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Abstract Many multicellular organisms rely on symbiotic associations for support of metabolic

activity, protection, or energy. Understanding the mechanisms involved in controlling such

interactions remains a major challenge. In an unbiased approach we identified key players that

control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99.

We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and

glutamine synthetase suggesting regulated nutrition supply between host and symbionts.

Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of

the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the

host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters

and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to

the host environment. Our observations portray ancient symbiotic interactions as a codependent

partnership in which exchange of nutrients appears to be the primary driving force.

DOI: https://doi.org/10.7554/eLife.35122.001

Introduction
Symbiosis has been a prevailing force throughout the evolution of life, driving the diversification of

organisms and facilitating rapid adaptation of species to divergent new niches (Moran, 2007;

Joy, 2013; McFall-Ngai et al., 2013). In particular, symbiosis with photosynthetic symbionts is

observed in many species of cnidarians such as corals, jellyfish, sea anemones and hydra, contribut-

ing to the ecological success of these sessile or planktonic animals (Douglas, 1994; Davy et al.,

2012). Among the many animals dependent on algal symbionts, inter-species interactions between

green hydra Hydra viridissima and endosymbiotic unicellular green algae of the genus Chlorella have

been a subject of interest for decades (Muscatine and Lenhoff, 1963; Roffman and Lenhoff,

1969). Such studies not only provide insights into the basic ‘tool kit’ necessary to establish symbiotic

interactions, but are also of relevance in understanding the resulting evolutionary selective processes

(Muscatine and Lenhoff, 1965a; 1965b; Thorington and Margulis, 1981).

The symbionts are enclosed in the host endodermal epithelial cells within perialgal vacuoles

called ‘symbiosomes’. The interactions at play here are clearly metabolic: the algae depend on

nutrients that are derived from the host or from the environment surrounding the host, while in

return the host receives a significant amount of photosynthetically fixed carbon from the algae.
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Previous studies have provided evidence that the photosynthetic symbionts provide their host with

maltose, enabling H. viridissima to survive periods of starvation (Muscatine and Lenhoff, 1963;

Muscatine, 1965; Roffman and Lenhoff, 1969; Cook and Kelty, 1982; Huss et al., 1994). Chlo-

rella-to-Hydra translocation of photosynthates is critical for polyps to grow (Muscatine and Lenhoff,

1965b; Mews, 1980; Douglas and Smith, 1983; 1984). Presence of symbiotic algae also has a pro-

found impact on hydra´s fitness by promoting oogenesis (Habetha et al., 2003; Habetha and

Bosch, 2005).

Pioneering studies performed in the 1980 s (McAuley and Smith, 1982; Rahat and Reich, 1984)

showed that there is a great deal of adaptation and specificity in this symbiotic relationship. All

endosymbiotic algae found in a single host polyp are clonal and proliferation of symbiont and host is

tightly correlated (Bossert and Dunn, 1986; McAuley, 1986a). Although it is not yet known how

Hydra controls cell division in symbiotic Chlorella, Chlorella strain A99 is unable to grow outside its

polyp host and is transmitted vertically to the next generation of Hydra, indicating loss of autonomy

during establishment of its symbiotic relationship with this host (Muscatine and McAuley, 1982;

Campbell, 1990; Habetha et al., 2003).

Molecular phylogenetic analyses suggest that H. viridissima is the most basal species in the genus

Hydra and that symbiosis with Chlorella was established in the ancestral viridissima group after their

divergence from non-symbiotic Hydra groups (Martı́nez et al., 2010; Schwentner and Bosch,

2015). A recent phylogenetic analysis of different strains of green hydra resulted in a phylogenetic

tree that is topologically equivalent to that of their symbiotic algae (Kawaida et al., 2013), suggest-

ing these species co-evolved as a result of their symbiotic relationship. Although our understanding

of the factors that promote symbiotic relationships in cnidarians has increased (Shinzato et al.,

eLife digest All animals host microorganisms; some of which form ‘symbiotic’ relationships with

their host that are mutually beneficial. For instance, the human gut shelters tens of thousands of

species of bacteria that break down our food for us, and corals, jellyfish or sea anemones can extract

energy directly from sunlight thanks to the algae that live inside their cells.

Hydra, a small freshwater animal, lives in a symbiotic relationship with algae called Chlorella that

it carries inside its cells. Once an independent organism, Chlorella has evolved in such a way that, in

nature, it cannot exist without Hydra anymore. In turn, the algae produce sugars to fuel the animal

when it cannot get food from the environment. Yet, despite over 30 years of research, it still remains

unclear how exactly the relationship between Hydra and Chlorella works, and how it came to be.

Understanding how these two organisms live together could help researchers to figure out the

general principles that guide symbiotic interactions.

Nitrogen is an element that is essential for life, and organisms can extract it from various sources,

such as nitrates or the amino acid glutamine. Here, Hamada, Schröder et al. sequenced the entire

genome of Chlorella. This revealed that Chlorella has lost someof the genes required to obtain

nitrates, and to process them into nitrogen. However, the genetic analysis showed that the algae

express genes that allow them to import amino acids.

In turn, analysis of the genes expressed by Hydra when it lives in symbiosis with Chlorella showed

that the animal turns on genetic information needed to make glutamine. It thus seems that Hydra

creates glutamine which Chlorella can import; the algae then process this amino acid to obtain the

nitrogen they need. Hamada, Schröder et al. also discovered that if the environment was artificially

enriched in glutamine, Chlorella could live on their own outside of Hydra for a while.

The results suggest that symbiotic relationships, such as the one between Hydra and Chlorella,

were established because the organisms became dependent on each other for essential nutrients.

This co-dependency is strengthened if the organisms lose the ability to produce the nutrients on

their own. However, this partnership may be altered when the environment changes too much,

especially if the balance of nutrients available gets tipped. For example, if seas that are normally

poor in nutrients become suddenly rich in these elements, this may disrupt the existence of

symbiotic organisms such as corals.

DOI: https://doi.org/10.7554/eLife.35122.002
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2011; Davy et al., 2012; Lehnert et al., 2014; Baumgarten et al., 2015; Ishikawa et al., 2016),

very little is known about the molecular mechanisms allowing this partnership to persist over millions

of years.

Recent advances in transcriptome and genome analysis allowed us to identify the metabolic inter-

actions and genomic evolution involved in achieving the Hydra-Chlorella symbiotic relationship. We

present here the first characterization, to our knowledge, of genetic complementarity between

green Hydra and Chlorella algae that explains the emergence and/or maintenance of a stable symbi-

osis. We also provide here the first report of the complete genome sequence from an obligate intra-

cellular Chlorella symbiont. Together, our results show that exchange of nutrients is the primary

driving force for the symbiosis between Chlorella and Hydra. Subsequently, reduction of metabolic

pathways may have further strengthened their codependency. Our findings provide a framework for

understanding the evolution of a highly codependent symbiotic partnership in an early emerging

metazoan.

Results

Discovery of symbiosis-dependent Hydra genes
As tool for our study we used the green hydra H. viridissima (Figure 1A) colonized with symbiotic

Chlorella sp. strain A99 (abbreviated here as Hv_Sym), aposymbiotic H. viridissima from which the

symbiotic Chlorella were removed (Hv_Apo), as well as aposymbiotic H.viridissima, which have been

artificially infected with Chlorella variabilis NC64A (Hv_NC64A). The latter is symbiotic to the single-

cellular protist Paramecium (Karakashian and Karakashian, 1965). Although an association between

H. viridissima and Chlorella NC64A can be maintained for some time, both their growth rate

(Figure 1B) and the number of NC64A algae per Hydra cell (Figure 1—figure supplement 1) are

significantly reduced compared to the symbiosis with native symbiotic Chlorella A99.

H.H. viridissima genes involved in the symbiosis with Chlorella algae were identified by microarray

based on the contigs of H. viridissima A99 transcriptome (NCBI GEO Platform ID: GPL23280). For

the microarray analysis, total RNA was extracted from the polyps after light exposure for six hours.

By comparing the transcriptomes of Hv_Sym and Hv_Apo, we identified 423 contigs that are up-reg-

ulated and 256 contigs that are down-regulated in presence of Chlorella A99 (Figure 1C). To

exclude genes involved in oogenesis and embryogenesis, only contigs differently expressed with

similar patterns in both sexual and asexual Hv_Sym were recorded. Interestingly, contigs whose pre-

dicted products had no discernible homologs in other organisms including other Hydra species were

overrepresented in these differentially expressed contigs (Chi-squared test p<0.001) (Figure 1—fig-

ure supplement 2). Such taxonomically restricted genes (TRGs) are thought to play important roles

in the development of evolutionary novelties and morphological diversity within a given taxonomic

group (Khalturin et al., 2009; Tautz and Domazet-Lošo, 2011).

We further characterized functions of the differentially expressed Hydra genes by Gene Ontology

(GO) terms (Ashburner et al., 2000) and found the GO term ‘localization’ overrepresented among

up-regulated contigs (Hv_Sym > Hv_Apo), whereas the GO term ‘metabolic process’ was enriched

among down-regulated contigs (Hv_Sym < Hv_Apo) (Figure 1D). More specifically, the up-regulated

contigs included many genes related to ‘transmembrane transporter activity’, ‘transmembrane trans-

port’, ‘transposition’, ‘cilium’ and ‘protein binding, bridging’ (Figure 1E). In the down-regulated con-

tig set, the GO classes ‘cellular amino acid metabolic process’, ‘cell wall organization or biogenesis’

and ‘peptidase activity’ were overrepresented (Figure 1E). These results suggest that the Chlorella

symbiont affects core metabolic processes and pathways in Hydra. Particularly, carrier proteins and

active membrane transport appear to play a prominent role in the symbiosis.

As next step, we used GO terms, domain search and similarity search to further analyze the differ-

entially expressed contigs between Hv_Sym and Hv_Apo (Supplementary file 1). As the genes with

GO terms related to localization and transport, we identified 27 up-regulated contigs in Hv_Sym

(Table 1). Interestingly, this gene set included a contig showing sequence similarity to the glucose

transporter GLUT8 gene, which was previously reported to be up-regulated in the symbiotic state of

the sea anemone Aiptasia (Lehnert et al., 2014; Sproles et al., 2018). Thus, a conserved mechanism

may be responsible for photosynthate transport from the symbiont into the host cytoplasm across

the symbiosome membrane. Further, a contig encoding a carbonic anhydrase (CA) enzyme was up-
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regulated in Hv_Sym (Table 1). CA catalyzes the interconversion of HCO3 and CO2. Similar to the

GLUT8 gene, carbonic anhydrase also appears to be up-regulated in symbiotic corals and anemones

(Weis et al., 1989; Grasso et al., 2008; Ganot et al., 2011; Lehnert et al., 2014). It appears plausi-

ble that for efficient photosynthesis in symbiotic algae, the host may need to convert CO2 to the less

freely diffusing inorganic carbon (HCO3) to maintain it in the symbiosome (Lucas and Berry, 1985;

Weis et al., 1989; Barott et al., 2015). We also observed up-regulation of contigs encoding
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Figure 1. Hydra growth and differential expression of Hydra genes resulting from symbiosis. (A) Hydra viridissima strain A99 used for this study. Scale

bar, 2 mm. (B) Growth rates of polyps grown with native symbiotic Chlorella A99 (Hv_Sym, dark green), Aposymbiotic polyps from which Chlorella were

removed (Hv_Apo, orange) and aposymbiotic polyps reinfected with Chlorella variabilis NC64A (Hv_NC64A, light green). Average of the number of

hydra in each experimental group (n = 6) is represented. Error bars indicate standard deviation. (C) Graphic representation of differentially expressed

genes identified by microarray. The transcriptome of Hv_Sym is compared with that of Hv_Apo and Hv_NC64A with the number of down-regulated

contigs in Hv_Sym shown in red and those up-regulated in green. Genes differentially expressed in Hv_Sym compared to both Hv_Apo and Hv_NC64A

are given as ‘A99-specific’, those differentially expressed between Hv_A99 and Hv_Apo but not Hv_NC64A as ‘Symbiosis-regulated’. (D) GO

distribution of Biological Process at level two in all contigs (All), up-regulated contigs (Hv_Sym > Hv_Apo) and down-regulated contigs

(Hv_Sym < Hv_Apo) in Hv_Sym. (E) Overrepresented GO terms in up-regulated contigs (Hv_Sym > Hv_Apo) and down-regulated contigs

(Hv_Sym < Hv_Apo). Category, F: molecular function, C: cellular component, P: biological process. P-values, probability of Fisher’s exact test. #Test,

number of corresponding contigs in differentially expressed contigs. #Ref, number of corresponding contigs in all contigs.

