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charged N-terminus in L1ORF1p
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Abstract LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian

evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1

encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an

endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving

N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies.

Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We

show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a

strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated

molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes

the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled

coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger

meshworks and indicates critical novel steps in L1 retrotransposition.

DOI: https://doi.org/10.7554/eLife.34960.001

Introduction
The mammalian LINE-1 (long interspersed element 1, L1) retrotransposon has had a considerable

impact on the evolution of mammalian genome organization and continues to shape the evolution

of the human genome. Roughly 17% of the human genome sequence corresponds to fragments or

full-length L1 copies of different evolutionary age, contrasting with only about 1.5% of our genome,

which encodes all of the human proteins (Lander et al., 2001; Stewart et al., 2011). L1 is the only

autonomously active mobile genetic element in the human genome, but also mobilizes non-autono-

mous Alu and SVA elements (Garcia-Perez et al., 2016; Goodier, 2016; Mita and Boeke, 2016;

Richardson et al., 2015). Autonomous retrotransposition relies on two L1-encoded proteins. The

L1ORF1 protein (L1ORF1p) is known as an RNA-binding protein (Hohjoh and Singer, 1996; Mar-

tin, 1991), whereas the L1ORF2 protein (L1ORF2p) harbors the necessary catalytic functions, consist-

ing of an endonuclease and a reverse transcriptase (Feng et al., 1996; Kazazian et al., 1988;

Moran et al., 1996).

L1 propagates via an RNA intermediate in a ‘copy-and-paste’ fashion. It does not rely on long ter-

minal repeats (LTRs) for the reverse transcription and genome integration steps, in contrast to LTR

retrotransposons and retroviruses (Sultana et al., 2017). Hence classified as a non-LTR retrotranspo-

son, L1 integrates via target-primed reverse transcription, a telomerase-like mechanism, where the

reverse transcription of L1RNA occurs directly at the spot of genomic integration (Cost et al., 2002;

Luan et al., 1993). It is poorly understood, however, how L1RNA, as a part of large L1 ribonucleo-

protein particles (L1RNPs), gains access to the chromatin in dividing (Mita et al., 2018) as well as

non-dividing cells (Kubo et al., 2006; Macia et al., 2017).
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Retrotransposition must occur in germline cells in order to assure a lineage-specific, vertical trans-

mission of L1 and its long-term survival in mammalian genomes. L1RNA and L1ORF1p are expressed

in both gametogenesis and the early embryo (Branciforte and Martin, 1994; Malki et al., 2014;

Packer et al., 1993; Trelogan and Martin, 1995), where early embryonic integrations lead to

mosaic offspring (Kano et al., 2009; van den Hurk et al., 2007). Furthermore, retrotransposition

also happens in somatic cells, such as in neuronal progenitor cells (Coufal et al., 2009;

Faulkner and Garcia-Perez, 2017; Muotri et al., 2005). As a consequence of both germline and

somatic insertions, L1 activity contributes to inter-individual human variation and diversity, but also

causes genetic disease and cancer (Burns, 2017; Hancks and Kazazian, 2016; Scott and Devine,

2017). Importantly, human L1 expression and retrotransposition appears to be triggered in certain

cancer types (Carreira et al., 2014; Scott and Devine, 2017) as well as in induced pluripotent stem

cells (Klawitter et al., 2016; Wissing et al., 2012), as detected by the expression of L1ORF1p

(Klawitter et al., 2016; Rodić et al., 2014; Wissing et al., 2012). Hence, considering the possible

implications of L1 retrotransposition for human health and for the applications of stem cells in medi-

cine and research, it is surprising how little we know about the mechanistic details of L1

retrotransposition.

Intriguingly, not only does L1 retrotransposition depend on the catalytic activity of the L1ORF2p

(Feng et al., 1996; Moran et al., 1996), but also on an intact open reading frame encoding

L1ORF1p (Moran et al., 1996). Multiple copies of L1ORF1p associate ‘in cis’ (Basame et al., 2006;

Kulpa and Moran, 2005; Sokolowski et al., 2017; Taylor et al., 2013; Wei et al., 2001) with their

eLife digest Almost half of the human genome consists of DNA strings that have been copied

and pasted from one part of the genome to another many thousands of times. These strings of DNA

are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease

and cancer, but they can also drive evolution.

Presently, only one type of mobile element, called LINE-1, is active in the human genome and

able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form

molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to

LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a

new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three

copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are

required for LINE-1 mobility.

Different versions of L1ORF1p are found in different animals. Part of the protein is the same

across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The

non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and

little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is

essential for LINE-1 mobility.

Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the

part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with

earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the

L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-

stable structure that can partially open up, indicating how trimers could form larger assemblies of

L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why

L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs

to be positively charged – a requirement that warrants further exploration.

The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1

mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process

at various points and to dissect such steps in great detail. Understanding how to control LINE-1

mobility could help to improve stem cell therapies and reproduction assistance techniques, due to

the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and

newly formed embryos.

DOI: https://doi.org/10.7554/eLife.34960.002
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encoding L1RNA molecule, and the resulting L1RNP is considered as a functional intermediate in the

retrotransposition process (Hohjoh and Singer, 1996; Kulpa and Moran, 2005; Martin, 1991;

Taylor et al., 2013). Furthermore, L1ORF1p was shown to facilitate the rearrangement of nucleic

acid structure and hence might be important as a ‘nucleic acid chaperone’ for remodeling the

L1RNP (Martin and Bushman, 2001). Indeed, most of the published experimental data characterizes

functions of L1ORF1p that are related to its interaction with RNA, whereas little is known about

other roles of this protein in L1 retrotransposition.

Mammalian L1ORF1p has a unique architecture, even among the ORF1ps encoded by non-LTR

retrotransposons (Kapitonov and Jurka, 2003; Khazina and Weichenrieder, 2009;

Schneider et al., 2013). It consists of three structural domains, connected by short linkers. These

domains are first, a coiled coil domain, which causes the protein to form homotrimers (Martin et al.,

2003), second, an RRM (RNA recognition motif) domain, and third, a C-terminal domain (CTD),

which cooperates with the RRM domain in binding single stranded nucleic acid substrates

(Januszyk et al., 2007; Khazina et al., 2011; Khazina and Weichenrieder, 2009). In the case of the

human protein, the coiled coil domain is preceded by a 51 residue long N-terminal region (NTR),

harboring two serine-proline motifs that are known phosphorylation sites (Cook et al., 2015). Finally,

there is also a short 15 residue tail at the C-terminal end of L1ORF1p that can be partially truncated

without functional consequences (Alisch et al., 2006).

A series of crystal structures has uncovered the three-dimensional arrangement of the individual

domains in the context of the L1ORF1p trimer (Khazina et al., 2011). The structures were obtained

from an N-terminally truncated protein, lacking the NTR and the N-terminal half of the coiled coil

domain, but they revealed L1ORF1p to be a highly structured and remarkably flexible RNA-binding

protein. It became clear how the coiled coil domain mediates the trimerization of the protein and

how it allows for the flexible attachment and organization of the RRM and CTD domains, such that

between 27 and 45 nucleotides of single stranded RNA are bound and covered by one trimer

(Khazina et al., 2011). However, although the structures rationalized trimerization and RNA binding

of L1ORF1p, the N-terminally truncated protein was not able to promote L1 retrotransposition when

tested in HeLa cells (Khazina et al., 2011).

We therefore decided to investigate the structural and mechanistic properties of the poorly con-

served N-terminal sequences in L1ORF1p, and to which degree they contribute to L1 retrotransposi-

tion. To this aim, we combined biophysical with cell-based techniques and determined crystal

structures for the entire coiled coil domain of the human L1ORF1p, enabling us to construct a com-

posite model for the complete trimer. Surprisingly, in order to function in retrotransposition, the

coiled coil apparently needs to be able to switch between fully structured and partially unstructured

states. This requirement for metastability can explain the presence and delicate balance of both sta-

bilizing and destabilizing elements in the structure of the coiled coil and the strong sensitivity to

mutation. Finally, we also identified the positively charged amino terminus of L1ORF1p as an inde-

pendent and novel determinant for L1 retrotransposition, a feature that is preserved in the mamma-

lian homologs.

Consequently, L1ORF1p emerges as a delicate but remarkably autonomous protein regarding its

host cell molecular environment, and with functions that clearly extend beyond RNA packaging. It

shows striking parallels to other dynamic coiled coil proteins, which act in membrane fusogenic pro-

cesses (Skehel and Wiley, 1998), hinting at presently uncharacterized steps in the L1 retrotransposi-

tion cycle.

Results

The N-terminal regions and coiled coil domains of mammalian L1ORF1
proteins show high sequence variability
Non-LTR retrotransposons encode ORF1 proteins with highly diverse architectures and distinct struc-

tural domains, frequently suggestive of RNA binding but possibly also of lipid or membrane interac-

tion (Khazina and Weichenrieder, 2009; Schneider et al., 2013). The most commonly shared

feature is, however, the apparent presence of coiled coil forming regions, suggesting self-association

and oligomerization into dimeric, trimeric or higher order assemblies (Figure 1A, Figure 1—figure

supplement 1A).
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Figure 1. Sequence properties of human L1ORF1p. (A) Domain organization of human L1ORF1p, including

findings from this work. See also Figure 1—figure supplement 1. The bar diagram shows the NTR in light grey

with phosphorylation sites marked in yellow (Cook et al., 2015) and with the positively charged N-terminal

residues in blue (this work). The coiled coil domain shows heptads alternating grey and black. The irregular heptad

IX harbors a stammer and is in magenta. Ion-coordinating heptads are marked by green circles. The RRM domain

is in red and the CTD is in cyan. (B) Conservation and evolution of human L1ORF1p. Non-conserved amino acid

positions from an alignment of primate sequences (Figure 1—figure supplement 2) are marked by vertical lines.

