

shown for each condition. The distribution of PCNT mRNA in cells was quantified by measuring the distance between 3D rendered PCNT smFISH

signals and the center of the nearest centrosome (labeled by anti-PCNT immunostaining). The fractions of mRNA as a function of distance to the

nearest centrosome (binned in 0.5 mm intervals) were then plotted as mean (solid lines) ±95% CI (shading) from three biological replicates. n = 48, 45,

57, and 51 cells for control, emetine, harringtonine, and puromycin conditions, respectively. Note that PCNT mRNA moved away from the centrosome

upon the harringtonine or puromycin treatment, but stayed close to the centrosome upon the emetine treatment, similar to the control. (B) Zebrafish

embryos were injected with DMSO vehicle or 100 mg/ml nocodazole at the one-cell stage followed by pcnt FISH. (C) HeLa cells were treated with

DMSO vehicle or 3 mg/ml nocodazole for 2 hr at 37˚C before anti-a-tubulin, anti-PCNT immunostaining, and PCNT smFISH. Note that pcnt/PCNT

mRNA in early embryos (B) and in early mitotic cells (C) was no longer enriched at the centrosome after microtubules were depolymerized. (D) HeLa

cells were synchronized by RO-3306 and treated with DMSO vehicle or 50 mM ciliobrevin D for 1 hr 25 min before anti-PCNT immunostaining and PCNT

Figure 4 continued on next page
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population, we decided to quantify the amount of centrosomal PCNT at the single-cell level using

anti-PCNT immunostaining of individual cells. To confidently identify late G2 cells in RO-3306-

treated population, we used a RPE-1 cell line stably expressing Centrin-GFP (Uetake et al., 2007)

and categorized the cells as ‘late G2’ if (1) their two centrosomes (with two centrin dots per centro-

some) were separated by >2 mm—a sign indicating the loss of centrosome cohesion that occurs dur-

ing late G2 to M transition (Bahe et al., 2005; Fry et al., 1998; Mardin et al., 2011) and (2) their

DNA was not condensed. We identified the cells as early M phase cells (i.e. prophase or prometa-

phase) 25 min after RO-3306 washout by observing DNA morphology.

Using this strategy, we found that approximately twofold more PCNT proteins were incorporated

into the centrosomes in early mitotic cells as compared to late G2 cells (Figure 5A). Importantly, the

numbers of PCNT mRNA did not significantly differ between late G2 and early M phases, even

though there was an approximately fourfold increase from G1 to late G2 phases (Figure 5B). There-

fore, these results indicate that the increase in centrosomal PCNT protein levels when cells progress

from G2 to M phases (e.g., the 25-min period after RO-3306 washout) is due to upregulation of

translation and not to altered mRNA abundance.

To independently assess the impact of translation during early mitosis on PCNT incorporation

into the centrosomes, we disrupted this process by pulsing the RO-3306 synchronized cells with

puromycin to inhibit translation for 2 min, followed by immediate fixation and anti-PCNT immunos-

taining. As previously shown, this condition inhibits translation acutely and dissociates PCNT nascent

polypeptides from PCNT mRNA-containing polysomes, including those near the centrosome (Fig-

ure 3). We found that in the puromycin-treated cells,~30% fewer PCNT molecules were incorporated

into the PCM than in the control cells during prophase/prometaphase (Figure 5C). These results

indicate that active translation during prophase/prometaphase is required for efficient incorporation

of PCNT into the mitotic centrosomes; disruption of this process, even just briefly, significantly

affects the PCNT level at the centrosomes.

Collectively, these results indicate that active translation of PCNT mRNA during early mitosis con-

tributes to the optimal incorporation of PCNT proteins into the mitotic PCM and that this is most

plausibly achieved by co-translational targeting of the PCNT mRNA-containing polysomes to the

proximity of the mitotic centrosomes.

ASPM mRNA is enriched at the centrosome in a translation-dependent
manner during mitosis
To determine if the cell uses a similar co-translational targeting strategy to target other large pro-

teins to the centrosome, we examined the distribution of CEP192, CEP215/CDK5RAP2, and ASPM

mRNA in cultured human cells. We found that while CEP192 and CEP215 mRNA did not show any

Figure 4 continued

smFISH. The distribution of PCNT mRNA in cells was quantified as in (A). n = 63 and 70 cells for control and ciliobrevin D conditions, respectively, from

a representative experiment (two technical duplicates per condition). Note that PCNT mRNA was no longer enriched at the centrosome upon the

ciliobrevin D treatment. Dashed lines delineate the cell boundaries. Scale bars, 10 mm (A), 100 mm (C), 10 mm (D), and 2 mm (inset in D).

DOI: https://doi.org/10.7554/eLife.34959.015

The following source data and figure supplements are available for figure 4:

Source data 1. The source data to plot the dot plots in Figure 4A and 4D.

DOI: https://doi.org/10.7554/eLife.34959.021

Figure supplement 1. Centrosomal localization of zebrafish pcnt mRNA depends on intact polysomes.

DOI: https://doi.org/10.7554/eLife.34959.016

Figure supplement 2. More PCNT mRNA was often enriched near the larger centrosome in early mitosis.

DOI: https://doi.org/10.7554/eLife.34959.017

Figure supplement 2—source data 1. The source data to plot Figure 4—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.34959.018

Figure supplement 3. Centrosomal localization of human PCNT mRNA during early mitosis is microtubule-dependent.

DOI: https://doi.org/10.7554/eLife.34959.019

Figure supplement 3—source data 1. The source data to plot the PCNT mRNA distribution, PCNT protein distribution, and PCNT protein intensities

in Figure 4—figure supplement 3B

DOI: https://doi.org/10.7554/eLife.34959.020
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Figure 5. Centrosomal localization of PCNT mRNA/polysomes contributes to PCNT incorporation into mitotic

centrosomes. (A) Centrin-GFP RPE-1 cells—at either late G2 or early M phase—were subjected to anti-PCNT

immunostaining. Representative confocal images are shown for each condition. A ‘fire’ lookup table (LUT) was

used to show PCNT signal intensities. The sum intensity of anti-PCNT signals from both centrosomes of each cell

Figure 5 continued on next page
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centrosomal enrichment during early mitosis (data not shown), ASPM mRNA was strongly enriched

at the centrosome during prometaphase and metaphase in both RPE-1 and HeLa cells (Figure 6 and

Figure 6—figure supplement 1). Furthermore, upon a short puromycin treatment, ASPM mRNA

became dispersed throughout the cell, indicating that centrosomal enrichment of ASPM mRNA also

requires intact polysomes as in the case with PCNT mRNA. ASPM (and its fly ortholog Asp) is not a

PCM component per se, but a microtubule minus-end regulator (Jiang et al., 2017) and a spindle-

pole focusing factor (Ito and Goshima, 2015; Ripoll et al., 1985; Tungadi et al., 2017). It is highly

enriched at the mitotic spindle poles, particularly from early prometaphase to metaphase (Ito and

Goshima, 2015; Jiang et al., 2017; Tungadi et al., 2017). Therefore, these data demonstrate

Figure 5 continued

was measured and plotted. (B) Numbers of PCNT mRNA at different cell cycle stages of Centrin-GFP RPE-1 cells

were determined by PCNT smFISH. S phase/early G2 cells were identified by EdU labeling for 30 min. (C) HeLa

cells were treated with vehicle control or 300 mM puromycin for 2 min before anti-PCNT immunostaining. The sum

intensity of anti-PCNT signals from both centrosomes of each prophase or prometaphase cell was measured and

plotted. Data are represented as mean ±95% CI. ‘n’ indicates the total number of cells analyzed from two (A),

three (B), and two (C) biological replicates. p-values were obtained with Student’s t-test (two-tailed). a.u., arbitrary

unit. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.34959.022

The following source data is available for figure 5:

Source data 1. The source data to plot the dot plots in Figure 5A–C.