DOI: https://doi.org/10.7554/eLife.35122.003

The following source data and figure supplements are available for figure 1:

Source data 1. GO distribution of Biological Process in all contigs (All), up-regulated contigs (up: Hv_Sym > Hv_Apo) and down-regulated contigs

(down: Hv_Sym < Hv_Apo) in Hv_Sym.

DOI: https://doi.org/10.7554/eLife.35122.007

Figure supplement 1. Chlorella sp. A99 and Chlorella variabilis NC64A in Hydra viridissima A99.

DOI: https://doi.org/10.7554/eLife.35122.004

Figure supplement 2. Conserved genes and species-specific genes differentially expressed in symbiotic Hydra.

DOI: https://doi.org/10.7554/eLife.35122.005

Figure supplement 3. Glutamine synthetase (GS) genes in Cnidarians.

DOI: https://doi.org/10.7554/eLife.35122.006
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Table 1. List of differentially expressed genes between Hv_Sym and Hv_Apo, which are likely to be involved in symbiotic relationship

Probename

Fold change

Human_BestHit blast2GO_Description
Hv_Sym
/Hv_Apo

Hv_Sym_sexy
/Hv_Apo

Hv_NC64A
/Hv_Sym

Localization and Transport

Hv_Sym > Hv_Apo

rc_6788 9.87 8.00 1.01 helicase conserved c-terminal
domain containing protein

rc_10246 8.26 5.15 1.82 protein

rc_6298 7.10 4.73 0.99 hypothetical protein LOC220081 protein fam194b

2268 6.96 3.58 1.26 protein Daple viral a-type inclusion protein

10548 6.74 6.89 0.73 transient receptor potential
cation channel subfamily M
member three isoform d

transient receptor potential cation
channel subfamily m member 3-like

rc_1290 6.44 7.18 0.99 tetratricopeptide repeat protein
eight isoform B

tetratricopeptide repeat protein 8

18736 6.04 6.34 1.03 BTB/POZ domain-containing
protein KCTD9

btb poz domain-containing protein
kctd9-like; unnamed protein product

rc_9270 5.96 10.03 1.37 PREDICTED: hypothetical
protein LOC100131693

eukaryotic translation initiation factor 4e

NPNHRC_15697 3.85 2.74 0.62 major facilitator superfamily domain-
containing protein 1

290 3.68 3.73 1.32 splicing factor, arginine/
serine-rich 6

splicing arginine serine-rich 4

rc_9596 3.56 4.19 1.62 BTB/POZ domain-containing
protein KCTD10

btb poz domain-containing adapter for
cul3-mediated degradation protein 3

rc_6774 3.34 3.32 1.31 solute carrier family 43,
member 2

large neutral amino acids transporter
small subunit 4

rc_26218 3.29 2.91 0.41 sodium-dependent phosphate
transport protein 2A isoform 1

sodium-dependent phosphate transport
protein 2b

NPNHRC_26094 3.20 3.98 1.31 SPE-39 proteinid="T5" spe-39 protein

9096 3.10 2.20 0.69 otoferlin isoform d otoferlin

rc_21349 2.89 4.25 0.78 5’-AMP-activated protein kinase
catalytic subunit alpha-2

5 -amp-activated protein kinase catalytic
subunit alpha-2

npRC_14488 2.88 2.65 0.71 solute carrier family 2, facilitated
glucose transporter member 8

solute carrier family facilitated glucose
transporter member 8-like

8863 2.75 2.70 0.81 ATP-binding cassette, sub-family
B,
member 10 precursor

abc transporter b family protein

rc_11896 2.49 2.56 1.52 ATP-binding cassette, sub-family
B,
member 10 precursor

abc transporter b family member 25-like

rc_6842 2.41 3.35 1.59 hypothetical protein LOC112752
isoform 2

intraflagellar transport protein 43 homolog

5242 2.36 3.35 1.22 growth arrest-specific protein 8 growth arrest-specific protein 8

5815 2.23 2.47 0.78 plasma membrane calcium-
transporting ATPase 4 isoform 4a

plasma membrane calcium atpase

8765 2.22 3.25 0.91 growth arrest-specific protein 8 growth arrest-specific protein 8

NPNH_14052 2.19 2.17 0.79 V-type proton ATPase 21 kDa
proteolipid subunit isoform 2

v-type proton atpase 21 kda proteolipid
subunit-like

rc_2499 2.18 2.03 1.47 endoplasmic reticulum-Golgi
intermediate compartment
protein three isoform a

endoplasmic reticulum-golgi intermediate
compartment protein 3 isoform 2

rc_13969 2.08 3.09 0.97 major facilitator superfamily

(IPR023561) Carbonic anhydrase, alpha-class

Table 1 continued on next page
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Table 1 continued

Probename

Fold change

Human_BestHit blast2GO_Description
Hv_Sym
/Hv_Apo

Hv_Sym_sexy
/Hv_Apo

Hv_NC64A
/Hv_Sym

rc_24825 2.49 2.38 0.83 protein tyrosine phosphatase,
receptor type, G precursor

receptor-type tyrosine-protein phosphatase
gamma

Cell Adhesion and extracelluar matrix

Hv_Sym > Hv_Apo

7915 4.01 5.09 0.94 fibrillin-2 precursor fibrillin-1- partial

npRC_24163 glutamate3.69 3.59 1.32 semaphorin 5A precursor rhamnospondin 1

Immunity, apoptosis and recognition

Hv_Sym > Hv_Apo

(IPR000157) Toll/interleukin-1 receptor homology (TIR) domain

5168 9.28 4.92 0.61 protein; PREDICTED: uncharacterized
protein LOC100893943

12749 5.13 3.35 1.26 PREDICTED: uncharacterized protein
LOC100893943 [Strongylocentrotus
purpuratus]

(IPR011029) DEATH-like

6508 6.70 5.10 0.64 PREDICTED: hypothetical protein
[Hydra magnipapillata]

rc_2417 5.39 2.70 1.01 nod3 partial; PREDICTED: uncharacterized
protein LOC100206003

(IPR002398) Peptidase C14, caspase precursor p45

NPNH_21275 2.36 3.53 1.18 caspase seven isoform alpha
precursor

caspase d

(IPR016187) C-type lectin fold

11411 2.93 2.98 0.75 C-type mannose receptor 2 PREDICTED: similar to predicted protein,
partial [Hydra magnipapillata]

Hv_Sym < Hv_Apo

(IPR000488) Death

7319 0.45 0.31 1.10 probable ubiquitin carboxyl-
terminal hydrolase CYLD isoform
2

ubiquitin carboxyl-terminal hydrolase cyld

(IPR001875) Death effector domain

RC_FV81RT001CSTY 0.31 0.39 0.93 astrocytic phosphoprotein PEA-
15

fadd

Chitinase

Hv_Sym > Hv_Apo

(IPR001223) Glycoside hydrolase, family 18, catalytic domain

rc_4450 2.78 3.83 0.66 chitinase 2

Hv_Sym < Hv_Apo

(IPR000726) Glycoside hydrolase, family 19, catalytic

FPVQZVL01EAWBY 0.21 0.16 1.78 endochitinase 1-like

1028 0.23 0.18 1.47 endochitinase 1-like

Oxidative Stress Response

Hv_Sym > Hv_Apo

np_1276 5.99 7.16 0.78 glutaredoxin-2, mitochondrial
isoform 2

cpyc type

10926 3.9 2.3 0.8 hydroxysteroid dehydrogenase-
like protein 2

hydroxysteroid dehydrogenase-like
protein 2

Table 1 continued on next page
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proteins involved in vesicular and endosomal trafficking, such as spe-39 protein, otoferlin, protein

fam194b and V-type proton ATPase 21 kda proteolipid, which may have a function in nutrition

exchange between host and symbiont and maintenance of proper condition in the symbiosome.

Upregulated genes also include genes encoding rhamnospondin and fibrillin, known to be involved

in cell adhesion and extracellular matrix, and retention of the symbiont at the proper site in the

Hydra cells.

Table 1 continued

Probename

Fold change

Human_BestHit blast2GO_Description
Hv_Sym
/Hv_Apo

Hv_Sym_sexy
/Hv_Apo

Hv_NC64A
/Hv_Sym

469 2.97 3.53 0.76 cytochrome P450 3A7 cytochrome p450

FV81RT001DCTAQ 2.69 2.50 0.75 oxidoreductase NAD-binding
domain-containing protein
one precursor

oxidoreductase nad-binding domain-
containing protein 1

696 2.30 3.24 0.69 methionine-R-sulfoxide
reductase B1

selenoprotein 1; methionine-r-sulfoxide
reductase b1-a-like

6572 2.23 2.15 1.06 L-xylulose reductase l-xylulose reductase

13298 2.10 3.49 0.64 eosinophil peroxidase
preproprotein

peroxidase

npRC_6975 2.04 2.77 1.42 methionine-R-sulfoxide
reductase B1

selenoprotein 1; methionine-r-sulfoxide
reductase b1-a-like

(IPR024079) Metallopeptidase, catalytic domain

Hv_array_4952 4.77 13.31 0.72 meprin A subunit beta
precursor

zinc metalloproteinase nas-4-like

Hv_array_rc_3992 2.66 2.23 1.27 matrix metalloproteinase
seven preproprotein

matrix metalloproteinase-24-like

Hv_Sym < Hv_Apo

RC_FWZAEML02HKSC 0.255 0.153 1.444 ascorbate peroxidase

np_14962 0.293 0.455 1.390 tryptophan 5-hydroxylase 2 phenylalanine hydroxylase

rc_4151 0.318 0.463 1.693 phenylalanine-4-hydroxylase phenylalanine hydroxylase

2835 0.384 0.344 1.787 u1 small nuclear ribonucleoprotein 70 kda

rc_11426 0.413 0.458 1.591 short-chain dehydrogenase/
reductase family 9C member 7

uncharacterized oxidoreductase -like

FWZAEML02IC34R 0.427 0.448 1.159 aldehyde dehydrogenase 5A1
isoform two precursor

succinate-semialdehyde mitochondrial-like

FWZAEML02HKSCO 0.454 0.307 0.833 ascorbate peroxidase

(IPR004045) Glutathione S-transferase, N-terminal

RC_FWZAEML02GGHN 0.09 0.07 1.81 hematopoietic prostaglandin
D synthase

glutathione s-transferase family member
(gst-7)