Arrows indicate the previously crystallized conserved portion of L1ORF1p (Khazina et al., 2011) and the rapidly

evolving, non-conserved portion. In contrast to the non-conserved portion, the conserved portion of L1ORF1p can

be easily aligned in all mammals (Boissinot and Sookdeo, 2016; Khazina et al., 2011; Yang et al., 2014)

(Figure 1—figure supplement 1B, Supplementary file 1). (C) Sequence of the crystallized coiled coil construct

(hL1ORF1p-cc), listed as heptads. Heptad positions a and d are shaded in grey with non-canonical residues in red.

Ion-coordinating layers are marked by green circles. In heptad IX, the three-residue insertion corresponding to the

stammer is in magenta (this work). Polar residues involved in trimerization motifs and forming stabilizing salt

bridges are in blue and circled with interactions shown as connecting lines. Residues in hL1ORF1p-cc that deviate

from the human sequence are in brown. See the Materials and methods and Supplementary file 3 for further

construct details. (D) Coiled coil propensity and probability of disorder. Coiled coil propensity (blue) was

calculated from the alignment of primate sequences using PCoils (Alva et al., 2016; Lupas, 1996). The

probability of disorder (red) was obtained from the human sequence using IUPred (Dosztányi et al., 2005).

DOI: https://doi.org/10.7554/eLife.34960.003

The following source data and figure supplements are available for figure 1:

Source data 1. Output from Pcoils and IUpred.

DOI: https://doi.org/10.7554/eLife.34960.006

Figure supplement 1. Organization of ORF1 proteins in L1 and other non-LTR retrotransposons.

DOI: https://doi.org/10.7554/eLife.34960.004

Figure supplement 2. Alignment of closely related primate L1ORF1p sequences.

DOI: https://doi.org/10.7554/eLife.34960.005

Khazina and Weichenrieder. eLife 2018;7:e34960. DOI: https://doi.org/10.7554/eLife.34960 4 of 29

Research article Structural Biology and Molecular Biophysics Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.34960.003
https://doi.org/10.7554/eLife.34960.006
https://doi.org/10.7554/eLife.34960.004
https://doi.org/10.7554/eLife.34960.005
https://doi.org/10.7554/eLife.34960


Coiled coils are superhelical bundles of a-helices, where each helix is built from repeats of seven

amino acids (heptads). In each heptad, the amino acid positions are labeled a to g, where positions

a and d point towards the center of the bundle and are typically occupied by small, hydrophobic res-

idues. This results in a usually hydrophobic core of the coiled coil with alternating a- and d-layers.

Consequently, the residues in the a- and d-positions of each heptad are the most critical ones to

define and stabilize a coiled coil. Furthermore, charged residues in positions e and g frequently form

stabilizing salt bridges on the surface of the coiled coil (Lupas et al., 2017).

In the case of the human L1ORF1p, the presence of a coiled coil forming region was previously

identified by sequence analysis (Hohjoh and Singer, 1996), but it was difficult to define the bound-

aries of this coiled coil domain and to align its sequence among mammalian orthologs

(Boissinot and Furano, 2001; Boissinot and Sookdeo, 2016). The identification and crystallization

of the RRM domain ultimately revealed that the coiled coil domain extends right to the start of the

RRM domain and that mammalian L1ORF1 proteins share seven alignable heptads preceding the

RRM domain (Khazina and Weichenrieder, 2009). These heptads are numbered I to VII in the C- to

N- terminal direction and include two conserved ‘RhxxhE’ trimerization motifs spanning heptads V

and VI, where ‘h’ designates hydrophobic a- and d-layers and ‘x’ stands for any residue

(Kammerer et al., 2005). Trimerization motifs stabilize the parallel, trimeric structure of a coiled coil

through salt bridges that form between glutamates in position e and arginines in position g’ of the

preceding heptad. They probably also help to initiate coiled coil formation and to define the correct

register for coiled coil assembly (Ciani et al., 2010; Kammerer et al., 2005). Together with the RRM

and CTD domains, heptads I to VII therefore define the alignable or conserved portion of L1ORF1p

(Figure 1A, Figure 1B, Figure 1C, Figure 1—figure supplement 1B, Supplementary file 1). The

conserved portion of human L1ORF1p trimerizes as the full length protein and binds and releases

nucleic acid substrates, but it is not sufficient to support retrotransposition (Khazina et al., 2011).

The remaining, N-terminal portion of L1ORF1p is variable among mammalian orthologs and can-

not be consistently aligned (Figure 1—figure supplement 1B, Supplementary file 1). It is therefore

also missing from recently published alignments (Boissinot and Sookdeo, 2016; Yang et al., 2014).

The N-terminal portion of L1ORF1p consists of the presumably disordered NTR, followed by addi-

tional heptad repeats that complete the predicted coiled coil domain (Figure 1D). It is possible

though to unambiguously align the presently active human L1ORF1p sequence with ancestral

L1ORF1p sequences reconstructed from the human genome (L1PA1 up to L1PA5) (Khan et al.,

2006) and with closely related L1ORF1p sequences from the great apes and macaques (Figure 1—

figure supplement 2). This alignment predicts a coiled coil domain with seven additional heptad

repeats (VIII to XIV) and with an insertion of three amino acids in or around heptad IX. Such an inser-

tion disturbs the periodicity of the coiled coil and is called a ‘stammer’, in comparison to ‘stutters’,

which are insertions of four residues (Brown et al., 1996).

Most importantly, the alignment also illustrates the rapid evolution of the N-terminal portion of

human L1ORF1p as compared to the rest of the sequence and especially the accumulation of non-

conserved residues in the N-terminal half of the coiled coil domain (Figure 1B, Figure 1—figure

supplement 2). This part of the coiled coil domain has previously been claimed to be under positive

selection, because it appears to evolve more rapidly than expected from a neutral rate of evolution

(Boissinot and Furano, 2001; Khan et al., 2006). Furthermore, among mammalian L1ORF1ps, the

number and regularity of the N-terminal heptads varies considerably (Figure 1—figure supplement

1B, Supplementary file 1), especially in mice, where heptad duplications and deletions are well

documented for the three active L1 lineages (Sookdeo et al., 2013) (Figure 1—figure supplement

1C, Supplementary file 1).

To characterize the molecular properties and functional requirements of the essential but poorly

conserved N-terminal portion of L1ORF1p, we therefore took an individual, structure-based

approach with the human L1ORF1p.

The crystal structure of the entire coiled coil domain of human L1
ORF1p reveals malleability of the N-terminal heptads
Sequence analysis suggests the coiled coil domain to begin with residue Y52 of the human L1ORF1p

(Figure 1C, Figure 1D). Considering the high sequence variation even among primate orthologs, it

was unclear, however, whether the entire sequence could form one continuous coiled coil, where

and how the three amino acid insertion would be accommodated and what would be the structural
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Figure 2. Crystal structure of the human L1ORF1p coiled coil domain. (A) The two crystallized trimers of the

L1ORF1p coiled coil domain. See Table 1 for data collection and refinement statistics. Structures include the

rapidly evolving N-terminal portion of the coiled coil. Structures are shown as three-dimensional ribbons or

schematically, with colors as in Figure 1. Heptad positions a and d are symbolized by ovals, the remaining

positions as small circles. Rectangular brackets symbolize trimerization motifs or other stabilizing salt bridges

(dashed). The pointed bracket symbolizes R135 in position IIId and its coordination of a chloride ion in the

preceding a-layer. (B) Composite structure model for the human L1ORF1p trimer. Superposition of the coiled coil

trimer T1 (residues 52–152) via heptads II-VI (horizontal lines) with a crystal structure of the human L1ORF1p

conserved portion (PDB-ID 2ykp, residues 107–223) (Khazina et al., 2011) results in a model comprising all parts

of human L1ORF1p that are known to be structured. See also Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34960.007

The following figure supplement is available for figure 2:

Figure supplement 1. Crystallographic details and properties of the coiled coil in the context of the composite

model of the L1ORF1p trimer.

DOI: https://doi.org/10.7554/eLife.34960.008
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and functional consequences of the numerous non-canonical residues in the predicted a- and d-

layers.

We therefore tried to obtain a detailed crystal structure and indeed, a bacterially expressed frag-

ment of human L1ORF1p, encompassing the entire coiled coil domain (hL1ORF1p-cc) crystallized

with two trimers (T1 and T2) present per asymmetric unit, yielding two slightly differing structures of

the trimeric human L1ORF1p coiled coil domain at 2.65 Å resolution (Figure 2A, Figure 2—figure

supplement 1A, Figure 2—figure supplement 1B, Table 1).

Trimer T1 forms an extended rod with an overall length of 150 Å. For the polypeptide chains A

and B, all 14 heptads are found in the electron density in a continuously helical, extended conforma-

tion. The variable coiled coil sequences therefore indeed extend the previously characterized C-ter-

minal heptads (I-VI) and retain threefold symmetry up to heptad XI. In heptad XII, chain C begins to

deviate and breaks the threefold symmetry, and then becomes untraceable in the electron density in

heptad XIII. Chains A and B instead continue a helical packing with likely support from crystal con-

tacts (Figure 2A).

Trimer T2 is highly similar to trimer T1 for heptads II to XI (r.m.s.d. for C
a

atoms = 0.781 Å), but,

in comparison to trimer T1, heptad XII also remains roughly threefold symmetric. Furthermore, hep-

tads XIII and XIV are untraceable in electron density in the case of chains B and C. In the case of

chain A, heptad XIII locally unwinds and loses its a-helical structure, whereas heptad XIV is still a-

helical but bent by ~90˚ with respect to the threefold axis, making crystal contacts with a T1 trimer

from a neighboring asymmetric unit (Figure 2A).