DOI: https://doi.org/10.7554/eLife.34959.023

Figure 6. ASPM mRNA is enriched at centrosomes in a translation-dependent manner during mitosis. Prometaphase/metaphase RPE-1 cells were

treated with vehicle (Control) or 300 mM puromycin for 2 min at 37˚C (Puromycin) before fixation, followed by anti-PCNT immunostaining and ASPM

smFISH. Representative confocal images and quantification of the ASPM mRNA distribution are shown for each condition. The distribution of ASPM

mRNA in cells was quantified by measuring the distance between 3D rendered ASPM smFISH signals and the center of the nearest centrosome

(labeled by anti-PCNT immunostaining). The fractions of mRNA as a function of distance to the nearest centrosome (binned in 0.5 mm intervals) were

then plotted as mean (solid lines)±95% CI (shading) from two biological replicates. n = 76 and 81 cells for control and puromycin conditions,

respectively. Note that ASPM mRNA was enriched at the centrosomes/spindle poles of the metaphase cell, but became dispersed throughout the cell

upon a short puromycin treatment. Scale bars: 10 mm.

DOI: https://doi.org/10.7554/eLife.34959.024

The following source data and figure supplements are available for figure 6:

Source data 1. The source data to plot the histogram in Figure 6.

DOI: https://doi.org/10.7554/eLife.34959.027

Figure supplement 1. ASPM mRNA is enriched at centrosomes in a translation-dependent manner during mitosis.

DOI: https://doi.org/10.7554/eLife.34959.025

Figure supplement 1—source data 1. The source data to plot the histogram in Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34959.026
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another example of spatiotemporal coupling between active translation and translocation of poly-

somes to the final destination of the protein being synthesized.

Discussion
Here, we report that PCNT protein is delivered co-translationally to the centrosome during centro-

some maturation through a microtubule- and dynein-dependent process. This process is demon-

strated by centrosomal enrichment of PCNT mRNA, its translation near the centrosome, and

requirement of intact translation machinery for PCNT mRNA localization during early mitosis. The

translation- and microtubule-dependent centrosomal enrichment of pericentrin mRNA is observed in

both zebrafish embryos and human somatic cell lines. Interestingly, the mRNA of the sole pcnt

ortholog, plp, of Drosophila melanogaster, was also previously reported to localize to the centro-

some in early fly embryos (Lécuyer et al., 2007). Although it has not been shown if the centroso-

mally localized plp mRNA undergoes active translation, it is tempting to speculate that co-

translational targeting of PCNT (and its orthologous proteins) to the centrosome is an evolutionarily

conserved process. In addition to PCNT, the cell appears to use a similar co-translational targeting

strategy to deliver the large microtubule minus-end regulator/spindle-pole focusing factor, ASPM,

to mitotic spindle poles, as ASPM mRNA is strongly enriched at mitotic spindle poles in a transla-

tion-dependent manner, concomitantly with the ASPM protein level reaching its maximum at the

same place. We suspect that co-translational targeting of polysomes translating a subset of cyto-

plasmic proteins to specific subcellular destinations is a widespread mechanism used in post-tran-

scriptional gene regulation.

Evidence supporting translation of PCNT mRNA near the centrosome
In this study, we also developed a strategy of visualizing active translation. We took advantage of

the large size of PCNT mRNA and combined PCNT smFISH and immunofluorescence against the N-

or C-terminal epitopes of PCNT nascent polypeptides to detect which PCNT mRNA molecules were

undergoing active translation (Figure 3). This imaging-based method allowed us to determine

whether the PCNT was being newly synthesized ‘on site’ or the PCNT was made somewhere within

the cell and then transported/diffused to the centrosome because only the former would show posi-

tive signals for N-, but not C-terminus immunostaining of the synthesized protein, and these signals

would be sensitive to the puromycin treatment. However, detecting nascent PCNT polypeptides by

anti-PCNT N-terminus antibody staining relies on multiple copies of polypeptides tethered to the

translating ribosomes for generating detectable fluorescent signals. Therefore, this method is biased

toward detecting the translating PCNT polysomes at later stages of translation elongation, when

multiple ribosomes have been loaded and multiple copies of PCNT polypeptides are available for

antibody detection. This method, however, would likely fail to detect anti-PCNT N-terminus signals

on the mRNA that just started to be translated. We speculate that this could explain why not all cen-

trosomally localized PCNT mRNAs showed anti-PCNT N-terminus signals, although most of these

PCNT mRNAs would shift away from the centrosome upon the puromycin or harringtonine treat-

ment (Figure 4). Translation of PCNT mRNA near the centrosome is further supported by the co-

localization of ant-PCNT N-terminus, anti-ribosomal protein S6, and PCNT smFISH signals near the

centrosome during early mitosis in two different human cell lines (Figure 3—figure supplement 3).

Together, these multiple lines of evidence—(1) co-localization of anti-PCNT N-terminus but not anti-

PCNT C-terminus signals with PCNT mRNA, (2) puromycin-sensitive anti-PCNT N-terminus/PCNT

mRNA signals, (3) polysome-dependent centrosomal enrichment of PCNT mRNA, and (4) co-localiza-

tion of PCNT N-terminus/PCNT mRNA signals with a ribosomal protein—strongly support the con-

clusion that PCNT mRNA is locally translated near the centrosome during early mitosis.