(IPR024079) Metallopeptidase, catalytic domain

rc_11270 0.14 0.20 1.33 meprin A subunit beta precursor protein; zinc metalloproteinase nas-4-like

rc_RSASM_15059 0.22 0.29 1.42 —NA—

2111 0.37 0.43 1.74 meprin A subunit beta precursor zinc metalloproteinase nas-4-like

12451 0.50 0.39 0.78 meprin A subunit alpha
precursor

zinc metalloproteinase nas-13- partial

(IPR013122) Polycystin cation channel, PKD1/PKD2

28854 0.37 0.28 0.94 polycystin-2 receptor for egg jelly partial

15774 0.40 0.26 0.76 polycystic kidney disease protein
1-like two isoform a

protein

DOI: https://doi.org/10.7554/eLife.35122.008
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Photosynthesis by symbiotic algae imposes Reactive Oxygen Species (ROS) that can damage lip-

ids, proteins and DNA in the host cells (Lesser, 2006). Therefore, in symbiosis with photosynthetic

organisms an appropriate oxidative stress response of the host is required for tolerance of the sym-

biont. Indeed, an increase of antioxidant activities in symbiotic states of cnidarians has been

reported previously (Richier et al., 2005) and it has been suggested that ROS produced by stress

could be the major trigger of symbiosis breakdown during coral bleaching (Lesser, 2006;

Weis, 2008). To understand the oxidative stress response in green hydra, we searched the differen-

tially expressed genes with the GO terms ‘response to oxidative stress’, ‘oxidation-reduction pro-

cess’ and ‘oxidoreductase activity’. In Hv_Sym, contigs for peroxidase, methionine-r-sulfoxide

reductase/selenoprotein and glutaredoxin, which are known to be related to oxidative stress

response were up-regulated (Table 1). On the other hand, some contigs encoding glutathione

S-transferase and ascorbate peroxidase were down-regulated in Hv_Sym. In addition, two contigs

encoding polycystin were down-regulated in Hv_Sym. Polycystin is an intracellular calcium release

channel that is inhibited by ROS (Montalbetti et al., 2008) and is also down-regulated in a different

strain of symbiotic green hydra (Ishikawa et al., 2016). In addition, six contigs encoding metallopro-

teinases showed differential expression between Hv_Sym and Hv_Apo. Although metalloproteinases

have many functions such as cleavage of cell surface proteins and remodeling of the extracellular

matrix, in a previous study they also were found to play a role in the oxidative stress response

(Császár et al., 2009). A key antioxidant in the oxidative stress response in symbiotic cnidarians

turns out to be glutathione (Sunagawa et al., 2009; Meyer and Weis, 2012). The gene encoding

glutathione S-transferase was previously observed to be downregulated in corals, sea anemones, dif-

ferent strains of green hydra and Paramecium (Kodama et al., 2014; Lehnert et al., 2014;

Ishikawa et al., 2016; Mohamed et al., 2016). Our study supports this view (Table 1) and may point

to a conserved feature of oxidative stress response in algal-animal symbiosis.

Previous studies have suggested that during establishment of coral–algal symbiosis the host

immune response may be partially suppressed (Weis et al., 2008; Mohamed et al., 2016). Our

observations in Hydra together with previous findings in corals indicate that regulation of symbiosis

by innate immunity pathways indeed may be a general feature of cnidarian symbiosis. Among the

differentially expressed contigs we identified a number of genes involved in innate immunity and

apoptosis. Pattern recognition receptors (PRRs) and the downstream innate immunity and apoptosis

pathways are thought to play important roles in various symbiotic interactions including cnidarian-

dinoflagellate symbiosis (Davy et al., 2012). In Hv_Sym we found two up-regulated contigs that con-

tain a Toll/interleukin-1 receptor (TIR) domain (Table 1). TIR is a known PRR that is inserted in the

host cell membrane and plays an important role in the innate immune system by specifically recog-

nizing microbial-associated molecular patterns, such as flagellin, lipopolysaccharide (LPS) and pepti-

doglycan (Hoving et al., 2014). Furthermore, we found one up-regulated contig with similarity to a

mannose receptor gene with C-type lectin domain (Table 1). This is worth noting since C-type lectin

receptors bind carbohydrates and some of them are known to function as PRRs. Host lectin-algal gly-

can interactions have been proposed to be involved in infection and recognition of symbionts in

some cnidarians including green hydra, sea anemones and corals (Meints and Pardy, 1980;

Lin et al., 2000; Wood-Charlson et al., 2006). Interestingly, up-regulation of C-type lectin genes

was also observed during onset of cnidarian–dinoflagellate symbiosis (Grasso et al., 2008;

Schwarz et al., 2008; Sunagawa et al., 2009; Mohamed et al., 2016).

Furthermore, contigs encoding chitinase enzymes also were differentially expressed between

Hv_Sym and Hv_Apo (Table 1). Chitinases are involved in degradation of chitin, which is a compo-

nent of the exoskeleton of arthropods and the cell wall of fungi, bacteria and some Chlorella algae

(Kapaun and Reisser, 1995), and also might play a role in host-defense systems for pathogens

which have chitinous cell wall. Chitinases are classified into two glycoside hydrolase families, GH18

and GH19, with different structures and catalytic mechanisms. In Hv_Sym two contigs encoding

GH18 chitinases were up-regulated, while one contig encoding a GH19 chitinase was down-regu-

lated, suggesting that the enzymes involved in chitin degradation are sensitive to the presence or

absence of symbiotic Chlorella.

To narrow down the number of genes specifically affected by the presence of the native symbiont

Chlorella A99, we identified 12 contigs that are differentially expressed in symbiosis with Chlorella

A99, but not in presence of foreign Chlorella NC64A (Figure 1C A99-specific). Independent qPCR

confirmed the differential expression pattern for 10 of these genes (Table 2). The genes up-
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regulated by the presence of the symbiont encode a Spot_14 protein, a glutamine synthetase (GS)

and a sodium-dependent phosphate (Na/Pi) transport protein in addition to a H. viridissima specific

gene (rc_12891: Sym-1) and a Hydra genus specific gene (rc_13570: Sym-2) (Table 2). Hydra genes

down-regulated by the presence of Chlorella A99 were two H. viridissima-specific genes and three

metabolic genes encoding histidine ammonia-lyase, acetoacetyl-CoA synthetase and 2-isopropylma-

late synthase (Table 2). Of the up-regulated genes, Spot_14 is described as thyroid hormone-

responsive spot 14 protein reported to be induced by dietary carbohydrates and glucose in mam-

mals (Tao and Towle, 1986; Brown et al., 1997). Na/Pi transport protein is a membrane transporter

actively transporting phosphate into cells (Murer and Biber, 1996). GS plays an essential role in the

metabolism of nitrogen by catalyzing the reaction between glutamate and ammonia to form gluta-

mine (Liaw et al., 1995). Interestingly, out of the three GS genes H. viridissima contains only GS-1

was found to be up-regulated by the presence of the symbiont (Figure 1—figure supplement 3).

The discovery of these transcriptional responses points to an intimate metabolic exchange between

the partners in a species-specific manner.

To better understand the specificity of Hydra´s response to the presence of the foreign symbiont,

we also identified the genes differentially expressed in Hydra polyps hosting a non-native Chlorella

NC64A (Hv_NC64A) compared to both polyps hosting the obligate symbiont Chlorella A99

(Hv_A99) and aposymbiotic Hydra (Hv_Apo). We found 19 contigs that were up-regulated and 45

contigs that were down-regulated in presence of NC64A, which strikingly did not include any genes

related to immunity or oxidative stress response (Supplementary file 1). Instead, the differentially

expressed contigs showed similarity to methylase genes involved in ubiquinone menaquinone bio-

synthesis and secondary metabolite synthesis such as n-(5-amino-5-carboxypentanoyl)-l-cysteinyl-d-

valine synthase and non-ribosomal peptide synthase. Four differentially expressed contigs specifi-

cally up-regulated in Hv_NC64A encoded ubiquitin carboxyl-terminal hydrolases, (Table 3).

Table 2. List of genes differentially expressed in Hv_Sym compared to both Hv_Apo and Hv_NC64A (‘A99-specific’)

Fold change of expression level determined by microarray analysis and qPCR analysis

Hv_Sym > Hv_Apo, Hv_NC64A

Probe name (gene ID)

Microarray qPCR

Gene annotation InterProScanSym/Apo Sym/NC64A Sym/Apo Sym/NC64A

rc_13579 12.8 4.0 11.2 4.0 (Hydra specific)

rc_12891 9.0 2.9 14.6 6.9 (Hydra viridis specific)

27417 4.5 4.8 3.0 3.0 IPR009786 Spot_14

rc_26218 3.3 2.4 2.5 2.3 sodium-dependent phosphate
transport protein

PTHR10010 Sodium-dependent
phosphate transport protein 2C

1046 3.1 2.1 2.2 1.6 glutamine synthetase

Hv_Sym < Hv_Apo, Hv_NC64A

Probe name (gene ID) Microarray qPCR Gene Annotation InterProScan

Apo/Sym NC64A/Sym Apo/Sym NC64A/Sym

NPNHRC_26859 83.2 9.7 ¥ ¥ (Hydra viridis specific)

RC_FVQRUGK01AXSJ 13.7 2.6 2.1 1.5 acetoacetyl-CoA synthetase

rc_14793 7.2 4.1 9.4 4.8 2-isopropylmalate synthase IPR013785 Aldolase_TIM,

FV81RT002HT2FL 2.8 2.0 3.1 1.8 histidine ammonia-lyase IPR001106 Aromatic_Lyase
IPR008948 L-Aspartase-like

NPNHRC_12201 2.7glutamate 2.3 2.6 2.5 (Hydra viridis specific)

DOI: https://doi.org/10.7554/eLife.35122.009

The following source data available for Table 2:

Source data 1. Expression level of ‘A99-specific’ genes and ‘Symbiosis related’ genes examined by microarray and qPCR.

DOI: https://doi.org/10.7554/eLife.35122.010
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Symbiont-dependent Hydra genes are up-regulated by photosynthetic
activity of Chlorella A99
To test whether photosynthetic activity of the symbiont is required for up-regulation of gene expres-

sion, Hv_Sym was either cultured under a standard 12 hr light/dark alternating regime or continu-

ously in the dark for 1 to 4 days prior to RNA extraction (Figure 2A). Interestingly, four (GS1,

Spot14, Na/Pi and Sym-1) of five genes specifically activated by the presence of Chlorella A99

showed significant up-regulation when exposed to light (Figure 2B), indicating the relevance of pho-

tosynthetic activity of Chlorella. This up-regulation was strictly dependent on presence of the algae,

as in aposymbiotic Hv_Apo the response was absent (Figure 2B). On the other hand, symbiosis-reg-

ulated Hydra genes not specific for Chlorella A99 (Figure 1C Symbiosis-regulated, Table 4) appear

to be not up-regulated in a light-dependent manner (Figure 2—figure supplement 1). These genes

are involved in Hydra´s innate immune system (e.g. proteins containing Toll/interleukin-1 receptor

domain or Death domain) or in signal transduction (C-type mannose receptor, ephrin receptor, pro-

line-rich transmembrane protein 1, ‘protein-kinase, interferon-inducible double stranded RNA

dependent inhibitor, repressor of (p58 repressor)’). That particular transcriptional changes observed

in Hydra rely solely on the photosynthetic activity of Chlorella A99 was confirmed by substituting the

dark incubation with selective chemical photosynthesis inhibitor DCMU (Dichorophenyl-dimethy-

lurea) (Vandermeulen et al., 1972), which resulted in a similar effect (Figure 2C,D).

