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Abstract Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs);

however, most loci are located in gene-distal non-coding regions and their target genes are not

known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human

induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a

resource for identifying and prioritizing the functional targets of CVD associations. We validate

these maps by demonstrating that promoters preferentially contact distal sequences enriched for

tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with

dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated

SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not

involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the

importance of considering long-range chromatin interactions when interpreting functional targets

of disease loci.

DOI: https://doi.org/10.7554/eLife.35788.001

Introduction
A major goal in human genetics research is to understand genetic contributions to complex diseases,

specifically the molecular mechanisms by which common DNA variants impact disease etiology.

Most genome-wide association studies (GWAS) implicate non-coding variants that are far from

genes, complicating interpretation of their mode of action and correct identification of the target

gene (Maurano et al., 2012). Mounting evidence suggests that disease variants disrupt the function

of cis-acting regulatory elements, such as enhancers, which in turn affects expression of the specific

gene or genes that are functional targets of these elements (Wright et al., 2010; Musunuru et al.,

2010; Cowper-Sal lari et al., 2012; Smemo et al., 2014; Claussnitzer et al., 2015). However,

because cis-acting regulatory elements can be located kilobases (kb) away from their target gene(s),

identifying the true functional targets of regulatory elements remains challenging (Smemo et al.,

2014).

Chromosome conformation capture techniques such as Hi-C (Lieberman-Aiden et al., 2009)

enable the genome-wide mapping of long-range chromatin contacts and therefore represent a

promising strategy to identify distal gene targets of disease-associated genetic variants. Recently,

Hi-C maps have been generated in numerous human cell types including embryonic stem cells and

early embryonic lineages (Dixon et al., 2012, 2015), immune cells (Rao et al., 2014), fibroblasts

(Jin et al., 2013) and other primary tissue types (Schmitt et al., 2016). However, despite the increas-

ing abundance of Hi-C maps, most datasets are of limited resolution (>40 kb) and do not precisely

identify the genomic regions in contact with gene promoters.
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More recently, promoter capture Hi-C (PCHi-C) was developed which greatly increases the power

to detect interactions involving promoter sequences (Schoenfelder et al., 2015; Mifsud et al.,

2015). PCHi-C in different cell types identified thousands of enhancer-promoter contacts and

revealed extensive differences in promoter architecture between cell types and throughout differen-

tiation (Schoenfelder et al., 2015; Mifsud et al., 2015; Javierre et al., 2016; Freire-

Pritchett et al., 2017; Rubin et al., 2017; Siersbæk et al., 2017). These studies collectively demon-

strated that genome architecture reflects cell identity, suggesting that disease-relevant cell types are

critical for successful interrogation of the gene regulatory mechanisms of disease loci.

In support of this notion, several recent studies utilized high-resolution promoter interaction

maps to identify tissue-specific target genes of GWAS associations. Javierre et al. generated pro-

moter capture Hi-C data in 17 primary human blood cell types and identified 2604 potentially causal

genes for immune- and blood-related disorders, including many genes with unannotated roles in

those diseases (Javierre et al., 2016). Similarly, Mumbach et al. interrogated GWAS SNPs associ-

ated with autoimmune diseases using HiChIP where they identified ~10,000 promoter-enhancer

interactions that linked several hundred SNPs to target genes, most of which were not the nearest

gene (Mumbach et al., 2017). Importantly, both studies reported cell-type specificity of SNP-target

gene interactions.

Cardiovascular diseases, including cardiac arrhythmia, heart failure, and myocardial infarction,

continue to be the leading cause of death world-wide. Over 50 GWAS have been conducted for

eLife digest Our genomes contain around 20,000 different genes that code for instructions to

create proteins and other important molecules. When changes, or mutations, occur within these

genes, malfunctioning proteins that are damaging to the cell may be produced. Researchers of

human genetics have tried to spot the genetic mutations that are associated with illnesses, for

example heart diseases. However, they found that most of these mutations are actually located

outside of genes, in the ‘non-coding’ areas that make up the majority of our genome. These

mutations do not modify proteins directly, which makes it challenging to understand how they may

be related to heart conditions.

One possibility is that the genetic changes affect regions called enhancers, which control where,

when and how much a gene is turned on by physically interacting with it. Mutations in enhancers

could lead to a gene producing too much or too little of a protein, which might create problems in

the cell. Yet, it is difficult to match an enhancer with the gene or genes it controls. One reason is

that a non-coding region can influence a gene placed far away on the DNA strand. Indeed, the long

DNA molecule precisely folds in on itself to fit inside its compartment in the cell, which can bring

together distant sequences.

Montefiori et al. take over 500 non-coding areas, which can carry mutations associated with heart

diseases, and use a technique called Hi-C to try to identify which genes these regions may control.

The tool can model the 3D organization of the genome, and it was further modified to capture only

the regions of the genome that contain genes, and the DNA sequences that interact with them, in

human heart cells.

This helped to create a 3D map of 347 genes which come in contact with the non-coding areas

that carry mutations associated with heart diseases. In fact, deleting those genes often causes heart

disorders in mice.

In addition, Montefiori et al. reveal that 90% of the non-coding regions examined were

influencing genes that were far away. This shows that, despite a common assumption, enhancers

often do not regulate the coding sequences they are nearest to on the DNA strand.

Pinpointing the genes regulated by the non-coding regions involved in cardiovascular diseases

could lead to new ways of treating or preventing these conditions. The 3D map created by

Montefiori et al. may also help to visualize how the genetic information is organized in heart cells.

This will contribute to the current effort to understand the role of the 3D structure of the genome,

especially in different cell types.

DOI: https://doi.org/10.7554/eLife.35788.002
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these specific cardiovascular phenotypes alone, with more than 500 loci implicated in cardiovascular

disease risk (NHGRI GWAS catalog, https://www.ebi.ac.uk/gwas/), most of which map to non-coding

genomic regions. To begin to dissect the molecular mechanisms by which genetic variants contribute

to CVD risk, a comprehensive gene regulatory map of human cardiac cells is required. Here, we

present high-resolution promoter interaction maps of human iPSCs and iPSC-derived cardiomyo-

cytes (CMs). Using PCHi-C, we identified hundreds of thousands of promoter interactions in each

cell type. We demonstrate the physiological relevance of these datasets by functionally interrogating

the relationship between gene expression and long-range promoter interactions, and demonstrate

the utility of long-range chromatin interaction data to resolve the functional targets of disease-asso-

ciated loci.

Results

iPSC-derived cardiomyocytes provide an effective model to study the
architecture of CVD genetics
We used iPSC-derived CMs (Burridge et al., 2014) as a model to study cardiovascular gene regula-

tion and disease genetics. The CMs generated in this study were 86–94% pure based on cardiac Tro-

ponin T protein expression and exhibited spontaneous, uniform beating (Figure 1—figure

supplement 1A, Video 1). To demonstrate that iPSCs and CMs recapitulate transcriptional and epi-

genetic profiles of matched primary cells, we conducted RNA-seq and ChIP-seq for the active

enhancer mark H3K27ac in both cell types and compared these data with similar cell types from the

Epigenome Roadmap Project (Kundaje et al., 2015). RNA-seq profiles of iPSCs clustered tightly

with H1 embryonic stem cells, whereas CMs clustered with both left ventricle (LV) and fetal heart

(FH) profiles (Figure 1—figure supplement 1B). Furthermore, we observed that matched cell types

exhibited three-fold greater overlap in the number of promoter-distal H3K27ac ChIP-seq peaks than

non-matched cell types (Figure 1—figure supplement 1C,D), indicating that both iPSCs and CMs

recapitulate tissue-specific epigenetic states of human stem cells and primary cardiomyocytes,

respectively.

To further validate our system, we analyzed differentially expressed genes between iPSCs and

CMs. Among the top 10% of over-expressed genes in CMs were genes directly related to cardiac

function including essential cardiac transcription factors (GATA4, MEIS1, TBX5, and TBX20) and dif-

ferentiation products (TNNT2, MYH7B, MYL7, ACTN2, NPPA, HCN4, and RYR2) (fold-change >1.5,

Padj <0.05, Figure 1—figure supplement 2A–C). Gene Ontology (GO) enrichment analysis for genes

over-expressed in CMs relative to iPSCs further confirmed the cardiac-specific phenotypes of these

cells with top terms relating to the development of the cardiac conduction system and cardiac mus-

cle cell contraction (Figure 1—figure supplement 2D).

Promoter-capture Hi-C identifies distal regulatory elements in iPSCs
and CMs

To comprehensively map long-range regulatory

elements in iPSCs and CMs, we performed in-

situ Hi-C (Rao et al., 2014) in triplicate iPSC-CM

differentiations; importantly, we used the four-

cutter restriction enzyme MboI which generates

ligation fragments with an average size of 422

bp, enabling enhancer-level resolution of pro-

moter contacts. We enriched iPSC and CM in

situ Hi-C libraries for promoter interactions

through hybridization with a set of 77,476 bioti-

nylated RNA probes (‘baits’) targeting 22,600

human RefSeq protein-coding promoters (see

Materials and methods) and sequenced each

library to an average depth of ~413 million (M)

paired-end reads. After removing duplicates and

read-pairs that did not map to a bait, we

Video 1. Video of iPSC-derived cardiomyocytes

exhibiting spontaneous beating at day 20 of the

differentiation (day of cell harvesting).

DOI: https://doi.org/10.7554/eLife.35788.007
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obtained an average of 31M and 41M read-pairs per replicate for iPSC and CM, respectively. We

used CHiCAGO (Cairns et al., 2016), a computational pipeline which accounts for bias from the

sequence capture, to identify significant interactions and further filtered for those significant in at

least two out of three replicates (see Materials and methods). Finally, we exclusively focused on

interactions that were separated by a distance of at least 10 kb. This criterion addresses the high fre-

quency of close-proximity ligation evets in Hi-C data, which are difficult to distinguish as random

Brownian contacts or functional chromatin interactions (Cairns et al., 2016). In total, we identified

350,062 promoter interactions in iPSCs and 401,098 in CMs. A large proportion (~55%) of interac-

tions were shared between the two cell types, indicating that even at high resolution many long-

range interactions are stable across cell types (Figure 1A). Approximately 20% of all interactions

were between two promoters, demonstrating the high connectivity between genes and supporting

the recently suggested role of promoters acting as regulatory inputs for distal genes (Dao et al.,

2017; Diao et al., 2017) (Figure 1B). Most interactions were promoter-distal, with a median of ~170

kb between the promoter and the distal-interacting region (Figure 1C).