Mechanisms of co-translational targeting and centrosome maturation
How are the polysomes actively translating PCNT or ASPM targeted to the centrosome? In the case

of PCNT, previous studies have shown that PCNT protein is transported to the centrosome through

its interaction with cytoplasmic dynein (Purohit et al., 1999; Young et al., 2000), specifically

through the dynein light intermediate chain 1 (LIC1) (Tynan et al., 2000). Moreover, the LIC1-inter-

acting domain in PCNT is mapped within ~550 amino acids located in the N-terminal half of PCNT

(Tynan et al., 2000). Based on these findings, we propose a model in which the partially translated
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PCNT nascent polypeptide starts to interact with the dynein motor complex once the LIC1-interact-

ing domain in the N-terminal half of PCNT is synthesized and folded, as early stages of protein fold-

ing can proceed quickly and co-translationally (Fedorov and Baldwin, 1997; Komar et al., 1997;

Ptitsyn, 1995; Roder and Colón, 1997). Subsequently, this nascent polypeptide-dynein interaction

allows the entire polysome, which is still actively translating PCNT mRNA, to be transported along

the microtubule toward the centrosome (Figure 7). Alternatively, it is also possible that the coupling

of the polysome to the motor complex is mediated through the ribosome-dynein interaction. If this

was the case, additional components/adaptors would need to be involved in the interaction to dif-

ferentiate the ribosomes translating PCNT mRNA from the ones translating other transcripts. One of

the above mechanisms (i.e. via interaction through the nascent chain or ribosome itself) may also be

used to mediate the co-translational targeting of ASPM mRNA/polysomes to the mitotic spindle

poles. Mapping the binding domains on both the motor and cargo sides, identifying the cargo

adapter(s) that mediates the interaction, and testing the roles of mitotic kinases that are known to

be involved in centrosome maturation such as Aurora A and PLK1 (Glover et al., 1998;

Hannak et al., 2001; Petronczki et al., 2008) are important next steps to dissect the mechanisms

underlying this co-translational protein targeting process. Among the mitotic kinases that could be

directly involved in this process, PLK1 is an attractive candidate for the following reasons:

Figure 7. A model of co-translational targeting of PCNT polysomes toward the centrosome during centrosome

maturation. During the late G2/M transition, translation of PCNT mRNA is upregulated by an as yet unknown

mechanism. The partially translated PCNT nascent polypeptide starts to interact with the dynein motor complex

once the dynein light intermediate chain 1 (LIC1)-interacting domain in the N-terminal half of PCNT is synthesized

and folded. It will be interesting to test if PLK1 phosphorylation of S1235 and S1241 within the LIC1-interacting

domain initiates this PCNT-dynein interaction. Subsequently, this nascent polypeptide-dynein interaction allows

the entire polysome, which is still actively translating PCNT mRNA, to be transported along the microtubule

toward the centrosome. This co-translational targeting mechanism may maximize efficiency of PCNT production

and delivery to the centrosome, prevent ectopic accumulation of PCNT outside of centrosomes, and/or facilitate

integration of PCNT into the expanding PCM during early mitosis. It remains to be determined if other PCM

components (e.g. CEP215) interact with PCNT co- and/or post-translationally.

DOI: https://doi.org/10.7554/eLife.34959.028
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Phosphorylation of human PCNT at S1235 and S1241 by PLK1 is required for the recruitment of sev-

eral other PCM proteins for centrosome maturation (Lee and Rhee, 2011). In addition, inhibition of

PLK1 activity also reduces PCNT levels at mitotic centrosomes (Haren et al., 2009; Lee and Rhee,

2011; Santamaria et al., 2007). Notably, these two PLK1 phosphorylation sites, S1235 and S1241,

are highly conserved among the vertebrates and are located within the putative LIC1-binding

domain that interacts with cytoplasmic dynein (Tynan et al., 2000). It is thus tempting to speculate

that PLK1-dependent phosphorylation of these two conserved residues might be required for medi-

ating the PCNT-dynein interaction and thus initiating co-translational targeting of PCNT to

centrosomes.

Our finding that new PCNT is delivered co-translationally to the centrosome during centrosome

maturation also raises an important question of when and how PCNT interacts with other PCM com-

ponents that are also required for centrosome maturation such as CEP192 and CEP215 (Barr et al.,

2010; Choi et al., 2010; Gomez-Ferreria et al., 2007; Joukov et al., 2014; Kim and Rhee, 2014;

Zhu et al., 2008). For example, vertebrate PCNT and CEP215 interact and depend on each other

for localizing to mitotic centrosomes (Buchman et al., 2010; Haren et al., 2009; Kim and Rhee,

2014; Lawo et al., 2012). However, zebrafish Cep215 and human CEP215 may not be targeted to

centrosomes co-translationally because their transcripts do not show centrosomal enrichment during

early mitosis (Figure 1 and data not shown). It thus remains unclear when and where the PCNT-

CEP215 interaction occurs and if this interaction takes place co- and/or post-translationally. Deter-

mining if the translating PCNT polysomes contain CEP215 proteins could be the first step to distin-

guish these possibilities. Clearly, it will be important to elucidate how co-translational targeting of

PCNT (and possible other PCM components) fits in with the current model of centrosome matura-

tion that involves the interplay of several other PCM proteins.

Significance of co-translational targeting of PCNT to the centrosome
during mitosis
What might be the biological significance of co-translational targeting of unusually large proteins

such as PCNT or ASPM to the centrosome during mitosis? In the case of PCNT, we propose three

nonexclusive possibilities. First, since PCNT has been placed upstream as a scaffold to initiate cen-

trosome maturation (Lee and Rhee, 2011) and to help recruit other PCM components, including

NEDD1, CEP192, and CEP215/CDK5RAP2 (Lawo et al., 2012; Lee and Rhee, 2011), it is critical to

have optimal amounts of PCNT incorporated at the centrosome early during mitosis. Because

dynein-mediated cargo transport is relatively fast, typically ranging from 0.5 to 3 mm per second in

vivo (Schlager et al., 2014; Yang et al., 2007), it seems that PCNT protein molecules can be trans-

ported from anywhere in the cell to the centrosome in seconds, regardless whether they are in a

polysome or not. However, dynein cargos in cells are likely powered by several dynein motors at a

time (Kardon and Vale, 2009) and the large PCNT protein requires 10–20 min to synthesize. There-

fore, mechanistically coupling translation and translocation of polysomes containing multiple copies

of nascent PCNT polypeptides could help the cell not only use the dynein motor pool economically

but also enhance transport efficiency. Second, generating PCNT proteins elsewhere in the cell might

be deleterious. For example, non-centrosomal accumulation of PCNT might recruit other PCM com-

ponents to the unwanted locations, resulting in ectopic PCM assembly, as PCNT overexpression

induces a marked increase in centrosome size and the recruitment of other PCM proteins

(Lawo et al., 2012; Loncarek et al., 2008). Co-translational targeting of PCNT on defined microtu-

bule tracks through the dynein motor can help confine most full-length PCNT proteins to the centro-

some. Consistent with this view, we observed that if microtubules were depolymerized before

mitosis, not only was less PCNT incorporated into mitotic centrosomes, a portion of PCNT also

became dispersed throughout the cytoplasm as small PCNT puncta (Figure 4—figure supplement