Symbiont-dependent Hydra genes are expressed in endodermal
epithelial cells and up-regulated by sugars
To further characterize the symbiont induced Hydra genes, we performed whole mount in situ

hybridization (Figure 3A–F) and quantified transcripts by qPCR using templates from isolated endo-

derm and ectoderm (Figure 3—figure supplement 1), again comparing symbiotic and aposymbiotic

polyps (Figure 3G–I). The GS-1 gene and the Spot14 gene are expressed both in ectoderm and in

endoderm (Figure 3A,B) and both genes are strongly up-regulated in the presence of the symbiont

(Figure 3G,H). In contrast, the Na/Pi gene was expressed only in the endoderm (Figure 3C) and

there it was strongly up-regulated by the symbiont (Figure 3I). Since Chlorella sp. A99 colonizes

endodermal epithelial cells only, the impact of algae on symbiosis-dependent genes in both the

ectodermal and the endodermal layer indicates that photosynthetic products can be transported

across these two tissue layers or some signals can be transduced by cell-cell communication.

Table 3. List of annotated genes up-regulated in Hv_NC64A compared to Hv_Sym

Probename
Hv_NC64A/
Hv_Sym

Hv_Apo/
Hv_Sym

Hv_Sym_sexy/
Hv_Sym Blast2GO description

rc_1623 4.57 1.64 5.98 methylase involved in ubiquinone
menaquinone biosynthesis

28947 3.52 1.59 0.63 non-ribosomal peptide synthetase

1353 3.13 1.63 0.10 nuclear protein set

14347 2.69 2.40 0.54 n-(5-amino-5-carboxypentanoyl)-l
-cysteinyl-d-valine synthase

SSH_397 2.67 2.39 0.50 n-(5-amino-5-carboxypentanoyl)-l
-cysteinyl-d-valine synthase

RC_FWZAEML01C7BP 2.28 0.82 0.41 ubiquitin carboxyl-terminal
hydrolase family protein

RC_FVQRUGK01EOXS 2.25 1.52 0.53 ubiquitin carboxyl-terminal
hydrolase family protein

rc_11710 2.15 1.26 0.31 ubiquitin carboxyl-terminal
hydrolase family protein

1677 2.10 1.19 0.38 ubiquitin carboxyl-terminal
hydrolase family protein

rc_363 2.21 1.04 0.76 gcc2 and gcc3 family protein

DOI: https://doi.org/10.7554/eLife.35122.011
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To more closely dissect the nature of the functional interaction between Hydra and Chlorella and

to explore the possibility that maltose released from the algae is involved in A99-specific gene regu-

lation, we cultured aposymbiotic polyps (Hv_Apo) for 2 days in medium containing various concen-

trations of maltose (Figure 3J). Of the five A99 specific genes, GS-1 and the Spot14 gene were up-

regulated by maltose in a dose-dependent manner; the Na/Pi gene was only up-regulated in 100

mM maltose and the Hydra specific genes Sym-1 and Sym-2 did not show significant changes in

expression by exposure to maltose (Figure 3J). This provides strong support for previous views that

maltose excretion by symbiotic algae contributes to the stabilization of this symbiotic association

(Cernichiari et al., 1969). When polyps were exposed to glucose instead of maltose, the genes of

interest were also transcriptionally activated in a dose-dependent manner, while sucrose had no

effect (Figure 3—figure supplement 2A–D). Exposure to low concentrations of galactose increased

transcriptional activity but at high concentration it did not, indicating a substrate inhibitor effect for

this sugar. That the response to glucose is similar or even higher compared to maltose after 6 hr of

treatment (Figure 3—figure supplement 2E), suggests that Hydra cells transform maltose to glu-

cose as a source of energy. In animals including cnidarians, several glucose transporters have been
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Figure 2. Differential expression of Hydra genes under influence of Chlorella photosynthesis. (A) Sampling scheme. Hv_Sym (green) and Hv_Apo

(orange) were cultured under a standard light-dark regime (Light: L) and in continuous darkness (Dark: D), and RNA was extracted from the polyps at

the days indicated by red arrows. (B) Expression difference of five A99-specific genes in Hv_Sym (green bars) and Hv_Apo (orange bars) between the

light-dark condition and darkness. The vertical axis shows log scale (log2) fold changes of relative expression level in Light over Dark. (C) Sampling

scheme of inhibiting photosynthesis. (D) Differential expression of the five A99-specific genes under conditions allowing (Control) or inhibiting

photosynthesis (DCMU). The vertical axis shows log scale (log2) fold changes of relative expression level in Control over DCMU treated. T-tests were

performed between Light and Dark (B), and DCMU and Control (D). For each biological replicate (n = 3) 50 hydra polyps were used for total RNA

extraction. Error bars indicate standard deviation. P-value of t-test, *<0.05, **<0.01.

DOI: https://doi.org/10.7554/eLife.35122.012

The following source data and figure supplements are available for figure 2:

Figure supplement 1. Differential expression of symbiosis-dependent Hydra genes grown under light/dark condition and in darkness.

DOI: https://doi.org/10.7554/eLife.35122.013

Figure supplement 1—source data 1. Hydra genes under influence of Chlorella photosynthesis examined by qPCR.

DOI: https://doi.org/10.7554/eLife.35122.014
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identified (Sproles et al., 2018), but yet no maltose transporters. This is consistent with the view

that maltose produced by the symbiont is digested to glucose in the symbiosome and translocated

to the host cytoplasm through glucose transporters.

The Chlorella A99 genome records a symbiotic life style
To better understand the symbiosis between H. viridissima and Chlorella and to refine our knowl-

edge of the functions that are required in this symbiosis, we sequenced the genome of Chlorella sp.

strain A99 and compared it to the genomes of other green algae. The genome of Chlorella sp. A99

was sequenced to approximately 211-fold coverage, enabling the generation of an assembly com-

prising a total of 40.9 Mbp (82 scaffolds, N50 = 1.7 Mbp) (Table 5). Chlorella sp. A99 belongs to the

family Chlorellaceae (Figure 4A) and of the green algae whose genomes have been sequenced it is

most closely related to Chlorella variabilis NC64A (NC64A) (Merchant et al., 2007; Palenik et al.,

2007; Worden et al., 2009; Blanc et al., 2010; Prochnik et al., 2010; Blanc et al., 2012;

Gao et al., 2014; Pombert et al., 2014). The genome size of the total assembly in strain A99 was

similar to that of strain NC64A (46.2 Mb) (Figure 4B). By k-mer analysis (k-mer = 19), the genome

size of A99 was estimated to be 61 Mbp (Marçais and Kingsford, 2011). Its GC content of 68%, is

the highest among the green algae species recorded (Figure 4B). In the A99 genome, 8298 gene

Table 4. List of the genes differentially expressed between Hv_Sym and Hv_Apo

Fold change of expression level determined by microarray analysis and qPCR

Hv_Sym > Hv_Apo

Probe name
(gene ID)

Microarray qPCR

Gene annotation InterProScanSym/Apo Sym/Apo

5168 9.3 7.4 IPR000157 TIR_dom
PTHR23097 Tumor necrosis factor
receptor superfamily member

6508 6.7 2.9 IPR011029:DEATH-like_dom

11411 2.9 2.0 C-type mannose receptor 2 IPR000742 EG-like_dom
IPR001304 C-type_lectin

26108 7.2 7.2 ephrin type-A receptor six isoform a

rc_2417 5.4 3.5 IPR000488 Death_domain

rc_24563 6.1 6.7 Proline-rich transmembrane protein 1 IPR007593 CD225/Dispanin_fam
PTHR14948 NG5

rc_9398 6.2 5.4 protein-kinase, interferon-inducible
double stranded RNA dependent inhibitor,
repressor of (P58 repressor)

PTHR11697 general transcription factor
2-related zinc finger protein

Hv_Sym < Hv_Apo

Probe name
(gene ID)

Microarray qPCR Gene Annotation InterProScan

Apo/Sym Apo/Sym

rc_10789 2.5 3.7 endoribonuclease Dicer IPR000999 RNase_III_dom
PTHR1495 helicase-related

rc_12826 3.0 2.3 interferon regulatory factor 1 IPR001346 Interferon_reg_fact_DNA-bd_dom;
IPR011991 WHTH_DNA-bd_dom
PTHR11949 interferon regulatory factor

rc_8898 6.1 4.1 leucine-rich repeat-containing protein 15
isoform b

IPR001611 Leu-rich_rp
PTHR24373 Toll-like receptor 9

FV81RT001CSTY 3.2 2.0 astrocytic phosphoprotein PEA-15 IPR001875 DED, IPR011029 DEATH-like_dom

RSASM_17752 4.0 2.1 CD97 antigen isoform two precursor IPR000832 GPCR_2_secretin-like
PTHR12011 vasoactive intestinal polypeptide
receptor 2

DOI: https://doi.org/10.7554/eLife.35122.015

The following source data available for Table 4:

Source data 1. Expression level of ’Symbiosis related’ genes examined by microarray and qPCR.

DOI: https://doi.org/10.7554/eLife.35122.016

Hamada et al. eLife 2018;7:e35122. DOI: https://doi.org/10.7554/eLife.35122 12 of 37

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.35122.015
https://doi.org/10.7554/eLife.35122.016
https://doi.org/10.7554/eLife.35122


0.0

0.5

1.0

1.5

0.0

1.0

2.0

3.0

4.0

Whole  End    Ect
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Hv_Sym
Hv_Apo

H I
*

**

** *

* **

**

GS-1 NaPiSpot14

GS-1 NaPiSpot14

A
n

ti
se

n
se

S
e

n
se

B C

D E F

R
e

la
ti

v
e

 E
x

p
re

ss
io

n
 

Whole  End    EctWhole  End    Ect

A

G

0

0.5

1

1.5

2

2.5

3

3.5

25mM 50mM 100mMCont.

*
*

*

*

*

*
*

**

R
e

la
ti

v
e

 E
x

p
re

ss
io

n
 

J

GS-1 Spot14 NaPi Sym-1 Sym-2

Figure 3. Spatial expression patterns of genes coding for glutamine synthetase, Spot 14 and Na/Pi-transporter.

(A-F); Whole mount in situ hybridization using antisense (A–C) and sense probes (D-F; negative controls) for

glutamine synthetase-1 (GS-1; left), Spot 14 (center) and Na/Pi-transporter (NaPi; right). Inserts show cross sections

of the polyp’s body. (G–I) Relative expression levels of whole animal (whole), isolated endoderm (End) and isolated

ectoderm (Ect) tissue of Hv_Sym (green bars) and Hv_Apo (orange bars). For each biological replicate (n = 3) 10–

20 hydra polyps were used for total RNA extraction of endodermal and ectodermal tissue. T-test was performed

between Hv_Sym and Hv_apo. Pvalue, *<0.05, **<0.01. (J) Expression change of genes GS-1, Spot14, NaPi, Sym-1

and Sym-2 following exposure to 25, 50 and 100 mM maltose in Hv_Apo. For each biological replicate (n = 3) 50

hydra polyps were used for total RNA extraction The vertical axis shows log scale (log2) fold changes of relative

expression level of maltose-treated over the untreated Hv_Apo control. T-test was performed between maltose-

treated in each concentration and control (*: p value <0.05) and Kruskal-Wallis test (†: p value <0.05) in the series

of 48 hr treatment were performed. Error bars indicate standard deviation.