To compare the PCHi-C maps with known features of genome organization, we sequenced our

pre-capture Hi-C libraries to an average depth of 665M reads per cell type and identified topologi-

cally associating domains (TADs) with TopDom (see Materials and methods). TADs are organizational

units of chromosomes defined by <1 megabase (Mb) genomic blocks that exhibit high self-interact-

ing frequencies with a very low interaction frequency across TAD boundaries (Dixon et al., 2012;

Nora et al., 2012). Notably, this organization is thought to constrain the activity of cis-regulatory

elements to target genes within the same TAD, as disruption of TAD boundaries has been shown to

lead to aberrant activation of genes in neighboring TADs (Nora et al., 2012; Lupiáñez et al., 2015;

Franke et al., 2016; Symmons et al., 2016; Tsujimura et al., 2015). We found that the majority of

PCHi-C interactions occurred within TADs (73 and 77% in iPSCs and CMs, respectively; Figure 1D

and Figure 1—figure supplement 3A). TAD-crossing interactions (‘inter-TAD’) contained propor-

tionally more promoter-promoter interactions than intra-TAD interactions, and were more likely to

overlap promoter-distal CTCF sites; however, they were similarly enriched for looping to distal

H3K27ac sites, a mark of active chromatin (Figure 1—figure supplement 3B–D). Inter-TAD interac-

tions had slightly lower CHiCAGO scores, reflecting a lower number of reads supporting these inter-

actions, and spanned greater genomic distances than intra-TAD interactions (Figure 1—figure

supplement 3E,F). Additionally, promoters with inter-TAD interactions were preferentially located

close to TAD boundaries (Figure 1—figure supplement 3G) and had higher expression levels com-

pared to promoters with intra-TAD interactions, particularly in CMs (Figure 1—figure supplement

3H). These observations are consistent with previous studies which demonstrated that highly

expressed genes, specifically housekeeping genes, are enriched at TAD boundaries (Dixon et al.,

2012).

To illustrate the utility of high-resolution PCHi-C interaction maps, we highlight the GATA4 locus

in Figure 1D and E. GATA4 is a master regulator of heart development (Watt et al., 2004;

Pikkarainen et al., 2004) and the GATA4 gene is located in a TAD structure that is relatively stable

between iPSCs and CMs (Figure 1D). However, PCHi-C identified increased interaction frequencies

between the GATA4 promoter and several H3K27ac-marked regions, including four in vivo validated

heart enhancers from the Vista enhancer browser (Visel et al., 2007), specifically in CMs and coinci-

dent with strong up-regulation of GATA4 (Figure 1—figure supplement 2C). Although TAD-based

analyses help define a gene’s cis-regulatory landscape, high-resolution promoter interaction data

provides the resolution necessary to precisely map enhancer-promoter interactions in the context of

cellular differentiation.

To validate the CM interaction map as a resource for cardiovascular disease genetics we next

extensively characterized several important aspects of genetic architecture in CMs. We compared

CMs with iPSCs in each analysis as a measure of cell-type specificity. These analyses serve as bench-

marks that build on established features of genome organization and aid interpretations of the roles

that long range interactions play in gene regulation.

Promoter interactions are enriched for tissue-specific transcription
factor motifs
Distal enhancers activate target genes through DNA looping, a mechanism that enables distally

bound transcription factors to contact the transcription machinery of target promoters

Montefiori et al. eLife 2018;7:e35788. DOI: https://doi.org/10.7554/eLife.35788 4 of 35

Tools and resources Chromosomes and Gene Expression Human Biology and Medicine

https://doi.org/10.7554/eLife.35788


Figure 1. General features of promoter interactions. (A) Venn diagram displaying the number of cell-type-specific and shared promoter interactions in

each cell type. (B) Proportion of interactions in each distance category: promoter (P)-promoter (both interacting ends overlap a transcription start site

(TSS)); P-proximal (non-promoter end overlaps captured region but not the TSS); P-distal (non-promoter end is outside of captured region). Note that

all promoter interactions are separated by at least 10 kb. (C) Distribution of the distances spanning each interaction in iPSCs and CMs. The red line

Figure 1 continued on next page
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(Pennacchio et al., 2013; Miele and Dekker, 2008; Deng et al., 2012). To assess whether this fea-

ture of gene regulation was reflected in the iPSC and CM interactions, we conducted motif analysis

using HOMER (Heinz et al., 2010) on the set of promoter-distal interacting sequences in each cell

type. We initially focused on interactions for genes differentially expressed between iPSCs and CMs

(fold-change >1.5, Padj <0.05). We identified CTCF as the most enriched motif in each case

(Figure 2A,B), consistent with the known role of this factor in mediating long-range genomic interac-

tions (Phillips and Corces, 2009; Phillips-Cremins et al., 2013; Nora et al., 2017). Among the other

top motifs, we identified the pluripotency factor motifs OCT4-SOX2-TCF-NANOG (OSN) and SOX2

as preferentially enriched in distal sequences looping to genes over-expressed in iPSCs (Figure 2A,

C), whereas top motifs in distal sequences looping to genes over-expressed in CMs included TBX20,

ESRRB and MEIS1 (Figure 2B,C). TBX20 and MEIS1 transcription factors are important regulators of

heart development and function (Cai et al., 2005; Sakabe et al., 2012; Mahmoud et al., 2013) and

ESRRB was previously identified as a potential binding partner of TBX20 in adult mouse cardiomyo-

cytes (Shen et al., 2011). We also observed that distal interactions unique to either iPSCs or CMs

were similarly enriched for tissue-specific transcription factor motifs (Figure 2D). In line with a recent

report that AP-1 contributes to dynamic loop formation during macrophage development

(Phanstiel et al., 2017), both iPSC- and CM-specific interactions were enriched for AP-1 motifs

(Figure 2D), suggesting that AP-1 transcription factors may represent a previously unrecognized

genome organizing complex.

Long-range promoter interactions are enriched for active cis-regulatory
elements and correspond to gene expression dynamics
Functionally active cis-regulatory elements are characterized by the presence of specific histone

modifications; active enhancers are generally associated with H3K4me1 and H3K27ac

(Creyghton et al., 2010; Heintzman et al., 2009), whereas inactive (e.g. poised or silenced) ele-

ments are often associated with H3K27me3 (Rada-Iglesias et al., 2011; Erceg et al., 2017). In sup-

port of the gene-regulatory function of long-range interactions, we found that the promoter-distal

MboI fragments involved in significant promoter interactions were enriched for these three histone

modifications in both iPSCs and CMs (Figure 3A–C). When promoters were grouped by expression

level, we observed that this enrichment increased with increasing expression for H3K27ac and

H3K4me1, and decreased with increasing expression for H3K27me3, consistent with an additive

nature of enhancer-promoter interactions (Schoenfelder et al., 2015; Javierre et al., 2016), and val-

idating that PCHi-C enriches for likely functional long-range chromatin contacts.

A strong correlation (Pearson correlation coefficient r > 0.7) between the degree of histone modi-

fications and gene expression was first reported nearly 10 years ago (Karlić et al., 2010); however,

that analysis only considered histone modifications within 2 kb of promoters. To understand whether

Figure 1 continued

depicts the median (170 kb in iPSCs, 164 kb in CMs); the black line depicts the mean (208 kb in iPSCs, 206 kb in CMs). (D) A ~ 2 Mb region of

chromosome 8 encompassing the GATA4 gene is shown along with pre-capture (whole genome) Hi-C interaction maps at 40 kb resolution for iPSCs

(top) and CMs (bottom). TADs called with TopDom are shown as colored bars (median TAD size = 640 kb in both cell types, mean TAD size = 742 kb in

iPSCs and 743 kb in CMs) and significant PCHi-C interactions as colored arcs. (E) Zoomed-in view of the GATA4 locus (promoter highlighted in yellow)

in iPSCs (top) and CMs (bottom) along with corresponding RNA-seq data generated as part of this study, and ChIP-seq data for H3K27ac, H3K4me1,

H3K27me3 and CTCF from the Epigenome Roadmap Project/ENCODE (H1 and left ventricle for iPSC and CM, respectively). Filtered GATA4 read

counts used by CHiCAGO are displayed in blue with the corresponding significant interactions shown as arcs. For clarity, only GATA4 interactions are

shown. Gray highlighted regions show interactions overlapping in vivo validated heart enhancers (pink boxes), with representative E11.5 embryos for

each enhancer element (Visel et al., 2007). Red arrowhead points to the heart.

DOI: https://doi.org/10.7554/eLife.35788.003

The following figure supplements are available for figure 1:

Figure supplement 1. Quality control of iPSC-CMs.

DOI: https://doi.org/10.7554/eLife.35788.004

Figure supplement 2. Analysis of RNA-seq in iPSCs and iPSC-CMs.

DOI: https://doi.org/10.7554/eLife.35788.005

Figure supplement 3. Analysis of PCHi-C interactions in the context of TADs.

DOI: https://doi.org/10.7554/eLife.35788.006
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this relationship extends beyond promoter-proximal regions, we correlated the number of histone

ChIP-seq peaks within 300 kb of promoters with the promoter’s expression level (Figure 3—figure

supplement 1A,B). H3K27ac and H3K4me1 both positively correlated with expression level (Spear-

man’s � = 0.22 and 0.16, respectively in iPSC and � = 0.23 and 0.24, respectively in CMs, p<2.2�16);

in contrast, H3K27me3 negatively correlated with expression level in CMs (Spearman’s � = �0.20,

p<2.2�16); however, this relationship was not present in iPSCs (Spearman’s � = 0.02, p=0.06).

Although moderate, these correlations could partially explain why higher expressed genes show

stronger enrichment for promoter interactions overlapping histone peaks when using a genome-

wide background model (see Materials and methods), and lends support to the notion that active

genes are located in generally active genomic environments (Stevens et al., 2017; Gilbert et al.,

2004).