3B). This result implies that full-length PCNT synthesized in the cytoplasm was not incorporated into

centrosomes efficiently without the microtubule-mediated, co-translational protein targeting. Third,

co-translational targeting of nascent PCNT polypeptides might be an integrated part of mitotic PCM

expansion. Akin to the co-translational targeting of membrane and secreted proteins to the endo-

plasmic reticulum (ER), where the translating nascent polypeptides undergo protein folding and

post-translational modifications in the ER lumen (Bergman and Kuehl, 1979; Chen et al., 1995), co-

translational targeting of nascent PCNT polypeptides might promote their proper folding and com-

plex formation near the PCM, thereby facilitating integration into the expanding PCM during early
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mitosis. Another possible mechanism by which co-translational targeting may facilitate PCNT inte-

gration into the PCM is through the process of liquid-liquid phase separation. The centrosome is a

membrane-less organelle in which the PCM has liquid-like properties. Emerging evidence suggests

that such an organelle may be formed by phase separation of compartments into ‘biomolecular con-

densates’ (Banani et al., 2017). Indeed, purified SPD-5, a key mitotic PCM component with exten-

sive coiled-coil domains in C. elegans, can phase separate into spherical condensates that recruit

microtubule nucleating proteins, tubulin, and form microtubule asters, mimicking the properties of

in vivo PCM (Woodruff et al., 2017). In addition, ribonucleoprotein granules can also phase sepa-

rate into dynamic liquid droplets in vitro (Lin et al., 2015; Patel et al., 2015). Given that PCNT is a

large protein with numerous coiled-coil domains and is targeted to mitotic PCM as a large ribonu-

cleoprotein complex (polysome), it will be fascinating in the future to determine whether co-transla-

tional targeting of PCNT polysomes to the centrosome could be part of a phase-separation process

that promotes the integration of newly synthesized PCNT proteins into the expanding PCM.

Mitotic translation regulation of PCNT
Our data also underscore the importance of active translation of PCNT mRNA during early mitosis

for the centrosome to gain the optimal level of PCNT because (1) during the G2/M transition, PCNT

mRNA levels remain largely constant, but the centrosomal PCNT protein levels increase ~two fold in

25 min after the onset of mitosis; (2) inhibiting translation briefly during early mitosis—for example,

2 min of puromycin treatment in prophase or prometaphase—is sufficient to substantially reduce the

amount of PCNT proteins incorporated at centrosomes (Figure 5).

It is still unclear how the translation activation of PCNT mRNA is regulated during early mitosis.

Previous studies show that translation is globally repressed during mitosis (Bonneau and Sonen-

berg, 1987; Fan and Penman, 1970; Pyronnet et al., 2000), and this global translation repression

is accompanied by the translation activation of a subset of transcripts through a cap-independent

translation initiation mediated by internal ribosome entry sites (IRESes) (Cornelis et al., 2000;

Marash et al., 2008; Pyronnet et al., 2000; Qin and Sarnow, 2004; Ramı́rez-Valle et al., 2010;

Schepens et al., 2007; Wilker et al., 2007). However, a recent study has challenged this view of

IRES-dependent translation during mitosis and instead finds that canonical, cap-dependent transla-

tion still dominates in mitosis as in interphase (Shuda et al., 2015). Therefore, to elucidate the mech-

anism underlying the translation upregulation of PCNT mRNA during early mitosis, determining if

this process is a cap- and/or IRES-dependent process might be a first logical step. In addition, our

recent study has linked GLE1, a multifunctional regulator of DEAD-box RNA helicases, to the regula-

tion of PCNT levels at the centrosome (Jao et al., 2017). Since all known functions of GLE1 are to

modulate the activities of DEAD-box helicases in mRNA export and translation (Alcázar-

Román et al., 2006; Bolger et al., 2008; Bolger and Wente, 2011; Weirich et al., 2006), it is worth

elucidating whether translation upregulation of PCNT mRNA during mitosis is regulated through the

role of GLE1 in modulating certain DEAD-box helicases involved in translation control such as DDX3

(Chen et al., 2016; Lai et al., 2008; Soto-Rifo et al., 2012).

A new mode of protein targeting
Protein targeting to subcellular localization via mRNA localization has been widely used in many

other biological contexts. For example, in Drosophila and Xenopus oocytes, segregation of cell fates

and embryonic patterning are driven by asymmetrically distributed fate determinants in the form of

localized mRNA (Bashirullah et al., 1998; Deshler et al., 1998; Ephrussi et al., 1991). In Saccharo-

myces cerevisiae, mating type switching is regulated by targeting ASH1 mRNA to the bud tip, where

Ash1 protein is translated and acts as a repressor of mating type switching (Long et al., 1997;

Takizawa et al., 1997). In fibroblasts, localizing b-actin mRNA to the leading edge, coupled to its

local translation, promotes local actin assembly and directional migration (Hill et al., 1994;

Sundell and Singer, 1991). Similarly, in neurons, many mRNAs are axonally and dendritically

enriched; local translation of a subset of these mRNAs allows synapse-restricted responses to envi-

ronmental cues (Lin and Holt, 2007; Sutton and Schuman, 2006; Wu et al., 2005). However, unlike

the co-translational targeting of PCNT and ASPM mRNA to the centrosome described here, in most

of the above examples, the mRNAs are transported in a translation-repressed state before arriving

their destinations. For the proteins targeted to ER for the secretory pathway, translation is also
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arrested before the mRNA-ribosome-nascent chain complex reaches the destined membrane, where

co-translational translocation of the polypeptide into the ER resumes (Cross et al., 2009;

Keenan et al., 2001). A similar ER-like co-translational translocation mechanism is also used for

importing a subset of mitochondrial proteins (Verner, 1993; Yogev et al., 2007). Therefore, in con-

trast to all the above examples, we have described a new version of co-translational protein target-

ing mechanism in which mRNA targeting and translation take place simultaneously. In support of

this new protein targeting mechanism, a recent study using a live translation reporter shows that

reporter mRNA can be actively translated while being transported in neurons (Wu et al., 2016). An

important next step is to determine how widely this new mode of protein targeting is employed and

how it contributes to a broad context of spatially restricted gene expression.

In summary, the work presented here shows that incorporating PCNT into the PCM during cen-

trosome maturation is at least in part mediated by upregulation of PCNT translation during the G2/

M transition and the co-translational targeting of translating PCNT polysomes toward the centro-

some during early mitosis. Efforts so far on elucidating the mechanism underlying centrosome matu-

ration has focused for the most part on the interplay of protein-protein interactions and post-

translational modifications (e.g. phosphorylation) of different PCM components. However, our study

suggests that a spatiotemporal coupling between the active translation machinery and the motor-

based transport may represent a new layer of control over centrosome maturation. Our work also

suggests that spatially restricted mRNA localization and translation are not limited to early embryos

or specialized cells (e.g. polarized cells such as neurons). We anticipate that co-translational protein

targeting to subcellular compartments beyond the centrosome may prove to be a recurrent cellular

strategy to synthesize and deliver certain cytoplasmic proteins to the right place at the right time.

This regulatory process might represent an underappreciated, universal protein targeting mecha-

nism, in parallel to the evolutionarily conserved co-translational targeting of secreted and membrane

proteins to the ER for the secretory pathway.