DOI: https://doi.org/10.7554/eLife.35122.017

The following source data and figure supplements are available for figure 3:

Source data 1. Expression change of genes GS-1, Spot14, NaPi, Sym-1 and Sym-2 following exposure to 25, 50

and 100 mM maltose in Hv_Apo examined by qPCR.

DOI: https://doi.org/10.7554/eLife.35122.021

Figure 3 continued on next page
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models were predicted. As shown in Figure 4C, about 80% of these predicted genes have extensive

sequence similarity to plant genes, while 13% so far have no similarity to genes of any other organ-

isms (Figure 4C). It is also noteworthy that 7% of the A99 genes are similar to genes of other king-

doms but not to Hydra, indicating the absence of gene transfer from Hydra to the symbiont genome

(Figure 4C).

The Chlorella A99 genome provides evidences for extensive
nitrogenous amino acid import and an incomplete nitrate assimilation
pathway
Several independent lines of evidence demonstrate that nitrogen limitation and amino-acid metabo-

lism have a key role in the Chlorella–Hydra symbiosis and that symbiotic Chlorella A99 depends on

glutamine provided by its host (Rees, 1986; McAuley, 1987a; 1987b; McAuley, 1991;

Rees, 1991;1989). To identify Chlorella candidate factors for the development and maintenance of

the symbiotic life style, we therefore used the available genome information to assess genes poten-

tially involved in amino acid transport and the nitrogen metabolic pathway.

When performing a search for the Pfam domain ‘Aa_trans’ or ‘AA_permease’ to find amino acid

transporter genes in the A99 genome, we discovered numerous genes containing the Aa_trans

domain (Table 6A). In particular, A99 contains many orthologous genes of amino acid permease 2

and of transmembrane amino acid transporter family protein (solute carrier family 38, sodium-cou-

pled neutral amino acid transporter), as well as NC64A (Table 6B, Supplementary file 2). Both of

these gene products are known to transport neutral amino acids including glutamine. This observa-

tion is supporting the view that import of amino acids is an essential feature for the symbiotic way of

life of Chlorella.

In symbiotic organisms, loss of genes often occurs due to the strictly interdependent relationship

(Ochman and Moran, 2001; Wernegreen, 2012), raising the possibility that Chlorella A99 might

have lost some essential genes. To test this hypothesis, we searched the Chlorella A99 genome for

genes conserved across free-living green algae Coccomyxa subellipsoidea C169 (C169), Chlamydo-

monas reinhardtii (Cr) and Volvox carteri (Vc). In a total of 9851 C169 genes, we found 5701 genes

to be conserved in Cr and Vc (Supplementary file 3). Of these, 238 genes did not match to any

gene models and genomic regions in Chlorella A99 and thus were considered as gene loss candi-

dates. Interestingly, within these 238 candidates, genes with the GO terms ‘transport’ in biological

Figure 3 continued

Figure supplement 1. Tissue isolation of green hydra.

DOI: https://doi.org/10.7554/eLife.35122.018

Figure supplement 2. Effects of sugars on Hydra growth.

DOI: https://doi.org/10.7554/eLife.35122.019

Figure supplement 2—source data 1. Effects in presence of maltose, glucose, sucrose and galactose on gene

expression of GS-1, Spot14 and NaPi in Hv_Apo examined by qPCR.

DOI: https://doi.org/10.7554/eLife.35122.020

Table 5. Summary of sequence data for assembling Chlorella sp. A99 genome sequences

Number of reads 85469010

Number of reads assembled 61838513

Number of bases 17398635102

Scaffolds Contigs

Total length of sequence 40934037 40687875

Total number of sequences 82 7455

Maximum length of sequence 4003385 171868

N50 1727419 12747

GC contents (%) 68.07% 69.95%

DOI: https://doi.org/10.7554/eLife.35122.023
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process and ‘transporter activity’ in molecular function were overrepresented (Figure 5). In particu-

lar, the 28 genes annotated to these GO terms encoded nitrate transporter, urea transporter and

molybdate transporter, which are known to be involved in nitrogen metabolism (Table 7). Beside

ammonium, nitrate and urea are major nitrogen sources for plants, whereas molybdate is a co-factor

of the nitrate reductase, an important enzyme in the nitrate assimilation pathway. These transporter

genes are conserved across green algae including Chlorella NC64A (Sanz-Luque et al., 2015;

Gao et al., 2014) and appear to be lost in the Chlorella A99 genome.

In nitrogen assimilation processes, plants usually take up nitrogen in the form of nitrate (NO3
-) via

nitrate transporters (NRTs) or as ammonium (NH4
+) via ammonium transporters (AMT) (Figure 6A).

In higher plants, two types of nitrate transporters, NRT1 and NRT2, have been identified

(Krapp et al., 2014). Some NRT2 require nitrate assimilation-related component 2 (NAR2) to be
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Figure 4. Comparison of key features deduced from the Chlorella A99 genome with other green algae. (A) Phylogenetic tree of eight genome

sequenced chlorophyte green algae including Chlorella sp. A99. The NJ tree is based on sequences of the 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2

and 28S rRNA gene. (B) Genomic features and taxonomy of the sequenced chlorophyte green algae. Hel: Helicosporidium sp. ATCC50920. (C) The

proportion of similarity of Chlorella A99 gene models to those of other organisms.

DOI: https://doi.org/10.7554/eLife.35122.022

Table 6. Amino acid transporter genes in Chlorella sp. A99 (A99), Chlorella variabilis NC64A (NC64A), Coccomyxa subellipsoidea

C-169 (C169), Volvox carteri (Vc), Micromonas pusilla (Mp) and Ostreococcus tauri (Ot) and Chlamydomonas reinhardtii (Cr)

A. The number of Pfam domains related to amino acids transport

Pfam domain name A99 NC64A c169 Cr Vc Mp Ot

Aa_trans 30 38 21 9 7 9 8

AA_permease 4 6 15 5 6 1 1

B. Ortholog groups including Aa_trans domain containing genes
overrepresented in symbiotic Chlorella

Ortholog group ID: Gene annotation A99 NC64A c169 Cr Vc Mp Ot

OG0000040: amino acid permease 2 12 12 6 3 1 0 0

OG0000324: transmembrane amino acid transporter
family protein (solute carrier family 38, sodium-coupled neutral amino acid transporter)

6 7 1 2 1 0 0

DOI: https://doi.org/10.7554/eLife.35122.024
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functional (Quesada et al., 1994). NO3
- is reduced to nitrite by nitrate reductase (NR), NO2

- is trans-

ported to the chloroplast by nitrate assimilation-related component1 (NAR1), and NO2
- is reduced

to NH4
+ by nitrite reductase (NiR). NH4

+ is incorporated into glutamine (Gln) by glutamine synthe-

tase (GS), and Gln is incorporated into glutamate (Glu) by NADH-dependent glutamine amide-2-

oxoglutarate aminotransferase (GOGAT), also known as glutamate synthase. This pathway is highly

conserved among plants and all of its major components, including NRT1 and NRT2, NAR1 and

NAR2, NR, NiR, AMT, GOGAT and GS, are present in the 10 green algae species that have been

genome-sequenced so far (with the exception of NRT1, which is absent in Micromonas pusilla)

(Sanz-Luque et al., 2015). In Symbiodinium, the photosynthetic symbiont of marine invertebrates,

all these components of the nitrogen assimilation pathway were also observed (Supplementary file

4) (Shoguchi et al., 2013; Lin et al., 2015; Aranda et al., 2016; Sproles et al., 2018).

Based on the annotation by Sanz-Luque et al. (Sanz-Luque et al., 2015), we searched these nitro-

gen assimilation genes in the Chlorella A99 genome, using ortholog grouping and a reciprocal

BLAST search using the protein sequences from other green algae (Figure 6B, Supplementary file

5). As expected, the Chlorella A99 genome contains many homologues of the genes involved in

biosynthetic process

nucleobase-containing compound metabolic process

protein metabolic process (A99 gene loss) 
cellular protein modi!cation process (C169 all gene)

single-organism process

response to stimulus

cellular component organization

hydrolase activity

transferase activity

nucleotide binding

protein binding

nucleic acid binding

transporter
activity

A99 gene lossC169 all genes

A B

C D

transport

Biological process

Molecular function

transporter activity

transport

Figure 5. Genes missing in the genome of Chlorella A99. Functional categorization of genes present in Coccomyxa subellipsoidea C169 (A, C) and

genes missing in Chlorella A99 (B, D) by GO terms using Bast2GO. Multilevel pie charts show enrichment of GO’ Biological Process’ terms (A, B) and

GO ‘Molecular Function’ terms (C, D) on the lowest level, which cover at least 10% of the total amount of annotated sequences.

DOI: https://doi.org/10.7554/eLife.35122.025

The following source data is available for figure 5:

Source data 1. Functional categorization of genes present in Coccomyxa subellipsoidea C169 (C169_all) and genes missing in Chlorella A99 (A99 gene

loss) by GO terms’ Biological Process’ terms and ‘Molecular Function’ on the lowest level, which cover at least 10% of the total amount of annotated

sequences.

DOI: https://doi.org/10.7554/eLife.35122.026
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nitrogen assimilation in plants including genes encoding NRT1, NAR1, NR, AMT, GS and GOGAT

(Figure 6B). Intriguingly, our systematic searches failed to identify representative genes for NRT2,

NAR2 and NiR in the Chlorella A99 genome (Figure 6B). We confirmed the absence of the NRT2

and NiR genes by PCR using primers designed for the conserved regions of these genes and which

failed to produce a product with genomic DNA as a template (Figure 6—figure supplement 1).

Due to the weak sequence conservation of the NAR2 gene in the three algae genomes, PCR of that

gene was not performed. Taken together, our observations indicate that Chlorella A99 algae

appears to lack NRT2, NAR2 and NiR.