Figure 2. Transcription factor motif enrichment in distal interacting regions. (A,B) Selected transcription factor (TF) motifs identified using HOMER in

the promoter-distal interacting sequences for all over-expressed genes in (A) iPSCs and (B) CMs (fold change > 1.5, Padj < 0.05). ‘% sites’ refers to the

percent of distal interactions overlapping the motif; rank is based on p-value significance. (C) To compare motif ranks across gene sets, the inverse of

the rank is plotted for selected motifs identified in distal interactions from over- or under-expressed genes in both iPSCs and CMs. (D) The top 50

motifs identified in cell-type-specific interactions. OSN, OCT4-SOX2-TCF-NANOG motif.

DOI: https://doi.org/10.7554/eLife.35788.008
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Figure 3. Enrichment of promoter interactions to distal regulatory features. (A,B) Proportion of promoter-distal interactions overlapping a histone ChIP-

seq peak compared to random control MboI fragments (see Materials and methods). iPSC interactions were overlapped with H1 ESC ChIP-seq data;

CM interactions were overlapped with left ventricle ChIP-seq data from the Epigenome Roadmap Project (Supplementary file 10). (C) Fold enrichment

of the data presented in (A) and (B). (D) Fold enrichment of promoter-distal interactions based on the expression level of the promoter. Promoters were

Figure 3 continued on next page
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We next investigated the relationship between cell-type-specific interactions and enrichment for

tissue-specific CTCF, H3K27ac, and H3K27me3 marks, hypothesizing that interactions unique to

iPSCs or CMs would be most enriched for tissue-specific chromatin features. Indeed, we observed

that cell-type-specific interactions preferentially involved H3K27ac peaks from the matched cell type,

and were either not enriched (iPSC) or depleted (CM) for H3K27ac marks that were specific to the

non-matched cell type (Figure 3E, middle panel). However, the strongest enrichment was for cell-

type-specific interactions to overlap chromatin features that were present in both cell types

(Figure 3E). Additionally, interactions that were shared between iPSCs and CMs were most enriched

for shared chromatin features. These results suggest that all interactions, whether shared or unique

to one cell type, preferentially contact regulatory regions that are active in both cell types, whereas

cell-type-specific interactions are not likely to occur in regions specifically marked in the non-

matched cell type.

An example of a gene that encompasses these observations is the atrial natriuretic peptide gene

NPPA (Figure 3F) which is specifically expressed in cells of the heart atrium and is upregulated in

CMs (Figure 1—figure supplement 2C). NPPA makes numerous cell-type-specific interactions to a

distal region that is only marked with active chromatin (H3K27ac and H3K4me1) in CMs; further-

more, functional characterization showed that this region corresponds to an in vivo enhancer recapit-

ulating NPPA’s endogenous expression in the developing heart (Visel et al., 2007). Taken together,

these results illuminate the complex relationship between long-range promoter interactions and

gene regulation and provide evidence that promoter architecture reflects cell-type-specific gene

expression.

Dynamic changes in genomic compartmentalization involve a subset of
cardiac-specific genes
As a final benchmark of our datasets, we analyzed large-scale differences in genome organization

between iPSCs and CMs. The first Hi-C studies revealed that the genome is organized in two major

compartments, A and B, that correspond to open and closed regions of chromosomes, respectively

(Lieberman-Aiden et al., 2009; Rao et al., 2014). Although most compartments are stable across

different cell types, some compartments switch states in a cell-type-specific manner which may

reflect important gene regulatory changes (Dixon et al., 2015). To assess whether capture Hi-C

data, which is more cost-effective for capturing promoter-centered interactions, is able to identify A/

B compartments, we compared our capture Hi-C data with pre-capture, genome-wide Hi-C libraries.

A/B compartments identified using HOMER (Heinz et al., 2010) were remarkably similar in the

whole-genome and PCHi-C datasets (97% correspondence, Figure 4A, top panel, and Figure 4—

figure supplements 1 and 2), demonstrating that PCHi-C data contains sufficient information to

identify broadly active and inactive regions of the genome. As an example, we highlight a 10 Mb

region on chromosome 4 containing the CAMK2D gene locus (Figure 4A). Compartments were rela-

tively stable across this region in iPSCs and CMs; however, the CAMK2D gene itself was located in a

dynamic compartment that switched from inactive in iPSCs to active in CMs. Correspondingly, this

gene was highly upregulated during differentiation to CMs (Figure 4A, inset).

We observed this effect on a global level, as genes located in A compartments were expressed at

significantly higher levels than genes located in the B compartments in both iPSCs and CMs

(Figure 4B). Additionally, genes that switched A/B compartments between cell types were corre-

spondingly up- or down-regulated (Figure 4C). GO analysis of the 1008 genes that switched from B

to A compartments during iPSC-CM differentiation revealed enrichment for terms such as

Figure 3 continued

grouped into five bins according to their average TPM values. Dashed line indicates no enrichment. (E) Fold enrichment of cell-type-specific and shared

interactions (columns) to tissue-specific and shared chromatin features (rows). (F) Example of the NPPA gene in iPSCs (top) and CMs (bottom). Gray box

highlights CM-specific interactions to CM-specific chromatin marks and an in vivo heart enhancer (Visel et al., 2007). For clarity, only interactions for

NPPA are shown. *p<0.00001, #p=0.0017, Z-test.

DOI: https://doi.org/10.7554/eLife.35788.009

The following figure supplement is available for figure 3:

Figure supplement 1. Correlation between the number of histone ChIP-seq peaks within 300 kb of promoters and gene expression level.

DOI: https://doi.org/10.7554/eLife.35788.010
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Figure 4. A/B compartment switching corresponds to activation of tissue-specific genes. (A) Top panel: 10 Mb region on chromosome four showing A

(green) and B (blue) compartments based on the first principle component analysis calculated by HOMER (Heinz et al., 2010) of the whole-genome

Hi-C and capture Hi-C interaction data. Bottom panel: zoomed in on the CAMK2D locus; only capture Hi-C A/B compartments shown. Inset: expression

level of CAMK2D in iPSCs and CMs across the three replicates. (B) Expression level (TPM) of genes located in the A (green) or B (blue) compartment in

Figure 4 continued on next page
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‘cardiovascular system development’ and ‘heart contraction’ (Figure 4D, Supplementary file 5).

Importantly, these genes were identified based solely on their location in a dynamic genomic com-

partment and not from gene expression data. GO analysis for genes that switched from A to B com-

partments during iPSC-CM differentiation related to non-cardiac processes, such as skin

development, epithelial cell differentiation and sex determination (Figure 4—figure supplement 3,

Supplementary file 5 and 6). These data show that PCHi-C accurately captured tissue-specific inter-

actions and indicate that compartmentalization of genes in spatially regulated regions of the nucleus

may be one mechanism to ensure tissue-specific gene expression (Dixon et al., 2015). In summary,

our analyses demonstrated that CM promoter interactions recapitulate key features of cardiac gene

regulation and function, validating the CM map as an important tool to investigate CVD genetics.

CM promoter interactions link GWAS SNPs to target genes
A particularly relevant application of high-resolution promoter interaction maps is to guide post-

GWAS studies by identifying the target genes of disease-associated variants. We employed this

approach to link GWAS SNPs for several major cardiovascular diseases to their target gene(s) using

the CM interaction map. We compiled 524 lead SNPs from the NHGRI database (https://www.ebi.

ac.uk/gwas/) for three important classes of CVDs: cardiac arrhythmias, heart failure, and myocardial

infarction (Table 1, Supplementary files 7 and 8). Because of linkage disequilibrium (LD) patterns,

the true causal SNP could be any SNP in high LD with the lead variant. Therefore, we expanded this

set of SNPs to include all variants in high LD (r2 >0.9, within 50 kb of lead SNP), increasing the num-

ber of putatively causal variants to 10,475 (hereafter called LD SNPs). We found that 1999 (19%) of

the LD SNPs were located in promoter-distal MboI fragments that interacted with the promoters of

Figure 4 continued

each replicate of iPSC (left) or CM (right). (C) Difference in expression level (log2 fold change relative to iPSCs) of genes switching compartments from

iPSC to CM or remaining in stable compartments. (D) Gene Ontology analysis of biological processes associated with genes switching from B to A

compartments during iPSC-CM differentiation. ***p<2.2 � 10�16, Wilcoxon rank-sum test.

DOI: https://doi.org/10.7554/eLife.35788.011

The following figure supplements are available for figure 4:

Figure supplement 1. Comparison of A/B compartments in Hi-C and PCHi-C.

DOI: https://doi.org/10.7554/eLife.35788.012

Figure supplement 2. Example of A/B compartments.

DOI: https://doi.org/10.7554/eLife.35788.013

Figure supplement 3. GO analysis on the genes switching from active A compartments in iPSCs to inactive B compartments in CMs.

DOI: https://doi.org/10.7554/eLife.35788.014

Table 1. Summary of the SNPs and target genes characterized in each disease class.

Summary values for each disease group are depicted along with the total number of GWAS, SNPs,

and target genes (‘Combined’ column). Tag SNPs were identified from the published GWAS in the

NHGRI-EBI database; SNPs in LD are the total number of non-promoter SNPs (including tag SNPs) in

LD (r2 > 0.9) with the tag SNPs in each disease group; SNPs looping to genes are the SNPs in LD that

are in a distal promoter interaction; Target genes are all genes with an interaction to a promoter-dis-

tal SNP. See Supplementary file 8 for a complete list of all GWAS, coordinates of each SNP and its

assigned target gene, expression level in iPSC and CM, and mouse knock-out phenotype where

available.

Arrhythmia Myocardial infarction Heart failure Combined

Number of studies 30 11 11 50

Tag SNPs 358 86 80 524

SNPs in LD 6555 1822 2098 10,475

SNPs looping to genes 1152 357 490 1999

Target genes 237 72 53 347

DOI: https://doi.org/10.7554/eLife.35788.016
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347 genes in CMs (Supplementary file 8), hereafter referred to as target genes. The majority (89%)

of LD SNP-target gene pairs were located within the same TAD, with a median distance of 185 kb

between each SNP-target gene pair (Figure 5A). Importantly, 90.4% of SNP-target gene interactions

skipped at least one gene promoter and 42% of SNPs interacted with at least two different pro-

moters (Figure 5B).