Materials and methods

Key resources table

Reagent type Reagent Source Cat. no.
Additional
information

Chemical
compound, drug

RO-3306 R and D Systems,
Minneapolis, MN

4181

Chemical
compound, drug

Ciliobrevin D MilliporeSigma,
Burlington, MA

250401

Chemical
compound, drug

Nocodazole Sigma-Aldrich,
St. Louis, MO

M1404

Chemical
compound, drug

Cytochalasin B ACROS Organics,
Geel, Belgium

228090250

Chemical
compound, drug

Cycloheximide Alfa Aesar,
Tewksbury, MA

J66901

Chemical
compound, drug

Emetine MilliporeSigma,
Burlington, MA

324693

Chemical
compound, drug

Puromycin MilliporeSigma,
Burlington, MA

540222

Chemical
compound, drug

Harringtonine LKT Laboratories,
St. Paul, MN

H0169

Antibody Rabbit anti-PCNT
N terminus

Abcam, Cambridge, MA Abcam Cat# ab4448,
RRID:AB_304461

1:500 or 1:1000 dilution

Antibody Goat anti-PCNT
C terminus

Santa Cruz Biotechnology
Inc., Santa Cruz, CA

Santa Cruz Biotechnology
Cat# sc-28145,
RRID:AB_2160666

1:500 dilution

Antibody Mouse anti-g-tubulin Sigma-Aldrich,
St. Louis, MO

Sigma-Aldrich
Cat# T6557,
RRID:AB_477584

1:1000 dilution

Continued on next page
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Continued

Reagent type Reagent Source Cat. no.
Additional
information

Antibody Rabbit anti-phospho-
Histone H3(Ser10)

MilliporeSigma,
Burlington, MA

MilliporeSigma
Cat# 06–570,
RRID:AB_310177

1:500 dilution

Antibody Mouse anti-ribosomal
protein S6

Santa Cruz Biotechnology
Inc., Santa Cruz, CA

Santa Cruz
Biotechnology Cat#
sc-28145,
RRID:AB_1129205

1:500 dilution

Antibody Sheep anti-digoxigenin
-alkaline phosphatase

Roche Diagnostics,
Mannheim, Germany

Roche Cat#
11093274910,
RRID:AB_514497

1:5000 dilution

Antibody Sheep anti-digoxigenin
-peroxidase

Roche Diagnostics,
Mannheim, Germany

Roche Cat#
11207733910,
RRID:AB_514500

1:500 dilution

Commercial
assay or kit

MEGAshortscript T7 kit Thermo Fisher Scientific,
Waltham, MA

AM1354

Commercial
assay or kit

mMESSAGE mMACHINE T3 kit Thermo Fisher Scientific,
Waltham, MA

AM1348

Commercial
assay or kit

Click-iT EdU Imaging Kit Life Technologies,
Carlsbad, CA

C10337

Model organism Wild-type NHGRI-1 fish A gift from Shawn
Burgess, NHGRI/NIH,
Bethesda, MA

ZIRC Cat#
ZL12751,
RRID:ZIRC_ZL12751

Model organism pcnttup2 fish This study

Model organism pcnttup5 fish This study

Cell line HeLa cells ATCC CCL-2. A gift
from Susan Wente,
Vanderbilt University,
Nashville, TN

ATCC Cat# CCL-2,
RRID:CVCL_0030

Cell line RPE-1 cells A gift from Irina
Kaverina, Vanderbilt
University, Nashville, TN

ATCC Cat# CRL-4000,
RRID:CVCL_4388

Cell line HeLa cells stably expressing
scFv-sfGFP-GB1 and
NLS-tdPCP-tdTomato

A gift from Xiaowei Zhuang,
Howard Hughes Medical
Institute, Harvard
University, Cambridge, MA

Cell line RPE-1 cells expressing
Centrin-GFP

A gift from Alexey Khodjakov,
Wadsworth Center, 485 New York
State Department of Health,
Rensselaer Polytechnic Institute,
Albany, NY

Software Huygens Professional Scientific Volume Imaging
b.v., Hilversum, Netherlands

Huygens Software,
RRID:SCR_014237

Software Imaris Bitplane, Belfast, UK Imaris,
RRID:SCR_007370

Software MATLAB MathWorks, Natick, MA MATLAB,
RRID:SCR_001622

Software Prism 7 GraphPad, CA Graphpad Prism,
RRID:SCR_002798

Zebrafish husbandry
Wild-type NHGRI-1 fish (LaFave et al., 2014) were bred and maintained using standard procedures

(Westerfield, 2000). Embryos were obtained by natural spawning and staged as described

(Kimmel et al., 1995). All animal researches were approved by the Institutional Animal Care and

Use Committee, Office of Animal Welfare Assurance, University of California, Davis.
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Generation of pcnt knockout fish
Disruption of zebrafish pcnt was done by the CRISPR-Cas technology as described (Jao et al.,

2013). In brief, to generate guide RNA (gRNA) targeting pcnt, two complementary oligonucleotides

(sequences in Supplementary file 2) corresponding to a target sequence in the exon 2 of pcnt were

annealed and cloned into pT7-gRNA plasmid to generate pT7-pcnt-gRNA. pcnt gRNA was gener-

ated by in vitro transcription using the MEGAshortscript T7 kit (AM1354, Thermo Fisher Scientific,

Waltham, MA) with BamHI-linearized pT7-pcnt-gRNA as the template. Capped, zebrafish codon-

optimized, double nuclear localization signal (nls)-tagged Cas9 RNA, nls-zCas9-nls, was synthesized

by in vitro transcription using the mMESSAGE mMACHINE T3 kit (AM1348, Thermo Fisher Scientific)

with XbaI-linearized pT3TS-nls-zCas9-nls plasmid as the template.

Microinjection of the mix of pcnt gRNA and nls-zCas9-nls RNA into zebrafish embryos (F0) was

performed as described (Jao et al., 2012). Pipettes were pulled on a micropipette puller (Model

P-97, Sutter Instruments, Novato, CA). Injections were performed with an air injection apparatus

(Pneumatic MPPI-2 Pressure Injector, Eugene, OR). Injected volume was calibrated with a microruler

(typically ~1 nl of injection mix was injected per embryo). Injected F0 embryos were raised and

crossed with wild-type zebrafish to generate F1 offspring. Mutations in F1 offspring were screened

by PCR amplifying the target region (primer sequences are in Supplementary file 3), followed by

7.5% acrylamide gel electrophoresis to detect heteroduplexes and sequencing. Two frameshift

mutant alleles of pcnt, pcnttup2 and pcnttup5, were used in this study (Figure 1—figure supplement

1). Maternal-zygotic pcnt mutant embryos were generated by intercrosses of homozygous pcnttup2

or pcnttup5 fish.

Inhibition of protein synthesis of zebrafish early embryos
To inhibit protein synthesis in blastula-stage zebrafish embryos, one-cell stage embryos from wild-

type NHGRI-1 intercrosses were injected with ~1 nl of Injection Buffer alone (10 mM HEPES, pH 7.0,

60 mM KCl, 3 mM MgCl2, and 0.05% phenol red) or with 300 mM puromycin in Injection Buffer. The

embryos were fixed and analyzed after they developed to the two-cell stage.