Table 1. Data collection and refinement statistics.

Data collection

Space group P21212

Cell dimensions

a, b, c (Å) 92.2, 250.6, 33.8

a, b, g (˚) 90, 90, 90

Wavelength (Å) 1.000

Resolution (Å)* 125–2.65 (2.72–2.65)

Rsym* 7.3 (81.3)

I/sI* 14.9 (2.2)

Completeness (%)* 99.8 (98.4)

Redundancy* 5.4 (5.5)

Refinement

Resolution (Å) 125–2.65

No. of reflections 23830

Rwork/Rfree (%) 20.8/23.8

No. of atoms

Protein 4851

Ligand/ion 4

Water 64

B-factors (Å2)

Protein 87.6

Ligand/ion 69.3

Water 58.3

R.m.s deviations

Bond lengths (Å) 0.010

Bond angles (˚) 0.82

*Highest resolution shell is shown in parenthesis.

DOI: https://doi.org/10.7554/eLife.34960.009
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Apparently therefore, the N-terminal heptads of the coiled coil domain are deformable and can

switch between an a-helical and an unwound state. In particular, the non-canonical K62 and F69 in

the d-layers of heptads XIII and XII might be difficult to maintain in a three-fold symmetric state. In

solution, these heptads hence might preferably engage in alternating binary interactions between

two of the three chains, resulting in a dynamic structure at the N-terminal end of the coiled coil

domain rather than in the formation of a stable rod.

The coiled coil domain of human L1ORF1p is characterized by a sharply
localized stammer and flanking trimerization motifs
A thorough analysis of the molecular contacts and a computational analysis of coiled coil parameters

reveals a mixture of stabilizing and destabilizing interactions along the sequence of the coiled coil

domain (Figure 3, Figure 3—figure supplement 1). Most strikingly, in heptad IX, there is a sharply

localized distortion in the helical geometry of both the coiled coil bundle and of the individual poly-

peptide chains. The distortion is caused by the stammer, which can be precisely assigned to residues

M91, E92 and L93. These three residues form an extra 310-helical turn between positions d and e of

heptad IX and create an additional hydrophobic core layer (d*) at L93. (Figure 2A, Figure 3A,

Figure 3D, Figure 3—figure supplement 1A, Figure 3—figure supplement 1D). Consequently, the

individual helices are locally overwound and stretched in concert with a strong increase in the left-

handed supercoiling of the bundle (Figure 3B, Figure 3—figure supplement 1B). Trimeric stammer

structures have previously been discussed only in synthetically designed coiled coil environments

(Hartmann et al., 2016; Hartmann et al., 2009) and occur much less frequently in natural coiled

coils than stutters, which, in structural terms, are easier to accommodate (Lupas et al., 2017). Also

in the coiled coils of mammalian L1ORF1 proteins, stutters occur more often, such as in murine

L1ORF1p (Figure 1—figure supplement 1B, Figure 1—figure supplement 1C, Supplementary file

1).

In general, stammers are considered to have an unfavorable, destabilizing effect on the respective

coiled coil structure (Lupas et al., 2017), consistent with the local increase in the averaged atomic

B-factors of the two crystallized trimers of the human L1ORF1p coiled coil (Figure 3C, Figure 3—fig-

ure supplement 1C). Additionally, this coiled coil hosts a series of non-canonical and non-ideal a-

and d-layers, which are also considered to be destabilizing (Figure 1C, Figure 2A, Figure 3D, Fig-

ure 3—figure supplement 1D). In particular, these are the distorted d-layers in heptads XIII (K62)

and XII (F69), the cysteine and threonine-containing d-layers of heptads XI and X, and the cysteine-

containing a-layers of heptads VII and VI. Finally, there are the previously described ion-coordinating

layers of heptads III and II (Khazina et al., 2011). Chloride-binding asparagines (heptad II, N142) are

not uncommon in the d-layer of parallel, trimeric coiled coils (referred to as asparagines at d-, or

short, N@d- layers [Hartmann et al., 2009]) as they help to define both the trimeric state and the

correct register of the three chains. Arginines (heptad III, R135) are much more rarely observed at d-

layers, and especially the combination with a glycine (G132) in the preceding a-layer, where the gua-

nidino groups of R135 coordinate a second chloride ion, is unique so far to the human L1ORF1p

(Khazina et al., 2011) (Figure 3D, Figure 3—figure supplement 1D).

The destabilizing effects of the stammer and of the non-ideal core layers are balanced, however,

by numerous peripheral interactions between pairs of neighboring polypeptide chains and involving

polar residues in positions b, e, and g (Figure 1C, Figure 2A, Figure 2—figure supplement 1B,

Figure 3A, Figure 3—figure supplement 1A). Next to the two consecutive trimerization motifs in

heptads V and VI, which are conserved in all mammals, there are two additional, non-conserved tri-

merization motifs in heptads II and X and a peripheral interaction with inverse polarity in heptad VII,

that is with an arginine in position e and a glutamate in position g’. The trimerization motifs differ at

position b, where various alternative residues contribute to the motif in three of the four cases

(S119, D112, T81 in heptads V, VI, X, respectively, Figure 3D, Figure 3—figure supplement 1D).

As a result, the stammer is flanked by stabilizing motifs both on its C-terminal and on its N-termi-

nal side, and the non-canonical layers in heptads II, VI, VII and X are hedged by peripheral interac-

tions. It is clear as well that this mixture of stabilizing and destabilizing interactions results in the

observed distribution of the crystallographic B-factors along the sequence of the coiled coil domain,

reflecting a more malleable structure of the coiled coil on its N-terminal side (Figure 3C, Figure 3—

figure supplement 1C). However, given the high sequence variability in the coiled coil region, there

Khazina and Weichenrieder. eLife 2018;7:e34960. DOI: https://doi.org/10.7554/eLife.34960 8 of 29

Research article Structural Biology and Molecular Biophysics Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.34960


XIV XIII XII XI X VIII VII VI V IV III II IIX

stammer 14669

A

B

C

D

α
-h

e
li
x

(d
e

g
. 
/ 
re

s
id

u
e

)

c
o

il
e

d
 c

o
il

(d
e

g
. 
/ 
re

s
id

u
e

)

- 4

0

4

- 8

100

104

108

112

α
-h

e
li
x

(p
e

ri
o

d
ic

it
y

)
3.1
3.2
3.3
3.4
3.5

B
-f

a
c

to
r

(Å
2
)

66 73 80 87 97 104 111 118 125 132 139 146

50

100

150

XIIa - V66 VIIa - C104

VIa - C111 Va - V118 IIId - R135 IId - N142

IXd* - L93Xa - I80

g’

e

g’

g’

e

e

g’

g’

g’

ee

e
b

b

b

g’

g’

g’

e e

e

b

b
b

g

g

g

e’

e’

e’

g’

g’

g’

e

ee

b

b

b

A
B
C

Figure 3. Coiled coil parameters and structural details (trimer T1). (A) Schematic representation of trimer T1 (see

Figure 2). (B) Coiled coil structural parameters as analyzed in TWISTER (Strelkov and Burkhard, 2002) and

aligned with the scheme in (A). Top panel: Helical geometry of the a-helices (blue) and of the coiled coil bundle

(red), expressed in degrees of right-handed rotation per residue. Negative values result from the left-handed

geometry of the coiled coil. Bottom panel: Periodicity of the a-helices along the coiled coil axis, expressed in

residues per turn. (C) Crystallographic B-factor, averaged over the main chain atoms of polypeptide chains A, B

and C. (D) Individual selected core layers shown as sticks and viewed down the axis of the coiled coil. Heptad

positions a or d of the respective layers are connected by thin lines, and chloride ions are shown as green spheres

(heptads II and III). Peripheral heptad positions engaged in trimerization motifs (heptads II, V, VI, X) or other

stabilizing salt bridges (heptad VII) are labeled, where g’ and e’ mark the positions from the preceding layer.

Peripheral stabilization frequently compensates for non-canonical a- or d-layers. The stammer contributes an

additional core layer (IXd*), geometrically closest to a d-type layer (Strelkov and Burkhard, 2002). N-terminal

heptads are deformable with core layers deviating from three-fold symmetry (XIIa). For trimer T2, see Figure 3—

figure supplement 1.

DOI: https://doi.org/10.7554/eLife.34960.010

The following source data and figure supplement are available for figure 3:

Source data 1. Output from TWISTER and B-factor analysis.

DOI: https://doi.org/10.7554/eLife.34960.012

Figure supplement 1. Coiled coil parameters and structural details (trimer T2).

DOI: https://doi.org/10.7554/eLife.34960.011
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appear to be many functional combinations of stabilizing and destabilizing interactions, raising the

question of how crucial it is to balance the respective effects along the sequence.

Structural superposition generates a composite model for L1ORF1p
including the RRM and CTD domains
The presently determined structures of the coiled coil domain match extremely well with the previ-

ously determined structures of the conserved portion of human L1ORF1p (Khazina et al., 2011)

over heptads II-VI (r.m.s.d. = 0.422 Å over 105 C
a

atoms in residues C111-S145, Figure 2B). Heptad

VII is not completely traceable in the electron density of the conserved portion (Khazina et al.,

2011) and the C-terminal residues of the coiled coil domain (W150-Y152) are distorted due to crystal

packing interactions. Using the overlap for a structural superposition, it is possible to generate a

composite model for the human L1ORF1p trimer, which has overall dimensions of 77 Å by 179 Å

and comprises the complete coiled coil, RRM and C-terminal domains, that is comprises the confor-

mationally defined region of L1ORF1p (Figure 2B).