To confirm that the CM PCHi-C interactions linked SNPs to CVD-relevant target genes, we per-

formed GO analysis and found that target genes were highly and specifically enriched for biological

processes related to cardiac function, such as membrane repolarization and cardiac conduction

(Figure 5C, left panel and Supplementary file 5 and 6). As a control, we used iPSC interactions to

link the same SNPs to target genes and observed a completely different set of unrelated biological

processes for these genes (Figure 5C, right panel). To further characterize the biological relevance

of target genes, we mined mouse knock-out data from the Mouse Genome Informatics (MGI) data-

base (Blake et al., 2017), which revealed that a statistically significant number of target genes

resulted in a cardiovascular phenotype when knocked-out in the mouse (78 genes (22.4%), p=1 �

10�5, Figure 5D). Finally, we examined expression quantitative trait loci (eQTL) data from human

left ventricle (LV) tissue obtained as part of the Genotype-Tissue Expresion (GTEx) Project

(Carithers et al., 2015) and found that of the 1999 LD SNPs in interactions, 410 (20.5%) corre-

sponded to LV eQTLs; in comparison, only 12.2% of the full set of LD SNPs corresponded to LV

eQTLs (p<0.00001, Figure 5E). We next assessed whether eQTLs loop to their associated gene. For

this analysis, we considered the full set of LV eQTLs, as the 410 LD SNP eQTLs represent too small

of a proportion of the full set (<0.1% of all LV eQTLs) to fully ascertain significance. On a genome-

wide level, LV eQTLs in promoter-distal interactions were significantly more likely to loop to their

associated gene than expected by chance (p<0.00001, Figure 5F, left panel). Importantly, this signif-

icance decreased when LV eQTLs were analyzed with iPSC promoter interactions (p=0.035,

Figure 5F, right panel). Taken together, these results indicate that CM promoter interactions iden-

tify a subset of disease-relevant SNPs most likely to be functional and support the use of the CM

map to assign distal CVD-associated SNPs to putative target genes.

Using gene expression as a metric for interpreting disease-relevance of
newly identified target genes
Based on an enrichment of target genes with known cardiac function, we next assessed whether

expression level is an informative metric to further prioritize functional follow-up studies. We exam-

ined the expression level of the 347 target genes and found that they were moderately over-

expressed in CMs compared to iPSCs (median log2 fold change = 1.08, mean log2 fold

change = 1.44, mean TPM values were 40.6 in iPSCs and 60.1 in CMs, p=0.12, Figure 6A and B).

Although not significant, this result reflects the enrichment of known cardiac-related genes that

interact with CVD loci. However, because a subset of target genes was over-expressed in iPSCs rela-

tive to CMs (Figure 6C), we predicted that gene expression level alone may be an insufficient metric

to gauge the relevance of target genes to CVD biology. Indeed, we found that 21 of the 78 target

genes (27%) that cause cardiovascular phenotypes when knocked-out in mice were overexpressed in

iPSCs compared to CMs (Supplementary file 8). This result indicates that putatively causal genes

may not appear as obvious candidates based solely on gene expression data.

To illustrate this point, we highlight two genes: TBX5, a gene directly linked to cardiac arrhythmia

(Figure 6D) (Smemo et al., 2012; Arnolds et al., 2012), and LITAF, a gene that, until recently, had

no obvious role in cardiac biology (Moshal et al., 2017) (Figure 6E). Both genes formed long-range

interactions to LD SNPs identified in arrhythmia GWAS, making both genes candidate functional tar-

gets of the GWAS associations. TBX5, which is over-expressed in CMs (Figure 6C), is the most likely

target gene of the LD SNPs nearby based on the interaction data but also because of its known role

in directing proper development of the cardiac conduction system. LITAF, on the other hand, was

over-expressed in iPSCs compared to CMs (Figure 6C) and was not known to contribute to cardiac

function until a recent study identified this gene as a regulator of cardiac excitation in zebrafish

hearts (Moshal et al., 2017).
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Figure 5. CM promoter interactions link CVD GWAS SNPs to target genes. (A) Distribution of genomic distances separating SNP-target gene

interactions (red line, median = 185 kb; black line, mean = 197 kb). (B) Pie chart showing the number of TSS’s skipped for each SNP-target gene

interaction (left) and the number of genes contacted by each SNP (right). (C) GO enrichment analysis for genes looping to LD SNPs using the CM

promoter interaction data (left panel) or the iPSC promoter interaction data (right panel). (D) Proportion of target genes that result in a cardiovascular

phenotype when knocked-out in the mouse (MGI database [Blake et al., 2017]), compared to a random control set. p-Value calculated with a Z-test.

(E) Proportion of GWAS LD SNPs that are eQTLs in left ventricle (LV) when considering either the full set of LD SNPs, or the subset that overlap CM

promoter interactions. p-Value calculated with Fisher’s exact test. (F) Proportion of LV eQTLs (genome-wide) that map within a promoter interaction for

the eQTL-associated gene (indicated by the red line). Random permutations were obtained by re-assigning each promoter’s set of interactions to a

new promoter and calculating the proportion of eQTLs in random interactions that interact with their eQTL-associated gene. Proportions only consider

eQTLs that overlap a promoter-distal interaction. P-values calculated with a Z-test.

DOI: https://doi.org/10.7554/eLife.35788.015
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Figure 6. Characterizing target genes based on expression level. (A) Log2 fold change of the expression level of target genes in CMs compared to

iPSCs (horizontal bar indicates median, 1.08; diamond indicates mean, 1.44). (B) Average TPM values of target genes in iPSCs and CMs (p=0.12,

Wilcoxon rank-sum test). Diamonds indicate the mean value (40.6 for iPSC, 60.1 for CM). (C) Comparison of average TPM values for target genes in

CMs and iPSCs. See Supplementary file 8 for full list of genes and TPM values. (D,E) Examples of genes looping to cardiac arrhythmia GWAS SNPs in

Figure 6 continued on next page
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CM promoter interactions are informative to cardiovascular
associations that do not directly involve cardiomyocytes
Because the three disease classes that we analyzed represent diverse pathologies, we predicted that

the target genes identified for each class individually may relate to different biological processes.

Specifically, we considered that cardiac arrhythmias – which directly result from defects in cardio-

myocytes specialized for electrical conduction – may uncover the most cardiac-relevant target genes

compared to heart failure and myocardial infarction, two CVDs that also involve non-cardiac systems.

When broken down into the respective disease classes, we confirmed that the majority of the GO

enrichment for cardiac terms was driven by the cardiac arrhythmia SNPs (Figure 7A), with terms

directly related to the cardiac conduction system. Myocardial infarction (Figure 7B) and heart failure

(Figure 7C) analyses uncovered a set of genes that were slightly enriched for regulation of growth

and morphogenesis, respectively.

Despite these seemingly non-specific processes, each set of target genes contained important

disease-relevant candidates. For example, one of the strongest associations for myocardial infarction

lies in-between the CELSR2 and PSRC1 genes on chromosome 1p13, but a careful screen of genes

whose expression was affected by the risk allele implicated the more distal SORT1 gene

(Musunuru et al., 2010). SORT1 encodes a sorting receptor that is expressed in many tissues and

has been shown to act in the liver to regulate cholesterol levels (Petersen et al., 1997;

Musunuru et al., 2010). Despite functioning in the liver, we identified multiple promoter interactions

between SORT1 and the myocardial infarction GWAS locus in CMs (Figure 7D), directly implicating

SORT1 as the target gene and lending further support to experimental validation of this locus as a

SORT1 enhancer (Musunuru et al., 2010). Additionally, the ACTA2 gene is located 220 kb away

from the heart failure GWAS locus proximal to the CH25H and LIPA genes on chromosome 10q21

(Smith et al., 2010) (Figure 7E). ACTA2 encodes the smooth muscle cell-specific actin protein and

mutations in this gene have been shown to cause coronary artery disease, among other vascular dis-

eases (Guo et al., 2009). Despite its location at a considerable distance from the GWAS association,

chromatin interactions provide an important level of evidence that ACTA2 is a putative causal gene

in the development of heart failure. Therefore, the CM interaction map is not only useful to interro-

gate diseases directly related to cardiomyocytes, as in the case of cardiac arrhythmias, but also aids

interpretation of target genes that may act in non-cardiac tissues.

Discussion
Incomplete understanding of long-range gene regulation is a major roadblock in the translation of

GWAS-associated loci to disease biology. Major challenges in this process include identifying puta-

tively causal variants mapping within regulatory elements and functionally connecting these regula-

tory elements to their target genes. To delineate gene-regulatory interactions between CVD-

associated SNPs and putative causal genes, we generated high-resolution maps of promoter interac-

tions in human iPSCs and iPSC-derived CMs. We demonstrated that promoters interact with a

diverse set of distal DNA elements in both cell types, including known enhancer sequences, which

reflect cell identity and correspond to tissue-specific gene expression. To demonstrate the utility of

the CM map, we linked 1,999 CVD-associated SNPs to putative causal target genes which identified

both validated and potentially novel genes important for cardiovascular disease biology. To validate

the biological relevance of our maps, we addressed several important features of long-range chro-

matin interactions in comparative analyses.

Figure 6 continued

CMs. (D) The TBX5 gene interacts with a functionally validated arrhythmia locus (Smemo et al., 2012). (E) The LITAF gene interacts with a locus

identified in (Arking et al., 2014). Yellow highlighted region indicates the promoter; gray box and zoom panel show the promoter-interacting

regions (pink boxes) overlapping arrhythmia SNPs. For clarity, only interactions for the indicated promoter are shown.

DOI: https://doi.org/10.7554/eLife.35788.017
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Figure 7. Relevance of CM promoter interactions for cardiac arrhythmia, myocardial infarction and heart failure. (A–C) Gene Ontology analysis for

target genes looping to (A) cardiac arrhythmia SNPs, (B) myocardial infarction SNPs, and (C) heart failure SNPs. (D) The SORT1 promoter loops to a

distal myocardial infarction locus (Musunuru et al., 2010). The rs12740374 SNP shown to disrupt a C/EBP binding site in (Musunuru et al., 2010) is

Figure 7 continued on next page
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Promoters contact distal regions enriched for tissue-specific
transcription factor motifs
Gene regulation by distant regulatory elements involves the bridging of linearly separated DNA

sequences, for example between a promoter and its distal enhancers, through chromatin looping

mechanisms (Spitz and Furlong, 2012). In support of this model, we report an enrichment of tissue-

defining transcription factor motifs in the distally interacting sequences of differentially expressed

promoters both for CMs and iPSCs, providing an important level of evidence to validate the func-

tional relevance of iPSC and CM interactions. One explanation for this enrichment is that our interac-

tion maps are high resolution. We generated Hi-C libraries with the 4 bp cutter MboI, which

generates fragments with an average size of 422 bp; this increased specificity of the captured region

likely leads to better resolution of the underlying enhancer sequence and, consequently, increased

power to detect short transcription factor binding motifs.