Cell culture
HeLa cells (ATCC CCL-2, a gift from Susan Wente, Vanderbilt University, Nashville, TN, or a HeLa

cell line stably expressing scFv-sfGFP-GB1 and NLS-tdPCP-tdTomato, a gift from Xiaowei Zhuang,

Howard Hughes Medical Institute, Harvard University, Cambridge, MA; Wang et al., 2016) and RPE-

1 cells (a gift from Irina Kaverina, Vanderbilt University) or Centrin-GFP RPE-1 cells (a gift from

Alexey Khodjakov, Wadsworth Center, New York State Department of Health, Rensselaer Polytech-

nic Institute, Albany, NY; Uetake et al., 2007) were maintained in Dulbecco’s Modification of Eagles

Medium (10–017-CV, Corning, Tewksbury, MA) and Dulbecco’s Modification of Eagles Medium/

Ham’s F-12 50/50 Mix (10–092-CV, Corning), respectively. All cell lines were supplemented with 10%

fetal bovine serum (FBS) (12303C, lot no. 13G114, Sigma-Aldrich, St. Louis, MO), 1x Penicillin Strep-

tomycin (30–002 CI, Corning), and maintained in a humidified incubator with 5% CO2 at 37˚C. To
inhibit cytoplasmic dynein activities, the cells were treated with 50 mM ciliobrevin D for 1 hr 25 min

at 37˚C.
Cell lines used in this study were not further authenticated after obtaining from the sources. All

cell lines were tested negative for mycoplasma using a PCR-based testing with the Universal Myco-

plasma Detection Kit (30–1012K, ATCC, Manassas, VA). None of the cell lines used in this study

were included in the list of commonly misidentified cell lines maintained by International Cell Line

Authentication Committee.

Cell synchronization
Early M phase
Cells were synchronized by either double thymidine block using 2 mM thymidine (Jackman and

O’Connor, 2001) or by the RO-3306 protocol using 6 mM RO-3306 (Vassilev et al., 2006). For

HeLa, RPE-1, and Centrin-GFP RPE-1 cells, prophase and prometaphase cells were enriched in the

cell population ~8 hr after the second release in the double thymidine block protocol, or 20–25 min

after releasing cells from an 18 hr RO-3306 treatment.
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G1 phase
Cells were incubated with 6 mM RO-3306 for 18 hr, washed out, and incubated in fresh media with

10% FBS for 30 min. Mitotic cells were collected after two firm slaps on the plate and were plated

again to circular coverslips. The cells were grown for 6 hr; at this time, almost all cells are in G1

phase (i.e. two centrin dots per cell).

RNA in situ hybridization in zebrafish
In situ hybridizations of zebrafish embryos were performed as described (Thisse and Thisse, 2008).

In brief, the DNA templates for making in situ RNA probes were first generated by RT-PCR using Tri-

zol extracted total RNA from wild-type zebrafish oocytes as the template and gene-specific primers

with T7 or T3 promoter sequence (sequences in Supplementary file 3). Digoxygenin-labeled anti-

sense RNA probes were then generated by in vitro transcription and purified by ethanol precipita-

tion (sequences in Supplementary file 1). Blastula-stage embryos were fixed in 4%

paraformaldehyde in 1x PBS with 0.1% Tween 20 (1x PBS Tw) overnight at 4˚C, manually dechorio-

nated, and pre-hybridized in hybridization media (65% formamide, 5x SSC, 0.1% Tween-20, 50 mg/

ml heparin, 500 mg/ml Type X tRNA, 9.2 mM citric acid) for 2–5 hr at 70˚C, and hybridized for ~18 hr

with hybridization media containing diluted antisense probe at 70˚C. After hybridization, embryos

were successively washed with hybridization media, 2x SSC with 65% formamide, and 0.2x SSC at

70˚C, and finally washed with 1x PBS Tw at 25˚C. Embryos were then incubated for 3–4 hr with

blocking solution (2% sheep serum, 2 mg/ml BSA, 0.1% Tween-20 in 1x PBS) at 25˚C, and

incubated ~18 hr with blocking buffer containing anti-digoxigenin-alkaline phosphatase antibody

(1:5000 dilution) at 4˚C. Embryos were washed successively with 1x PBS Tw and AP Buffer (100 mM

Tris, pH 9.5, 100 mM NaCl, 5 mM MgCl2, 0.1% Tween-20) before staining with the NBT/BCIP sub-

strates (11383213001/11383221001, Roche Diagnostics) in AP Buffer.

For combined RNA in situ hybridization and immunofluorescence to label both the RNA and cen-

trosomes in zebrafish embryos, the RNA in situ hybridization process was performed as described

above until the antibody labeling step: The embryos were incubated for ~18 hr with blocking solu-

tion (2% sheep serum, 2 mg/ml BSA, 0.1% Tween-20 in 1x PBS) containing anti-digoxigenin-peroxi-

dase (1:500 dilution), anti-g-tubulin (1:1000 dilution), and/or anti-phospho-Histone H3 (1:500

dilution) antibodies at 4˚C. Embryos were washed successively with 1x PBS Tw and then incubated

for ~18 hr with blocking solution containing Alexa Fluor 568 anti-mouse secondary antibody (1:500

dilution). After secondary antibody incubation, embryos were washed successively with 1x PBS and

borate buffer (100 mM boric acid, 37.5 mM NaCl, pH 8.5) with 0.1% Tween-20. The RNA was visual-

ized after tyramide amplification reaction by incubating embryos for 25 min in tyramide reaction

buffer (100 mM boric acid, 37.5 mM NaCl, 2% dextran sulfate, 0.1% Tween-20, 0.003% H2O2, 0.15

mg/ml 4-iodophenol) containing diluted Alexa Fluor 488 tyramide at room temperature. The reac-

tion was stopped by incubating embryos for 10 min with 100 mM glycine, pH 2.0 at room tempera-

ture, followed by successive washes with 1x PBS Tw.