Coloring the model according to sequence variability illustrates the striking frequency of variable

residues in the N-terminal half of the coiled coil, including residues both from core layers and from

the surface of the coiled coil (Figure 2—figure supplement 1C). Furthermore, the N-terminal half of

the coiled coil reveals an alternation of positively charged, neutral and negatively charged surfaces,

where an acidic patch at the transition between heptads XI and XII is the most prominent feature. In

contrast, the conserved portion of the model is strongly positively charged, especially in the RNA

binding clefts between the RRM and C-terminal domains (see also Khazina et al., 2011). Notable

exceptions are heptads V and VI with their conserved and highly acidic surface (Figure 2—figure

supplement 1D).

An NTR peptide is monomeric and disordered and fails to bind the
remainder of L1ORF1p
The composite model of the human L1ORF1p trimer (Figure 2B) lacks residues M1-N51 and E324-

M338, because these residues were missing from the expressed constructs or disordered in the

available crystal structures. The C-terminal residues are highly variable or absent in mammalian

orthologs (Figure 1—figure supplement 1B, Supplementary file 1) and can be partially removed

(Alisch et al., 2006) or also extended with artificial peptide tags without blocking retrotransposition

activity (Goodier et al., 2007; Kulpa and Moran, 2005; Taylor et al., 2013). This suggests the

C-terminal residues are not functionally required. The 51 N-terminal residues, however, contain func-

tionally relevant phosphorylation sites (Cook et al., 2015), but protein constructs including the NTR

failed to crystallize.

We therefore used circular dichroism (CD) spectroscopy and analytical size exclusion chromatog-

raphy to investigate the structure and potential interactions of the NTR (Figure 4, Figure 5). CD

spectroscopy is an excellent method to detect the presence of secondary structure in solution and

reveals a purely a-helical spectrum for the hL1ORF1p-cc coiled coil construct (Figure 4A). In con-

trast, a peptide corresponding to the NTR (hL1ORF1p-NTRH6) lacks a-helices or b-strands

(Figure 4B), consistent with the disorder prediction analysis (Figure 1D). Furthermore, the coiled

coil sequence forms extended trimers in solution as confirmed by multiangle laser light scattering

(MALLS, Figure 4C), whereas the NTR remains monomeric (Figure 4D). Finally, the NTR also fails to

interact with the remainder of human L1ORF1p (hL1ORF1p-DNTR) when added ‘in trans’ and tested

by size exclusion chromatography (Figure 4E, Figure 4F, Figure 4—figure supplement 1). The NTR

also fails to interact with hL1ORF1p-DNTR when residues S18 and S27 are substituted by aspartates,

mimicking the phosphorylated state of the NTR (Figure 4—figure supplement 2). As a result, and in

the absence of additional interaction partners, the unstructured NTR peptides appear to be hanging

from the deformable and potentially dynamic N-terminal end of the coiled coil domain of the fully

assembled trimer, without stable attachment to any of the structured domains.

The N-terminal heptads of the coiled coil domain are metastable and
require the C-terminal heptads for trimerization
The present crystal structures and solution studies show that the coiled coil can form over the entire

length of the 14 heptads. However, the seven C-terminal heptads, which are already sufficient for
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trimer formation, also are clearly better defined in the electron density map than the seven N-termi-

nal heptads. These show increasingly elevated B-factors and begin to deviate from the threefold

symmetry the closer the sequence is located to the amino terminus (Figure 2A, Figure 3C, Fig-

ure 3—figure supplement 1C).

We therefore tested whether the variable, N-terminal portion of L1ORF1p would still be able to

trimerize in the absence of the conserved portion, but this is clearly not the case. The respective
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Figure 4. Structural properties of the N-terminal region (NTR) of L1ORF1p. (A, B) Circular dichroism (CD)

spectroscopy. The spectrum of the L1ORF1p coiled coil domain (A) is typical for an a-helix, whereas the spectrum

of the NTR (B) indicates the absence of helices or strands. Ellipticity is calculated per residue as a mean residue

ellipticity (MRE), expressed in degrees / (cm x M). (C, D) Size exclusion chromatography followed by multiangle

static laser light scattering (MALLS). The molecular weights (MW) determined by MALLS from the elution peaks

indicate the coiled coil domain to be trimeric in solution (C, 12.6 kDa per monomer), whereas the NTR remains

monomeric (D, 6.7 kDa per monomer). The observed elution volume (Veobs) of the trimeric coiled coil domain is

clearly larger than the theoretical elution volume (Veth) of a globular molecule with the same mass.

Chromatography was done on a Superdex 200 column and the optical density at 280 nm (OD280) was normalized

to 1.0 for the maximal absorption observed. (E, F) NTR-binding assay. L1ORF1p is trimeric in the absence of the

NTR (E, 34.4 kDa per monomer). The NTR fails to interact with the remainder of L1ORF1p when mixed with the

truncated trimer (F). See also Figure 4—figure supplement 1, Figure 4—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.34960.013

The following source data and figure supplements are available for figure 4:

Source data 1. Data from size exclusion chromatography, MALLS and CD spectroscopy.

DOI: https://doi.org/10.7554/eLife.34960.016

Figure supplement 1. Gel analysis of the NTR-binding assay.

DOI: https://doi.org/10.7554/eLife.34960.014

Figure supplement 2. MALLS and NTR-binding assay with an NTR peptide containing phospho-mimicking

residues.

DOI: https://doi.org/10.7554/eLife.34960.015
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construct (hL1ORF1p-Dcons) remained monomeric at concentrations up to 1.3 mM (Figure 5A) and,

most surprisingly, is unstructured according to CD spectroscopy (Figure 5B). Apparently, folding of

the seven N-terminal heptads only occurs when it is triggered by the C-terminal heptads as in the

context of the full length L1ORF1p, or possibly, by external binding partners. Consequently, the

C-terminal heptads are required for a formation of a continuous coiled coil structure. Alternatively,

and at sufficiently high concentration (5.2 mM), the N-terminal portion of L1ORF1p begins to dimer-

ize (Figure 5C). Clearly however, the molecular contacts in this dimer must be structurally distinct

from the binary interaction of two helices in the trimer, and they could occur in either parallel or

anti-parallel orientation.
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Figure 5. Trimerization properties and stability of the coiled coil domain. (A, B) Loss of self-association and

secondary structure in the non-conserved portion of human L1ORF1p upon deletion of the conserved portion. The

non-conserved portion of the human L1ORF1p (12.4 kDa) fails to form oligomers at concentrations up to 1.3 mM,

as revealed by size exclusion chromatography and MALLS (A). Chromatography was done on a Superdex 75

column and optical density (OD280) was normalized to 1.0 for the maximal absorption observed. Furthermore, CD

spectroscopy (B) shows a total loss of a-helical structure (compare to the spectrum in grey from Figure 4A).

Ellipticity is calculated per residue as a mean residue ellipticity (MRE), expressed in degrees / (cm x M). (C)

Dimerization of the non-conserved portion at very high concentrations. At a protein concentration of 5.2 mM, size

exclusion chromatography and MALLS reveal a partial dimerization. (D, E) Thermal melting curves of the coiled

coil domain, monitored by CD spectroscopy at 222 nm. The coiled coil domain comes apart in two distinct steps,

one of which occurs at physiological temperature (D). The removal of the stammer has a stabilizing effect on the

structure and affects both transitions (E).

DOI: https://doi.org/10.7554/eLife.34960.017

The following source data is available for figure 5:

Source data 1. Data from size exclusion chromatography, MALLS and CD spectroscopy.

DOI: https://doi.org/10.7554/eLife.34960.018
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Given the dependence of homo-trimerization on the C-terminal heptads, we also wondered how

the structural stability is affected along the sequence of the coiled coil domain and whether upon

thermal denaturation the coiled coil domain would come apart in separate steps or rather coopera-

tively. Hence, we monitored the loss of a-helical content by CD spectroscopy as a function of

increasing temperature and found that indeed, the coiled coil domain (hL1ORF1p-cc) unfolded in a

stepwise fashion with two transitions at 37˚ C and 70˚ C (Figure 5D). In summary, it is therefore rea-

sonable to assume that the first transition reflects the unfolding of exclusively the N-terminal hep-

tads. This leads to a model of the L1ORF1p trimer, where the N-terminal heptads are in a subtle

equilibrium between structured and unstructured states and can switch between these states at

physiological temperature.

The presence of the N-terminal heptads and of the stammer are
required for L1 retrotransposition activity
To answer the question whether and how much the presence and the biophysical properties of the

non-conserved L1ORF1p sequences matter for L1 retrotransposition, we tested a series of L1ORF1p

mutants in a well-established, plasmid-based L1 retrotransposition assay in HeLa cells (Moran et al.,

1996). In this assay, the retrotransposition of a tagged L1 copy into HeLa cell genomic DNA confers

an antibiotic resistance. This allows resistant cells to form colonies on a dish, which can then be

counted and normalized to wildtype levels (Figure 6, Figure 7). Expression of the respective

L1ORF1p mutants was monitored by western blotting (Figure 6—figure supplement 1, Figure 7—

figure supplement 1).

Because the conserved portion of L1ORF1p was known to be insufficient for activity, we first

tested a further extension up to heptad IX, which produces a regular, uninterrupted heptad pattern.