Influence of active and repressive promoter interactions on gene
expression level
The majority of capture Hi-C studies to date have reported that gene expression level correlates

with enrichment for various histone marks. We observed the same trend in our data, with highly

expressed genes exhibiting strong enrichment for looping to distal H3K4me1 and H3K27ac-marked

regions, and lowly expressed genes exhibiting strong enrichment for looping to H3K27me3-marked

regions. These data are consistent with a model in which the number of long-range interactions to

enhancers or repressors additively contributes to gene expression level (Schoenfelder et al., 2015;

Javierre et al., 2016). The forces that drive increased association between promoters and distal cis-

regulatory elements are not completely understood and have been topics of investigation in the

genome organization and chromatin biology fields for several years (Dekker and Mirny, 2016;

Calo and Wysocka, 2013). One possibility is that this increasing enrichment is driven by genomic

compartmentalization of active and inactive chromatin. We showed that a gene’s expression level

correlates with the number of histone ChIP-seq peaks within a large window (300 kb) surrounding

each promoter. Thus, highly expressed genes are more likely to contact active chromatin regions

compared to lowly expressed genes, corresponding to the observed increasing enrichment of con-

tacts and expression we and others have reported. This local increase in active or repressive chroma-

tin may be one driving force underlying the expression level-dependent increase in association

between promoters and cis-regulatory elements, akin to a phase separation-mediated model of

enhancer-promoter interactions (Hnisz et al., 2017).

A promoter interaction map for cardiovascular disease genetics
We demonstrated several ways in which promoter interaction data can be used to better understand

disease genetics, specifically addressing the major requirement for a high-resolution map of the

gene-regulatory network in human cardiomyocytes. Although iPSC-derived CMs are known to be

relatively immature and do not fully reflect the diverse structural and functional aspects of adult car-

diac cells (Gherghiceanu et al., 2011; Karakikes et al., 2015), the difficulty in obtaining pure sub-

populations of primary cardiomyocytes with high integrity necessitates the use of an in vitro system.

We showed that the CMs used in this study were highly pure and recapitulate known gene regula-

tory properties of primary cardiomyocytes. Because of this purity, we were able to integrate CVD-

associated SNPs with CM promoter interactions with high confidence, assigning nearly 20% of the

variants in high LD with these associations to 347 target genes.

Supporting the physiological relevance of CMs to the cardiac conduction system, we found that

target genes were most relevant for GWAS loci associated with cardiac arrhythmias, in line with pre-

vious findings in immune cells that many target gene interactions were unique to relevant immune

cell subtypes (Javierre et al., 2016; Mumbach et al., 2017). Our data also revealed that even for

Figure 7 continued

colored red. (E) The ACTA2 promoter loops to the 10q21 heart failure locus (Smith et al., 2010). Zoom plots depict the full interacting region

overlapping GWAS LD SNPs. For clarity, only interactions for the indicated gene are shown.
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diseases whose etiology involves cell types other than cardiomyocytes, such as myocardial infarction

and heart failure, we identified interactions involving loci associated with these diseases that recapit-

ulate the enhancer-promoter interactions in non-cardiac cell types. As an example, we showed that a

validated myocardial infarction locus interacts with the distal SORT1 promoter in CMs even though

this locus has been extensively characterized in the context of cholesterol metabolism in hepato-

cytes. Therefore, the promoter interactions we observe linking the disease locus to SORT1 may rep-

resent tissue-invariant genome architecture, likely reflecting that genome organization in general is

relatively stable (Dixon et al., 2015; Jin et al., 2013; Ghavi-Helm et al., 2014). While we advocate

the use of the CM map for investigating gene regulatory mechanisms of diseases related to cardio-

myocyte biology, we also emphasize that, where identified, any interaction between a promoter and

a putative disease-associated genomic region serves as an important level of evidence to prioritize

that gene for future follow-up studies.

Limitations of the PCHi-C maps
The PCHi-C technique holds great promise to identify with high resolution and throughput all gene

regulatory elements in any tissue or developmental stage of interest. However, due to technical and

biological limitations, there are important caveats to PCHi-C that should be considered when inter-

preting the iPSC or CM interaction data. The most important caveat is that there are likely to be

many false negatives, or ‘missing’ interactions. Although the capture step greatly enriches for pro-

moter-containing ligation fragments in a Hi-C library, the total landscape of promoter contacts in a

population of cells is still under-sampled, even with a sequencing depth of ~400M reads per repli-

cate conducted for this study. This is due to several factors, including the hybridization efficiency of

each bait, ability to design sufficient baits per promoter, and the transient nature of many regulatory

interactions. This latter issue is confounded by the distance-dependent effect on ligation frequency:

as the distance between two fragments increases, the read-depth required to robustly identify that

interaction also increases. The feasibility of deeper sequencing and modifications to computational

pipelines will continue to improve the coverage and resolution of Hi-C data.

Additionally, because the CHiCAGO program does not incorporate TAD boundaries into its back-

ground model, it may slightly underestimate the expected number of reads corresponding to intra-

TAD interactions which could lead to potential false positives. However, we note that there is a

strong correspondence between TADs called on pre-capture Hi-C data and PCHi-C interactions

identified with CHiCAGO (Figure 1—figure supplement 3A); this suggests that accounting for TAD

boundaries may only marginally improve our ability to identify significant interactions.

A final consideration is the interpretation of interactions involving inactive genes. Although most

regulatory elements are thought of as activating, it is possible that long-range interactions may also

contribute to gene silencing; this is supported by the observation that silent genes are enriched for

long-range interactions to H3K27me3 marked regions (Figure 3D). Alternatively, silent genes may

contact regulatory elements that are not active in the analyzed cell type or developmental stage;

these may represent ‘pre-formed’ loops between genes and their regulatory elements as character-

ized in Ghavi-Helm et al. (2014).

Despite these limitations, the data sets we provide here represent a highly enriched set

of ~350,000 and~400,000 promoter interactions in iPSC and CMs, respectively; although there are

likely missing interactions, the interactions that we did identify should be considered as very high

confidence, as they were independently identified in at least two biological replicates and show

strong signal of enrichment for known features of genome architecture and gene regulation. In con-

clusion, the promoter interaction maps we generated in this study represent important resources for

any investigation into the gene regulatory mechanisms underlying cardiovascular disease traits. The

list of candidate regulatory variants and their target genes may serve as an entry point for several

hypotheses related to CVD GWAS, and can be readily tested in experimental settings. To provide

both the iPSC and CM maps as an accessible resource, we have hosted the full set of data presented

in this study as a public track hub at the WashU EpiGenome Browser (Zhou et al., 2015), accessible

at the following link: http://epigenomegateway.wustl.edu/browser/?genome=hg19&publichub=

Lindsey. Additionally, we provide the significant PCHi-C interaction files used in all analyses in the

Supplementary Material (Supplementary files 1 and 2); these can be applied to future multi-omics

analyses of gene regulation and disease genetics.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line
(H. sapiens, Male)

H19101 iPSC 10.1101/gr.224436.117

Antibody Anti-acetyl Histone
H3 (Lys27)
(mouse monoclonal)

Wako Chemicals (USA) 306–34849 H3K27ac ChIP-seq

Antibody Anti-cardiac troponin T
(mouse monoclonal)

BD Biosciences 564767 CM flow cytometry

Chemical
compound, drug

ROCK Y-27632
dihydrochloride

Abcam ab120129, 10 mg iPSC tissue culture

Chemical
compound, drug

CHIR-99021
trihydrochloride

Tocris 4953 CM differentiation

Chemical
compound, drug

Wnt-C59 Tocris 5148 CM differentiation

Commercial
assay or kit

TruSeq RNA libarary
prep kit V2

Illumina RS-122–2001 RNA-seq

Commercial
assay or kit

NEBNext Multiplex
Oligos for Illumina

NEB E7335S Hi-C

Commercial
assay or kit

MEGAshortscript T7 Transcription Kit Thermo Fisher AM135 Probe generation

Sequence-based
reagent

Primer A IDT 50-CTGGGAATCGCACCAGCGTGT-30 Probe generation

Sequence-based
reagent

Primer B IDT 50-CGTGGATGAGGAGCCGCAGTG-30 Probe generation

Sequence-based
reagent

Primer A T7 IDT 5’-GGATTCTAATACGACTCACT
ATAGGGATCGCACCAGCGTGT-3’

Probe generation

Sequence-based
reagent

blocking primer P5 IDT 1016184 Hi-C capture

Sequence-based
reagent

blocking primer P7 IDT 1016186 Hi-C capture

Tissue culture of iPSCs
We used the Yoruban iPSC line 19101, kindly provided by the laboratory of Yoav Gilad. This iPSC

line was reprogrammed from lymphoblastoid cells as part of a previous study, where it was shown to

differentiate into all three germ layers, displayed a normal karyotype, and expressed markers charac-

teristic of pluripotency (Banovich et al., 2018). iPSCs were grown in Essential 8 (E8) Medium

(Thermo Fisher #A1517001) supplemented with 1X Penicillin-Streptomycin (Pen/Strep, Gibco) on

Matrigel-coated tissue culture dishes (Corning #354277). Cells were passaged when they were ~80%

confluent using enzyme-free dissociation solution (30 mM NaCl, 0.5 mM EDTA, 1X PBS minus Mag-

nesium and Calcium) and maintained in E8 Medium with 10 mM Y-27632 dihydrochloride (Abcam

#ab120129) for 24 hr. Medium was replaced daily. iPSC cultures routinely tested negative for myco-

plasma contamination using the Universal Mycoplasma Detection Kit (ATCC #30–1012K).

Cardiomyocyte differentiation
Cardiomyocyte differentiations were based on the protocol of Burridge et al. (2014) with modifica-

tions described in Banovich et al. (Banovich et al., 2018). iPSCs were expanded in 60 mm dishes in

E8 media until they reached 60–70% confluency at which time the differentiation was started (day 0).