Fluorescent in situ hybridization with tyramide signal amplification
(TSA) in cultured human cells
In brief, the DNA templates for making in situ RNA probes were first generated by RT-PCR using Tri-

zol extracted total RNA from human 293 T cells as the template and gene-specific primers with T7

or T3 promoter sequence (sequences in Supplementary file 3). Digoxygenin-labeled antisense RNA

probes were then generated by in vitro transcription and purified by ethanol precipitation (sequen-

ces in Supplementary file 1). Cells were fixed for ~18 hr with 70% ethanol at 4˚C, rehydrated with

2x SSC (0.3 M NaCl, 30 mM trisodium citrate, pH 7.0) containing 65% formamide at room tempera-

ture, pre-hybridized for 1 hr with hybridization media (65% formamide, 5x SSC, 0.1% Tween-20, 50

mg/ml heparin, 500 mg/ml Type X tRNA, 9.2 mM citric acid) at 70˚C, and hybridized for ~18 hr with

hybridization media containing diluted antisense probes at 70˚C. Cells were then successively

washed with hybridization media, 2x SSC with 65% formamide, and 0.2x SSC at 70˚C, and finally

washed with 1x PBS at room temperature. For tyramide signal amplification, cells were washed with

1x PBS, incubated for 20 min with 100 mM glycine, pH 2.0, and washed with 1x PBS at room tem-

perature. Cells were then incubated for 1 hr with blocking buffer (2% sheep serum, 2 mg/ml BSA,

0.1% Tween-20 in 1x PBS) at room temperature, and incubated ~18 hr with blocking buffer
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containing anti-digoxigenin-peroxidase antibody (1:500 dilution) at 4˚C. Cells were washed succes-

sively with 1x PBS, borate buffer (100 mM boric acid, 37.5 mM NaCl, pH 8.5) with 0.1% Tween-20,

and incubated for 5 min in tyramide reaction buffer (100 mM boric acid, 37.5 mM NaCl, 2% dextran

sulfate, 0.1% Tween-20, 0.003% H2O2, 0.15 mg/ml 4-iodophenol) containing diluted Alexa Fluor tyr-

amide at room temperature. Cells were washed successively with 1x quenching buffer (10 mM

sodium ascorbate, 10 mM sodium azide, 5 mM Trolox in 1x PBS) and 1x PBS at room temperature.

Coverslips were mounted using ProLong Antifade media (P7481, Life Technologies).

Sequential immunofluorescence (IF) and RNA single molecule
fluorescent in situ hybridization (smFISH)
Sequential IF and smFISH were performed according to the manufacturer’s protocol (LGC Biosearch

Technologies, Petaluma, CA) with the following modifications: IF was performed first. Cells were

fixed for 10 min in 4% paraformaldehyde in 1x PBS, washed twice with 1x PBS, and permeabilized

with 0.1% Triton X-100 in 1x PBS for 5 min at room temperature. Cells were washed once with

1x PBS and incubated with 70 ml of diluted primary antibody in 1x PBS for 1 hr at room temperature.

Cells were washed three times with 1x PBS and incubated with 70 ml of diluted secondary antibody

in 1x PBS for 1 hr at room temperature. Cells were washed three times with 1x PBS and post-fixed

for 10 min in 3.7% formaldehyde in 1x PBS at room temperature. For the smFISH process, cells were

washed with Wash Buffer A, incubated with 67 ml of Hybridization Buffer containing 125 nM DNA

probes labeled with Quasar 670 (sequences in Supplementary file 1) for 6 hr at 37˚C. Cells were

then incubated with Wash Buffer A for 30 min at 37˚C, Wash Buffer A containing 0.05 mg/ml DAPI

for 30 min at 37˚C, and Wash Buffer B for 3 min at room temperature. Coverslips were mounted

using ProLong Antifade media (Life Technologies) and sealed with clear nail polish before imaging.

Immunofluorescence
Cells were fixed for 10 min in 4% paraformaldehyde in 1x PBS, washed twice with 1x PBS, and per-

meabilized with 0.5% Triton X-100 in 1x PBS for 5 min at room temperature. Cells were incubated

with blocking solution (2% goat serum, 0.1% Triton X-100, and 10 mg/ml of bovine serum albumin in

1x PBS) for 1 hr at room temperature, incubated with blocking solution containing diluted primary

antibody for 1 hr at room temperature. Cells were washed three times with 1x PBS and incubated

with blocking solution containing diluted secondary antibody for 1 hr at room temperature. Cells

were washed with 1x PBS and nuclei were counterstained with 0.05 mg/ml of DAPI in 1x PBS for 20

min at room temperature before mounting.

EdU labeling
S phase cells were detected by using the Click-iT EdU Imaging Kit (Life Technologies) according to

the manufacturer’s instruction. In brief, Centrin-GFP RPE-1 cells were grown on 12-mm acid-washed

coverslips and pulse labeled with 10 mM 5-ethynyl-2’-deoxyuridine (EdU) for 30 min at 37˚C. The cells

were then fixed for 10 min with 4% paraformaldehyde in 1x PBS at room temperature, washed twice

with 1x PBS, and permeabilized for 20 min with 0.5% Triton X-100 in 1x PBS. Cells were then washed

twice with 1x PBS and incubated with a Click-iT cocktail mixture containing Alexa Fluor 488 or 594

azide for 30 min in the dark at room temperature.

Microscopy
Embryos subjected to in situ hybridization were mounted in a 35-mm glass-bottom dish (P35G-1.5–

10 C, MatTek, Ashland, MA) in 0.8% low melting point agarose and imaged using a stereo micro-

scope (M165 FC, Leica, Wetzlar, Germany) with a Leica DFC7000 T digital camera.

Confocal microscopy was performed using either a Leica TCS SP8 laser-scanning confocal micro-

scope system with 63x/1.40 or 100x/1.40 oil HC PL APO CS2 oil-immersion objectives and HyD

detectors in resonant scanning mode, or a spinning disk confocal microscope system (Dragonfly,

Andor Technology, Belfast, UK) housed within a wrap-around incubator (Okolab, Pozzuoli, Italy) with

Leica 63x/1.40 or 100x/1.40 HC PL APO objectives and an iXon Ultra 888 EMCCD camera for

smFISH and live cell imaging (Andor Technology). Deconvolution was performed using either the

Huygens Professional (Scientific Volume Imaging b.v., Hilversum, Netherlands) (for images captured

on Leica SP8) or the Fusion software (Andor Technology) (for images captured on Andor Dragonfly).
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Quantification of smFISH data and PCNT levels at centrosomes
To quantify the RNA distribution within the cell in 3D voxels, we used Imaris software (Bitplane, Bel-

fast, UK) to fit the protein signal as surfaces and the mRNA signal as spots of different sizes in

deconvolved images of each confocal z-stack. The intensity of the mRNA signal in each spot is

assumed to be proportional to the amount of mRNA in each spot and is used in lieu of mRNA units.

The outline of the cell was obtained either from a transmitted light image or from the background in

the pre-deconvolved image and was used to restrict fitting of both mRNA and protein signals to the

cell of interest. The distance from each mRNA spot to each centrosome’s center of mass was calcu-

lated and the mRNA signal was ‘assigned’ to the closest centrosome. The mRNA spots were binned

by distance to the centrosome and the intensities of the spots in each bin were added as a measure

of the amount of mRNA at that distance. This was calculated for each cell and then averaged over

all the cells for each condition. Thus, the graphs show average mRNA as a function of distance

(binned in 0.5 mm intervals).

To quantify PCNT intensities at the centrosome, we put the surfaces of the anti-PCNT signals fit

on the deconvolved images over the original images and used the statistics function in Imaris (Bit-

plane) to obtain the intensity sum of the original images within the fit volume.