However, this construct remained inactive (Figure 6A). Next, we reasoned that the NTR with its

apparent phosphorylation sites might need to be present, and we generated a series of internal hep-

tad deletions extending over the first seven, five and two of the N-terminal heptads. None of these

constructs was active, although at least the latter two were also well expressed (Figure 6A). This

result is somewhat surprising, because heptad deletions frequently occurred in the evolution of the

mammalian L1 element (Figure 1—figure supplement 1B, Figure 1—figure supplement 1C,

Supplementary file 1). It suggests that the variable, deformable and non-ideal parts of the coiled

coil domain are functionally required in their entirety and consequently, that their ability to alternate

between a structured and an unstructured state likely plays a role in the L1 retrotransposition cycle.

In a final step, we therefore exclusively deleted the three stammer residues from heptad IX, gen-

erating an uninterrupted, fourteen heptad coiled coil domain with presumably increased stability.

This construct too completely failed to retrotranspose (Figure 6A). Thermal melting of the respec-

tive coiled coil domain construct revealed that, despite the deletion of the stammer (hL1ORF1p-

ccD(91–93)), the unfolding still was biphasic and hence still not cooperative (Figure 5E). However, both

unfolding transitions were shifted to higher temperature, indicating that the local deletion of the

stammer causes a widespread stabilization over the entire coiled coil domain. Consequently, the

human L1ORF1p seems to have evolved to operate in retrotransposition in a rather narrow window

of (in)stability.

L1 retrotransposition depends on non-canonical core layers in the
C-terminal heptads and on additional solvent-exposed residues
To further probe the permissive window of coiled coil stability, we tested additional L1ORF1p var-

iants. We primarily targeted unusual core layers, generating single or multiple point mutations at a

time (Figure 6B, Figure 6C).

First, we addressed the ion-containing heptads II and III (Figure 6B). Replacement of the unusual

R135 at position IIId with an asparagine (R135N) had the goal to preserve the hydrophilic properties

and to support the trimeric state of the coiled coil by allowing for an additional N@d layer. This

mutation had a rather negligible effect on retrotransposition, whereas the regularizing R135I substi-

tution clearly reduced activity. Also the regularizing G132V substitution in position IIIa detectably

reduced retrotransposition, whereas an N142I substitution in position IId had a lesser effect. Surpris-

ingly however, the double mutation G132I/R135I and the triple mutation G132I/R135I/N142I

(Khazina et al., 2011) did not only completely abolish retrotransposition, but also reduced protein
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levels markedly (Figure 6—figure supplement 1B). Presumably, the low protein abundance is

caused by a faster degradation of these variants and either due to an improved recognition of the

rigidified trimer conformation by the proteolytic machinery or, alternatively, due to an increased mis-

assembly of the coiled coil domain in a wrong register.

Second, we addressed heptads VI to IX, which contain a previously investigated series of leucine-

containing d-layers (Figure 6C). These leucines had been tested by various combinations of destabi-

lizing alanine or regularizing valine substitutions, which completely aborted retrotransposition

(Doucet et al., 2010; Goodier et al., 2007). We included the leucine positions in our analysis but

used hydrophilic asparagines for substitutions, with the goal to support a trimeric coiled coil but

without further stabilization of the structure. However, both an L93N/L100N double mutation in
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Figure 6. Functional importance of a non-ideal coiled coil. (A) Deletion analysis of the N-terminal and poorly conserved heptads, monitored by L1

retrotransposition in HeLa cells. Deletions comprise the NTR and/or several complete heptads, or regularize heptad IX by a deletion of the stammer.

Retrotransposition activity is calculated with respect to the wildtype (wt) protein, with the mean and standard deviations calculated from three

independent replicates. Normal (+++), reduced (++) or poor (+) protein expression levels are marked, as well as an unusual gel migration (*). See also

Figure 6—figure supplement 1. None of the deletions is tolerated. (B, C) Point mutational analysis of core layers. Mutations comprise non-canonical

and presumably destabilizing residues in heptads II and III (B), as well as canonical and presumably stabilizing leucines in the d-layers of heptads VI/VII

and VIII/IX (C). We also mutated potentially metal-coordinating cysteines (Ruckthong et al., 2016) in the a-layers of heptads VI/VII (C). Mutated amino

acids and heptads are highlighted in red. (D) Point mutational analysis of a peripheral cysteine in heptad position Xg.

DOI: https://doi.org/10.7554/eLife.34960.019

The following source data and figure supplement are available for figure 6:

Source data 1. Analysis of L1 retrotransposition.

DOI: https://doi.org/10.7554/eLife.34960.021

Figure supplement 1. Western blots for the expression analysis of L1ORF1p coiled coil variants.

DOI: https://doi.org/10.7554/eLife.34960.020
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positions IXd* and VIIId and an L107N/L114N double mutation in positions VIId and VId remained

inactive. The respective proteins were expressed at reduced levels and moreover migrated slightly

abnormally on gels (Figure 6—figure supplement 1B). In contrast, a C104I/C111I double mutation

in positions VIIa and VIa was active in retrotransposition, although detectably reduced. In eukar-

yotes, cysteines are not very frequent in the a-layers of trimeric coiled coils (Woolfson and Alber,

1995). They form tris-thiolate sites, which are predisposed for heavy metal ion binding

(Ruckthong et al., 2016) and which might have special preferences for the neighboring d-layers,

such as, for example, the absence of b-branched residues. Indeed, this could possibly explain why

the d-layer leucines cannot easily be exchanged in the human sequence although they are not even

conserved among primates (Figure 1—figure supplement 2). More generally, our results
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Figure 7. Requirement for a positively charged N-terminus on L1ORF1p. (A) Systematic deletion analysis of the NTR, monitored by L1

retrotransposition in HeLa cells. Retrotransposition activity is calculated with respect to the wildtype (wt) protein, with the mean and standard deviations

calculated from three independent replicates. Normal (+++), reduced (++) or poor (+) protein expression levels are marked. See also Figure 7—figure

supplement 1. None of the deletions is tolerated. (B) Internal deletion in the NTR, permissive for retrotransposition. (C) Sequence conversion into an

N-terminal myristoylation signal, abolishing retrotransposition. (D) Alanine scan of the three N-terminal residues, indicating the importance of these

sequence positions. In the wildtype sequence, each of the three N-terminal residues carries a positive charge (after enzymatic removal of the N-terminal

methionine). (E) Charge-preserving mutations, demonstrating the importance of electrostatics over sequence identity. (F) Point mutational analysis of

internal NTR residues, demonstrating that internally located lysines or arginines are much less critical for retrotransposition.

DOI: https://doi.org/10.7554/eLife.34960.022

The following source data and figure supplement are available for figure 7:

Source data 1. Analysis of L1 retrotransposition.

DOI: https://doi.org/10.7554/eLife.34960.024

Figure supplement 1. Western blots for the expression analysis of L1ORF1p NTR variants.

DOI: https://doi.org/10.7554/eLife.34960.023
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demonstrate that both non-canonical and canonical layers of the coiled coil are very sensitive to

mutation and interdependent, and that an idealization and stabilization of the coiled coil structure is

rather counterproductive with regard to the ability to retrotranspose.

Third and finally, we also mutated a surface residue in the variable part, C86 in position Xg, which

was converted to a serine (C86S). Surprisingly, even this peripheral single atom substitution of a

poorly conserved residue strongly reduced retrotransposition (Figure 6D). This suggests that the

interdependence of coiled coil residues extends beyond the core layers and to the non-conserved

N-terminal half of the coiled coil. The high sequence variability among mammalian L1ORF1ps there-

fore could well result from an internal coevolution of the residues within the coiled coil domain,

where a mutation at one position would trigger a compensatory mutation elsewhere in the coiled

coil.

L1 retrotransposition tolerates variation in the length of the N-terminal
region but requires positively charged residues at the amino terminus
To learn whether the NTR is similarly sensitive to mutations, we also started with a deletion analysis

(Figure 7A). Not surprisingly, a deletion of the entire NTR, including the apparent phosphorylation

sites, resulted in an inactive L1 element. However, also consecutive extensions of the L1ORF1p

toward the original N-terminus did not rescue L1 retrotransposition activity, indicating that either

the overall length of the NTR or the first five amino acids behind the first methionine were crucial for

activity. We therefore generated an internal deletion, spanning the second half of the NTR

(Figure 7B). This construct showed reduced but clearly detectable activity and consequently, the

N-terminal amino acids in L1ORF1p are key to L1 retrotransposition activity.

Closer inspection of the N-terminal sequence shows an accumulation of positively charged resi-

dues, but also a remote similarity to an N-terminal myristoylation signal. We therefore first altered

the sequence to convert it to a strong myristoylation signal, substituting M1GKKQNRK with

M1GARASRK (Bologna et al., 2004). However, the respective protein construct was only poorly

detectable and showed no activity at all, indicating that an N-terminal myristoylation does probably

not play a positive role in retrotransposition (Figure 7C).

Since the N-terminal methionine is very likely removed from the wildtype sequence

(Frottin et al., 2006), the remaining GKKQNRK sequence turns into a strongly positively charged

patch as long as the main chain amino terminus and the lysine side chains remain non-acetylated

and free of any other kind of potential modification. We therefore tested single alanine substitutions

in the first three positions behind the methionine (G2A, K3A and K4A) as well as a G2A/K3A double

mutation (Figure 7D). Strikingly, each of the single point mutations strongly reduced L1 retrotrans-

position, whereas the G2A/K3A double mutation completely abolished it. Notably, however, the sin-

gle G2A mutation was accompanied by a very low protein level (Figure 7—figure supplement 1B).

Since L1ORF1p is a known ubiquitination target, the low protein abundance might be rationalized

by a context-induced and K3-dependent ubiquitination and degradation (MacLennan et al., 2017).