Since in many fungi, cyanobacteria and algae species, nitrate assimilation genes are known to act

in concert and a gene cluster of NR and NiR genes is conserved between different green algae

(Sanz-Luque et al., 2015), we next investigated the level of genomic clustering of the nitrate assimi-

lation pathway genes in the Chlorella genome. Comparing the genomes of NC64A and C169

revealed the presence of a cluster of NR and NiR genes (Figure 6C). In NC64A, two NRT2 genes,

together with genes for NAR2, NR and NiR are clustered on scaffold 21. In C169, one of the NR

genes and NiR are clustered together, whereas the second NR gene is separate. Interestingly, analy-

sis of the sequences around the NR gene in the Chlorella A99 genome provided no evidence for the

Table 7. List of Coccomyxa subellipsoidea C169 (C169) genes, which are present in Chlamydomonas

reinhardtii and Volvox carteri, but missing in the genome of Chlorella A99

UniProt ID in C169 Description

F1DPL8_9CHLO ATP synthase F0 subunit 6 (mitochondrion)

F1DPL7_9CHLO cytochrome c oxidase subunit 3 (mitochondrion)

I0YZU4_9CHLO equilibrative nucleoside transporter 1

I0Z311_9CHLO equilibrative nucleoside transporter family

I0YZC9_9CHLO high affinity nitrate transporter

I0Z2L2_9CHLO hypothetical protein COCSUDRAFT_28432

I0YJ99_9CHLO hypothetical protein COCSUDRAFT_34498

I0YKQ1_9CHLO hypothetical protein COCSUDRAFT_45098

I0YYD3_9CHLO hypothetical protein COCSUDRAFT_65897

I0YYP5_9CHLO importin-4 isoform X1

I0YQQ1_9CHLO low-CO2-inducible membrane

I0YJD4_9CHLO MFS transporter

I0YTY0_9CHLO molybdate transporter 2

F1DPM0_9CHLO NADH dehydrogenase subunit 3 (mitochondrion)

F1DPM4_9CHLO NADH dehydrogenase subunit 6 (mitochondrion)

F1DPM8_9CHLO NADH dehydrogenase subunit 9 (mitochondrion)

I0Z357_9CHLO plasma membrane phosphate transporter Pho87

I0Z9Y1_9CHLO pre translocase subunit

I0YPT2_9CHLO transcription and mRNA export factor ENY2-like

I0Z976_9CHLO transport SEC23

I0Z3Q6_9CHLO tyrosine-specific transport -like isoform X1

I0YXU9_9CHLO urea active transporter

I0YRT0_9CHLO urea active transporter

I0YRL4_9CHLO urea-proton symporter DUR3

I0YUF9_9CHLO urea-proton symporter DUR3

I0YJS6_9CHLO urea-proton symporter DUR3

I0YQ78_9CHLO urea-proton symporter DUR3-like

I0YIH7_9CHLO Zip-domain-containing protein

DOI: https://doi.org/10.7554/eLife.35122.027
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Figure 6. Nitrogen assimilation pathways in Chlorella A99. (A) Schematic diagram of the nitrogen assimilation

pathway in plants showing the function of nitrate transporters NRT1 (peptides/nitrate transporter) and NRT2

(nitrate/nitrite transporter), nitrate assimilation-related components NAR1 and NAR2, nitrate reductase NR, nitrite

reductase NiR, ammonium transporter AMT, glutamate synthetase GOGAT and glutamine synthetase GS. Genes

shown in red boxes (NRT2, NAR2 and NiR) were not found in the Chlorella sp. A99 genome. (B) Table showing the

number of nitrogen assimilation genes in Chlorella sp. A99 (A99), Chlorella variabilis NC64A (NC64A), Coccomyxa

subellipsoidea C169 (C169), Volvox carteri f. nagariensis (Vc), Chlamydomonas reinhardtii (Cr), Ostreococcus tauri

(Ot) and Micromonas pusilla (Mp). (C) Gene clusters of nitrate assimilation genes around the shared NR genes

(blue) in the genomes of NC64A, C169 and A99. Red boxes show nitrate assimilation genes absent in A99 and

gray boxes depict other genes. Numbers below the boxes are JGI protein IDs of NC64A and C169. Numbers

below the genes of A99 are JGI protein IDs of the best hit genes in NC64A and C169 and their gene name.

DOI: https://doi.org/10.7554/eLife.35122.028

The following figure supplement is available for figure 6:

Figure supplement 1. PCR of nitrate assimilation genes.

DOI: https://doi.org/10.7554/eLife.35122.029
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presence of a co-localized NiR gene or any other nitrate assimilation genes, nor any conserved gene

synteny to NC64A and C169 (Figure 6C). Therefore, our comparative genomic analyses points to an

incomplete and scattered nitrogen metabolic pathway in symbiotic Chlorella A99, which lacks essen-

tial transporters and enzymes for nitrate assimilation as well as the clustered structure of nitrate

assimilation genes.

Supplementing the medium with glutamine allows temporary in vitro
growth of symbiotic Chlorella A99
The absence of genes essential for nitrate assimilation in the Chlorella A99 genome (Figure 6) is con-

sistent with its inability to grow outside the Hydra host cell (Habetha and Bosch, 2005) and indi-

cates that Chlorella symbionts are dependent on metabolites provided by their host. We

hypothesized that Chlorella is unable to use nitrite and ammonium as a nitrogen source, and that it

relies on Hydra assimilating ammonium to glutamine to serve as the nitrogen source. To test this

hypothesis and to examine utilization of nitrogen compounds of A99, we isolated Chlorella A99

from Hv_Sym and cultivated it in vitro using modified bold basal medium (BBM) (Nichols and Bold,

1965) containing the same amount of nitrogen in the form of NO3
-, NH4

+, Gln or casamino acids

(Figure 7). As controls, Chlorella variabilis NC64A (NC64A) isolated from Hv_NC64A and free-living

C169 were used. To confirm that the cultured A99 is not contamination, we amplified and

sequenced the genomic region of the 18S rRNA gene by PCR (Figure 7—figure supplement 1) and

checked this against the genomic sequence of A99. Kamako et al. reported that free-living alga

Chlorella vulgaris Beijerinck var. vulgaris grow in media containing only inorganic nitrogen com-

pounds as well as in media containing casamino acids as a nitrogen source, while NC64A required

amino acids for growth (Kamako et al., 2005). Consistent with these observations, C169 grew in all

tested media and NC64A grew in media containing casamino acids and Gln, although its growth

rate was quite low in presence of NH4
+ and NO3

- (Figure 7). Remarkably, Chlorella A99 increased in

cell number for up to 8 days in media containing casamino acids and Gln (Figure 7). Similar to

NC64A, A99 did not grow in presence of NH4
+ and NO3

-. The growth rates of both A99 and NC64A

were higher in medium containing a mixture of amino acids (casamino acids) than the single amino

acid Gln. In contrast to NC64A, A99 could not be cultivated permanently in casamino acids or gluta-

mine supplemented medium, indicating that additional growth factors are necessary to maintain in
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Figure 7. Growth of green algae in presence of various nitrogen sources. The growth rate of Chlorella A99 (A99), Chlorella variabilis NC64A (NC64A)

and Coccomyxa subellipsoidea C-169 (C169) by in vitro culture was assessed for different nitrogen sources with casamino acids (blue), glutamine

(orange), ammonium (gray) and nitrate (yellow). Mean number of algae per ml were determined at 4, 8, 12 days after inoculation with 106 cell/ml. Error

bars indicate standard deviation.

DOI: https://doi.org/10.7554/eLife.35122.030

The following figure supplement is available for figure 7:

Figure supplement 1. PCR of 18S rRNA genes in cultured algae.

DOI: https://doi.org/10.7554/eLife.35122.031
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vitro growth of this obligate symbiont. Thus, although in vitro growth of A99 can be promoted by

adding Glu and amino acids to the medium, A99 cannot be cultured permanently in this enriched

medium, indicating that other host derived factors remain to be uncovered.

Discussion

Metabolic co-dependence in Hydra-Chlorella symbiosis
Sequencing of the Chlorella A99 genome in combination with the transcriptome analyses of symbi-

otic, aposymbiotic and NC64A-infected H. viridissima polyps has enabled the identification of genes

with specific functions in this symbiotic partnership. The Hydra-Chlorella symbiosis links carbohy-

drate supply from the photosynthetic symbiont to glutamine synthesis by the host. Characteristics of

the symbiont genome obviously reflect its adaptation to this way of life, including an increase in

amino acid transporters and degeneration of the nitrate assimilation pathway. This conclusion is

based on six observations: (i) Expression of some genes including GS-1, Spot 14 and NaPi is specifi-

cally up-regulated in the presence of Chlorella A99 (Figure 1C, Table 2), and (ii) they are induced by

both, photosynthetic activity of Chlorella and by supplying exogenous maltose or glucose (Figures 2

and 3J, Figure 3—figure supplement 2). Maltose produced by the symbiont is likely to be digested

to glucose in symbiosome and translocated to the host cytoplasm through glucose transporters

(Figure 8A). Upregulation of a GLUT8 gene in the symbiotic state of green hydra may reflect activa-

tion of sugar transport (Table 1). These results indicate that maltose release by photosynthesis of

the symbiont enhances nutrition supply including glutamine by the host (Figure 8A). (iii) Symbiotic

Chlorella A99 cannot be cultivated in vitro in medium containing a single inorganic nitrogen source

(Figure 7). Since medium containing glutamine supports in vitro growth of A99, this organism

appears to depend on glutamine provided by the Hydra host. (iv) The genome of Chlorella A99 con-

tains multiple amino acid transporter genes (Table 6), but lacks genes involved in nitrate assimilation

(Figure 6), pointing to amino acids as main source of nitrogen and a degenerated nitrate assimila-

tion pathway. As for ammonium, which is one of the main nitrogen sources in plants, previous stud-

ies have reported the inability of symbiotic algae to take up ammonium because of the low peri-

algal pH (pH 4–5) that stimulates maltose release (Douglas and Smith, 1984; Rees, 1989; McAu-

ley, 1991; Dorling et al., 1997). Since Chlorella apparently cannot use nitrite and ammonium as a

nitrogen source, it seems that Hydra has to assimilate ammonium to glutamine and provides it to

Chlorella A99 (Figure 8A).

(v) While polyps with native symbiont Chlorella A99 grew faster than aposymbiotic ones, symbio-

sis with foreign algae NC64A had no effect on the growth of polyps at all (Figure 1B). (vi) Hydra

endodermal epithelial cells host significantly fewer NC64A algae than A99 (Figure 1—figure supple-

ment 1) providing additional support for the view of a tightly regulated codependent partnership in

which exchange of nutrients appears to be the primary driving force. Previous studies have reported

that symbiotic Chlorella in green hydra releases significantly larger amounts of maltose than NC64A

(Mews and Smith, 1982; Rees, 1989). In addition, Rees reported that Hydra polyps containing high

maltose releasing algae had a high GS activity, whereas aposymbiotic Hydra or Hydra with a low

maltose releasing algae had lower GS activity (Rees, 1986). Although the underlying mechanism of

how maltose secretion and transportation from Chlorella is regulated is still unclear, the amount of

maltose released by the symbiont could be an important symbiont-derived driver or stabilizer of the

Hydra–Chlorella symbiosis.

More general lessons for animal-algal symbiosis
Transcriptome comparison between symbiotic and aposymbiotic H. viridissima demonstrated that

symbiosis-regulated genes are involved in oxidative stress response and innate immunity. The fact

that PRRs and apoptosis-related genes, are also differentially expressed in a number of other symbi-

otic cnidarians (Table 1), suggests innate immunity as conserved mechanism involved in controlling

the development and maintenance of stable symbiotic interactions. Furthermore, the exchange of

nitrogenous compounds and photosynthetic products between host and symbiont observed here in

the Hydra-Chlorella symbiosis is also observed in marine invertebrates such as corals, sea anemones

and giant clams associated with Symbiodinium algae (Figure 8B,C). Despite these similarities, how-

ever, there are also conspicuous differences among symbiotic cnidarians in particular with respect to
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the nutrients provided by the symbiont to the host. For example, symbiotic Chlorella algae in green

hydra, Paramecium and fresh water sponges provide their photosynthetic products in form of malt-

ose and glucose (Figure 8B) (Brown and Nielsen, 1974; Wilkinson, 1980; Kamako and Imamura,

2006). In contrast, Symbiodinium provides glucose, glycerol, organic acids, amino acids as well as

lipids to its marine hosts (Figure 8C) (Muscatine and Cernichiari, 1969; Lewis and Smith, 1971;

Trench, 1971; Kellogg and Patton, 1983). A former transcriptome analysis of amino acid biosyn-

thetic pathways suggested that Symbiodinium can synthesize almost all amino acids (Shinzato et al.,

2014). Gene loss in cysteine synthesis pathway in the coral host Acropora digitifera seems to reflect

the dependency on the amino acids provided by the Symbiodinium symbiont (Shinzato et al.,

2011). In contrast to Symbiodinium which can assimilate inorganic nitrogen such as nitrate and
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Figure 8. Molecular interactions in the symbiosis of cnidarians. (A) Summary of symbiotic interactions between Hydra and Chlorella A99. During light

conditions, Chlorella A99 performs photosynthesis and produces maltose (Mal), which is secreted into the Hydra symbiosome where it is possibly

digested to glucose (Gluc), shown in red. The sugar induces expression of Hydra genes encoding glutamine synthetase (GS), Na/Pi transporter (NaPi)

and Spot14. GS catalyzes the condensation of glutamate (Glu) and ammonium (NH4
+) to form glutamine (Gln), which is used by Chlorella as a nitrogen

source. Since the sugar also up-regulates the NaPi gene, which controls intracellular phosphate levels, it might be involved in the supply of phosphorus

to Chlorella as well (blue broken line). The sugar is transported to the ectoderm (red broken line) and there induces the expression of GS and Spot14.