Live translation assay (SunTag/PP7 system)
A HeLa cell line stably expressing scFv-sfGFP-GB1 and NLS-tdPCP-tdTomato was transfected with

the SunTag/PP7 reporter plasmid pEF-24xV4-ODC-24xPP7 (Wang et al., 2016) using Lipofectamine

3000 transfection reagent (Life Technologies) according to the manufacturer’s instruction. 12–18 hr

after transfection, the medium was changed to 10% FBS/DMEM without phenol red before imaging.

Statistical analysis
Statistical analysis was performed using the GraphPad Prism 7. Each exact n value is indicated in the

corresponding figure or figure legend. Significance was assessed by performing an unpaired two-

sided Student’s t-test, as indicated in individual figures. The experiments were not randomized. The

investigators were not blinded to allocation during experiments and outcome assessment.

Acknowledgements
We thank Susan Wente for the HeLa cell line; Irina Kaverina for the RPE-1 cell line; Alexey Khodjakov

for the Centrin-GFP RPE-1 stable cell line; Xiaowei Zhuang for the SunTag/PP7 reporter plasmid

pEF-24xV4-ODC-24xPP7, and the HeLa cell line stably expressing scFv-sfGFP-GB1 and NLS-tdPCP-

tdTomato; Dena Leerberg and Bruce Draper for technical help on fluorescent in situ hybridization in

zebrafish; Stephen (Evan) Brahms, Marvin Orellana, Hashim Shaikh, Janice Tam, and Alan Zhong for

technical help on zebrafish and cell culture work; Tom Glaser, Henry Ho, Frank McNally, Richard

Tucker, and Mark Winey for critical reading of the manuscript; Emily Jao for help on digital illustra-

tions. Experiments were performed in part through the use of UC Davis Health Sciences District

Advanced Imaging Facility.

Additional information

Funding

Funder Grant reference number Author

University of California, Davis New Faculty Startup Funds Li-En Jao

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Guadalupe Sepulveda, Mark Antkowiak, Data curation, Formal analysis, Investigation, Methodology,

Writing—original draft, Writing—review and editing; Ingrid Brust-Mascher, Resources, Data curation,

Software, Formal analysis, Validation, Investigation, Visualization, Methodology, Writing—original

Sepulveda et al. eLife 2018;7:e34959. DOI: https://doi.org/10.7554/eLife.34959 22 of 28

Research article Cell Biology

https://doi.org/10.7554/eLife.34959


draft, Writing—review and editing; Karan Mahe, Tingyoung Ou, Noemi M Castro, Lana N Christen-

sen, Lee Cheung, Data curation, Formal analysis, Investigation; Xueer Jiang, Data curation, Software,

Formal analysis, Investigation; Daniel Yoon, Investigation; Bo Huang, Data curation, Formal analysis,

Methodology; Li-En Jao, Conceptualization, Resources, Data curation, Formal analysis, Supervision,

Funding acquisition, Validation, Investigation, Visualization, Methodology, Writing—original draft,

Project administration, Writing—review and editing

Author ORCIDs

Li-En Jao http://orcid.org/0000-0001-5925-883X

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of

the animals were handled according to approved institutional animal care and use committee

(IACUC) protocols (#20169) of the University of California, Davis.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.34959.034

Author response https://doi.org/10.7554/eLife.34959.035

Additional files

Supplementary files
. Supplementary file 1. Sequences of antisense probes used in RNA in situ hybridization in zebrafish

and cultured cells.

DOI: https://doi.org/10.7554/eLife.34959.029

. Supplementary file 2. Sequence of the genomic target site of zebrafish pcnt and oligonucleotides

for making the customized gRNA expression construct. The sense strand of the target site is shown.

DOI: https://doi.org/10.7554/eLife.34959.030

. Supplementary file 3. PCR primer sequences for amplifying the zebrafish pcnt CRISPR target region

and generating antisense probes for in situ hybridization.

DOI: https://doi.org/10.7554/eLife.34959.031

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.34959.032

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Source data files have been provided for Figure 2B, Figure 3C, Figure 3—figure supplement 2, Fig-

ure 4A, Figure 4D, Figure 4—figure supplement 2, Figure 4—figure supplement 3B, Figures 5A-5C,

Figure 6, and Figure 6—figure supplement 1.

References
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Haren L, Stearns T, Lüders J. 2009. Plk1-dependent recruitment of gamma-tubulin complexes to mitotic
centrosomes involves multiple PCM components. PLoS One 4:e5976. DOI: https://doi.org/10.1371/journal.
pone.0005976, PMID: 19543530

Hill MA, Schedlich L, Gunning P. 1994. Serum-induced signal transduction determines the peripheral location of
beta-actin mRNA within the cell. The Journal of Cell Biology 126:1221–1229. DOI: https://doi.org/10.1083/jcb.
126.5.1221, PMID: 8063859

Huang MT. 1975. Harringtonine, an inhibitor of initiation of protein biosynthesis. Molecular Pharmacology 11:
511–519. PMID: 1237080

Ingolia NT, Lareau LF, Weissman JS. 2011. Ribosome profiling of mouse embryonic stem cells reveals the
complexity and dynamics of mammalian proteomes. Cell 147:789–802. DOI: https://doi.org/10.1016/j.cell.
2011.10.002, PMID: 22056041

Ito A, Goshima G. 2015. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole
and within the spindle. The Journal of Cell Biology 211:999–1009. DOI: https://doi.org/10.1083/jcb.201507001,
PMID: 26644514

Jackman J, O’Connor PM. 2001. Methods for synchronizing cells at specific stages of the cell cycle. Current
protocols in cell biology Chapter 8:Unit 8 3. DOI: https://doi.org/10.1002/0471143030.cb0803s00, PMID: 1822
8388

Jackman M, Lindon C, Nigg EA, Pines J. 2003. Active cyclin B1-Cdk1 first appears on centrosomes in prophase.
Nature Cell Biology 5:143–148. DOI: https://doi.org/10.1038/ncb918, PMID: 12524548

Jao LE, Akef A, Wente SR. 2017. A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and
basal bodies. Molecular Biology of the Cell 28:120–127. DOI: https://doi.org/10.1091/mbc.e16-09-0675,
PMID: 28035044

Jao LE, Appel B, Wente SR. 2012. A zebrafish model of lethal congenital contracture syndrome 1 reveals Gle1
function in spinal neural precursor survival and motor axon arborization. Development 139:1316–1326.
DOI: https://doi.org/10.1242/dev.074344, PMID: 22357925

Jao LE, Wente SR, Chen W. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease
system. PNAS 110:13904–13909. DOI: https://doi.org/10.1073/pnas.1308335110, PMID: 23918387

Jiang K, Rezabkova L, Hua S, Liu Q, Capitani G, Altelaar AFM, Heck AJR, Kammerer RA, Steinmetz MO,
Akhmanova A. 2017. Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex. Nature
Cell Biology 19:480–492. DOI: https://doi.org/10.1038/ncb3511, PMID: 28436967
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