But because the G2A/K3A double mutation was expressed at normal levels, we did not follow up on

this possibility here any further. Instead, we generated two alternative single point mutations, G2R

and K3R, which were well tolerated and, for K3R, even led to a detectable increase in retrotransposi-

tion activity (Figure 7E). This result shows that it is not the identity of the N-terminal amino acids or

the presence of a specific post-translational modification, but rather the presence and accumulation

of the positive charges that matter for retrotransposition in this case.

Finally, it is important to note that the positive charges need to be present near the N-terminus

of the NTR, because internal substitutions of positive charges (K13A and R48A) did not have a

strong effect (Figure 7F) and because the addition of N-terminal tags to the natural amino terminus

of L1ORF1p is known to abolish retrotransposition activity (Goodier et al., 2007; Taylor et al.,

2013). Therefore, the positively charged N-terminal end of human L1ORF1p emerges as a previously

unknown retrotransposition requirement and appears to be a feature that is conserved all the way

through the evolution of the mammalian L1 element (Figure 1—figure supplement 1B,

Supplementary file 1).
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Discussion

Molecular characterization of L1ORF1p
Non-LTR retrotransposition is still poorly understood on a mechanistic level. In particular, it is unclear

what are the molecular properties of the diverse ORF1 proteins and how these properties promote

essential steps in the retrotransposition cycle. Moreover, ORF1 proteins do not have cellular or viral

homologs from which their mechanics and function could be deduced, requiring an individual

analysis.

The present work leads to a deeper mechanistic understanding of the human L1ORF1 protein

and especially of its previously only poorly characterized and rapidly evolving N-terminal sequences.

There are two key findings. First, L1 retrotransposition apparently requires a long, non-ideal and

metastable coiled coil with the ability to switch between structured and partially unstructured states.

Second, retrotransposition activity also requires a flexible NTR with a strongly positively charged

amino terminus. We therefore speculate that adjacent phosphorylation, conformational changes in

the coiled coil domain, and/or the bound L1 RNA could regulate the availability of the amino-termi-

nal residues in a cellular context and hence control crucial steps in the L1 retrotransposition cycle.

Our findings reinforce the picture of the L1ORF1p as a delicate and highly flexible protein with

functions that clearly go beyond its previously investigated RNA binding and chaperoning functions

(Figure 8, Figure 8—video 1, Figure 8—figure supplement 1A). The conserved portion of the

coiled coil domain plays a central role for the assembly of the trimer. It is necessary and sufficient to

specify and promote trimerization, and it serves as a scaffold for the oriented but flexible attachment

of the RRM and CTD domains, which cooperate in binding single stranded RNA substrates

(Khazina et al., 2011). Importantly, however, the conserved portion of the coiled coil domain also

triggers the assembly of the non-conserved portion, which, together with the positively charged

amino terminus on the unstructured NTR, fulfills crucial but hitherto poorly contemplated roles in the

retrotransposition cycle. These are outlined in the following.

Rapid evolution of L1ORF1p
A mechanistic requirement to switch between structured and transiently unstructured states imposes

opposing constraints on the amino acid sequence of the coiled coil and can explain the presence of

untypical core layers or heptad expansions, and hence the conservation of an irregular rather than a

canonical coiled coil structure in the evolution of the L1ORF1p. The need to switch between confor-

mational states can also explain the rapid sequence evolution in the N-terminal half of the coiled

coil. A faster-than-neutral amino acid substitution rate can arise when an initial mutation that dis-

turbed the finely calibrated balance of stabilizing and destabilizing interactions gets compensated

and fixed by another mutation elsewhere in the sequence of the coiled coil. Such an intrinsic cause

for the rapid evolution is also supported by engineered coiled coil chimeras generated from recon-

structed ancestral and modern human L1ORF1p proteins (Naufer et al., 2016). These chimeras func-

tioned only in one of two possible combinations, whereas the original proteins both are fully

functional in the retrotransposition assay. External causes for the rapid evolution may independently

exist in the form of a coevolving restriction factor or of an evasive interaction partner from the host

(Daugherty and Malik, 2012). The fact, however, that highly diverged L1ORF1ps from the mouse or

a reconstructed L1ORF1p from the megabat promote human L1 retrotransposition in HeLa cells

(Wagstaff et al., 2011; Yang et al., 2014) argues against the existence of an evasive interaction

partner and indicates a remarkable autonomy of L1ORF1p to promote retrotransposition indepen-

dently of the host cell’s molecular environment.

Parallels to other dynamic coiled coil proteins
Our findings reinforce parallels of the L1ORF1p to other coiled coil proteins, where coiled coil for-

mation also allows for the switch between two (or more) conformational states, including the expo-

sure or capture of functional peptide sequences. Classical examples are viral membrane fusion

proteins (Chen et al., 1999; Kobe et al., 1999; Weissenhorn et al., 1997), best studied for the

influenza hemagglutinin. Here, refolding and homotypic trimeric coiled coil formation exposes N-ter-

minal and hydrophobic peptides that mediate membrane fusion (Lin et al., 2014; Skehel and Wiley,

2000). L1ORF1p lacks any such hydrophobic sequences, but the positively charged amino terminus
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Figure 8. Assembly and flexibility of the human L1 ORF1p trimer. A complete structural model for the human

L1ORF1p trimer was generated by superimposing known crystal structures (ribbons representation with cylindrical

helices) and by geometrically restrained free modeling of the unstructured regions as random coil (balls-and-sticks

representation). Starting from the composite model in Figure 2B (generated from trimer T1, residues 52–152, and

PDB-ID 2ykp, residues 107–223) (Khazina et al., 2011), the three RRM domains were replaced by the crystal

structure of the isolated RRM domain (PDB-ID 2w7a, residues 157–252) (Khazina and Weichenrieder, 2009),

where all of the connecting loops are defined. The presumably unstructured N-terminal and C-terminal regions

were then added for size comparison, where each sphere represents a C
a

atom. The conserved part of the coiled

coil domain (boxed) is necessary and sufficient for the trimerization of L1ORF1p and serves as a scaffold for the

flexible attachment of the CTDs, which cooperate with the RRM domains in L1RNA binding (Khazina et al., 2011)

(1). The conserved part of the coiled coil domain is also required for the folding and trimeric assembly of the non-

conserved part of the coiled coil (2), which can switch between structured and unstructured states (3). Finally,

L1ORF1p functionally requires a strongly positively charged N-terminus (blues spheres) on the unstructured NTR.

Interactions of the N-terminal amino acids might be regulated (4) by adjacent phosphorylation (yellow spheres), by

the conformation of the coiled coil domain and/or by the bound L1RNA. For a video, see also Figure 8—video 1.

DOI: https://doi.org/10.7554/eLife.34960.025

The following video and figure supplement are available for figure 8:

Figure supplement 1. Hypothetical model for an oligomerization of L1ORF1p trimers into linear arrays and larger

meshworks.

DOI: https://doi.org/10.7554/eLife.34960.026

Figure 8—video 1. Video of the complete structural model of the human L1ORF1p rotating around the threefold

axis.

DOI: https://doi.org/10.7554/eLife.34960.027

Khazina and Weichenrieder. eLife 2018;7:e34960. DOI: https://doi.org/10.7554/eLife.34960 18 of 29

Research article Structural Biology and Molecular Biophysics Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.34960.025
https://doi.org/10.7554/eLife.34960.026
https://doi.org/10.7554/eLife.34960.027
https://doi.org/10.7554/eLife.34960


might also serve to target lipid bilayers due to their negative surface charge (Hoernke et al., 2012;

Kim et al., 1991). Other examples are the eukaryotic SNARE proteins (Sutton et al., 1998), where

heterotypic tetrameric coiled coil formation specifies vesicle targeting to membranes and causes sig-

nal-dependent vesicle fusion by zipping up in a stepwise fashion (Gao et al., 2012; Jahn and Fas-

shauer, 2012; Südhof and Rothman, 2009). A final example is the bacterial protein M1

(McNamara et al., 2008), which can form dimeric coiled coils in two alternative registers, but where

the transient and destabilized intermediate is functionally important for pathogenicity, allowing the

capture of fibrinogen-derived peptide sequences (Stewart et al., 2016).

Coiled coil mediated multimerization of L1ORF1p
The thermal melting experiment with the L1ORF1p-derived coiled coil indicates that its N-terminal

half can come apart at a physiological temperature, whereas its C-terminal half remains trimeric. Fur-

thermore, when tested in isolation at a high local concentration, the N-terminal sequence of

L1ORF1p dimerizes. These observations raise the possibility that trimers of L1ORF1p directly interact

with each other at high concentrations, for example during assembly of L1RNPs. The consequence

of dimerizing trimers is not only a linear array on the RNA, but rather a three-dimensional meshwork

with probably variable regularity (Figure 8—figure supplement 1B). Meshwork formation may

explain the cytoplasmic ‘aggregates’ of L1ORF1p that had been observed early on by ultracentrifu-

gation (Hohjoh and Singer, 1996; Martin, 1991) and by fluorescence light microscopy

(Goodier et al., 2007; Martin and Branciforte, 1993), and also why L1ORF1p appears to ‘polymer-

ize’ when artificially assembled on long, single stranded DNA (Naufer et al., 2016). Electron micro-

graphs of what presumably are perinuclear clusters of L1ORF1p in mutated mouse spermatocytes

show an irregular dotted pattern, where 5–6 dots occasionally form semi-closed circles (Soper et al.,

2008). Intriguingly, when L1ORF1p trimers are assembled into hexameric rings by simple modeling,

one obtains a similar diameter of roughly 150 Å (Figure 8—figure supplement 1B). A single L1RNA

could theoretically accommodate up to 130 trimers (Khazina et al., 2011), but this number appears

to be considerably lower in purified L1RNPs, obtained from HEK293T cells under stringent salt con-

ditions (Taylor et al., 2013). Functionally, meshwork formation might allow L1ORF1p to sequester

L1RNA from the host cell environment and to shield it from processes such as deadenylation and

decay (Wahle and Winkler, 2013) until the L1RNP finally gains access to nuclear chromatin for the

reverse transcription and integration steps of the L1 retrotransposition cycle.