On day 0, E8 media was replaced with 10 mL of basic heart media/12 mM GSK-3 inhibitor CHIR-

99021 trihydrochloride (Tocris #4953)/Matrigel overlay [basic heart media: RPMI 1640 minus L-gluta-

mine (HyClone #SH30096.01) with 1X GlutaMax (Life Technologies #11879020) supplemented with

1X B27 minus insulin (Thermo Fisher #A1895601) and 1X Pen/Strep; Matrigel overlay was accom-

plished by dissolving Matrigel in 50 mL basic heart media at a concentration of 0.5X according to
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the lot-specific dilution factor]. After 24 hr (day 1), the GSK-3 inhibitor was removed by replacing

media with 10 mL basic heart media. On day 3, media was replaced with 10 mL basic heart media

supplemented with 2 mM Wnt-C59 (Tocris #5148). On day 5 (48 hours later), media was replaced

with 10 mL basic heart media. On day 7, cells were washed once with 1X PBS and then 15 mL basic

heart media was added. Media was replaced every other day in this way until day 15 at which time

cardiomyocytes were selected for by replacing basic heart media with 10 mL lactate media (RPMI

1640 minus D-glucose, plus L-glutamine (Life Technologies #11879020), supplemented with 0.5 mg/

mL recombinant human albumin (Sigma 70024-90-7), 5 mM sodium DL-lactate (Sigma 72-17-3), 213

mg/mL L-ascorbic acid 2-phosphate (Sigma 70024-90-7) and 1X Pen/Strep). Lactate media was

replaced every other day until day 20 at which point cardiomyocytes were harvested. Cells from suc-

cessful differentiations exhibited spontaneous beating around days 7–10.

Cardiomyocytes were harvested by washing once with 1X PBS followed by incubation in 4 mL Try-

pLE (Life Technologies 12604–021) at 37˚C for 5 min. After incubation, 4 mL lactate media was

added to the TrypLE and a 1 mL pipet was used to dislodge cells. Cells were strained once with a

100 mM strainer and then once with a 40 mM strainer. Cells were pelleted at 500xg and then resus-

pended in PBS and counted. For each batch of differentiation, 5 million cells were taken for pro-

moter-capture Hi-C and 1 million cells were taken for RNA-seq. To assess purity, 2 million cells were

taken for flow cytometry analysis using an antibody for cardiac Troponin T (BD Biosciences 564767).

All cells used in downstream experiments were at least 86% Troponin T positive (Figure 1—figure

supplement 1A). We carried out three independent differentiations of the same iPSC line and gen-

erated promoter-capture Hi-C and RNA-seq libraries in iPSCs and CMs from each triplicate.

Promoter capture Hi-C
Crosslinking cells
iPSCs or cardiomyocytes were harvested from tissue culture dishes and counted. Cells were resus-

pended in 1X PBS at a concentration of 1 million cells/mL and 37% formaldehyde was added to a

final concentration of 1%. Crosslinking was carried out for 10 min at room temperature on a rocking

platform. Glycine was added to a final concentration of 0.2 M to quench the reaction. The cells were

pelleted, snap frozen in liquid nitrogen and stored at �80˚C until ready for Hi-C processing.

in situ Hi-C
We prepared all promoter capture Hi-C libraries in one batch using three crosslinked pellets of 5 mil-

lion cells for both iPSCs and iPSC-derived cardiomyocytes, representing three independent cardio-

myocyte differentiations. The in situ Hi-C step was performed as in Rao et al. (2014) with a single

modification in which NEBNext reagents from the NEBNext Multiplex Oligos for Illumina kit were

used (NEB #E7335S) instead of Illumina adapters, following the manufacturer’s instructions. Hi-C

libraries were amplified directly off of T1 beads (Life Technologies #65602) using NEBNext primers

and six cycles of PCR.

Promoter capture – probe design and generation
Hi-C capture probes were designed to target four MboI restriction fragment ends (120 bp) near the

TSS of protein coding RefSeq genes (O’Leary et al., 2016) mapped to hg19 in the UCSC Genome

Browser (Speir et al., 2016). To select restriction fragments, we only kept MboI restriction fragments

longer than 200 bp and overlapping 10 kb around a RefSeq TSS. For TSSs closer than 1 kb from

each other, only one was retained, as their interactions were likely to be captured by the other

RefSeq TSS. The four MboI restriction fragment ends closest to each RefSeq TSS were selected as

putative probes. The 120 bp sequences were submitted to Agilent’s SureDesign proprietary soft-

ware for probe selection, which can slightly shift the location and remove probes. In total, we

ordered a library of 77,476 single-stranded DNA oligos from CustomArray, Inc. (www.customar-

rayinc.com). Each oligo consisted of the sequence 5’-ATCGCACCAGCGTGTN120CACTGCGGCTCC

TCA-3’ (Gnirke et al., 2009) where N120 represents the 120 nucleotides adjacent to the MboI cut

site. The complete list of oligo probes and their corresponding gene name is provided in

Supplementary file 9.1.

The oligos arrived as a pool containing 1000 ng of material. We used 16 ng of the oligo pool in a

PCR reaction to make them double stranded using primers 50-CTGGGAATCGCACCAGCGTGT-30
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(Primer A), and 50-CGTGGATGAGGAGCCGCAGTG-30 (Primer B) as in (Gnirke et al., 2009). The

PCR reaction was cleaned using AMPure XP beads (Agencourt #A6388) and eluted with 20 ml of

water. To add the full T7 promoter to the 5’ end of the oligos, a second PCR reaction was carried

out using 10 ng of the cleaned-up first-round PCR product with the forward primer 5’-GGATTCTAA

TACGACTCACTATAGGGATCGCACCAGCGTGT-3’ (Primer A T7). We purified the PCR product cor-

responding to 176 bp using a Qiagen gel extraction kit (#28704). To generate biotinylated RNA

baits, we performed in vitro transcription on the double-stranded library using the MEGAshortscript

T7 Transcription Kit (Thermo Fisher #AM135) with Biotin-16-dUTP (Sigma #11388908910). After

DNase treatment the transcription reaction was cleaned using the MEGAclear kit (Thermo Fisher

#AM1908) and eluted with 50 ml elution buffer. We confirmed the correct bait size on a denaturing

gel.

Promoter capture – hybridization with Hi-C library
To isolate promoter-containing fragments from the whole-genome in situ Hi-C library, we hybridized

the biotinylated RNA bait pool with the Hi-C library as follows. A mix containing 500 ng of the Hi-C

library, 2.5 mg of human Cot-1 DNA (Invitrogen #15279–011), 2.5 mg of salmon sperm DNA (Invitro-

gen #15632–011), 0.5 ml blocking primer P5 (IDT #1016184), and 0.5 ml blocking primer P7 (IDT

#1016186) was heated for 5 min. at 95˚, held at 65˚ and mixed with 13 ml pre-warmed hybridization

buffer (10X SSPE, 10X Denhardt’s, 10 mM EDTA and 0.2% SDS) and a 6 ml pre-warmed mix of 500

ng of the biotinylated RNA bait and 20U SUPERase-In (Thermo Fisher #AM2694). The hybridization

mix was incubated for 24 hr at 65˚C. To isolate captured fragments, we prepared 500 ng of strepta-

vidin-coated magnetic beads (Dynabeads MyOne Streptavidin T1, Thermo Fisher #65601) in 200 ml

of Binding buffer (1M NaCl, 10 mM Tris-HCl pH 7.5, 1 mM EDTA). The hybridization mix was added

to the Streptavidin beads and rotated for 30 min at room temperature. The beads containing the

captured Hi-C fragments were washed with 1X SSC, 0.1% SDS for 15 min at room temperature, fol-

lowed by three washes (10 min each) at 65˚C with 0.1X SSC/0.1% SDS. After the final wash, the

beads were resuspended in 22 ml of water and proceeded to post-capture PCR. The PCR reaction

was performed as before, with 11 ml of the ‘capture Hi-C beads’ and 8 cycles of amplification. An

AMPure XP bead purification was used to clean the PCR reaction and DNA was quantified using the

QuantiFluor dsDNA System (Promega #E2670) and a High Sensitivity Bioanalyzer. Final capture Hi-C

libraries were subjected to 100 bp paired-end sequencing on an Illumina HiSeq 4000 machine. Read

count summaries are provided in Supplementary file 9.2.

Interaction calling
We used HiCUP v0.5.9 (Wingett et al., 2015) to align and filter Hi-C reads (total and filtered read

counts are presented in Supplementary file 9.2). Unique reads were given to CHiCAGO version

1.2.0 (Cairns et al., 2016) and significant interactions were called with default parameters. In this

study, we focused exclusively on cis-interactions as the evidence that trans-chromosomal interactions

contribute to gene expression regulation is limited. CHiCAGO reports interactions for each captured

restriction fragment; to summarize interactions by gene, we considered the interval spanning all cap-

tured fragments (i.e. the set of probes spanning each TSS) as the promoter region (‘merged TSS’).

This means the promoter regions created have variable lengths. In cases where multiple genes were

annotated to the same promoter region, we report the interaction for each gene individually. This

annotation allowed us to perform gene-level analyses, for example based on expression level. We

removed this redundancy as necessary, for example in motif enrichment analyses of the promoter-

interacting fragments. Using the ‘merged TSS’ interaction files, we filtered interactions to retain

those that mapped within 1 kb of each other in at least two replicates. Specifically, we extended

each promoter-interacting fragment by 1 kb on each end and then used BEDTools (Quinlan and

Hall, 2010) pairToPair functionality to identify interactions where both ends matched across repli-

cates. To identify cell type-specific interactions, we required that the interaction (with the 1 kb exten-

sion) was not present in any of the three replicates of the other cell type. The number of read-pairs

per promoter and the corresponding number of significant interactions identified is presented in

Supplementary file 9.3. The TAD analyses, motif enrichment, ChIP-seq peak enrichment, and eQTL

analyses (related to Figures 1, 2, 3 and 5) were conducted with fragment-level interactions (no 1 kb
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extension). The GWAS SNP analyses were conducted with 1kb-extended interactions, as we aimed

to be as inclusive as possible when linking CVD SNPs to target genes.

PCHi-C interactions, TADs, RNA-seq, publicly available ChIP-seq, and GWAS SNPs are hosted by

the WashU EpiGenome Browser (Zhou et al., 2015) as a public track hub. This can be accessed by

going to http://epigenomegateway.wustl.edu/browser/. The public hub (‘A promoter interaction

map for cardiovascular disease genetics’) can be found under the Human Hg19 browser.