In the Chlorella A99 genome, degeneration of the nitrate assimilation system and an increase of amino acid transporters was observed (green balloon).

(B, C) Comparison between Hydra-Chlorella symbiosis and coral-Symbiodinium symbiosis. Red indicates transfer of photosynthesis products from the

symbiont to the host, and blue indicates transfer of nitrogen sources from the host to the symbiont. While the host organisms Hydra and coral can

assimilate NH4
+ to Gln (B, C), assimilation of inorganic nitrogen by Symbiodinidium plays an important role for the symbiotic system in coral (C).
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ammonium (Lipschultz and Cook, 2002; Grover et al., 2003; Tanaka et al., 2006;

Yellowlees et al., 2008), the symbiotic Chlorella algae in Hydra and Paramecium can only use amino

acids as a nitrogen source (Figure 6) (Kamako et al., 2005).

In efforts to explain the metabolic efficiency of nitrogen use in symbiotic organisms, two models

have been proposed: the ‘nitrogen conservation’ and the ‘nitrogen recycling’ hypothesis. The nitro-

gen conservation hypothesis suggests that photosynthetic carbon compounds from the symbiont

are used preferentially by the host respiration, which reduces catabolism of nitrogenous compounds

(Rees and Ellard, 1989; Szmant et al., 1990; Wang and Douglas, 1998). The ‘nitrogen recycling’

hypothesis suggests that symbionts assimilate nitrogenous waste (ammonium) of the host into valu-

able, organic compounds, which then are translocated back to the host (Figure 8C Symbiont nitro-

gen assimilation) (Lewis and Smith, 1971; Muscatine and Porter, 1977; Falkowski et al., 1993;

Wang and Douglas, 1998). Our observation that in symbiotic green hydra many genes involved in

amino acid metabolism are down-regulated (Figure 1E) is consistent with the assumption of reduc-

tion of amino acid consumption by respiration.

In addition to the nitrogen recycling hypothesis, it has been proposed that also corals, sea ane-

mones, Paramecium and green hydra hosts can assimilate ammonium into amino acids (Figure 8B,C

Host nitrogen assimilation) (Miller and Yellowlees, 1989; Rees, 1989; Szmant et al., 1990;

Rees, 1991; Wang and Douglas, 1998; Lipschultz and Cook, 2002). Ammonia assimilation by the

host implies that the host controls the nitrogen status to regulate metabolism of the symbionts,

which may be involved in controlling the number of symbionts within the host cell. For organisms

such as corals living in oligotrophic sea, inorganic nitrogen assimilation and recycling may be neces-

sary to manage the nitrogen sources efficiently. In contrast, for Hydra and Paramecium living in a rel-

atively nutrient-rich environment may be advantageous in terms of metabolic efficiency that the

symbiont abandons its ability to assimilate inorganic nitrogen and specializes in the supply of photo-

synthetic carbohydrate to the host.

Genome evolution in symbiotic Chlorella sp. A99
Metabolic dependence of symbionts on host supply occasionally results in genome reduction and

gene loss. For example, symbiotic Buchnera bacteria in insects are missing particular genes in essen-

tial amino acid pathways (Shigenobu et al., 2000; Hansen and Moran, 2011). The fact that the cor-

responding genes of the host are up-regulated in the bacteriocyte, indicates complementarity and

syntrophy between host and symbiont. Similarly, in Chlorella A99 the nitrogen assimilation system

could have been lost as a result of continuous supply of nitrogenous amino acids provided by Hydra.

Compared to Chlorella NC64A, the closest relative to Chlorella A99 among the genome-

sequenced algae, genome size and total number of genes in Chlorella A99 were found to be smaller

(Figure 4B). Although both A99 and NC64A cannot be cultivated using inorganic nitrogen sources

(Figure 7) (Kamako et al., 2005), NC64A, unlike A99, obtains all major nitrogen assimilation genes

and their cluster structure on the chromosome (Figure 6) (Sanz-Luque et al., 2015). NR and NiR

activities were found to be induced by nitrate in free-living Chlorella, but not in Chlorella NC64A,

indicating mutations in the regulatory region (Kamako et al., 2005). Considering the phylogenetic

position of NC64A and the symbiotic Chlorella of green hydra (Kawaida et al., 2013), the disability

of nitrate assimilation in A99 and NC64A seems to have evolved independently, suggesting conver-

gent evolution in a similar symbiotic environment.

Although our findings indicate that genome reduction in Chlorella A99 is more advanced than in

Chlorella NC64A, genome size and total number of genes do not differ much between the Treboux-

iophyceae (A99, NC64A and C169) (Figure 4B). By contrast, the parasitic algae Helicosporidium and

Auxochlorella have significantly smaller genome sizes and number of genes indicating extensive

genome reduction (Gao et al., 2014; Pombert et al., 2014). The apparently unchanged complexity

of the Chlorella A99 genome suggests a relatively early stage of this symbiotic partnership. Thus,

gene loss in metabolic pathways could occur as a first step of genome reduction in symbionts caused

by the adaptation to continuous nutrient supply from the host. Taken together, our study suggests

metabolic-codependency as the primary driving force in the evolution of symbiosis between Hydra

and Chlorella.
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Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain background
(Hydra viridissima A99)

Hydra viridissima A99 PMID: 16351895

Strain, strain background
(Chlorella sp. A99)

Chlorella sp. A99 PMID: 16351895 NCBI BioProject ID:
PRJNA412448

Strain, strain background
(Chlorella variabilis NC64A)

Chlorella variabilis NC64A Microbial Culture Collection
at the National Institute
for Environmental Studies

NIES-2541

Strain, strain background
(Coccomyxa subellipsoidea C-169)

Coccomyxa subellipsoidea
C-169

Microbial Culture Collection
at the National Institute
for Environmental Studies

NIES-2166

Strain, strain background
(Chlamydomonas reinhardtii)

Chlamydomonas reinhardtii Microbial Culture Collection
at the National Institute
for Environmental Studies

NIES-2235

Commercial assay or kit TruSeq DNA LT Sample Prep
Kit

Illumina FC-121–2001

Commercial assay or kit Nextera Mate Pair Sample
Preparation Kit

Illumina FC-132–1001

Commercial assay or kit Miseq reagent kit v3 Illumina MS-102–3003

Commercial assay or kit HiSeq SBS kit v4 Illumina FC-401–4003

Commercial assay or kit BigDye Terminator v3.1 Cycle
Sequencing Kit

Thermo Fisher Scientific 4337454

Commercial assay or kit 4 � 44K Hydra viridissima A99
Custom-Made Microarray

Agilent Technologies NCBI GEO Platform
ID: GPL23280

Commercial assay or kit GE Hybridization Kit and GE
Wash Pack

Agilent Technologies 5188–5242, 5188–5327

Commercial assay or kit High Sensitivity DNA Kit Agilent Technologies 5067–4626

Commercial assay or kit RNA6000 nano kit Agilent Technologies 5067–1511

Commercial assay or kit Low Input Quick Amp
Labeling Kit

Agilent Technologies 5190–2305

Commercial assay or kit PureLink RNA Mini Kit Thermo Fisher Scientific 12183018A

Commercial assay or kit Fermentas First Strand
cDNA Synthesis Kit

Thermo Fisher Scientific K1621

Chemical compound,
drug

Trizol reagent Thermo Fisher Scientific 15596026

Chemical compound,
drug

AmpliTaq Gold 360
Master Mix

Thermo Fisher Scientific 4398901

Chemical compound,
drug

ISOPLANT II Nippon Gene 316–04153

Chemical compound,
drug

GoTaq qPCR Master Mix Promega A6002

Chemical compound,
drug

KOD FX Neo TOYOBO KFX-201

Software, algorithm Feature Extraction
Software

Agilent Technologies RRID:SCR_014963

Software, algorithm Newbler 454 Life Sciences,
Roche Diagnostics

RRID:SCR_011916

Software, algorithm SSPACE PMID: 21149342 RRID:SCR_005056

Software, algorithm GapCloser PMID: 23587118 RRID:SCR_015026

Software, algorithm NCBI BLAST PMID: 2231712 RRID:SCR_004870

Software, algorithm CEGMA PMID: 17332020 RRID:SCR_015055

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Software, algorithm Augustus: Gene Prediction PMID: 16845043 RRID:SCR_008417

Software, algorithm Blast2GO PMID: 16081474 RRID:SCR_005828

Software, algorithm Hmmer PMID: 9918945 RRID:SCR_005305

Software, algorithm CLUSTALX2 PMID: 17846036 RRID:SCR_002909

Software, algorithm BioEdit Nucleic Acid Symposium
Series 41, 95–98

RRID:SCR_007361

Software, algorithm Njplot Biochimie 78, 364–369 NA

Software, algorithm OrthoFinder PMID: 26243257 NA

Biological materials and procedures
Experiments were carried out with the Australian Hydra viridissima strain A99, which was obtained

from Dr. Richard Campbell, Irvine. Polyps were maintained at 18˚C on a 12 hr light/dark cycle and

fed with Artemia two or three times a week. Aposymbiotic (algae free) polyps were obtained by

photobleaching using 5 mM DCMU (3-(3,4-dichlorophenyl)�1,1-dimethylurea) as described before

(Pardy, 1976; Habetha et al., 2003). Experiments were carried out with polyps starved for 3–6

days. Isolation of endodermal layer and ectodermal layer was performed as described by Kishimoto

et al. (Kishimoto et al., 1996). Symbiotic Chlorella were isolated as described before by Muscatine

and McAuley (Muscatine, 1983; McAuley, 1986). Chlorella variabilis NC64A (NIES-2541), Cocco-

myxa subellipsoidea C-169 (NIES-2166) and Chlamydomonas reinhardtii (NIES-2235) were obtained

from the Microbial Culture Collection at the National Institute for Environmental Studies (Tsukuba,

Japan).

Nucleic acid preparation
Total RNA of Hydra was extracted by use of the Trizol reagent and PureLink RNA Mini Kit (Thermo

Fisher Scientific) after lysis and removal of algae by centrifugation. The genomic DNA of green algae

was extracted using ISOPLANT II (Nippon Gene, Tokyo, Japan) following DNase I treatment to

degrade contaminant DNA. Quantity and quality of DNA and RNA were checked by NanoDrop

(Thermo Scientific Inc., Madison, USA) and BioAnalyzer (Agilent Technologies, Santa Clara, USA).