Possible roles for the positively charged N-terminus
The requirement of a positively charged N-terminal peptide sequence came as an unexpected and

novel finding here and merits future investigation. At the current stage, we can only speculate on

possible functions, but the presence of an essential peptide at the N-terminus in conjunction with an

irregular and dynamic coiled coil reinforces mechanistic parallels to viral membrane fusion proteins,

where conformational changes regulate the exposure of their fusion peptides (Skehel and Wiley,

1998; White et al., 2008).

In the case of the L1ORF1p, the positively charged N-terminus could act as a cellular localization

or transport signal and/or to target chromatin, especially since certain insect retrotransposons

encode L1ORF1p-like proteins with an N-terminal PHD domain (Metcalfe and Casane, 2014). PHD

domains are frequently found in chromatin reader proteins (Musselman and Kutateladze, 2011;

Sanchez and Zhou, 2011) and also occur in other non-LTR retrotransposon-encoded ORF1ps of dif-

ferent architectural types (Kapitonov and Jurka, 2003; Khazina and Weichenrieder, 2009).

Another possible function of the positively charged amino terminus might be the modulation of

RNA binding on the RRM and CTD domains, in particular when it comes to facilitating binding and/

or release of L1RNA in the context of remodeling a larger L1RNP.

Finally, positively charged peptides can also target and perturb negatively charged lipid bilayers

(Hoernke et al., 2012; Kim et al., 2002; Kim et al., 1991), further extending the analogies with the

viral membrane fusion and the eukaryotic SNARE proteins from a purely mechanistic to a truly func-

tional level. Intriguingly indeed, the perinuclear clusters of L1ORF1p in mouse spermatocytes appear

to be surrounded by a double membrane (Soper et al., 2008), and Horn et al. have recently shown

a dependence of L1 retrotransposition on an interaction of L1ORF1p with components of the ALIX/

ESCRT membrane budding complex (Horn et al., 2017). It is therefore not unreasonable to
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speculate that L1ORF1p also functions in membrane-related processes and particularly in overcom-

ing the nuclear barrier in non-dividing cells (Kubo et al., 2006; Macia et al., 2017), where a classical,

nuclear pore-mediated entry of the large L1RNPs is rather difficult to conceptualize.

Functional redundancy among structurally diverse ORF1ps in non-LTR
retrotransposons
L1ORF1ps from the mouse and from the megabat can functionally replace the human L1ORF1p in

human cells, despite considerable sequence divergence and despite the extreme mutational sensitiv-

ity of the protein (Wagstaff et al., 2011; Yang et al., 2014). Similarly, human L1 sequences function

in non-human cell-lines and transgenic mice and rats (Kano et al., 2009; Moran et al., 1996;

Morrish et al., 2002; Muotri et al., 2005; Ostertag et al., 2002). This suggests that L1ORF1ps act

rather autonomously and in a fundamental fashion, which does not require a highly specific adapta-

tion to the host species.

Furthermore, these findings also lead to the intriguing question whether ORF1ps with an entirely

different type of architecture, such as found in other non-LTR retrotransposons, could functionally

replace the human L1ORF1p as well. Although direct experimental evidence is still missing, our early

observations (Khazina and Weichenrieder, 2009; Schneider et al., 2013) and recent large-scale

sequence analyses of non-LTR retrotransposons (Heitkam et al., 2014; Ivancevic et al., 2016;

Metcalfe and Casane, 2014) increasingly support the hypothesis of functional redundancy and of a

‘reticulate’ (Metcalfe and Casane, 2014) rather than a tree-like evolution of ORF1ps. This means

that RNA packaging, multimerization and membrane-targeting could be functions which are shared

among most ORF1ps encoded by non-LTR retrotransposons (Schneider et al., 2013).

Outlook
Together with previously published structures and analyses (Januszyk et al., 2007; Khazina et al.,

2011; Khazina and Weichenrieder, 2009), the human L1ORF1p clearly emerges as the currently

best understood ORF1p among non-LTR retrotransposons. The combined structural and mechanistic

insight, and the large number of functional mutations presented in this study will enable future

research to identify, distinguish and analyze novel steps in the L1 retrotransposition cycle. Further-

more, it is becoming increasingly clear that there are multiple lines of defense to protect the human

genome from the uncontrolled propagation of the L1 element. These include mechanisms to control

L1RNA transcription and post-transcriptional mechanisms aiming at L1RNA (Goodier, 2016;

Pizarro and Cristofari, 2016), but also processes that directly target the L1ORF1p and merit further

investigation (MacLennan et al., 2017).

On an entirely different note, the present work also leads to a deeper understanding of the fun-

damental principles underlying the evolution, stability and dynamics of a coiled coil in a physiological

context. Coiled coils are among the most intensively studied protein folds (Hartmann, 2017), can be

characterized and described from first principles (Crick, 1953; Lupas et al., 2017) and have become

a preferred target for protein design (Woolfson, 2017). The present L1 retrotransposition assay

could therefore serve as one of the most sensitive assay systems for testing coiled coil designs in a

cellular environment.

Finally, for conditions such as certain human cancers with elevated L1 retrotransposition

(Burns, 2017; Hancks and Kazazian, 2016; Scott and Devine, 2017), it might become feasible and

desirable to develop synthetic small molecules or synthetic peptides (Modis, 2008), with the goal to

target the stability and function of the coiled coil and thereby to prevent further damage to the

genomic DNA by L1 insertion.

Materials and methods

Sequence analysis
L1 sequences were retrieved, translated and aligned from the following sources. The human L1.3

sequence (Dombroski et al., 1993; Sassaman et al., 1997) corresponds to the NCBI accession

L19088.1. Ancestral human L1 sequences are from Khan et al. (Khan et al., 2006) and the currently

active mouse L1 lineages (A1, Tf1, Gf1) are from Sookdeo et al. (Sookdeo et al., 2013). Mammalian

L1 sequences are found in Boissinot et al. (Boissinot and Sookdeo, 2016), and the reconstructed
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megabat sequence (NCBI KF796623.1) is from Yang et al. (Yang et al., 2014). Individual accession

numbers for the reconstruction of primate L1ORF1p sequences are listed in Supplementary file 2.

PCoils (Lupas, 1996) as integrated in the MPI Bioinformatics Toolkit (Alva et al., 2016) and IUPred

(Dosztányi et al., 2005) were used for assigning coiled coil propensity and the probability of disor-

der, respectively.

Sample preparation
The DNA sequences encoding purified fragments of the human L1ORF1 protein, hL1ORF1p-NTRH6

(M1–N51-HHHHHH), hL1ORF1p-Dcons (GPHM1–E103), hL1ORF1p-cc (GPHMS53–Y152), hL1ORF1p-

ccD(91–93) (GPHMS53–Y152 lacking residues 91–93) and hL1ORF1p-DNTR (GPHMS53–M338) are derived

from the L1.3 sequence (Dombroski et al., 1993; Sassaman et al., 1997). They were PCR-amplified

from a plasmid harboring a M121A/M125I/M128I triple mutation. The residues substituting the three

methionines correspond to the respective residues in the murine sequence, do not reduce human L1

retrotransposition activity, but avoid aberrant initiation of bacterial translation (Khazina et al.,

2011). The sequence encoding hL1ORF1p-NTRH6 was inserted into the pET15b expression plasmid

(Novagen). The sequence encoding hL1ORF1p(DD)-NTRH6 with phospho-mimicking aspartates

(S18D/S27D) was obtained by site-directed mutagenesis. The sequences encoding hL1ORF1p-D

cons, hL1ORF1p-cc, hL1ORF1p-ccD(91–93) and hL1ORF1p-DNTR were inserted into the pnEA-pH

expression plasmid, which provides an N-terminal and removable hexa-histidine tag (Diebold et al.,

2011). All plasmids are listed in Supplementary file 3.

Proteins were expressed in the Escherichia coli strain Rosetta 2 (DE3) (Novagen) at 20˚C over-

night. All constructs were purified from cleared cell lysates apart from hL1ORF1p-ccD(91–93), which

was solubilized from inclusion bodies with the addition of 6M guanidinium hydrochloride. After an

initial Ni2+-ion affinity step, the removable hexa-histidine tags were cleaved overnight with recombi-

nant human rhinovirus 3C (HRV3C) protease, and hL1ORF1p-DNTR was further purified by a heparin

affinity step. Finally, all constructs were purified by size exclusion chromatography using a Superdex

75 column (GE Healthcare, Chicago, Illinois) for hL1ORF1p-NTRH6, hL1ORF1p(DD)-NTRH6,

hL1ORF1p-Dcons, hL1ORF1p-cc and hL1ORF1p-ccD(91–93), and a Superdex 200 column (GE Health-

care) for hL1ORF1p-DNTR. Concentrated protein samples were flash-frozen in gel filtration buffer

(10 mM HEPES, pH = 7.5, 300 mM NaCl, 1 mM DTT) and stored at �80˚C for further use.

Crystallization
Initial crystals of hL1ORF1p-cc (45 mg/ml in gel filtration buffer) were obtained in several conditions

by sitting drop vapor diffusion (18˚ C) mixing 0.2 ml of protein solution with 0.2 ml of reservoir solu-

tion over an 80 ml reservoir. Crystals were optimized by manual screening around several initial con-

ditions and flash frozen in liquid nitrogen with additional cryoprotection.