4C-style plots
To generate the by-gene read counts displayed in the genome-browser figures, all read-pairs map-

ping to captured MboI fragments for a given promoter were summed across replicates. Specifically,

we summed reads for each MboI fragment where the read was part of a paired-read that mapped

to a bait for the given gene. The arcs that are displayed underneath the 4C-style plot represent sig-

nificant interactions that were identified in at least two replicates as detailed above in ‘Interaction

calling’.

TAD analysis
To identify TADs, we pooled reads across replicates for each cell type using the pre-capture Hi-C

data (600M reads for iPSC and 733M reads for CM) and used HiCUP v0.5.9 (Wingett et al., 2015)

to align and filter Hi-C reads. HOMER v4.8.3 (Heinz et al., 2010) was used to generate normalized

interaction matrices at a resolution of 40 kb and then TopDom v0.0.2 (Shin et al., 2016) was used

with a window size w = 10 to identify topological domains, boundaries and gaps. We only consid-

ered domains for the analyses in this paper. We considered a promoter capture Hi-C interaction to

be ‘intra-TAD’ if the entire span of the interaction was fully contained in a single domain. ‘Inter-TAD’

interactions are defined as interactions where each end maps to a different domain.

A/B compartments
The program runHiCpca.pl from the HOMER (Heinz et al., 2010) v4.8.3 package was used to call A/

B compartments with -res 50000 for both whole-genome and capture Hi-C data.

RNA-seq
Total RNA was extracted from flash-frozen pellets of 1 million cells using TRI Reagent (Sigma

#T9424) and a homogenizer followed by RNA isolation and clean-up using the Direct-zol RNA Kit

(Zymo Research #11–331). RNA-seq libraries were generated with the Illumina TruSeq V2 kit (Illu-

mina, RS-122–2001) and 1 mg of RNA, following manufacturer’s instructions. Libraries were made

from RNA isolated from three independent iPSC-CM differentiations (triplicates of iPSC and of cardi-

omyocytes). Libraries were sequenced on an Illumina HiSeq 4000.

Gene counts were quantified with Salmon 0.7.2 (Patro et al., 2017) and imported with tximport

1.2.0 (Soneson et al., 2015) into DESeq2 1.12.4 (Love et al., 2014) to call differentially expressed

genes. A minimum 1.5-fold-difference between CMs and iPSC triplicates and a minimum adjusted

p-value of 0.05 were required to select differentially expressed genes for downstream analyses.

TPMs (transcripts per million) were also estimated by Salmon. Because the samples clearly clustered

according to their known tissues of origin (Figure 1—figure supplement 2A), no correction for

batch effects was performed.

H3K27ac ChIP-seq for comparison with epigenome roadmap samples
We performed ChIP-seq on 2.5 million cells each for iPSCs and CMs using H3K27ac antibodies

(Wako #306–34849). Briefly, cells were crosslinked with 1% formaldehyde for 10 min at room tem-

perature, quenched with 0.2M glycine for 5 min, pelleted and snap-frozen in liquid nitrogen. Cells

were lysed in Lysis Buffer 1 (50 mM HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol,

0.5% NP-40, 0.25% Triton X-100). Crosslinked chromatin was sheared to an average size of 300 bp

using a Bioruptor with 30" on/30" off at high setting and then incubated overnight at 4˚C with 1 mg

antibody. Dynabeads M-280 Sheep Anti-Mouse IgG (ThermoFisher #11201D) were used to pull

down chromatin and ChIP DNA was eluted and prepared for sequencing using the NEBNext Ultra II

DNA Library prep kit (NEB #E7645S). ChIP-seq reads were aligned with Bowtie 2–2.2.3

(Langmead and Salzberg, 2012) and peaks were called with HOMER (Heinz et al., 2010) v4.8.3 on
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unique reads with mapping quality >10 using the –region and –style histone parameters. Significant

peaks were overlapped with H3K27ac peaks from Epigenome Roadmap samples which demon-

strated high concordance between matched tissue types (Figure 1—figure supplement 2C,D).

Because we performed a low level of sequencing, we did not identify as many peaks as the Road-

map samples. Therefore, we used Roadmap ChIP-seq data in all of our analyses.

Gene Ontology analysis
The human Gene Ontology (GO) associations of GO terms (Ashburner et al., 2000) to genes and

the GO database were downloaded on January 22, 2016 from http://geneontology.org/gene-associ-

ations. GO terms were associated with RefSeq genes via gene symbols. Using the GO annotation

graph, all parent terms were assigned to the terms annotated to a gene. A hypergeometric test was

used to calculate the statistical significance of the difference of the number of genes associated with

a given GO term in a particular gene set and the universe of all RefSeq genes (p<0.05). p-Values

were corrected with the R package p.adjust function using the ‘fdr’ method.

For two of the GWAS disease groups (heart failure and myocardial infarction), the list of genes

looping to LD SNPs included many histone genes. This is because there is a tag SNP located in the

middle of a histone gene cluster (containing >30 histone genes located close together) in each case.

After expanding the tag SNP to all SNPs in LD, many of the histone genes in that cluster looped to

the LD SNPs, resulting in a high representation of these genes in the final gene list. The resulting

Gene Ontology enrichment analysis gave terms relating to nucleosome and chromatin organization

because of this over-representation. We therefore chose to remove these genes from the final gene

lists of heart failure and myocardial infarction target genes.

Motif analysis
The program findMotifsGenome.pl from the HOMER (Heinz et al., 2010) v4.8.3 package was used

with –size given parameter to identify overrepresented motifs in the distal (non-promoter) interact-

ing sequences of promoter interactions. As stated above, this analysis was performed on fragment-

level promoter-interacting sequences.

Histone ChIP-seq enrichment analysis
We obtained publicly available ChIP-seq data in the form of processed peak calls for H3K27ac,

H3K4me1 and H3K27me3 from the Roadmap Epigenomics Project (Kundaje et al., 2015), and for

CTCF from ENCODE (ENCODE Project Consortium, 2012) (Supplementary file 10). We only con-

sidered peaks that mapped outside of the captured region of promoters to ensure our results were

not driven by the strong peak signal over most promoters. As a proxy for iPSCs, we used data from

the H1 embryonic stem cell line and for CMs we used data from Left Ventricle tissue. We grouped

genes into five expression categories based on the average TPM values: group 1 (0 TPM), group 2

(TPM 0–3), group 3 (TPM 3–25), group 4 (TPM 25–150) and group 5 (TPM >150) and for each group

of genes, we calculated the enrichment for promoter interactions to overlap a given feature. To cal-

culate enrichment of interactions overlapping an epigenetic feature, we compared the observed pro-

portion of MboI fragments in significant interactions overlapping a feature to the proportion of

random MboI fragments overlapping the feature. Specifically, we randomly selected MboI fragments

from a set that excluded fragments mapping within captured regions (promoters) or within unmap-

pable genomic regions (gaps). The number of randomly selected fragments matched the number of

interacting fragments considered for the analysis. We performed 100 iterations of overlapping ran-

dom fragments with a feature and report the average fold-enrichment. We refer to this method of

enrichment as a ‘genome-wide’ background model because for each gene expression group, the

observed proportion of fragments containing a peak is compared to randomly selected fragments

from the whole genome.

To calculate the correlation between expression and histone ChIP-seq peak density, we calcu-

lated the Spearman’s rank correlation between the expression value for each gene (the average

TPM value) and the number of peaks mapping within 300 kb of each gene TSS. We only considered

genes with at least one significant interaction in the respective cell type to allow for generalizations

to the enrichment analysis presented in Figure 3.
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GWAS analysis
We compiled genome-wide significant SNPs associated with GWAS for cardiac arrhythmia, heart fail-

ure, and myocardial infarction from the NHGRI-EBI database (http://www.ebi.ac.uk/gwas/); see

Supplementary file 7 for list of terms used to identify specific GWAS. We expanded each set of

SNPs to all SNPs in high LD (r2 >0.9) using phase 3 data of the 1000 genomes project

(Nikpay et al., 2015) (Supplementary file 3). For each lead SNP from the GWAS we analyzed, we

selected a 100 kb interval centered on the SNP (SNP ± 50 kb). For each 100 kb interval, Tabix

(Li, 2011) was used to retrieve genotypes. We then used PLINK (Purcell et al., 2007) v1.90p on

phase three data from the 1000 genomes project (Nikpay et al., 2015) (ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502, v5a) to select SNPs in LD (r2 >0.9) with the tag SNP and a minimum allele

frequency of 0.01. We only included the populations primarily studied in the GWASs: CEU (central

European), ASW (African American) and JPT (Japanese). We assigned all SNPs in promoter-distal

interactions to their interacting gene(s) (‘target genes’) using cardiomyocyte promoter capture Hi-C

data. We did not require the SNP to map to regions associated with open chromatin or enhancer

marks as these types of data are highly cell-type specific and we did not wish to exclude SNPs in

regions that may be active in non-assayed cell types.

We note that one major GWAS for dilated cardiomyopathy was not included in the NHGRI-EBI

database (Meder et al., 2014), likely because there is an error obtaining the online methods of the

paper. After careful inspection of the study, we concluded that the GWAS met the NHGRI-EBI crite-

ria and included the associations from that study in our analysis. A complete list of all studies used in

this analysis can be found in Supplementary file 8.

MGI analysis
To calculate enrichment of target genes to cause cardiovascular phenotypes when deleted in mice

(Mouse Genome Informatics database), we randomly selected 347 genes from the list of starting

genes (i.e. genes with at least one promoter-distal interaction in CMs, meaning it could be a target

gene), and calculated the proportion that caused a cardiovascular phenotype in mice. We performed

this randomized selection for 1000 iterations to generate the randomized (expected) values. Random

genes were not required to be expressed, as the set of target genes contains genes that are not

expressed. p-Value was calculated with a Z test.

eQTL analysis
For eQTLs used in comparisons with GWAS variants and Hi-C interactions, we used the set of GTEx

v7 eQTLs identified as significant in the left ventricle of the heart (Carithers et al., 2015). eQTLs

were called significant if q < 0.05 after false discovery rate correction (Storey and Tibshirani, 2003).

