1. Microbiology and Infectious Disease
  2. Structural Biology and Molecular Biophysics
Download icon

Structural basis of malodour precursor transport in the human axilla

  1. Gurdeep S Minhas
  2. Daniel Bawdon
  3. Reyme Herman
  4. Michelle Rudden
  5. Andrew P Stone
  6. A Gordon James
  7. Gavin H Thomas  Is a corresponding author
  8. Simon Newstead  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of York, United Kingdom
  3. Unilever Discover, United Kingdom
Research Article
  • Cited 9
  • Views 7,769
  • Annotations
Cite this article as: eLife 2018;7:e34995 doi: 10.7554/eLife.34995

Abstract

Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.

Article and author information

Author details

  1. Gurdeep S Minhas

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  2. Daniel Bawdon

    Department of Biology, University of York, York, United Kingdom
    Competing interests
    No competing interests declared.
  3. Reyme Herman

    Department of Biology, University of York, York, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6620-3981
  4. Michelle Rudden

    Department of Biology, University of York, York, United Kingdom
    Competing interests
    No competing interests declared.
  5. Andrew P Stone

    Department of Biology, University of York, York, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1087-9923
  6. A Gordon James

    Personal Care, Unilever Discover, Bedford, United Kingdom
    Competing interests
    A Gordon James, is affiliated with Unilever Discover. The author has no financial interests to declare.
  7. Gavin H Thomas

    Department of Biology, University of York, York, United Kingdom
    For correspondence
    gavin.thomas@york.ac.uk
    Competing interests
    No competing interests declared.
  8. Simon Newstead

    Department of Biochemistry, University of Oxford, Oxford, United Kingdom
    For correspondence
    simon.newstead@bioch.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7432-2270

Funding

Wellcome (102890/Z/13/Z)

  • Simon Newstead

Biotechnology and Biological Sciences Research Council (BB/N006615/1)

  • Gavin H Thomas

Biotechnology and Biological Sciences Research Council (BB/L013703/1)

  • Gavin H Thomas
  • Simon Newstead

Biotechnology and Biological Sciences Research Council (BB/H016201/1)

  • Daniel Bawdon
  • A Gordon James
  • Gavin H Thomas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olga Boudker, Weill Cornell Medicine, United States

Publication history

  1. Received: January 11, 2018
  2. Accepted: June 23, 2018
  3. Accepted Manuscript published: July 3, 2018 (version 1)
  4. Version of Record published: July 25, 2018 (version 2)

Copyright

© 2018, Minhas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,769
    Page views
  • 948
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Giancarlo Noe Bruni, Joel M Kralj
    Research Article Updated

    Aminoglycosides are broad-spectrum antibiotics whose mechanism of action is under debate. It is widely accepted that membrane voltage potentiates aminoglycoside activity, which is ascribed to voltage-dependent drug uptake. In this paper, we measured the response of Escherichia coli treated with aminoglycosides and discovered that the bactericidal action arises not from the downstream effects of voltage-dependent drug uptake, but rather directly from dysregulated membrane potential. In the absence of voltage, aminoglycosides are taken into cells and exert bacteriostatic effects by inhibiting translation. However, cell killing was immediate upon re-polarization. The hyperpolarization arose from altered ATP flux, which induced a reversal of the F1Fo-ATPase to hydrolyze ATP and generated the deleterious voltage. Heterologous expression of an ATPase inhibitor completely eliminated bactericidal activity, while loss of the F-ATPase reduced the electrophysiological response to aminoglycosides. Our data support a model of voltage-induced death, and separates aminoglycoside bacteriostasis and bactericide in E. coli.

    1. Microbiology and Infectious Disease
    Yingying Fu et al.
    Research Article

    Although many high-risk mucosal and cutaneous human papillomaviruses (HPVs) theoretically have the potential to synthesize L1 isoforms differing in length, previous seroepidemiological studies only focused on the short L1 variants, co-assembling with L2 to infectious virions. Using the multimammate mouse Mastomys coucha as preclinical model, this is the first study demonstrating seroconversion against different L1 isoforms during the natural course of papillomavirus infection. Intriguingly, positivity with the cutaneous MnPV was accompanied by a strong seroresponse against a longer L1 isoform, but to our surprise, the raised antibodies were non-neutralizing. Only after a delay of around 4 months, protecting antibodies against the short L1 appeared, enabling the virus to successfully establish an infection. This argues for a novel humoral immune escape mechanism that may also have important implications on the interpretation of epidemiological data in terms of seropositivity and protection of PV infections in general.