Abstract
Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.
Article and author information
Author details
Funding
Wellcome (102890/Z/13/Z)
- Simon Newstead
Biotechnology and Biological Sciences Research Council (BB/N006615/1)
- Gavin H Thomas
Biotechnology and Biological Sciences Research Council (BB/L013703/1)
- Gavin H Thomas
- Simon Newstead
Biotechnology and Biological Sciences Research Council (BB/H016201/1)
- Daniel Bawdon
- A Gordon James
- Gavin H Thomas
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Olga Boudker, Weill Cornell Medicine, United States
Publication history
- Received: January 11, 2018
- Accepted: June 23, 2018
- Accepted Manuscript published: July 3, 2018 (version 1)
- Version of Record published: July 25, 2018 (version 2)
Copyright
© 2018, Minhas et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,519
- Page views
-
- 996
- Downloads
-
- 15
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.