Microarray analysis
Total RNA for synthesis of cRNA targets was extracted from about 100 green hydra for each experi-

mental group. Experiments were carried out using three biological replicates. cRNA labeled with

cyanine-3 were synthesized from 400 ng total Hydra RNA using a Low Input Quick Amp Labeling Kit

for one color detection (Agilent Technologies). A set of fluorescently labeled cRNA targets was

employed in a hybridization reaction with 4 � 44K Custom-Made Hydra viridissima Microarray (Agi-

lent Technologies) contributing a total of 43,222 transcripts that was built by mRNA-seq data (NCBI

GEO Platform ID: GPL23280) (Bosch et al., 2009). Hybridization and washing were performed using

the GE Hybridization Kit and GE Wash Pack (Agilent Technologies) after which the arrays were

scanned on an Agilent Technologies G2565BA microarray scanner system with SureScan technology

following protocols according to the manufacturer’s instructions. The intensity of probes was

extracted from scanned microarray images using Feature Extraction 10.7 software (Agilent Technolo-

gies). All algorithms and parameters used in this analysis were used with default conditions. Back-

ground-subtracted signal-intensity values (gProcessedSignal) generated by the Feature Extraction

software were normalized using the 75th percentile signal intensity among the microarray. Those

genes differentially expressed between two samples were determined by average of fold change

(cut of >2.0) and Student’s t-test (p<0.1). The data series are accessible at NCBI GEO under acces-

sion number GSE97633.

Quantitative real time RT-PCR
Total RNA was extracted from 50 green hydra polyps for each biological replicate independently.

For reverse transcription of total RNA First Strand cDNA Synthesis Kit (Fermentas, Ontario, Canada)
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was used. Real-time PCR was performed using GoTaq qPCR Master Mix (Promega, Madison, USA)

and ABI Prism 7300 (Applied Biosystems, Foster City, USA). All qPCR experiments were performed

in duplicate with three biological replicates each. Values were normalized using the expression of

the tubulin alpha gene. Primers used for these experiments are listed in Supplementary file 6A.

Whole mount in situ hybridization
Expression patterns of specific Hydra genes were detected by whole mount in situ hybridization with

digoxigenin (DIG)-labelled RNA probes. Specimens were fixed in 4% paraformaldehyde. Hybridiza-

tion signal was visualized using anti-DIG antibodies conjugated to alkaline phosphatase and NBT/

BCIP staining solution (Roche). DIG-labeled sense probes (targeting the same sequences as the anti-

sense probes) were used as a control. Primers used for these experiments are listed in

Supplementary file 6B.

Genome sequencing and gene prediction
For genome sequencing of Chlorella sp. A99, Chlorella sp. A99 was isolated from H. viridissima A99

and genomic DNA was extracted. Paired-end library (insert size: 740 bp) and mate-pair libraries

(insert size: 2.2 and 15.2 kb) were made using Illumina TruSeq DNA LT Sample Prep Kit and Nextera

Mate Pair Sample Preparation Kit respectively (Illumina Inc., San Diego, USA), following the manufac-

turer’s protocols. Genome sequencing was performed using Illumina Miseq and Hiseq 2000 plat-

forms. Sequence reads were assembled using Newbler Assembler version 2.8 (Roche, Penzberg,

Germany) and subsequent scaffolding was performed by SSPACE (Boetzer et al., 2011). Gaps

inside the scaffolds were closed with the paired-end and mate-pair data using GapCloser of Short

Oligonucleotide Analysis Package (Luo et al., 2012). To overcome potential assembly errors arising

from tandem repeats, sequences that aligned to another sequence by more than 50% of the length

using blastn (1e-50) were removed from the assembly. The completeness of the genome was evalu-

ated using CEGMA v2.4 (Core Eukaryotic Genes Mapping Approach) based on mapping of the 248

most highly conserved core eukaryotic genes (CEGs) on the assembled genome (Parra et al., 2007).

The completeness of complete and partial CEGs in the A99 scaffolds was 80 and 88%, respectively.

The fraction of repetitive sequences was 12%. Gene model was predicted by AUGUSTUS 3.0.1 using

model parameters for NC64A (Stanke et al., 2006). This Whole Genome Shotgun project has been

deposited at DDBJ/ENA/GenBank under the accession PCFQ00000000 (BioProject ID:

PRJNA412448). Genome sequences and gene models are also accessible at the website of OIST

Marine Genomics Unit Genome Project (http://marinegenomics.oist.jp/chlorellaA99/viewer/info?

project_id=65).

Analysis of genes in Hydra viridissima and Chlorella
Annotation of transcriptome contigs and prediction of gene models was performed by use of

BLAST, Gene Ontology (Ashburner et al., 2000) and blast2go (Conesa et al., 2005). To examine

the conservation of H. viridissima contigs among metazoans, homology searches by blastx (evalue

1E-5) were performed using protein databases obtained from NCBI for Drosophila melanogaster

and Homo sapiens, from the JGI genome portal (http://genome.jgi.doe.gov/) for Branchiostoma

floridae, Nematostella vectensis, from Echinobase (http://www.echinobase.org/EchinoBase/) for

Strongylocentrotus pupuratus, from Compagen for Hydra magnipapillata, and from the OIST marine

genomics Genome browser ver.1.1 (http://marinegenomics.oist.jp/coral/viewer/info?project_id=3)

for Acropora digitifera.

For comparative analysis of gene models of Chlorella sp. A99 and other algae, domain searches

against the Pfam database (Pfam-A.hmm) were performed using HMMER (Eddy, 1998; Finn et al.,

2016), and ortholog gene grouping was done using OrthoFinder (Emms and Kelly, 2015). The

sequences of the reference genes and genomes were obtained from the database of the JGI

genome portal for Chlorella variabilis NC64A, Coccomyxa subellipsoidea C-169, Volvox carteri,

Micromonas pusilla, and Ostreococcus tauri, from NCBI for Auxenochlorella protothecoides 0710,

from Phytozome (http://phytozome.jgi.doe.gov/pz/portal.html) for Chlamydomonas reinhardtii, from

OIST Marine Genomics (http://marinegenomics.oist.jp/symb/viewer/info?project_id=21) for Symbio-

dinium minutum, Symbiodinium kawagutti genome, from Dinoflagellate Resources (http://web.

malab.cn/symka_new/) for Symbiodinium kawagutti and Reefgenomics (http://reefgenomics.org/)
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for Symbiodinium microadriaticum) (Merchant et al., 2007; Palenik et al., 2007; Worden et al.,

2009; Blanc et al., 2010; Prochnik et al., 2010; Blanc et al., 2012)

Nitrogen assimilation genes in Chlorella A99 were identified by orthologous gene groups and

reciprocal blast searches. The number of genes for nitrate assimilation genes, glutamine synthetase

and glutamate synthetase, and clustering of such genes were systematically reported by (Sanz-

Luque et al., 2015). We used these data as reference for searches of nitrogen assimilation genes,

and further nitrogen assimilation genes were searched by Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway (Kanehisa and Goto, 2000). JGI genome browsers of Chlorella variabilis

NC64A and Coccomyxa subellipsoidea C-169 were also used for retrieving genes and checking

gene order on the scaffolds.

Phylogenetic analysis
For a phylogenetic tree of chlorophyte green algae, the sequences of 18S rRNA gene, ITS1, 5.8S

rRNA gene, ITS2 and 28S rRNA gene were obtained from scaffold20 of Chlorella A99 genome

sequence, and from NCBI nucleotide database entries for Chlorella variabilis NC64A (FM205849.1),

Auxenochlorella protothecoides 0710 (NW_011934479.1), Coccomyxa subellipsoidea C169

(AGSI01000011.1), Volvox carteri f. nagariensis (NW_003307662.1), Chlamydomonas reinhardtii

(FR865576.1), Ostreococcus tauri (GQ426340.1) and Micromonas pusilla (FN562452.1). Multiple

alignments were produced with CLUSTALX (2.1) with gap trimming (Larkin et al., 2007). Sequences

of poor quality that did not well align were deleted using BioEdit (Hall, 1999). Phylogenetic analyses

were performed using the Neighbor-Joining method by CLUSTALX with the default parameters

(1000 bootstrap tests and 111 seeds). Representative phylogenetic trees were drawn by using NJ

plot (Perrière and Gouy, 1996).

PCR amplification of nitrate assimilation genes in green algae
Primers were designed based on the conserved region of the NRT2 gene, NiR and NR genes (posi-

tive control) identified by comparison of genes from Chlorella variabilis NC64A (NC64A), Coccomyxa

subellipsoidea C169 (C169), and Chlamydomonas reinhardtii (Cr) which belongs to Chlorophyceae

class of green algae. Primers for NAR2 could not be designed because of insufficient conservation.

As positive controls, amplicons were produced for NR of all the green algae examined and of NRT2

and NiR from NC64A, C169 and Cr, after which their sequences were checked. KOD FX Neo

(TOYOBO, Tokyo, Japan) was used under the following conditions: an initial denaturation phase

(94˚C for 120 s) followed by 36 cycles of (98˚C for 30 s, 69˚C for 100 s) for NiR, (98˚C for 30 s, 58˚C
for 30 s and 68˚C for 210 s) for NRT2 and (98˚C for 30 s, 59˚C for 30 s and 68˚C for 60 s) for NR. In

each case, 10 ng gDNA was used as a template. The primers used are described in

Supplementary file 6C. PCR products were sequenced to confirm amplification of the target genes

using ABI PRISM 3100 Genetic Analyzer (Thermo Fisher Scientific Inc., Madison, USA) using BigDye

Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific).

In vitro culture of algae
To isolate symbiotic algae, polyps were quickly homogenized in 0.25% sodium dodecyl sulfate (SDS)

solution and centrifuged at 3000 g for 1 min. The pellet was resuspended in 0.05% SDS and centri-

fuged at 500 g for 5 min. Isolated A99, NC64A and C169 were washed by sterilized Bold Basal

Medium (Bischoff and Bold, 1963) modified by the addition of 0.5% glucose, 1.2 mg/L vitamine B1

(Thiaminhydrochloride), 0.01 mg/L vitamine B12 (Cyanocobalamin) (Supplementary file 7) and incu-

bated for two days in modified Bold Basal Medium with 50 mg/l ampicillin and streptomycin. The

algae were cultivated in 5 ml of modified Bold Basal Medium (BBM) with the same amount of nitro-

gen (2.9 mM NaNO3, NH4Cl, glutamine or 426 mg/l casamino acids) and 5 mg/l Carbendazim (anti-

fungal) with fluorescent illumination (12 hr light, 12 hr dark) at 20˚C. Mean numbers of algae per ml

were calculated from three tubes enumerated at 4, 8, and 12 days after inoculation with 106 cell/sml

using a hemocytometer. After cultivation, gDNA was isolated from the A99 cultured in Gln-contain-

ing BBM and casamino acid-containing BBM and A99 was isolated from green hydra directly. A par-

tial genomic region of the 18S rRNA gene was amplified by PCR and sequenced to confirm absence

of contamination by other algae. PCR was performed using AmpliTaq Gold (Thermo Fisher
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Scientific). Sequencing was performed as described above. The primers used are described in

Supplementary file 6D.
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