We only considered promoter-distal eQTLs that were at least 10 kb from their associated gene to

allow for that eQTL to map to an interaction with it’s associated gene.

To calculate enrichment for eQTLs to loop to their associated gene, we used a background model

whereby each promoter’s set of interactions were re-mapped to a different promoter, keeping the

distance and strand orientation consistent. We performed this re-mapping of all promoter interac-

tions 1000 times and calculated the proportion of all eQTLs that mapped to interactions for their

eQTL-associated gene in each permutation. We either used the CM interactions or the iPSC interac-

tions with the same set of left ventricle eQTLs to compare cell-type specificity of the promoter inter-

action data.

Data availability
Raw and processed sequencing data are provided at ArrayExpress through accession numbers

E-MTAB-6014 (Hi-C) and E-MTAB-6013 (RNA-seq).
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are listed.

DOI: https://doi.org/10.7554/eLife.35788.028

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.35788.029

Data availability

Raw and processed sequencing data are provided at ArrayExpress through accession numbers

E-MTAB-6014 (Hi-C) and E-MTAB-6013 (RNA-seq).
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Epigenome
Project
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roadmap/data/byFile-
Type/peaks/consoli-
dated/narrowPeak/E003-
H3K27me3.narrowPeak.
gz

Open public
database: Roadmap
Epigenome
Project

Kundaje A 2015 Roadmap Epigenome Project-H9-
H3K4me1

http://egg2.wustl.edu/
roadmap/data/byFile-
Type/peaks/consoli-
dated/narrowPeak/E008-
H3K4me1.narrowPeak.gz

Open public
database: Roadmap
Epigenome
Project
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Publicly available at
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2013 1000G_RNA-seq-LCL_1883_
GM11830_1

ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR356/
ERR356375/ERR356375_
1.fastq.gz

Publicly available at
ArrayExpress

Montefiori et al. eLife 2018;7:e35788. DOI: https://doi.org/10.7554/eLife.35788 28 of 35

Tools and resources Chromosomes and Gene Expression Human Biology and Medicine

http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K4me1.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K4me1.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K4me1.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K4me1.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K4me1.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27ac.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27ac.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27ac.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27ac.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27ac.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27me3.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27me3.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27me3.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27me3.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27me3.narrowPeak.gz
http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/E104-H3K27me3.narrowPeak.gz
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35583
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35583
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35583
https://www.ncbi.nlm.nih.gov/sra/SRR643778/
https://www.ncbi.nlm.nih.gov/sra/SRR643778/
https://www.ncbi.nlm.nih.gov/sra/SRR643779/
https://www.ncbi.nlm.nih.gov/sra/SRR643779/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM438361
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM438361
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM438361
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM958737
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM958737
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM958737
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1817053
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1817053
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1817053
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1010938
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1010938
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1010938
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1010964
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1010964
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1010964
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356375/ERR356375_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356375/ERR356375_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356375/ERR356375_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356375/ERR356375_1.fastq.gz
https://doi.org/10.7554/eLife.35788


ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,
Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

2013 1000G_RNA-seq-LCL_1883_
GM11894_1

ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR356/
ERR356368/ERR356368_
1.fastq.gz

Publicly available at
ArrayExpress

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,
Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

2013 1000G_RNA-seq-LCL_1883_
GM12043_1

ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR356/
ERR356365/ERR356365_
1.fastq.gz

Publicly available at
ArrayExpress

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,
Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

2013 1000G_RNA-seq-LCL_1883_
GM12878_1

ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR356/
ERR356372/ERR356372_
2.fastq.gz

Publicly available at
ArrayExpress

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,

2012 ENCODE_RNA-seq-LCL_encode_1 https://www.encodepro-
ject.org/files/EN-
CFF000CXI/@@down-
load/ENCFF000CXI.

Publicly available at
ArrayExpress

Montefiori et al. eLife 2018;7:e35788. DOI: https://doi.org/10.7554/eLife.35788 29 of 35

Tools and resources Chromosomes and Gene Expression Human Biology and Medicine

ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356368/ERR356368_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356368/ERR356368_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356368/ERR356368_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356368/ERR356368_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356365/ERR356365_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356365/ERR356365_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356365/ERR356365_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356365/ERR356365_1.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356372/ERR356372_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356372/ERR356372_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356372/ERR356372_2.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR356/ERR356372/ERR356372_2.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXI/@@download/ENCFF000CXI.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXI/@@download/ENCFF000CXI.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXI/@@download/ENCFF000CXI.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXI/@@download/ENCFF000CXI.fastq.gz
https://doi.org/10.7554/eLife.35788


Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

fastq.gz

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,
Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

2012 ENCODE_RNA-seq-LCL_encode_2 https://www.encodepro-
ject.org/files/
ENCFF000CXH/
@@download/
ENCFF000CXH.fastq.gz

Publicly available at
ArrayExpress

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,
Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

2013 GEUVADIS_RNA-seq-LCL_
geuvadis_1

ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR187/
ERR187488/ERR187488.
fastq.gz

Publicly available at
ArrayExpress

Kilpinen H, Waszak
SM, Gschwind AR,
Raghav SK, Wit-
wicki RM, Orioli A,
Migliavacca E,
Wiederkehr M, Gu-
tierrez-Arcelus M,
Panousis N, Yur-
ovsky A, Lappalai-
nen T, Romano-
Palumbo L, Plan-
chon A, Bielser D,
Bryois J, Padioleau
I, Udin G, Thurnh-
eer S, Hacker D,
Core LJ, Lis JT,
Hernandez N, Rey-
mond A, Deplancke
B, Dermitzakis ET

2013 GEUVADIS_RNA-seq-LCL_
geuvadis_2

ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR187/
ERR187490/ERR187490.
fastq.gz

Publicly available at
ArrayExpress

Montefiori et al. eLife 2018;7:e35788. DOI: https://doi.org/10.7554/eLife.35788 30 of 35

Tools and resources Chromosomes and Gene Expression Human Biology and Medicine

https://www.encodeproject.org/files/ENCFF000CXI/@@download/ENCFF000CXI.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXH/@@download/ENCFF000CXH.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXH/@@download/ENCFF000CXH.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXH/@@download/ENCFF000CXH.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXH/@@download/ENCFF000CXH.fastq.gz
https://www.encodeproject.org/files/ENCFF000CXH/@@download/ENCFF000CXH.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187488/ERR187488.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187488/ERR187488.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187488/ERR187488.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187488/ERR187488.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187490/ERR187490.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187490/ERR187490.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187490/ERR187490.fastq.gz
ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR187/ERR187490/ERR187490.fastq.gz
https://doi.org/10.7554/eLife.35788


References
Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, Sotoodehnia N, Rossin EJ, Morley M,
Wang X, Johnson AD, Lundby A, Gudbjartsson DF, Noseworthy PA, Eijgelsheim M, Bradford Y, Tarasov KV,
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Karlić R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. 2010. Histone modification levels are predictive for
gene expression. PNAS 107:2926–2931. DOI: https://doi.org/10.1073/pnas.0909344107, PMID: 20133639

Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller
MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A, Quon G, Sandstrom RS, Eaton ML, Wu YC,
Pfenning AR, et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:317–330.
DOI: https://doi.org/10.1038/nature14248, PMID: 25693563

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9:357–359.
DOI: https://doi.org/10.1038/nmeth.1923, PMID: 22388286

Li H. 2011. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics 27:718–
719. DOI: https://doi.org/10.1093/bioinformatics/btq671, PMID: 21208982

Montefiori et al. eLife 2018;7:e35788. DOI: https://doi.org/10.7554/eLife.35788 32 of 35

Tools and resources Chromosomes and Gene Expression Human Biology and Medicine

https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11082
http://www.ncbi.nlm.nih.gov/pubmed/22495300
https://doi.org/10.1038/nature11247
http://www.ncbi.nlm.nih.gov/pubmed/22955616
https://doi.org/10.1101/gad.292870.116
http://www.ncbi.nlm.nih.gov/pubmed/28381411
https://doi.org/10.1038/nature19800
http://www.ncbi.nlm.nih.gov/pubmed/27706140
https://doi.org/10.7554/eLife.21926
http://www.ncbi.nlm.nih.gov/pubmed/28332981
https://doi.org/10.1038/nature13417
http://www.ncbi.nlm.nih.gov/pubmed/25043061
https://doi.org/10.1111/j.1582-4934.2011.01417.x
http://www.ncbi.nlm.nih.gov/pubmed/21883888
https://doi.org/10.1016/j.cell.2004.08.011
https://doi.org/10.1016/j.cell.2004.08.011
http://www.ncbi.nlm.nih.gov/pubmed/15339661
https://doi.org/10.1038/nbt.1523
https://doi.org/10.1038/nbt.1523
http://www.ncbi.nlm.nih.gov/pubmed/19182786
https://doi.org/10.1016/j.ajhg.2009.04.007
http://www.ncbi.nlm.nih.gov/pubmed/19409525
https://doi.org/10.1038/nature07829
http://www.ncbi.nlm.nih.gov/pubmed/19295514
https://doi.org/10.1016/j.molcel.2010.05.004
https://doi.org/10.1016/j.molcel.2010.05.004
http://www.ncbi.nlm.nih.gov/pubmed/20513432
https://doi.org/10.1016/j.cell.2017.02.007
http://www.ncbi.nlm.nih.gov/pubmed/28340338
https://doi.org/10.1016/j.cell.2016.09.037
http://www.ncbi.nlm.nih.gov/pubmed/27863249
https://doi.org/10.1038/nature12644
https://doi.org/10.1038/nature12644
http://www.ncbi.nlm.nih.gov/pubmed/24141950
https://doi.org/10.1161/CIRCRESAHA.117.305365
http://www.ncbi.nlm.nih.gov/pubmed/26089365
https://doi.org/10.1073/pnas.0909344107
http://www.ncbi.nlm.nih.gov/pubmed/20133639
https://doi.org/10.1038/nature14248
http://www.ncbi.nlm.nih.gov/pubmed/25693563
https://doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
https://doi.org/10.1093/bioinformatics/btq671
http://www.ncbi.nlm.nih.gov/pubmed/21208982
https://doi.org/10.7554/eLife.35788


Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ,
Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny
LA, Lander ES, Dekker J. 2009. Comprehensive mapping of long-range interactions reveals folding principles of
the human genome. Science 326:289–293. DOI: https://doi.org/10.1126/science.1181369, PMID: 19815776

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281
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