The best-diffracting crystal (2.65 Å resolution, Table 1) was obtained over a reservoir of 0.1 M

HEPES (pH = 7.0), 0.15 M (NH4)2SO4 and 12% PEG 2000. It was grown in a sitting drop by mixing

0.5 ml reservoir solution and 0.5 ml protein solution at a concentration of 22 mg/ml, suspended over

a reservoir of 66 ml. Cryoprotection was achieved by shortly soaking the crystal in reservoir solution

supplemented with glycerol to a final concentration of 20%.

Data collection and refinement
Diffraction data were collected at 100 K on a Pilatus 6M detector (DECTRIS, Baden-

Daettwil, Switzerland) on beamline PXII (X10SA) of the Swiss Light Source (SLS), Villigen, Switzerland.

Data were processed and scaled in spacegroup P21212, using XDS and XSCALE (Kabsch, 2010). The

structure was solved by molecular replacement using PHASER (McCoy et al., 2007) from within the

CCP4 package (Winn et al., 2011) and with a search model containing nine heptads of a trimeric

coiled coil. The search model was created by N-terminally extending the known structure of the six

C-terminal L1ORF1p heptads (PDB-ID: 2ykp, residues 111–152) (Khazina et al., 2011) with an addi-

tional three heptads of polyalanine sequence. Two copies of the search model were found in the

asymmetric unit. This structure was then improved and extended by iterative cycles of model build-

ing in COOT (Emsley et al., 2010) and refinement using REFMAC (Murshudov et al., 2011) from

the CCP4 package. Final refinement rounds were done using BUSTER (Bricogne et al., 2016). The

diffraction data and refinement statistics are summarized in Table 1.
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Crystal structure analysis
The stereochemical properties for the structures were verified with MOLPROBITY (Chen et al.,

2010), and coiled coil parameters were analyzed using TWISTER (Strelkov and Burkhard, 2002).

Sequence conservation was mapped to the protein structure using ProtSkin (Denisov et al., 2004)

and illustrations were prepared in PyMOL (http://www.pymol.org) with the APBS plugin

(Baker et al., 2001) to visualize the electrostatic surface potential.

Analytical size exclusion chromatography and MALLS
Analytical size exclusion chromatography coupled to multiangle static laser light scattering (MALLS)

was done in gel filtration buffer and essentially as previously described (Khazina et al., 2011;

Khazina and Weichenrieder, 2009). Protein concentrations ranged from 0.3 mM to 5.2 mM in the

case of hL1ORF1p-Dcons. Size exclusion chromatography was done on a Superdex 200 (10/300 GL)

column, apart from hL1ORF1p-Dcons, which was analyzed on a Superdex 75 (10/300 GL) column.

MALLS was done using miniDAWN TREOS and Optilab rEX instruments (Wyatt Technologies, Santa

Barbara, California) and the associated software (Astra from Wyatt Technologies) for molecular

weight determination.

Circular dichroism spectroscopy
Circular dichroism (CD) measurements were done at a protein concentration of 0.15 mg/ml in gel fil-

tration buffer without DTT, on a JASCO J-810 spectropolarimeter (JASCO, Easton, Maryland)

equipped with a thermoelectric temperature controller. Spectra were recorded using a 0.1 cm path

cuvette at a 1 nm band width with response of 2 s. A scanning speed of 100 nm/min and a data pitch

of 0.1 nm were used. Thermal denaturation was monitored at 222 nm with a temperature ramp of

1˚C/min and a data pitch of 0.5˚C. Ellipticity calculation, buffer subtraction and smoothing was done

in the software provided by JASCO. The mean residue ellipticity (MRE) was then calculated account-

ing for protein concentration and sequence length. In Figures 4 and 5, the MRE is expressed in units

of degrees / (cm x M), where the molar concentration refers to the number of amino acids rather

than protein molecules. One degree / (cm x M) equals 100 degrees x cm2/dmol.

Retrotransposition of L1 variants in HeLa cells
To score the L1 retrotransposition frequency of L1ORF1p mutants, we adapted a well established

cell culture assay (Moran et al., 1996) that relies on a plasmid-based L1 reporter construct

(pJM101/L1.3) (Moran et al., 1996; Sassaman et al., 1997) and yields G418-resistant HeLa cell colo-

nies only upon a successful retrotransposition. Mutants of the L1 reporter construct were generated

by site-directed mutagenesis and are listed in Supplementary file 3. DNA sequencing was used to

verify that the desired mutations were the only changes in the L1 reporter construct.

Depending on the L1ORF1p variant and its pre-scored activity, HeLa cells were grown and trans-

fected either in standard six-well plates or in 6 cm dishes. Transfection efficiency was monitored with

the help of a luciferase reporter vector (pCIneo-Rluc-DSV40neo, Supplementary file 3)

(Lazzaretti et al., 2009) that was co-transfected with each L1 construct. Each series of experiments

always included the wildtype L1 reporter construct as a reference. Cells were split 48 h after trans-

fection. In the case of six-well plates, one half of the cells was grown for 12–13 days in DMEM con-

taining G418, and the other half of the cells was used to measure luciferase activity levels on day 3

after transfection. In the case of the 6 cm dishes, a third of the cells was seeded into 10 cm dishes

for G418 selection, and another third of the cells was seeded into six-well plates for a subsequent

luciferase activity measurement. The G418-resistant HeLa cell colonies were fixed and stained with

Giemsa, colony numbers were scored, and the retrotransposition frequency was determined as the

number of G418-resistant colonies per number of transfected cells. In Figures 6 and 7, the L1 retro-

transposition activity is calculated with respect to the wildtype reporter plasmid, with the mean and

standard deviations calculated from three independently replicated series of experiments. HeLa cells

were provided by Elisa Izaurralde and tested for the absence of Mycoplasma using a ‘MycoAlert’ kit

(Lonza, Basel, Switzerland).
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Protein expression of L1ORF1p variants in HeLa cells
To monitor protein expression levels of L1ORF1p mutants, HeLa cells were transfected with modified

L1 reporter plasmids encoding C-terminal HA-tags on the respective L1ORF1p variants

(Supplementary file 3). HA-tags were inserted by site-directed mutagenesis and DNA sequencing

was used to verify that the HA-tag was the only change in the L1 reporter construct.

HeLa cells were seeded in six-well plates at a density of 0.75 � 106 cells per well and transfected

after 24 h. L1 reporter plasmids were co-transfected with plasmid pT7-EGFP-C1-MBP

(Supplementary file 3) (Lazzaretti et al., 2009) to express a GFP-MPB fusion protein as a transfec-

tion control. As a reference, each series of experiments always included the wildtype L1 reporter

construct with an HA-tagged L1ORF1p. Empty plasmid (pcDNA3.1) served as a negative control and

endogenous tubulin was detected as a gel loading control.

Cells were lysed 48 h post-transfection in a lysis buffer containing 20 mM HEPES (pH = 7.6), 150

mM NaCl and 0.4% Igepal-CA630. The protein concentration in the lysates was quantified using the

Bradford reagent (Bio-Rad, Hercules, California). Equivalent amounts of total protein from the lysates

were loaded on a polyacrylamide gel for electrophoresis, followed by transfer to a nitrocellulose

membrane and probing with antibodies. Monoclonal HRP-conjugated anti-HA antibody (Roche,

Basel, Switzerland, RRID:AB_390917, 1:5000) was used to probe for HA-tagged L1ORF1p. Monoclo-

nal anti-GFP antibody (Roche, RRID:AB_390913, 1:2000) and monoclonal anti-tubulin antibody

(Sigma Aldrich, St. Louis, Missouri, RRID:AB_477583, 1:5000) were used to probe for GFP-MBP and

tubulin, respectively. Polyclonal anti-mouse IgG-HRP (GE Healthcare, RRID:AB_772193, 1:10000) was

used as a secondary antibody. Western blots were developed with the ECL Western Blotting Detec-

tion System (GE Healthcare) according to the manufacturer’s recommendations and protein expres-

sion levels were classified as normal (+++, more than 70% of wildtype), reduced (++, between 70%

and 30% of wildtype) or poor (+, less than 30% of wildtype).

Accession numbers
The atomic coordinates and structure factors have been deposited in the Protein Data Bank under

accession number 6FIA.
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Busby M, Indap AR, Garrison E, Huff C, Xing J, Snyder MP, Jorde LB, Batzer MA, Korbel JO, Marth GT, 1000
Genomes Project. 2011. A comprehensive map of mobile element insertion polymorphisms in humans. PLoS
Genetics 7:e1002236. DOI: https://doi.org/10.1371/journal.pgen.1002236, PMID: 21876680

Stewart CM, Buffalo CZ, Valderrama JA, Henningham A, Cole JN, Nizet V, Ghosh P. 2016. Coiled-coil
destabilizing residues in the group A Streptococcus M1 protein are required for functional interaction. PNAS
113:9515–9520. DOI: https://doi.org/10.1073/pnas.1606160113, PMID: 27512043

Strelkov SV, Burkhard P. 2002. Analysis of alpha-helical coiled coils with the program TWISTER reveals a
structural mechanism for stutter compensation. Journal of Structural Biology 137:54–64. DOI: https://doi.org/
10.1006/jsbi.2002.4454, PMID: 12064933

Sultana T, Zamborlini A, Cristofari G, Lesage P. 2017. Integration site selection by retroviruses and transposable
elements in eukaryotes. Nature Reviews Genetics 18:292–308. DOI: https://doi.org/10.1038/nrg.2017.7,
PMID: 28286338

Sutton RB, Fasshauer D, Jahn R, Brunger AT. 1998. Crystal structure of a SNARE complex involved in synaptic
exocytosis at 2.4 A resolution. Nature 395:347–353. DOI: https://doi.org/10.1038/26412, PMID: 9759724
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